

IDOR

AND

HTTP SECURITY HEADERS

What is IDOR?

• When a web server processes a user’s request, it

determines the resource accessed using parameters

stated within the HTTP request. The direct object reference

is information that is used to locate and access a particular

resource. While the server is retrieving a resource,

attackers can manipulate these parameters and access

internal implementation object details in the event of a lack

of adequate server-side validation. This attack is known as

an Insecure Direct Object Reference (IDOR) vulnerability.

IDOR examples

There are many examples of access control vulnerabilities

where user-controlled parameter values are used to access

resources or functions directly.

1. IDOR vulnerability with direct reference to database

objects

Consider a website that uses the following URL to access the

customer account page, by retrieving information from the

back-end database:

https://insecure-

website.com/customer_account?customer_number=132355

Here, the customer number is used directly as a record index in

queries that are performed on the back-end database. If no other

controls are in place, an attacker can simply modify the

customer_number value, bypassing access controls to view the

records of other customers. This is an example of an IDOR

vulnerability leading to horizontal privilege escalation.

An attacker might be able to perform horizontal and vertical

privilege escalation by altering the user to one with additional

privileges while bypassing access controls. Other possibilities

include exploiting password leakage or modifying parameters

once the attacker has landed in the user's accounts page, for

example.

2. IDOR vulnerability with direct reference to static files

IDOR vulnerabilities often arise when sensitive resources are

located in static files on the server-side filesystem. For example,

a website might save chat message transcripts to disk using an

incrementing filename, and allow users to retrieve these by

visiting a URL like the following:

https://insecure-website.com/static/12144.txt

In this situation, an attacker can simply modify the filename to

retrieve a transcript created by another user and potentially

obtain user credentials and other sensitive data.

Impacts of IDOR Vulnerability

• Exposure of Confidential Information: When the attacker

will have control over your account via this vulnerability, it

is obvious that an attacker will be able to come across your

personal information.

• Authentication Bypass: As the attacker can have access to

millions of account with this vulnerability, it will be a type of

Authentication bypass mechanism.

Alteration of Data: An attacker may have privileges to

access your data and alter it. By this, an attacker may have

permission to make changes to your data, which may lead

to manipulation of records.

• Account Takeover: While an attacker may have multiple

access to user accounts just by changing the “UID” values,

this will lead to account takeover vulnerability. When one

vulnerability leads to another vulnerability (like in this

case), It is known as Chaining of BUGS.

What are HTTP Security Headers?

When we visit any website in the browser, the browser sends

some request headers to the server and the server responds

with HTTP response headers. These headers are used by the

client and server to share information as a part of the HTTP

protocol. Browsers have defined behaviour of the web page

according to these headers during communication with the

server. These headers are mainly a combination of key-value

pairs separated by a colon: There are many HTTP headers, but

here I'm covering some very useful web security headers, which

will improve your website security.

Types of security headers

You can use these headers to outline communication and

improve web security. Let’s have a look at five security headers

that will give your site some much-needed protection.

1. HTTP Strict Transport Security (HSTS)

Let’s say you have a website named example.com and you

installed an SSL/TLS certificate and migrated from HTTP to

HTTPS. This is good, right? That was rhetorical. It definitely is. But

this isn’t where the work stops. What if your website is still

available over HTTP? It would be utterly pointless, right? Many

website admins migrate to HTTPS and then forget about it

without realizing this. This is where HSTS enters the picture.

If a site is equipped with HTTPS, the server forces the browser to

communicate over secure HTTPS. This way, the possibility of an

HTTP connection is eliminated entirely.

Syntax:

Strict-Transport-Security: max-age=<expire-time>

Strict-Transport-Security: max-age=<expire-time>;

includeSubDomains

Strict-Transport-Security: max-age=<expire-time>;

preload

2. Content Security Policy (CSP)

The HTTP Content Security Policy response header gives website

admins a sense of control by giving them the authority to restrict

the resources a user is allowed to load within site. In other

words, you can whitelist your site’s content sources.

Content Security Policy protects against Cross Site Scripting and

other code injection attacks. Although it doesn’t eliminate their

possibility entirely, it can sure minimize the damage.

Compatibility isn’t a problem as most of the major browsers

support CSP.

Syntax:

Content-Security-Policy: <policy-directive>;
<policy-directive>

3. Cross Site Scripting Protection (X-XSS)

As the name suggests, X-XSS header protects against Cross-

Site Scripting attacks. XSS Filter is enabled in Chrome, IE, and

Safari by default. This filter doesn’t let the page load when it

detects a cross-site scripting attack.

Syntax:

X-XSS-Protection: 0

X-XSS-Protection: 1

X-XSS-Protection: 1; mode=block

X-XSS-Protection: 1; report=<reporting-uri>

4. X-Frame-Options

In the Orkut era, a spoofing technique called ‘Clickjacking’ was

pretty popular. It still is. In this technique, an attacker fools a

user into clicking something that isn’t there. For example, a user

might think that he’s on the official Orkut website, but something

else is running in the background. A user may reveal his/her

confidential information in the process.

X-Frame-Options help guard against these kinds of attacks. This

is done by disabling the iframes present on the site. In other

words, it doesn’t let others embed your content.

Syntax:

X-Frame-Options: DENY

X-Frame-Options: SAMEORIGIN

X-Frame-Options: ALLOW-FROM https://example.com/

5. X-Content-Type-Options

The X-Content-Type header offers a countermeasure against

MIME sniffing. It instructs the browser to follow the MIME types

indicated in the header. Used as a feature to discover an asset’s

file format, MIME sniffing can also be used to execute cross-site

scripting attacks.

Syntax:

X-Content-Type-Options: nosniff

References

• https://crashtest-security.com/insecure-direct-object-

reference-idor/

• https://portswigger.net/web-security/access-control/idor

• https://www.loginradius.com/blog/engineering/http-

security-headers

• https://www.geeksforgeeks.org/insecure-direct-object-

reference-idor-vulnerability/

• https://www.thesslstore.com/blog/http-security-

headers/

