


Chapter 6. Service Discovery

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 7th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

Kubernetes is a very dynamic system. The system is involved in placing
Pods on nodes, making sure they are up and running, and rescheduling them
as needed. There are ways to automatically change the number of Pods
based on load (such as horizontal Pod autoscaling [see “Autoscaling a
ReplicaSet”]). The API-driven nature of the system encourages others to
create higher and higher levels of automation.

While the dynamic nature of Kubernetes makes it easy to run a lot of things,
it creates problems when it comes to finding those things. Most of the
traditional network infrastructure wasn’t built for the level of dynamism
that Kubernetes presents.

What Is Service Discovery?
The general name for this class of problems and solutions is service
discovery. Service-discovery tools help solve the problem of finding which
processes are listening at which addresses for which services. A good



service-discovery system will enable users to resolve this information
quickly and reliably. A good system is also low-latency; clients are updated
soon after the information associated with a service changes. Finally, a good
service-discovery system can store a richer definition of what that service
is. For example, perhaps there are multiple ports associated with the
service.

The Domain Name System (DNS) is the traditional system of service
discovery on the internet. DNS is designed for relatively stable name
resolution with wide and efficient caching. It is a great system for the
internet but falls short in the dynamic world of Kubernetes.

Unfortunately, many systems (for example, Java, by default) look up a
name in DNS directly and never re-resolve. This can lead to clients caching
stale mappings and talking to the wrong IP. Even with short TTLs and well-
behaved clients, there is a natural delay between when a name resolution
changes and when the client notices. There are natural limits to the amount
and type of information that can be returned in a typical DNS query, too.
Things start to break past 20–30 A records for a single name. SRV records
solve some problems, but are often very hard to use. Finally, the way that
clients handle multiple IPs in a DNS record is usually to take the first IP
address and rely on the DNS server to randomize or round-robin the order
of records. This is no substitute for more purpose-built load balancing.

The Service Object
Real service discovery in Kubernetes starts with a Service object.

A Service object is a way to create a named label selector. As we will see,
the Service object does some other nice things for us, too.

Just as the kubectl run command is an easy way to create a Kubernetes
deployment, we can use kubectl expose to create a service. Let’s
create some deployments and services so we can see how they work:

$ kubectl run alpaca-prod \ 
  --image=gcr.io/kuar-demo/kuard-amd64:blue \ 



  --replicas=3 \ 
  --port=8080 \ 
  --labels="ver=1,app=alpaca,env=prod" 
$ kubectl expose deployment alpaca-prod 
$ kubectl run bandicoot-prod \ 
  --image=gcr.io/kuar-demo/kuard-amd64:green \ 
  --replicas=2 \ 
  --port=8080 \ 
  --labels="ver=2,app=bandicoot,env=prod" 
$ kubectl expose deployment bandicoot-prod 
$ kubectl get services -o wide 
 
NAME             CLUSTER-IP    ... PORT(S)  ... SELECTOR 
alpaca-prod      10.115.245.13 ... 8080/TCP ... 
app=alpaca,env=prod,ver=1 
bandicoot-prod   10.115.242.3  ... 8080/TCP ... 
app=bandicoot,env=prod,ver=2 
kubernetes       10.115.240.1  ... 443/TCP  ... <none>

After running these commands, we have three services. The ones we just
created are alpaca-prod and bandicoot-prod. The kubernetes
service is automatically created for you so that you can find and talk to the
Kubernetes API from within the app.

If we look at the SELECTOR column, we see that the alpaca-prod
service simply gives a name to a selector and specifies which ports to talk
to for that service. The kubectl expose command will conveniently
pull both the label selector and the relevant ports (8080, in this case) from
the deployment definition.

Furthermore, that service is assigned a new type of virtual IP called a
cluster IP. This is a special IP address the system will load-balance across
all of the Pods that are identified by the selector.

To interact with services, we are going to port forward to one of the
alpaca Pods. Start and leave this command running in a terminal window.
You can see the port forward working by accessing the alpaca Pod at
http://localhost:48858:

$ ALPACA_POD=$(kubectl get pods -l app=alpaca \ 
    -o jsonpath='{.items[0].metadata.name}') 
$ kubectl port-forward $ALPACA_POD 48858:8080

http://localhost:48858/


Service DNS
Because the cluster IP is virtual, it is stable, and it is appropriate to give it a
DNS address. All of the issues around clients caching DNS results no
longer apply. Within a namespace, it is as easy as just using the service
name to connect to one of the Pods identified by a service.

Kubernetes provides a DNS service exposed to Pods running in the cluster.
This Kubernetes DNS service was installed as a system component when
the cluster was first created. The DNS service is, itself, managed by
Kubernetes and is a great example of Kubernetes building on Kubernetes.
The Kubernetes DNS service provides DNS names for cluster IPs.

You can try this out by expanding the “DNS Query” section on the kuard
server status page. Query the A record for alpaca-prod. The output
should look something like this:

;; opcode: QUERY, status: NOERROR, id: 12071 
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, 
ADDITIONAL: 0 
 
;; QUESTION SECTION: 
;alpaca-prod.default.svc.cluster.local. IN  A 
 
;; ANSWER SECTION: 
alpaca-prod.default.svc.cluster.local. 30 IN A 
10.115.245.13

The full DNS name here is alpaca-
prod.default.svc.cluster.local.. Let’s break this down:

alpaca-prod

The name of the service in question.

default

The namespace that this service is in.

svc



Recognizing that this is a service. This allows Kubernetes to expose
other types of things as DNS in the future.

cluster.local.

The base domain name for the cluster. This is the default and what you
will see for most clusters. Administrators may change this to allow
unique DNS names across multiple clusters.

When referring to a service in your own namespace you can just use the
service name (alpaca-prod). You can also refer to a service in another
namespace with alpaca-prod.default. And, of course, you can use
the fully qualified service name (alpaca-
prod.default.svc.cluster.local.). Try each of these out in the
“DNS Query” section of kuard.

Readiness Checks
Often, when an application first starts up it isn’t ready to handle requests.
There is usually some amount of initialization that can take anywhere from
under a second to several minutes. One nice thing the Service object does is
track which of your Pods are ready via a readiness check. Let’s modify our
deployment to add a readiness check that is attached to a Pod, as we
discussed in Chapter 4:

$ kubectl edit deployment/alpaca-prod

This command will fetch the current version of the alpaca-prod
deployment and bring it up in an editor. After you save and quit your editor,
it’ll then write the object back to Kubernetes. This is a quick way to edit an
object without saving it to a YAML file.

Add the following section:

spec: 
  ... 



  template: 
    ... 
    spec: 
      containers: 
        ... 
        name: alpaca-prod 
        readinessProbe: 
          httpGet: 
            path: /ready 
            port: 8080 
          periodSeconds: 2 
          initialDelaySeconds: 0 
          failureThreshold: 3 
          successThreshold: 1

This sets up the Pods this deployment will create so that they will be
checked for readiness via an HTTP GET to /ready on port 8080. This
check is done every 2 seconds starting as soon as the Pod comes up. If three
successive checks fail, then the Pod will be considered not ready. However,
if only one check succeeds, the Pod will again be considered ready.

Only ready Pods are sent traffic.

Updating the deployment definition like this will delete and recreate the
alpaca Pods. As such, we need to restart our port-forward command
from earlier:

$ ALPACA_POD=$(kubectl get pods -l app=alpaca \ 
    -o jsonpath='{.items[0].metadata.name}') 
$ kubectl port-forward $ALPACA_POD 48858:8080

Point your browser to http://localhost:48858 and you should see the debug
page for that instance of kuard. Expand the “Readiness Probe” section.
You should see this page update every time there is a new readiness check
from the system, which should happen every 2 seconds.

In another terminal window, start a watch command on the endpoints for
the alpaca-prod service. Endpoints are a lower-level way of finding
what a service is sending traffic to and are covered later in this chapter. The
--watch option here causes the kubectl command to hang around and

http://localhost:48858/


output any updates. This is an easy way to see how a Kubernetes object
changes over time:

$ kubectl get endpoints alpaca-prod --watch

Now go back to your browser and hit the “Fail” link for the readiness
check. You should see that the server is now returning 500s. After three of
these, this server is removed from the list of endpoints for the service. Hit
the “Succeed” link and notice that after a single readiness check the
endpoint is added back.

This readiness check is a way for an overloaded or sick server to signal to
the system that it doesn’t want to receive traffic anymore. This is a great
way to implement graceful shutdown. The server can signal that it no longer
wants traffic, wait until existing connections are closed, and then cleanly
exit.

Press Ctrl-C to exit out of both the port-forward and watch
commands in your terminals.

Looking Beyond the Cluster
So far, everything we’ve covered in this chapter has been about exposing
services inside of a cluster. Oftentimes, the IPs for Pods are only reachable
from within the cluster. At some point, we have to allow new traffic in!

The most portable way to do this is to use a feature called NodePorts, which
enhance a service even further. In addition to a cluster IP, the system picks a
port (or the user can specify one), and every node in the cluster then
forwards traffic to that port to the service.

With this feature, if you can reach any node in the cluster you can contact a
service. You use the NodePort without knowing where any of the Pods for
that service are running. This can be integrated with hardware or software
load balancers to expose the service further.

Try this out by modifying the alpaca-prod service:



$ kubectl edit service alpaca-prod

Change the spec.type field to NodePort. You can also do this when
creating the service via kubectl expose by specifying --
type=NodePort. The system will assign a new NodePort:

$ kubectl describe service alpaca-prod 
 
Name:                   alpaca-prod 
Namespace:              default 
Labels:                 app=alpaca 
                        env=prod 
                        ver=1 
Annotations:            <none> 
Selector:               app=alpaca,env=prod,ver=1 
Type:                   NodePort 
IP:                     10.115.245.13 
Port:                   <unset> 8080/TCP 
NodePort:               <unset> 32711/TCP 
Endpoints:              
10.112.1.66:8080,10.112.2.104:8080,10.112.2.105:8080 
Session Affinity:       None 
No events.

Here we see that the system assigned port 32711 to this service. Now we
can hit any of our cluster nodes on that port to access the service. If you are
sitting on the same network, you can access it directly. If your cluster is in
the cloud someplace, you can use SSH tunneling with something like this:

$ ssh <node> -L 8080:localhost:32711

Now if you point your browser to http://localhost:8080 you will be
connected to that service. Each request that you send to the service will be
randomly directed to one of the Pods that implements the service. Reload
the page a few times and you will see that you are randomly assigned to
different Pods.

When you are done, exit out of the SSH session.



Load Balancer Integration
If you have a cluster that is configured to integrate with external load
balancers you can use the LoadBalancer type. This builds on the
NodePort type by additionally configuring the cloud to create a new load
balancer and direct it at nodes in your cluster. Most cloud-based Kubernetes
clusters offer load balancer integration, and there are a number of projects
that implement load balancer integration for common physical load-
balancers as well, although these may require more manual integration with
your cluster.

Edit the alpaca-prod service again (kubectl edit service
alpaca-prod) and change spec.type to LoadBalancer.

NOTE
Creating a service of type LoadBalancer exposes that service to the public internet.
Before you do this, you should make certain that it is something that is secure to be
exposed to everyone in the world. If you are concerned about the security risks, see the
section on internal load balancers below. Additionally, the chapter on Kubernetes Policy
and Pod Security cover more ways to secure your application

If you do a kubectl get services right away you’ll see that the
EXTERNAL-IP column for alpaca-prod now says <pending>. Wait
a bit and you should see a public address assigned by your cloud. You can
look in the console for your cloud account and see the configuration work
that Kubernetes did for you:

$ kubectl describe service alpaca-prod 
 
Name:                   alpaca-prod 
Namespace:              default 
Labels:                 app=alpaca 
                        env=prod 
                        ver=1 
Selector:               app=alpaca,env=prod,ver=1 
Type:                   LoadBalancer 
IP:                     10.115.245.13 



LoadBalancer Ingress:   104.196.248.204 
Port:                   <unset> 8080/TCP 
NodePort:               <unset> 32711/TCP 
Endpoints:              
10.112.1.66:8080,10.112.2.104:8080,10.112.2.105:8080 
Session Affinity:       None 
Events: 
  FirstSeen ... Reason                Message 
  --------- ... ------                ------- 
  3m        ... Type                  NodePort -> LoadBalancer 
  3m        ... CreatingLoadBalancer  Creating load balancer 
  2m        ... CreatedLoadBalancer   Created load balancer

Here we see that we have an address of 104.196.248.204 now assigned to
the alpaca-prod service. Open up your browser and try!

NOTE
This example is from a cluster launched and managed on the Google Cloud Platform via
GKE. However, the way a load balancer is configured is specific to a cloud. In addition,
some clouds have DNS-based load balancers (e.g., AWS ELB). In this case you’ll see a
hostname here instead of an IP. Also, depending on the cloud provider, it may still take a
little while for the load balancer to be fully operational.

Creating a cloud-based load balancer can take some time. Don’t be
surprised if it takes a few minutes on most cloud providers.

Internal load balancers
The examples that we have seen so far use external load balancers, that is
load balancers that are connected to the public internet. While this is great
for exposing services to the world, many times you only want to expose
your application within your private network. To achieve this you want to
use an internal load balancer. Unfortunately, because support for internal
load balancers was added more recently to Kubernetes it is done in a
somewhat ad-hoc manner via object annotations. For example, to create an
internal load balancer in an Azure Kubernetes Service cluster, you add the
annotation service.beta.kubernetes.io/azure-load-



balancer-internal: "true" to your Service resource. Here are
the settings for some popular clouds:

Microsoft Azure: service.beta.kubernetes.io/azure-
load-balancer-internal: "true"

Amazon Web Services:
service.beta.kubernetes.io/aws-load-balancer-
internal: "true"

Alibaba Cloud:
service.beta.kubernetes.io/alibaba-cloud-
loadbalancer-address-type: "intranet"

Google Cloud Platform: cloud.google.com/load-
balancer-type: "Internal"

When you add this annotation to your Service it should look like this:

...
metadata: 
    ... 
    name: some-service 
    annotations: 
        service.beta.kubernetes.io/azure-load-balancer-internal: 
"true"
... 
 
When you create a service with one of these annotations, an 
internally exposed
service will be created instead of one on the public internet. 
 
[NOTE]
====
There are several other annotations that extend LoadBalancer 
behavior,
including ones for using a pre-exisiting IP address and others. 
The specific
extensions for your provider should be documented on their web 
site.
==== 
 
=== Advanced Details 



 
Kubernetes is built to be an extensible system.  As such, there 
are layers that allow for more advanced integrations.((("service 
discovery", "advanced details", id="ix_serdisadv")))  
Understanding the details of how a sophisticated concept like 
services is implemented may help you troubleshoot or create more 
advanced integrations.  This section goes a bit below the 
surface. 
 
==== Endpoints 
 
Some applications (and the system itself) want to be able to use 
services
without using a cluster IP.((("service discovery", "advanced 
details", "endpoints")))((("endpoints")))  This is done with 
another type of object called an Endpoints object.  ((("Service 
object", "Endpoints object for")))For every Service object, 
Kubernetes creates a buddy Endpoints
object that contains the IP addresses for that service: 
 
++++
<pre data-type="programlisting">$ <strong>kubectl describe 
endpoints alpaca-prod</strong> 
 
Name:           alpaca-prod
Namespace:      default
Labels:         app=alpaca 
                env=prod 
                ver=1
Subsets: 
  Addresses:            10.112.1.54,10.112.2.84,10.112.2.85 
  NotReadyAddresses:    &lt;none&gt; 
  Ports: 
    Name        Port    Protocol 
    ----        ----    -------- 
    &lt;unset&gt;     8080    TCP 
 
No events.</pre>
++++ 
 
To use a service, an advanced application can talk to the 
Kubernetes API directly to look up endpoints and call them.  The 
Kubernetes API even has the capability to "watch" objects and be 
notified as soon as they change.  In this way, a client can react 
immediately as soon as the IPs associated with a service change.
((("IP addresses", "for watched service endpoints"))) 
 
Let's demonstrate this.  In a terminal window, start the 



following command and leave it running: 
 
++++
<pre data-type="programlisting">$ <strong>kubectl get endpoints 
alpaca-prod --watch</strong></pre>
++++ 
 
It will output the current state of the endpoint and then "hang": 
 
----
NAME          ENDPOINTS                                            
AGE
alpaca-prod   10.112.1.54:8080,10.112.2.84:8080,10.112.2.85:8080   
1m
---- 
 
Now open up _another_ terminal window and delete and recreate the 
deployment
backing `alpaca-prod`: 
 
++++
<pre data-type="programlisting">$ <strong>kubectl delete 
deployment alpaca-prod</strong>
$ <strong>kubectl run alpaca-prod \ 
  --image=gcr.io/kuar-demo/kuard-amd64:blue \ 
  --replicas=3 \ 
  --port=8080 \ 
  --labels="ver=1,app=alpaca,env=prod"</strong></pre>
++++ 
 
If you look back at the output from the watched endpoint, you 
will see that as you deleted and re-created these Pods, the 
output of the command reflected the most up-to-date set of IP 
addresses associated with the service.  Your output will look 
something like this: 
 
----
NAME          ENDPOINTS                                            
AGE
alpaca-prod   10.112.1.54:8080,10.112.2.84:8080,10.112.2.85:8080   
1m
alpaca-prod   10.112.1.54:8080,10.112.2.84:8080   1m
alpaca-prod   <none>    1m
alpaca-prod   10.112.2.90:8080   1m
alpaca-prod   10.112.1.57:8080,10.112.2.90:8080   1m
alpaca-prod   10.112.0.28:8080,10.112.1.57:8080,10.112.2.90:8080   
1m
---- 



 
The Endpoints object is great if you are writing new code that is 
built to run on Kubernetes from the start.  But most projects 
aren't in this position!  Most existing systems are built to work 
with regular old IP addresses that don't change that often. 
 
==== Manual Service Discovery 
 
Kubernetes services are built on top of label selectors over 
Pods.((("labels", "using in service discovery")))((("service 
discovery", "advanced details", "manual service discovery")))  
That means that you can use the Kubernetes API to do rudimentary 
service discovery without using a Service object at all! Let's 
demonstrate. 
 
With `kubectl` (and via the API) we can easily see what IPs are 
assigned to each Pod in our example deployments: 
 
++++
<pre data-type="programlisting">$ <strong>kubectl get pods -o 
wide --show-labels</strong> 
 
NAME                            ... IP          ... LABELS
alpaca-prod-12334-87f8h    ... 10.112.1.54 ... 
app=alpaca,env=prod,ver=1
alpaca-prod-12334-jssmh    ... 10.112.2.84 ... 
app=alpaca,env=prod,ver=1
alpaca-prod-12334-tjp56    ... 10.112.2.85 ... 
app=alpaca,env=prod,ver=1
bandicoot-prod-5678-sbxzl  ... 10.112.1.55 ... 
app=bandicoot,env=prod,ver=2
bandicoot-prod-5678-x0dh8  ... 10.112.2.86 ... 
app=bandicoot,env=prod,ver=2</pre>
++++ 
 
[role="pagebreak-after"]
This is great, but what if you have a ton of Pods?  You'll 
probably want to filter this based on the labels applied as part 
of the deployment.  Let's do that for just the +alpaca+ app: 
 
++++
<pre data-type="programlisting">$ <strong>kubectl get pods -o 
wide --selector=app=alpaca,env=prod</strong> 
 
NAME                         ... IP          ...
alpaca-prod-3408831585-bpzdz ... 10.112.1.54 ...
alpaca-prod-3408831585-kncwt ... 10.112.2.84 ...
alpaca-prod-3408831585-l9fsq ... 10.112.2.85 ...</pre>



++++ 
 
At this point you have the basics of service discovery!  You can 
always use labels to identify the set of Pods you are interested 
in, get all of the Pods for those labels, and dig out the IP 
address.  But keeping the correct set of labels to use in sync 
can be tricky.  This is why the Service object was created.
((("Service object"))) 
 
==== kube-proxy and Cluster IPs 
 
Cluster IPs are stable virtual IPs that load-balance traffic 
across all of the endpoints in a service.((("service discovery", 
"advanced details", "kube-proxy and cluster IPs")))((("kube-
proxy", "cluster IPs and")))((("cluster IPs", "kube-proxy and")))
((("IP addresses", "kube-proxy and cluster IPs")))  This magic is 
performed by a component running on every node in the cluster 
called the `kube-proxy` (<<fig07in01>>). 
 
[[fig07in01]]
.Configuring and using a cluster IP
image::images/kur2_0701.png["Configuring and using a Cluster IP"] 
 
In <<fig07in01>>, the `kube-proxy` watches for new services in 
the cluster via the API server.  ((("iptables rules")))It then 
programs a set of +iptables+ rules in the kernel of that host to 
rewrite the destinations of packets so they are directed at one 
of the endpoints for that service.  If the set of endpoints for a 
service changes (due to Pods coming and going or due to a failed 
readiness check), the set of +iptables+ rules is rewritten. 
 
The cluster IP itself is usually assigned by the API server as 
the service is created.  However, when creating the service, the 
user can specify a specific cluster IP.  Once set, the cluster IP 
cannot be modified without deleting and recreating the Service 
object. 
 
[NOTE]
====
The Kubernetes service address range is configured using the
pass:[<code class="keep-together">--service-cluster-ip-
range</code>] flag on the `kube-apiserver` binary.((("kube-
apiserver, --service-cluster-ip-range flag"))) The service 
address range should not overlap with the IP subnets and ranges 
assigned to each Docker bridge or Kubernetes node. 
 
In addition, any explicit cluster IP requested must come from 
that range and not already be in use.



==== 
 
==== Cluster IP Environment Variables 
 
While most users should be using the DNS services to find cluster 
IPs, there are some older mechanisms that may still be in use.
((("cluster IPs", "environment variables")))((("service 
discovery", "advanced details", "cluster IP environment 
variables")))  One of these is injecting a set of environment 
variables into Pods as they start up.((("environment variables", 
"for cluster IPs"))) 
 
To see this in action, let's look at the console for the 
+bandicoot+ instance of +kuard+. Enter the following commands in 
your terminal: 
 
++++
<pre data-type="programlisting">$ <strong>BANDICOOT_POD=$(kubectl 
get pods -l app=bandicoot \ 
    -o jsonpath='{.items[0].metadata.name}')</strong>
$ <strong>kubectl port-forward $BANDICOOT_POD 48858:8080</strong>
</pre>
++++ 
 
Now point your browser to pass:[<span>
<em>http://localhost:48858</em></span>] to see the status page 
for this server.  Expand the "Server Env" section and note the 
set of environment variables for the +alpaca+ service. The status 
page should show a table similar to <<S.E.V._Table>>. 
 
[[S.E.V._Table]]
.Service environment variables
[options="header"]
|=======
|Key|Value
|`ALPACA_PROD_PORT`               |`tcp://10.115.245.13:8080`
|`ALPACA_PROD_PORT_8080_TCP`      |`tcp://10.115.245.13:8080`
|`ALPACA_PROD_PORT_8080_TCP_ADDR` |`10.115.245.13`
|`ALPACA_PROD_PORT_8080_TCP_PORT` |`8080`
|`ALPACA_PROD_PORT_8080_TCP_PROTO`|`tcp`
|`ALPACA_PROD_SERVICE_HOST`       |`10.115.245.13`
|`ALPACA_PROD_SERVICE_PORT`       |`8080`
|======= 
 
The two main environment variables to use are 
`ALPACA_PROD_SERVICE_HOST` and `ALPACA_PROD_SERVICE_PORT`.  The 
other environment variables are created to be compatible with 
(now deprecated) Docker link variables. 



 
A problem with the environment variable approach is that it 
requires resources to be created in a specific order.  The 
services must be created before the Pods that reference them.  
This can introduce quite a bit of complexity when deploying a set 
of services that make up a larger application. In addition, using 
_just_ environment variables seems strange to many users.  For 
this reason, DNS is probably a better option.((("service 
discovery", "advanced details", startref="ix_serdisadv"))) 
 
=== Connecting with Other Environments 
 
While it is great to have service discovery within your own 
cluster, many real-world applications
actually require that you integrate more cloud-native 
applications deployed in Kubernetes with
applications deployed to more legacy environments.((("service 
discovery", "connecting with other environments"))) Additionally, 
you may need to integrate
a Kubernetes cluster in the cloud with infrastructure that has 
been deployed on-premise. This is an area of Kubernetes that is 
still undergoing a fair amount of exploration
and development of solutions. 
 
==== Connnecting to resources outside of a cluster
When you are connecting Kubernetes to
legacy resources outside of the cluster, you can use selector-
less services
to declare a Kubernetes service with a manually assigned IP 
address that
is outside of the cluster. That way, Kubernetes service discovery 
via DNS
works as expected, but the network traffic itself flows to an 
external resource. To create a selector-less service you remove 
the `spec.selector`
field from your resource, while leaving the `metadata` and the 
`ports` sections unchanged. Because your service has no selector, 
no endpoints are
automatically added to the service. This means that you must add 
them manually. Typically the endpoint that you will add will be a 
fixed IP address
(e.g. the IP address of your database server) so you only need to 
add it
once. But if the IP address that backs the service ever changes 
you will need
to update the corresponding endpoint resource. To create or 
update the
endpoint resource, you use an endpoint that looks something like 



the following: 
 
++++
apiVersion: v1
kind: Endpoints
metadata: 
  # this name must match the name of your service 
  name: my-database-server
subsets: 
  - addresses: 
      # replace this IP with the real IP of your server 
      - ip: 1.2.3.4 
    ports: 
      # replace this port with the port(s) you want to expose 
      - port: 1433
++++ 
 
==== Connecting external resources to services inside a cluster 
 
Connecting external resources to Kubernetes services is somewhat 
trickier.((("resources", "external, connecting to Kubernetes 
services")))
If your cloud provider supports it, the easiest thing to do is to 
create
an "internal" load balancer as described above,
that lives in your virtual private network and
can deliver traffic from a fixed IP address into the cluster. You 
can then
use traditional DNS to make this IP address available to the 
external resource. If an internal load balancer isn't available, 
you can use a `NodePort` service to expose the service on the IP 
addresses of the nodes
in the cluster. You can then either program a physical load-
balancer
to serve traffic to those nodes, or use DNS-based load-balancing 
to spread
traffic between the nodes. 
 
If neither of those solutions work for your use case, there are 
more complex options include running the full +kube-proxy+ on an 
external
resource and program that machine to use the DNS server in the 
Kubernetes
cluster.((("kube-proxy"))) Such a setup is significantly more 
difficult to get right and
should really only be used in on-premise environments. There are 
also a
variety of open source projects (for example, HashiCorp's Consul) 



that
can be used to manage connectivity between in-cluster and out-of-
cluster
resources. Such options should really be considered a last resort 
and
require significant knowledge of both networking and Kubernetes 
to get right. 
 
 
// ==== Integrating with external DNS providers
//
// TODO: Info here
// ==== Adding external Services
// TODO: Info here 
 
=== Cleanup 
 
Run the following command to clean up all of the objects created 
in this chapter: 
 
++++
<pre data-type="programlisting">$ <strong>kubectl delete 
services,deployments -l app</strong></pre>
++++ 
 
=== Summary 
 
Kubernetes is a dynamic system that challenges traditional 
methods of naming and connecting services over the network.  The 
Service object provides a flexible and powerful way to expose 
services both within the cluster and beyond. With the techniques 
covered here you can connect services to each other and expose 
them outside the cluster. 
 
While using the dynamic service discovery mechanisms in 
Kubernetes introduces some new concepts and may, at first, seem 
complex, understanding and adapting these techniques is key to 
unlocking the power of Kubernetes.  Once your application can 
dynamically find services and react to the dynamic placement of 
those applications, you are free to stop worrying about where 
things are running and when they move.  It is a critical piece of 
the puzzle to start to think about services in a logical way and 
let Kubernetes take care of the details of container placement.
((("service discovery", startref="ix_serdis"))) 
 
Of course, Service discovery is just the beginning of how 
application
networking works with Kubernetes. The following chapter is on 



Ingress networking which is dedicated to layer 7 (HTTP) load 
balancing and
routing and later on in the book there is a chapter on Service 
Meshes
which are a more recently developed approach to cloud native 
networking that
provide many additional capabilities in addition to Service 
Discovery and load
balancing.
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Chapter 1. Creating and
Running Containers

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 2nd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

Kubernetes is a platform for creating, deploying and managing distributed
applications. These applications come in many different shapes and sizes,
but ultimately, they are all comprised of one or more programs that run on
individual machines. These programs accept input, manipulate data, and
then return the results. Before we can even consider building a distributed
system, we must first consider how to build the application container
images that contain these programs and make up the pieces of our
distributed system.

Application programs are typically comprised of a language runtime,
libraries, and your source code. In many cases, your application relies on
external shared libraries such as libc and libssl. These external
libraries are generally shipped as shared components in the OS that you
have installed on a particular machine.



This dependency on shared libraries causes problems when an application
developed on a programmer’s laptop has a dependency on a shared library
that isn’t available when the program is rolled out to the production OS.
Even when the development and production environments share the exact
same version of the OS, problems can occur when developers forget to
include dependent asset files inside a package that they deploy to
production.

The traditional methods of running multiple programs on a single machine
require that all of these programs share the same versions of shared libraries
on the system. If the different programs are developed by different teams or
organizations, these shared dependencies add needless complexity and
coupling between these teams.

A program can only execute successfully if it can be reliably deployed onto
the machine where it should run. Too often the state of the art for
deployment involves running imperative scripts, which inevitably have
twisty and byzantine failure cases. This makes the task of rolling out a new
version of all or parts of a distributed system a labor-intensive and difficult
task.

In [Link to Come], we argued strongly for the value of immutable images
and infrastructure. This immutability is exactly what the container image
provides. As we will see, it easily solves all the problems of dependency
management and encapsulation just described.

When working with applications it’s often helpful to package them in a way
that makes it easy to share them with others. Docker, the default tool most
people use for containers makes it easy to package an executable and push
it to a remote registry where it can later be pulled by others. At the time of
writing, container registries are available in all of the major public clouds,
and services to build images in the cloud are also available in many of
them. You can also run your own registry using open source or commercial
systems. These registries make it easy for users to manage and deploy
private images, while image-builder services provide easy integration with
continuous delivery systems.



For this chapter, and the remainder of the book, we are going to work with a
simple example application that we built to help show this workflow in
action. You can find the application on GitHub.

Container images bundle a program and its dependencies into a single
artifact under a root filesystem. The most popular container image format is
the Docker image format, which has been standardized by the Open
Container Initiative to the OCI image format. Kubernetes supports both
Docker- and OCI-compatible images via Docker and other runtimes.
Docker images also include additional metadata used by a container
runtime to start a running application instance based on the contents of the
container image.

This chapter covers the following topics:

How to package an application using the Docker image format

How to start an application using the Docker container runtime

Container Images
For nearly everyone, their first interaction with any container technology is
with a container image. A container image is a binary package that
encapsulates all of the files necessary to run a program inside of an OS
container. Depending on how you first experiment with containers, you will
either build a container image from your local filesystem or download a
preexisting image from a container registry. In either case, once the
container image is present on your computer, you can run that image to
produce a running application inside an OS container.

The Docker Image Format
The most popular and widespread container image format is the Docker
image format, which was developed by the Docker open source project for
packaging, distributing, and running containers using the docker
command. Subsequently, work has begun by Docker, Inc., and others to

https://github.com/kubernetes-up-and-running/kuard


standardize the container image format via the Open Container Initiative
(OCI) project. While the OCI standard achieved a 1.0 release milestone in
mid-2017, adoption of these standards is proceeding slowly. The Docker
image format continues to be the de facto standard, and is made up of a
series of filesystem layers. Each layer adds, removes, or modifies files from
the preceding layer in the filesystem. This is an example of an overlay
filesystem. The overlay system is used both when packaging up the image
and when the image is actually being used. During runtime, there are a
variety of different concrete implementations of such filesystems, including
aufs, overlay, and overlay2.



CONTAINER LAYERING
The phrases “Docker image format” and “container images” may be a
bit confusing. The image isn’t a single file but rather a specification for
a manifest file that points to other files. The manifest and associated
files are often treated by users as a unit. The level of indirection allows
for more efficient storage and transmittal. Associated with this format is
an API for uploading and downloading images to an image registry.

Container images are constructed with a series of filesystem layers,
where each layer inherits and modifies the layers that came before it. To
help explain this in detail, let’s build some containers. Note that for
correctness the ordering of the layers should be bottom up, but for ease
of understanding we take the opposite approach:

. 
└── container A: a base operating system only, such as Debian 
    └── container B: build upon #A, by adding Ruby v2.1.10 
    └── container C: build upon #A, by adding Golang v1.6

At this point we have three containers: A, B, and C. B and C are forked
from A and share nothing besides the base container’s files. Taking it
further, we can build on top of B by adding Rails (version 4.2.6). We
may also want to support a legacy application that requires an older
version of Rails (e.g., version 3.2.x). We can build a container image to
support that application based on B also, planning to someday migrate
the app to version 4:

. (continuing from above) 
└── container B: build upon #A, by adding Ruby v2.1.10 
    └── container D: build upon #B, by adding Rails v4.2.6 
    └── container E: build upon #B, by adding Rails v3.2.x

Conceptually, each container image layer builds upon a previous one.
Each parent reference is a pointer. While the example here is a simple
set of containers, other real-world containers can be part of a larger
extensive directed acyclic graph.



Container images are typically combined with a container configuration
file, which provides instructions on how to set up the container environment
and execute an application entry point. The container configuration often
includes information on how to set up networking, namespace isolation,
resource constraints (cgroups), and what syscall restrictions should be
placed on a running container instance. The container root filesystem and
configuration file are typically bundled using the Docker image format.

Containers fall into two main categories:

System containers

Application containers

System containers seek to mimic virtual machines and often run a full boot
process. They often include a set of system services typically found in a
VM, such as ssh, cron, and syslog. When Docker was new, these types
of containers were much more common. Over time, they have come to be
seen as poor practice and application containers have gained favor.

Application containers differ from system containers in that they commonly
run a single program. While running a single program per container might
seem like an unnecessary constraint, it provides the perfect level of
granularity for composing scalable applications and is a design philosophy
that is leveraged heavily by Pods. We will examine how Pods work in detail
in Chapter 4.

Building Application Images with Docker
In general, container orchestration systems like Kubernetes are focused on
building and deploying distributed systems made up of application
containers. Consequently, we will focus on application containers for the
remainder of this chapter.

Dockerfiles



A Dockerfile can be used to automate the creation of a Docker container
image.

Let’s start by building an application image for a simple Node.js program.
This example would be very similar for many other dynamic languages,
like Python or Ruby.

The simplest of npm/Node/Express apps has two files: package.json
(Example 1-1) and server.js (Example 1-2). Put these in a directory and then
run npm install express --save to establish a dependency on
Express and install it.

Example 1-1. package.json
{ 
  "name": "simple-node", 
  "version": "1.0.0", 
  "description": "A sample simple application for Kubernetes Up & 
Running", 
  "main": "server.js", 
  "scripts": { 
    "start": "node server.js" 
  }, 
  "author": ""
}

Example 1-2. server.js
var express = require('express'); 
 
var app = express();
app.get('/', function (req, res) { 
  res.send('Hello World!');
});
app.listen(3000, function () { 
  console.log('Listening on port 3000!'); 
  console.log('  http://localhost:3000');
});

To package this up as a Docker image we need to create two additional
files: .dockerignore (Example 1-3) and the Dockerfile (Example 1-4). The
Dockerfile is a recipe for how to build the container image, while
.dockerignore defines the set of files that should be ignored when copying



files into the image. A full description of the syntax of the Dockerfile is
available on the Docker website.

Example 1-3. .dockerignore
node_modules

Example 1-4. Dockerfile
# Start from a Node.js 16 (LTS) image 
FROM node:16

# Specify the directory inside the image in which all commands will 
run 
WORKDIR /usr/src/app

# Copy package files and install dependencies 
COPY package*.json ./
RUN npm install
RUN npm install express

# Copy all of the app files into the image 
COPY . .

# The default command to run when starting the container 
CMD [ "npm", "start" ]

Every Dockerfile builds on other container images. This line specifies
that we are starting from the node:16 image on the Docker Hub. This
is a preconfigured image with Node.js 16.

This line sets the work directory, in the container image, for all
following commands.

These two lines initialize the dependencies for Node.js. First we copy
the package files into the image. This will include package.json and
package-lock.json. The RUN command then runs the correct command
in the container to install the necessary dependencies.

Now we copy the rest of the program files into the image. This will
include everything except node_modules, as that is excluded via the
.dockerignore file.

https://dockr.ly/2XUanvl


Finally, we specify the command that should be run when the container
is run.

Run the following command to create the simple-node Docker image:

$ docker build -t simple-node .

When you want to run this image, you can do it with the following
command. You can navigate to http://localhost:3000 to access the program
running in the container:

$ docker run --rm -p 3000:3000 simple-node

At this point our simple-node image lives in the local Docker registry
where the image was built and is only accessible to a single machine. The
true power of Docker comes from the ability to share images across
thousands of machines and the broader Docker community.

Optimizing Image Sizes
There are several gotchas that come when people begin to experiment with
container images that lead to overly large images. The first thing to
remember is that files that are removed by subsequent layers in the system
are actually still present in the images; they’re just inaccessible. Consider
the following situation:

. 
└── layer A: contains a large file named 'BigFile' 
    └── layer B: removes 'BigFile' 
        └── layer C: builds on B by adding a static binary

You might think that BigFile is no longer present in this image. After all,
when you run the image, it is no longer accessible. But in fact it is still
present in layer A, which means that whenever you push or pull the image,



BigFile is still transmitted through the network, even if you can no longer
access it.

Another pitfall that people fall into revolves around image caching and
building. Remember that each layer is an independent delta from the layer
below it. Every time you change a layer, it changes every layer that comes
after it. Changing the preceding layers means that they need to be rebuilt,
repushed, and repulled to deploy your image to development.

To understand this more fully, consider two images:

. 
└── layer A: contains a base OS 
    └── layer B: adds source code server.js 
        └── layer C: installs the 'node' package

versus:

. 
└── layer A: contains a base OS 
    └── layer B: installs the 'node' package 
        └── layer C: adds source code server.js

It seems obvious that both of these images will behave identically, and
indeed the first time they are pulled they do. However, consider what
happens when server.js changes. In one case, it is only the change that
needs to be pulled or pushed, but in the other case, both server.js and the
layer providing the node package need to be pulled and pushed, since the
node layer is dependent on the server.js layer. In general, you want to order
your layers from least likely to change to most likely to change in order to
optimize the image size for pushing and pulling. This is why, in Example 1-
4, we copy the package*.json files and install dependencies before copying
the rest of the program files. A developer is going to update and change the
program files much more often than the dependencies.

Image Security



When it comes to security, there are no shortcuts. When building images
that will ultimately run in a production Kubernetes cluster, be sure to follow
best practices for packaging and distributing applications. For example,
don’t build containers with passwords baked in—and this includes not just
in the final layer, but any layers in the image. One of the counterintuitive
problems introduced by container layers is that deleting a file in one layer
doesn’t delete that file from preceding layers. It still takes up space, and it
can be accessed by anyone with the right tools—an enterprising attacker
can simply create an image that only consists of the layers that contain the
password.

Secrets and images should never be mixed. If you do so, you will be
hacked, and you will bring shame to your entire company or department.
We all want to be on TV someday, but there are better ways to go about
that.

Additionally, because container images are narrowly focused on running
individual applications, a best practice for container images is to minimize
the files within the container image. Every additional library in an image
provides a potential vector for vulnerabilities to appear in your application.
Depending on the language, you can achieve very small images with a very
tight set of dependencies. This smaller set ensures that your image isn’t
exposed to vulnerabilities in libraries it would never use.

Multistage Image Builds
One of the most common ways to accidentally build large images is to do
the actual program compilation as part of the construction of the application
container image. Compiling code as part of the image build feels natural,
and it is the easiest way to build a container image from your program. The
trouble with doing this is that it leaves all of the unnecessary development
tools, which are usually quite large, lying around inside of your image and
slowing down your deployments.

To resolve this problem, Docker introduced multistage builds. With
multistage builds, rather than producing a single image, a Docker file can



actually produce multiple images. Each image is considered a stage.
Artifacts can be copied from preceding stages to the current stage.

To illustrate this concretely, we will look at how to build our example
application, kuard. This is a somewhat complicated application that
involves a React.js frontend (with its own build process) that then gets
embedded into a Go program. The Go program runs a backend API server
that the React.js frontend interacts with.

A simple Dockerfile might look like this:

FROM golang:1.17-alpine 
 
# Install Node and NPM
RUN apk update && apk upgrade && apk add --no-cache git nodejs 
bash npm 
 
# Get dependencies for Go part of build
RUN go get -u github.com/jteeuwen/go-bindata/... 
RUN go get github.com/tools/godep 
RUN go get github.com/kubernetes-up-and-running/kuard 
 
WORKDIR /go/src/github.com/kubernetes-up-and-running/kuard 
 
# Copy all sources in 
COPY . . 
 
# This is a set of variables that the build script expects
ENV VERBOSE=0
ENV PKG=github.com/kubernetes-up-and-running/kuard
ENV ARCH=amd64
ENV VERSION=test 
 
# Do the build. This script is part of incoming sources.
RUN build/build.sh 
 
CMD [ "/go/bin/kuard" ]

This Dockerfile produces a container image containing a static executable,
but it also contains all of the Go development tools and the tools to build
the React.js frontend and the source code for the application, neither of
which are needed by the final application. The image, across all layers, adds
up to over 500 MB.



To see how we would do this with multistage builds, examine this
multistage Dockerfile:

# STAGE 1: Build
FROM golang:1.17-alpine AS build 
 
# Install Node and NPM
RUN apk update && apk upgrade && apk add --no-cache git nodejs 
bash npm 
 
# Get dependencies for Go part of build
RUN go get -u github.com/jteeuwen/go-bindata/... 
RUN go get github.com/tools/godep 
 
WORKDIR /go/src/github.com/kubernetes-up-and-running/kuard 
 
# Copy all sources in 
COPY . . 
 
# This is a set of variables that the build script expects
ENV VERBOSE=0
ENV PKG=github.com/kubernetes-up-and-running/kuard
ENV ARCH=amd64
ENV VERSION=test 
 
# Do the build. Script is part of incoming sources.
RUN build/build.sh 
 
# STAGE 2: Deployment
FROM alpine 
 
USER nobody:nobody 
COPY --from=build /go/bin/kuard /kuard 
 
CMD [ "/kuard" ]

This Dockerfile produces two images. The first is the build image, which
contains the Go compiler, React.js toolchain, and source code for the
program. The second is the deployment image, which simply contains the
compiled binary. Building a container image using multistage builds can
reduce your final container image size by hundreds of megabytes and thus
dramatically speed up your deployment times, since generally, deployment



latency is gated on network performance. The final image produced from
this Dockerfile is somewhere around 20 MB.

You can build and run this image with the following commands:

$ docker build -t kuard . 
$ docker run --rm -p 8080:8080 kuard

Storing Images in a Remote Registry
What good is a container image if it’s only available on a single machine?

Kubernetes relies on the fact that images described in a Pod manifest are
available across every machine in the cluster. One option for getting this
image to all machines in the cluster would be to export the kuard image
and import it on each of them. We can’t think of anything more tedious than
managing Docker images this way. The process of manually importing and
exporting Docker images has human error written all over it. Just say no!

The standard within the Docker community is to store Docker images in a
remote registry. There are tons of options when it comes to Docker
registries, and what you choose will be largely based on your needs in terms
of security and collaboration features.

Generally speaking, the first choice you need to make regarding a registry is
whether to use a private or a public registry. Public registries allow anyone
to download images stored in the registry, while private registries require
authentication to download images. In choosing public versus private, it’s
helpful to consider your use case.

Public registries are great for sharing images with the world, because they
allow for easy, unauthenticated use of the container images. You can easily
distribute your software as a container image and have confidence that users
everywhere will have the exact same experience.

In contrast, a private registry is best for storing applications that are private
to your service and that you don’t want the world to use.



Regardless, to push an image, you need to authenticate to the registry. You
can generally do this with the docker login command, though there are
some differences for certain registries. In the examples here we are pushing
to the Google Cloud Platform registry, called the Google Container Registry
(GCR); other clouds, including Azure and Amazon Web Services (AWS),
also have hosted container registries. For new users hosting publicly
readable images, the Docker Hub is a great place to start.

Once you are logged in, you can tag the kuard image by prepending the
target Docker registry. You can also append another identifier that is usually
used for the version or variant of that image, separated by a colon (:):

$ docker tag kuard gcr.io/kuar-demo/kuard-amd64:blue

Then you can push the kuard image:

$ docker push gcr.io/kuar-demo/kuard-amd64:blue

Now that the kuard image is available on a remote registry, it’s time to
deploy it using Docker. When we pushed the image to GCR, it was marked
as public, so it will be available everywhere without authentication.

The Container Runtime Interface
Kubernetes provides an API for describing an application deployment, but
relies on a container runtime to set up an application container using the
container-specific APIs native to the target OS. On a Linux system that
means configuring cgroups and namespaces. The interface to this container
runtime is defined by the Container Runtime Interface (CRI) standard. The
CRI API is implemented by a number of different programs, including the
containerd-cri built by Docker and the cri-o implementation
contributed by Red Hat. When you install the docker tooling the containerd
runtime is also installed and used by the Docker daemon.

https://hub.docker.com/


Starting with release 1.25 of Kubernetes, only container runtimes that
support the container runtime interface will work with Kubernetes.
Fortunately, managed Kubernetes provides have made this transition nearly
automatic for users of managed Kubernetes.

Running Containers with Docker
Though generally in Kubernetes containers are launched by a daemon on
each node called the kubelet, it’s easier to get started with containers using
the Docker command-line tool. The Docker CLI tool can be used to deploy
containers. To deploy a container from the gcr.io/kuar-
demo/kuard-amd64:blue image, run the following command:

$ docker run -d --name kuard \ 
  --publish 8080:8080 \ 
  gcr.io/kuar-demo/kuard-amd64:blue

This command starts the kuard container and maps ports 8080 on your
local machine to 8080 in the container. The --publish option can be
shortened to -p. This forwarding is necessary because each container gets
its own IP address, so listening on localhost inside the container doesn’t
cause you to listen on your machine. Without the port forwarding,
connections will be inaccessible to your machine. The -d option specifies
that this should run in the background (daemon), while --name kuard
gives the container a friendly name.

Exploring the kuard Application
kuard exposes a simple web interface, which you can load by pointing
your browser at http://localhost:8080 or via the command line:

$ curl http://localhost:8080

kuard also exposes a number of interesting functions that we will explore
later on in this book.

http://localhost:8080/


Limiting Resource Usage
Docker provides the ability to limit the amount of resources used by
applications by exposing the underlying cgroup technology provided by the
Linux kernel. These capabilities are likewise used by Kubernetes to limit
the resources used by each Pod.

Limiting memory resources
One of the key benefits to running applications within a container is the
ability to restrict resource utilization. This allows multiple applications to
coexist on the same hardware and ensures fair usage.

To limit kuard to 200 MB of memory and 1 GB of swap space, use the --
memory and --memory-swap flags with the docker run command.

Stop and remove the current kuard container:

$ docker stop kuard 
$ docker rm kuard

Then start another kuard container using the appropriate flags to limit
memory usage:

$ docker run -d --name kuard \ 
  --publish 8080:8080 \ 
  --memory 200m \ 
  --memory-swap 1G \ 
  gcr.io/kuar-demo/kuard-amd64:blue

If the program in the container uses too much memory, it will be
terminated.

Limiting CPU resources
Another critical resource on a machine is the CPU. Restrict CPU utilization
using the --cpu-shares flag with the docker run command:

$ docker run -d --name kuard \ 
  --publish 8080:8080 \ 



  --memory 200m \ 
  --memory-swap 1G \ 
  --cpu-shares 1024 \ 
  gcr.io/kuar-demo/kuard-amd64:blue

Cleanup
Once you are done building an image, you can delete it with the docker
rmi command:

docker rmi <tag-name>

or:

docker rmi <image-id>

Images can either be deleted via their tag name (e.g., gcr.io/kuar-
demo/kuard-amd64:blue) or via their image ID. As with all ID
values in the docker tool, the image ID can be shortened as long as it
remains unique. Generally only three or four characters of the ID are
necessary.

It’s important to note that unless you explicitly delete an image it will live
on your system forever, even if you build a new image with an identical
name. Building this new image simply moves the tag to the new image; it
doesn’t delete or replace the old image.

Consequently, as you iterate while you are creating a new image, you will
often create many, many different images that end up taking up unnecessary
space on your computer.

To see the images currently on your machine, you can use the docker
images command. You can then delete tags you are no longer using.

Docker provides a tool called docker system prune for doing
general cleanup. This will remove all stopped containers, all untagged
images, and all unused image layers cached as part of the build process. Use
it carefully.



A slightly more sophisticated approach is to set up a cron job to run an
image garbage collector. For example, you can easily run docker
system prune as a recurring cron job, once per day or once per hour,
depending on how many images you are creating.

Summary
Application containers provide a clean abstraction for applications, and
when packaged in the Docker image format, applications become easy to
build, deploy, and distribute. Containers also provide isolation between
applications running on the same machine, which helps avoid dependency
conflicts.

In future chapters we’ll see how the ability to mount external directories
means we can run not only stateless applications in a container, but also
applications like mysql and others that generate lots of data.



Chapter 2. Deploying a
Kubernetes Cluster

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 3rd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

Now that you have successfully built an application container, the next step
is to learn how to transform it into a complete, reliable, scalable distributed
system. To do that, you need a working Kubernetes cluster. At this point,
there are cloud-based Kubernetes services in most public clouds that make
it easy to create a cluster with a few command-line instructions. We highly
recommend this approach if you are just getting started with Kubernetes.
Even if you are ultimately planning on running Kubernetes on bare metal,
it’s a good way to quickly get started with Kubernetes, learn about
Kubernetes itself, and then learn how to install it on physical machines.
Furthermore, managing a Kubernetes cluster is a complicated task in itself,
and for most people it makes sense to defer this management to the cloud—
especially when in most clouds the management service is free.

Of course, using a cloud-based solution requires paying for those cloud-
based resources as well as having an active network connection to the



cloud. For these reasons, local development can be more attractive, and in
that case the minikube tool provides an easy-to-use way to get a local
Kubernetes cluster up running in a VM on your local laptop or desktop.
Though this is a nice option, minikube only creates a single-node cluster,
which doesn’t quite demonstrate all of the aspects of a complete Kubernetes
cluster. For that reason, we recommend people start with a cloud-based
solution, unless it really doesn’t work for their situation. A more recent
alternative is to run a Docker-in-Docker cluster, which can spin up a multi-
node cluster on a single machine. This project is still in beta, though, so
keep in mind that you may encounter unexpected issues.

If you truly insist on starting on bare metal, [Link to Come] at the end of
this book gives instructions for building a cluster from a collection of
Raspberry Pi single-board computers. These instructions use the kubeadm
tool and can be adapted to other machines beyond Raspberry Pis.

Installing Kubernetes on a Public Cloud
Provider
This chapter covers installing Kubernetes on the three major cloud
providers: Amazon Web Services, Microsoft Azure, and the Google Cloud
Platform.

If you choose to use a cloud provider to manage Kubernetes, you only need
to install one of these options; once you have a cluster configured and ready
to go you can skip to “The Kubernetes Client”, unless you would prefer to
install Kubernetes elsewhere.

Google Kubernetes Engine
The Google Cloud Platform offers a hosted Kubernetes-as-a-Service called
Google Kubernetes Engine (GKE). To get started with GKE, you need a
Google Cloud Platform account with billing enabled and the gcloud tool
installed.

https://cloud.google.com/sdk/downloads


Once you have gcloud installed, first set a default zone:

$ gcloud config set compute/zone us-west1-a

Then you can create a cluster:

$ gcloud container clusters create kuar-cluster --num-nodes=3

This will take a few minutes. When the cluster is ready you can get
credentials for the cluster using:

$ gcloud container clusters get-credentials kuar-cluster

If you run into trouble, you can find the complete instructions for creating a
GKE cluster in the Google Cloud Platform documentation.

Installing Kubernetes with Azure Kubernetes Service
Microsoft Azure offers a hosted Kubernetes-as-a-Service as part of the
Azure Container Service. The easiest way to get started with Azure
Container Service is to use the built-in Azure Cloud Shell in the Azure
portal. You can activate the shell by clicking the shell icon in the upper-
right toolbar:

The shell has the az tool automatically installed and configured to work
with your Azure environment.

Alternatively, you can install the az command-line interface (CLI) on your
local machine.

When you have the shell up and working, you can run:

$ az group create --name=kuar --location=westus

Once the resource group is created, you can create a cluster using:

https://cloud.google.com/kubernetes-engine/docs/quickstart
https://github.com/Azure/azure-cli


$ az aks create --resource-group=kuar --name=kuar-cluster

This will take a few minutes. Once the cluster is created, you can get
credentials for the cluster with:

$ az aks get-credentials --resource-group=kuar --name=kuar-
cluster

If you don’t already have the kubectl tool installed, you can install it
using:

$ az aks install-cli

You can find complete instructions for installing Kubernetes on Azure in
the Azure documentation.

Installing Kubernetes on Amazon Web Services
Amazon offers a managed Kubernetes service called Elastic Kubernetes
Service (EKS). The easiest way to create an EKS cluster is via the open
source eksctl command-line tool..

Once you have eksctl installed and in your path, you can run the
following command to create a cluster:

$ eksctl create cluster --name kuar-cluster ...

For more details on installation options (such as node size and more), view
the help using this command:

$ eksctl create cluster --help

The cluster installation includes the right configuration for the kubectl
command-line tool. If you don’t already have kubectl installed, you can
follow the instructions in the documentation.

https://docs.microsoft.com/en-us/azure/aks/kubernetes-walkthrough
https://eksctl.io/
https://kubernetes.io/docs/tasks/tools/install-kubectl/


Installing Kubernetes Locally Using
minikube
If you need a local development experience, or you don’t want to pay for
cloud resources, you can install a simple single-node cluster using
minikube.

Alternatively, if you have already installed Docker Desktop, it comes
bundled with a single-machine installation of Kubernetes.

While minikube (or Docker Desktop) is a good simulation of a
Kubernetes cluster, it’s really intended for local development, learning, and
experimentation. Because it only runs in a VM on a single node, it doesn’t
provide the reliability of a distributed Kubernetes cluster.

In addition, certain features described in this book require integration with a
cloud provider. These features are either not available or work in a limited
way with minikube.

NOTE
You need to have a hypervisor installed on your machine to use minikube. For Linux
and macOS, this is generally virtualbox. On Windows, the Hyper-V hypervisor is
the default option. Make sure you install the hypervisor before using minikube.

You can find the minikube tool on GitHub. There are binaries for Linux,
macOS, and Windows that you can download. Once you have the
minikube tool installed, you can create a local cluster using:

$ minikube start

This will create a local VM, provision Kubernetes, and create a local
kubectl configuration that points to that cluster.

When you are done with your cluster, you can stop the VM with:

https://virtualbox.org/
https://github.com/kubernetes/minikube


$ minikube stop

If you want to remove the cluster, you can run:

$ minikube delete

Running Kubernetes in Docker
A different approach to running a Kubernetes cluster has been developed
more recently, which uses Docker containers to simulate multiple
Kubernetes nodes instead of running everything in a virtual machine. The
kind project provides a great experience for launching and managing test
clusters in Docker. (kind stands for Kubernetes IN Docker.) kind is still a
work in progress (pre 1.0), but is widely used by those building Kubernetes
for fast and easy testing.

Installation instructions for your platform can be found at the kind site.
Once you get it installed, creating a cluster is as easy as:

$ kind create cluster --wait 5m \ 
$ export KUBECONFIG="$(kind get kubeconfig-path)" 
$ kubectl cluster-info 
$ kind delete cluster

Running Kubernetes on Raspberry Pi
If you want to experiment with a realistic Kubernetes cluster but don’t want
to pay a lot, a very nice Kubernetes cluster can be built on top of Raspberry
Pi computers for a relatively small cost. The details of building such a
cluster are out of scope for this chapter, but they are given in [Link to
Come] at the end of this book.

The Kubernetes Client

https://kind.sigs.k8s.io/
https://kind.sigs.k8s.io/docs/user/quick-start


The official Kubernetes client is kubectl: a command-line tool for
interacting with the Kubernetes API. kubectl can be used to manage
most Kubernetes objects, such as Pods, ReplicaSets, and Services.
kubectl can also be used to explore and verify the overall health of the
cluster.

We’ll use the kubectl tool to explore the cluster you just created.

Checking Cluster Status
The first thing you can do is check the version of the cluster that you are
running:

$ kubectl version

This will display two different versions: the version of the local kubectl
tool, as well as the version of the Kubernetes API server.

NOTE
Don’t worry if these versions are different. The Kubernetes tools are backward- and
forward-compatible with different versions of the Kubernetes API, so long as you stay
within two minor versions for both the tools and the cluster and don’t try to use newer
features on an older cluster. Kubernetes follows the semantic versioning specification,
where the minor version is the middle number (e.g., the 18 in 1.18.2). However, you will
want to make sure that you are within the supported version skew, which is three
versions. If you are not, you may run into problems.

Now that we’ve established that you can communicate with your
Kubernetes cluster, we’ll explore the cluster in more depth.

First, you can get a simple diagnostic for the cluster. This is a good way to
verify that your cluster is generally healthy:

$ kubectl get componentstatuses

The output should look like this:



NAME                 STATUS    MESSAGE              ERROR 
scheduler            Healthy   ok 
controller-manager   Healthy   ok 
etcd-0               Healthy   {"health": "true"}

NOTE
As Kubernetes changes and improves over time, the output of the kubectl command
sometimes changes. Don’t worry if the output doesn’t look exactly identical to what is
shown in the examples in this book.

You can see here the components that make up the Kubernetes cluster. The
controller-manager is responsible for running various controllers
that regulate behavior in the cluster; for example, ensuring that all of the
replicas of a service are available and healthy. The scheduler is
responsible for placing different Pods onto different nodes in the cluster.
Finally, the etcd server is the storage for the cluster where all of the API
objects are stored.

Listing Kubernetes Worker Nodes
Next, you can list out all of the nodes in your cluster:

$ kubectl get nodes 
NAME     STATUS   ROLES                  AGE     VERSION 
kube0    Ready    control-plane,master   45d     v1.22.4 
kube1    Ready    <none>                 45d     v1.22.4 
kube2    Ready    <none>                 45d     v1.22.4 
kube3    Ready    <none>                 45d     v1.22.4 

You can see this is a four-node cluster that’s been up for 45 days. In
Kubernetes, nodes are separated into control-plane nodes that contain
containers like the API server, scheduler, etc., which manage the cluster,
and worker nodes where your containers will run. Kubernetes won’t
generally schedule work onto control-plane nodes to ensure that user
workloads don’t harm the overall operation of the cluster.



You can use the kubectl describe command to get more information
about a specific node, such as node-1:

$ kubectl describe nodes kube1

First, you see basic information about the node:

Name:                   kube1 
Role: 
Labels:                 beta.kubernetes.io/arch=arm 
                        beta.kubernetes.io/os=linux 
                        kubernetes.io/hostname=node-1

You can see that this node is running the Linux OS and is running on an
ARM processor.

Next, you see information about the operation of kube1 itself (dates have
been removed from this output for consciseness)

Conditions: 
  Type                 Status  ...   Reason                       
Message 
 -----                 ------        ------                       
------- 
  NetworkUnavailable   False   ...   FlannelIsUp                  
Flannel is running on this node 
  MemoryPressure       False   ...   KubeletHasSufficientMemory   
kubelet has sufficient memory available 
  DiskPressure         False   ...   KubeletHasNoDiskPressure     
kubelet has no disk pressure 
  PIDPressure          False   ...   KubeletHasSufficientPID      
kubelet has sufficient PID available 
  Ready                True    ...   KubeletReady                 
kubelet is posting ready status. AppArmor enabled

These statuses show that the node has sufficient disk and memory space and
is reporting that it is healthy to the Kubernetes master. Next, there is
information about the capacity of the machine:

Capacity: 
 alpha.kubernetes.io/nvidia-gpu:        0 



 cpu:                                   4 
 memory:                                882636Ki 
 pods:                                  110 
Allocatable: 
 alpha.kubernetes.io/nvidia-gpu:        0 
 cpu:                                   4 
 memory:                                882636Ki 
 pods:                                  110

Then there is information about the software on the node, including the
version of Docker that is running, the versions of Kubernetes and the Linux
kernel, and more:

System Info: 
  Machine ID:                 44d8f5dd42304af6acde62d233194cc6 
  System UUID:                c8ab697e-fc7e-28a2-7621-
94c691120fb9 
  Boot ID:                    e78d015d-81c2-4876-ba96-
106a82da263e 
  Kernel Version:             4.19.0-18-amd64 
  OS Image:                   Debian GNU/Linux 10 (buster) 
  Operating System:           linux 
  Architecture:               amd64 
  Container Runtime Version:  containerd://1.4.12 
  Kubelet Version:            v1.22.4 
  Kube-Proxy Version:         v1.22.4 
PodCIDR:                      10.244.1.0/24 
PodCIDRs:                     10.244.1.0/24

Finally, there is information about the Pods that are currently running on
this node:

Non-terminated Pods:            (3 in total) 
  Namespace   Name        CPU Requests CPU Limits Memory Requests 
Memory Limits 
  ---------   ----        ------------ ---------- --------------- 
------------- 
  kube-system kube-dns...  260m (6%)    0 (0%)     140Mi (16%)     
220Mi (25%) 
  kube-system kube-fla...  0 (0%)       0 (0%)     0 (0%)          
0 (0%) 
  kube-system kube-pro...  0 (0%)       0 (0%)     0 (0%)          
0 (0%) 
Allocated resources: 



  (Total limits may be over 100 percent, i.e., overcommitted. 
  CPU Requests  CPU Limits      Memory Requests Memory Limits 
  ------------  ----------      --------------- ------------- 
  260m (6%)     0 (0%)          140Mi (16%)     220Mi (25%) 
No events.

From this output you can see the Pods on the node (e.g., the kube-dns
Pod that supplies DNS services for the cluster), the CPU and memory that
each Pod is requesting from the node, as well as the total resources
requested. It’s worth noting here that Kubernetes tracks both the requests
and upper limits for resources for each Pod that runs on a machine. The
difference between requests and limits is described in detail in Chapter 4,
but in a nutshell, resources requested by a Pod are guaranteed to be present
on the node, while a Pod’s limit is the maximum amount of a given resource
that a Pod can consume. A Pod’s limit can be higher than its request, in
which case the extra resources are supplied on a best-effort basis. They are
not guaranteed to be present on the node.

Cluster Components
One of the interesting aspects of Kubernetes is that many of the components
that make up the Kubernetes cluster are actually deployed using Kubernetes
itself. We’ll take a look at a few of these. These components use a number
of the concepts that we’ll introduce in later chapters. All of these
components run in the kube-system namespace.

Kubernetes Proxy
The Kubernetes proxy is responsible for routing network traffic to load-
balanced services in the Kubernetes cluster. To do its job, the proxy must be
present on every node in the cluster. Kubernetes has an API object named
DaemonSet, which you will learn about later in the book, that is used in
many clusters to accomplish this. If your cluster runs the Kubernetes proxy
with a DaemonSet, you can see the proxies by running:

1



$ kubectl get daemonSets --namespace=kube-system kube-proxy 
NAME         DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE   
NODE SELECTOR            AGE 
kube-proxy   5         5         5       5            5           
kubernetes.io/os=linux   45d

Depending on how your cluster is set up, the DaemonSet for the kube-
proxy may be named something else, or its possible that it won’t use a
DaemonSet at all. Regardless, the kube-proxy container should be
running on all nodes in a cluster.

Kubernetes DNS
Kubernetes also runs a DNS server, which provides naming and discovery
for the services that are defined in the cluster. This DNS server also runs as
a replicated service on the cluster. Depending on the size of your cluster,
you may see one or more DNS servers running in your cluster. The DNS
service is run as a Kubernetes deployment, which manages these replicas
(this may also be named coredns or some other variant)

$ kubectl get deployments --namespace=kube-system core-dns 
NAME       DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE 
core-dns   1         1         1            1           45d

There is also a Kubernetes service that performs load balancing for the
DNS server:

$ kubectl get services --namespace=kube-system core-dns 
NAME       CLUSTER-IP   EXTERNAL-IP   PORT(S)         AGE 
core-dns   10.96.0.10   <none>  53/UDP,53/TCP   45d

This shows that the DNS service for the cluster has the address 10.96.0.10.
If you log in to a container in the cluster, you’ll see that this has been
populated into the /etc/resolv.conf file for the container.

Kubernetes UI



If you want to visualize your cluster in a graphical user interface, most of
the cloud providers integrate such a visualization into the GUI for their
cloud. If your cloud provider doesn’t provide such a UI, or you prefer an in-
cluster GUI, there is a community supported GUI that you can install.
Documentation on how to install the dashboard for these clusters is
available at https://kubernetes.io/docs/tasks/access-application-cluster/web-
ui-dashboard/. You can also use extensions for development environments
like Visual Studio Code to see the state of your cluster at a glance.

Summary
Hopefully at this point you have a Kubernetes cluster (or three) up and
running and you’ve used a few commands to explore the cluster you have
created. Next, we’ll spend some more time exploring the command-line
interface to that Kubernetes cluster and teach you how to master the
kubectl tool. Throughout the rest of the book, you’ll be using kubectl
and your test cluster to explore the various objects in the Kubernetes API.

1  As you’ll learn in the next chapter, a namespace in Kubernetes is an entity for organizing
Kubernetes resources. You can think of it like a folder in a filesystem.

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/


Chapter 3. Common kubectl
Commands

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 4th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

The kubectl command-line utility is a powerful tool, and in the following
chapters you will use it to create objects and interact with the Kubernetes
API. Before that, however, it makes sense to go over the basic kubectl
commands that apply to all Kubernetes objects.

Namespaces
Kubernetes uses namespaces to organize objects in the cluster. You can
think of each namespace as a folder that holds a set of objects. By default,
the kubectl command-line tool interacts with the default namespace.
If you want to use a different namespace, you can pass kubectl the --
namespace flag. For example, kubectl --namespace=mystuff
references objects in the mystuff namespace. If you want to interact with



all namespaces—for example, to list all Pods in your cluster—you can pass
the --all-namespaces flag.

Contexts
If you want to change the default namespace more permanently, you can
use a context. This gets recorded in a kubectl configuration file, usually
located at $HOME/.kube/config. This configuration file also stores how to
both find and authenticate to your cluster. For example, you can create a
context with a different default namespace for your kubectl commands
using:

$ kubectl config set-context my-context --namespace=mystuff

This creates a new context, but it doesn’t actually start using it yet. To use
this newly created context, you can run:

$ kubectl config use-context my-context

Contexts can also be used to manage different clusters or different users for
authenticating to those clusters using the --users or --clusters flags
with the set-context command.

Viewing Kubernetes API Objects
Everything contained in Kubernetes is represented by a RESTful resource.
Throughout this book, we refer to these resources as Kubernetes objects.
Each Kubernetes object exists at a unique HTTP path; for example,
https://your-k8s.com/api/v1/namespaces/default/pods/my-pod leads to the
representation of a Pod in the default namespace named my-pod. The
kubectl command makes HTTP requests to these URLs to access the
Kubernetes objects that reside at these paths.



The most basic command for viewing Kubernetes objects via kubectl is
get. If you run kubectl get <resource-name> you will get a
listing of all resources in the current namespace. If you want to get a
specific resource, you can use kubectl get <resource-name>
<obj-name>.

By default, kubectl uses a human-readable printer for viewing the
responses from the API server, but this human-readable printer removes
many of the details of the objects to fit each object on one terminal line.
One way to get slightly more information is to add the -o wide flag,
which gives more details, on a longer line. If you want to view the complete
object, you can also view the objects as raw JSON or YAML using the -o
json or -o yaml flags, respectively.

A common option for manipulating the output of kubectl is to remove
the headers, which is often useful when combining kubectl with Unix
pipes (e.g., kubectl ... | awk ...). If you specify the --no-
headers flag, kubectl will skip the headers at the top of the human-
readable table.

Another common task is extracting specific fields from the object.
kubectl uses the JSONPath query language to select fields in the
returned object. The complete details of JSONPath are beyond the scope of
this chapter, but as an example, this command will extract and print the IP
address of the specified Pod:

$ kubectl get pods my-pod -o jsonpath --template={.status.podIP}

You can also view multiple objects of different types by using a comma
separated list of types, for example:

$ kubectl get pods,services

This will display all pods and services for a given namespace.



If you are interested in more detailed information about a particular object,
use the describe command:

$ kubectl describe <resource-name> <obj-name>

This will provide a rich multiline human-readable description of the object
as well as any other relevant, related objects and events in the Kubernetes
cluster.

If you would like to see a list of supported fields for each supported type of
Kubernetes object you can use the explain command.

$ kubectl explain pods

Sometimes you want to continually observe the state of a particular
Kubernetes resource to see changes to the resource when they occur. For
example you might be waiting for your application to restart. The --
watch flag enables this. You can add this flag to any kubectl get
command to continuously monitor the state of a particular resource.

Creating, Updating, and Destroying
Kubernetes Objects
Objects in the Kubernetes API are represented as JSON or YAML files.
These files are either returned by the server in response to a query or posted
to the server as part of an API request. You can use these YAML or JSON
files to create, update, or delete objects on the Kubernetes server.

Let’s assume that you have a simple object stored in obj.yaml. You can use
kubectl to create this object in Kubernetes by running:

$ kubectl apply -f obj.yaml

Notice that you don’t need to specify the resource type of the object; it’s
obtained from the object file itself.



Similarly, after you make changes to the object, you can use the apply
command again to update the object:

$ kubectl apply -f obj.yaml

The apply tool will only modify objects that are different from the current
objects in the cluster. If the objects you are creating already exist in the
cluster, it will simply exit successfully without making any changes. This
makes it useful for loops where you want to ensure the state of the cluster
matches the state of the filesystem. You can repeatedly use apply to
reconcile state.

If you want to see what the apply command will do without actually
making the changes, you can use the --dry-run flag to print the objects
to the terminal without actually sending them to the server.

NOTE
If you feel like making interactive edits instead of editing a local file, you can instead
use the edit command, which will download the latest object state and then launch an
editor that contains the definition:

$ kubectl edit <resource-name> <obj-name>

After you save the file, it will be automatically uploaded back to the Kubernetes cluster.

The apply command also records the history of previous configurations in
an annotation within the object. You can manipulate these records with the
edit-last-applied, set-last-applied, and view-last-
applied commands. For example:

$ kubectl apply -f myobj.yaml view-last-applied

will show you the last state that was applied to the object.

When you want to delete an object, you can simply run:



$ kubectl delete -f obj.yaml

It is important to note that kubectl will not prompt you to confirm the
deletion. Once you issue the command, the object will be deleted.

Likewise, you can delete an object using the resource type and name:

$ kubectl delete <resource-name> <obj-name>

Labeling and Annotating Objects
Labels and annotations are tags for your objects. We’ll discuss the
differences in Chapter 5, but for now, you can update the labels and
annotations on any Kubernetes object using the annotate and label
commands. For example, to add the color=red label to a Pod named
bar, you can run:

$ kubectl label pods bar color=red

The syntax for annotations is identical.

By default, label and annotate will not let you overwrite an existing
label. To do this, you need to add the --overwrite flag.

If you want to remove a label, you can use the <label-name>- syntax:

$ kubectl label pods bar color-

This will remove the color label from the Pod named bar.

Debugging Commands
kubectl also makes a number of commands available for debugging your
containers. You can use the following to see the logs for a running
container:



$ kubectl logs <pod-name>

If you have multiple containers in your Pod, you can choose the container
to view using the -c flag.

By default, kubectl logs lists the current logs and exits. If you instead
want to continuously stream the logs back to the terminal without exiting,
you can add the -f (follow) command-line flag.

You can also use the exec command to execute a command in a running
container:

$ kubectl exec -it <pod-name> -- bash

This will provide you with an interactive shell inside the running container
so that you can perform more debugging.

If you don’t have bash or some other terminal available within your
container, you can always attach to the running process:

$ kubectl attach -it <pod-name>

This will attach to the running process. It is similar to kubectl logs but
will allow you to send input to the running process, assuming that process is
set up to read from standard input.

You can also copy files to and from a container using the cp command:

$ kubectl cp <pod-name>:</path/to/remote/file> 
</path/to/local/file>

This will copy a file from a running container to your local machine. You
can also specify directories, or reverse the syntax to copy a file from your
local machine back out into the container.

If you want to access your Pod via the network, you can use the port-
forward command to forward network traffic from the local machine to
the Pod. This enables you to securely tunnel network traffic through to



containers that might not be exposed anywhere on the public network. For
example, the following command:

$ kubectl port-forward <pod-name> 8080:80

opens up a connection that forwards traffic from the local machine on port
8080 to the remote container on port 80.

NOTE
You can also use the port-forward command with services by specifying
services/<service-name> instead of <pod-name>, but note that if you do
port-forward to a service, the requests will only ever be forwarded to a single Pod in that
service. They will not go through the service load balancer.

If you want to view Kubernetes events, you can use the kubectl get
events command to see a list of the latest 10 events on all objects in a
given namespace.

$ kubectl get events

Additionally, you can stream events as they happen by adding --watch to
the kubectl get events command. You may also wish to include -A
to see events in all namespaces.

Finally, if you are interested in how your cluster is using resources, you can
use the top command to see the list of resources in use by either nodes or
Pods. This command:

kubectl top nodes

will display the total CPU and memory in use by the nodes in terms of both
absolute units (e.g., cores) and percentage of available resources (e.g., total
number of cores). Similarly, this command:

kubectl top pods



will show all Pods and their resource usage. By default it only displays
Pods in the current namespace, but you can add the --all-namespaces
flag to see resource usage by all Pods in the cluster.

Cluster Management
The kubectl tool can also be used to manage the cluster itself. The most
common action that people take to manage their cluster is to cordon and
drain a particular node. When you cordon a node you prevent future Pods
from being scheduled onto that machine. When you drain a node, you
remove any Pods that are currently running on that machine. A good
example use case for these commands would be removing a physical
machine for repairs or upgrades. In that scenario, you can use kubectl
cordon followed by kubectl drain to safely remove the machine
from the cluster. Once the machine is repaired you can use kubectl
uncordon to re-enable Pods scheduling onto the node. There is no
undrain command, Pods will naturally get scheduled onto the empty
node as they are created. For something quick affecting a node (e.g. a
machine reboot) it is generally unnecessary to cordon or drain, it’s only
necessary if the machine will be out of service long enough that you want
the Pods to move to a different machine.

Command Autocompletion
kubectl supports integration with your shell to enable tab completion for
both commands and resources. Depending on your environment, you may
need to install the bash-completion package before you activate
command autocompletion. You can do this using the appropriate package
manager:

# macOS 
brew install bash-completion 
 
# CentOS/Red Hat 



yum install bash-completion 
 
# Debian/Ubuntu 
apt-get install bash-completion

When installing on macOS, make sure to follow the instructions from brew
about how to activate tab completion using your ${HOME}/.bash_profile.

Once bash-completion is installed, you can temporarily activate it for
your terminal using:

source <(kubectl completion bash)

To make this automatic for every terminal, you can add it to your
${HOME}/.bashrc file:

echo "source <(kubectl completion bash)" >> ${HOME}/.bashrc

If you use zsh you can find similar instructions online.

Alternative Ways of Viewing Your Cluster
In addition to kubectl, there are other tools for interacting with your
Kubernetes cluster.

For example, there are plug-ins for several editors that integrate Kubernetes
and the editor environment, including:

Visual Studio Code

IntelliJ

Eclipse

If you are using a managed Kubernetes service most of them also feature a
graphical interface to Kubernetes integrated into their web-based user
experience. Managed Kubernetes in the public cloud also integrates with

https://kubernetes.io/docs/tasks/tools/install-kubectl/#using-zsh
http://bit.ly/32ijGV1
http://bit.ly/2Gen1eG
http://bit.ly/2XHi6gP


sophisticated monitoring tools that can help you gain insights into how your
applications are running.

Summary
kubectl is a powerful tool for managing your applications in your
Kubernetes cluster. This chapter has illustrated many of the common uses
for the tool, but kubectl has a great deal of built-in help available. You
can start viewing this help with:

$ kubectl help

or:

$ kubectl help <command-name>



Chapter 4. Pods

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 5th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

In earlier chapters we discussed how you might go about containerizing
your application, but in real-world deployments of containerized
applications you will often want to colocate multiple applications into a
single atomic unit, scheduled onto a single machine.

A canonical example of such a deployment is illustrated in Figure 4-1,
which consists of a container serving web requests and a container
synchronizing the filesystem with a remote Git repository.

mailto:sgrey@oreilly.com


Figure 4-1. An example Pod with two containers and a shared filesystem

At first, it might seem tempting to wrap both the web server and the Git
synchronizer into a single container. After closer inspection, however, the
reasons for the separation become clear. First, the two containers have
significantly different requirements in terms of resource usage. Take, for
example, memory: Because the web server is serving user requests, we
want to ensure that it is always available and responsive. On the other hand,
the Git synchronizer isn’t really user-facing and has a “best effort” quality
of service.

Suppose that our Git synchronizer has a memory leak. We need to ensure
that the Git synchronizer cannot use up memory that we want to use for our
web server, since this can affect performance or even crash the server.

This sort of resource isolation is exactly the sort of thing that containers are
designed to accomplish. By separating the two applications into two
separate containers, we can ensure reliable web server operation.



Of course, the two containers are quite symbiotic; it makes no sense to
schedule the web server on one machine and the Git synchronizer on
another. Consequently, Kubernetes groups multiple containers into a single
atomic unit called a Pod. (The name goes with the whale theme of Docker
containers, since a Pod is also a group of whales.)

NOTE
Though the grouping of multiple containers into a single Pod seemed controversial or
confusing when it was first introduced in Kubernetes, it has subsequently been adopted
by a variety of different applications to deploy their infrastructure. For example, several
service mesh implementations use a second sidecar container to inject network
management into an application’s Pod.

Pods in Kubernetes
A Pod is a collection of application containers and volumes running in the
same execution environment. Pods, not containers, are the smallest
deployable artifact in a Kubernetes cluster. This means all of the containers
in a Pod always land on the same machine.

Each container within a Pod runs in its own cgroup, but they share a
number of Linux namespaces.

Applications running in the same Pod share the same IP address and port
space (network namespace), have the same hostname (UTS namespace),
and can communicate using native interprocess communication channels
over System V IPC or POSIX message queues (IPC namespace). However,
applications in different Pods are isolated from each other; they have
different IP addresses, hostnames, and more. Containers in different Pods
running on the same node might as well be on different servers.

Thinking with Pods



One of the most common questions people ask when adopting Kubernetes
is “What should I put in a Pod?”

Sometimes people see Pods and think, “Aha! A WordPress container and a
MySQL database container join together to make a WordPress instance.
They should be in the same Pod.” However, this kind of Pod is actually an
example of an anti-pattern for Pod construction. There are two reasons for
this. First, WordPress and its database are not truly symbiotic. If the
WordPress container and the database container land on different machines,
they still can work together quite effectively, since they communicate over a
network connection. Secondly, you don’t necessarily want to scale
WordPress and the database as a unit. WordPress itself is mostly stateless so
you may want to scale your WordPress frontends in response to frontend
load by creating more WordPress Pods. Scaling a MySQL database is much
trickier, and you would be much more likely to increase the resources
dedicated to a single MySQL Pod. If you group the WordPress and MySQL
containers together in a single Pod, you are forced to use the same scaling
strategy for both containers, which doesn’t fit well.

In general, the right question to ask yourself when designing Pods is, “Will
these containers work correctly if they land on different machines?” If the
answer is “no,” a Pod is the correct grouping for the containers. If the
answer is “yes,” multiple Pods is probably the correct solution. In the
example at the beginning of this chapter, the two containers interact via a
local filesystem. It would be impossible for them to operate correctly if the
containers were scheduled on different machines.

In the remaining sections of this chapter, we will describe how to create,
introspect, manage, and delete Pods in Kubernetes.

The Pod Manifest
Pods are described in a Pod manifest., which is just a text-file representation
of the Kubernetes API object. Kubernetes strongly believes in declarative
configuration. , which means that you write down the desired state of the



world in a configuration and then submit that configuration to a service that
takes actions to ensure the desired state becomes the actual state.

NOTE
Declarative configuration is different from imperative configuration, where you simply
take a series of actions (for example, apt-get install foo) to modify the state of
a system. Years of production experience have taught us that maintaining a written
record of the system’s desired state leads to a more manageable, reliable system.
Declarative configuration has numerous advantages such as enabling code review for
configurations and documenting the current state of the system for distributed teams.
Additionally, it is the basis for all of the self-healing behaviors in Kubernetes that keep
applications running without user action.

The Kubernetes API server accepts and processes Pod manifests before
storing them in persistent storage (etcd). The scheduler also uses the
Kubernetes API to find Pods that haven’t been scheduled to a node. It then
places the Pods onto nodes depending on the resources and other constraints
expressed in the Pod manifests. The scheduler can place multiple Pods on
the same machine as long as there are sufficient resources. However,
scheduling multiple replicas of the same application onto the same machine
is worse for reliability, since the machine is a single failure domain.
Consequently, the Kubernetes scheduler tries to ensure that Pods from the
same application are distributed onto different machines for reliability in the
presence of such failures. Once scheduled to a node, Pods don’t move and
must be explicitly destroyed and rescheduled.

Multiple instances of a Pod can be deployed by repeating the workflow
described here. However, ReplicaSets (Chapter 8) are better suited for
running multiple instances of a Pod. (It turns out they’re also better at
running a single Pod, but we’ll get into that later.)

Creating a Pod
The simplest way to create a Pod is via the imperative kubectl run
command. For example, to run our same kuard server, use:



$ kubectl run kuard --generator=run-pod/v1 \ 
  --image=gcr.io/kuar-demo/kuard-amd64:blue

You can see the status of this Pod by running:

$ kubectl get pods

You may initially see the container as Pending, but eventually you will
see it transition to Running, which means that the Pod and its containers
have been successfully created.

For now, you can delete this Pod by running:

$ kubectl delete pods/kuard

We will now move on to writing a complete Pod manifest by hand.

Creating a Pod Manifest
You can write a Pod manifests using YAML or JSON, but YAML is
generally preferred because it is slightly more human-editable and has the
ability to add comments. Pod manifests (and other Kubernetes API objects)
should really be treated in the same way as source code, and things like
comments help explain the Pod to new team members.

Pod manifests include a couple of key fields and attributes: namely a
metadata section for describing the Pod and its labels, a spec section
for describing volumes, and a list of containers that will run in the Pod.

In Chapter 1 we deployed kuard using the following Docker command:

$ docker run -d --name kuard \ 
  --publish 8080:8080 \ 
  gcr.io/kuar-demo/kuard-amd64:blue

You can achieve a similar result by instead writing Example 4-1 to a file
named kuard-pod.yaml and then using kubectl commands to load that
manifest to Kubernetes.



Example 4-1. kuard-pod.yaml
apiVersion: v1
kind: Pod
metadata: 
  name: kuard
spec: 
  containers: 
    - image: gcr.io/kuar-demo/kuard-amd64:blue 
      name: kuard 
      ports: 
        - containerPort: 8080 
          name: http 
          protocol: TCP

Though it may initially seem more cumbersome to manage your application
in this manner. This written record of desired state is the best practice in the
long run, especially for large teams with many applications.

Running Pods
In the previous section we created a Pod manifest that can be used to start a
Pod running kuard. Use the kubectl apply command to launch a
single instance of kuard:

$ kubectl apply -f kuard-pod.yaml

The Pod manifest will be submitted to the Kubernetes API server. The
Kubernetes system will then schedule that Pod to run on a healthy node in
the cluster, where the kubelet daemon will monitor it. Don’t worry if you
don’t understand all the moving parts of Kubernetes right now; we’ll get
into more details throughout the book.

Listing Pods
Now that we have a Pod running, let’s go find out some more about it.
Using the kubectl command-line tool, we can list all Pods running in the
cluster. For now, this should only be the single Pod that we created in the
previous step:



$ kubectl get pods 
NAME       READY     STATUS    RESTARTS   AGE 
kuard      1/1       Running   0          44s

You can see the name of the Pod (kuard) that we gave it in the previous
YAML file. In addition to the number of ready containers (1/1), the output
also shows the status, the number of times the Pod was restarted, and the
age of the Pod.

If you ran this command immediately after the Pod was created, you might
see:

NAME       READY     STATUS    RESTARTS   AGE 
kuard      0/1       Pending   0          1s

The Pending state indicates that the Pod has been submitted but hasn’t
been scheduled yet.

If a more significant error occurs, such as an attempt to create a Pod with a
container image that doesn’t exist, it will also be listed in the status field.

NOTE
By default, the kubectl command-line tool is concise in the information it reports, but
you can get more information via command-line flags. Adding -o wide to any
kubectl command will print out slightly more information (while still keeping the
information to a single line). Adding -o json or -o yaml will print out the complete
objects in JSON or YAML, respectively. If you ever want to see an exhaustive verbose
logging of what kubectl is doing you can add the --v=10 flag for comprehensive
logging at the expense of readability.

Pod Details
Sometimes, the single-line view is insufficient because it is too terse.
Additionally, Kubernetes maintains numerous events about Pods that are
present in the event stream, not attached to the Pod object.



To find out more information about a Pod (or any Kubernetes object) you
can use the kubectl describe command. For example, to describe the
Pod we previously created, you can run:

$ kubectl describe pods kuard

This outputs a bunch of information about the Pod in different sections. At
the top is basic information about the Pod:

Name:           kuard 
Namespace:      default 
Node:           node1/10.0.15.185 
Start Time:     Sun, 02 Jul 2017 15:00:38 -0700 
Labels:         <none> 
Annotations:    <none> 
Status:         Running 
IP:             192.168.199.238 
Controllers:    <none>

Then there is information about the containers running in the Pod:

Containers: 
  kuard: 
    Container ID:  docker://055095… 
    Image:         gcr.io/kuar-demo/kuard-amd64:blue 
    Image ID:      docker-pullable://gcr.io/kuar-demo/kuard-
amd64@sha256:a580… 
    Port:          8080/TCP 
    State:         Running 
      Started:     Sun, 02 Jul 2017 15:00:41 -0700 
    Ready:         True 
    Restart Count: 0 
    Environment:   <none> 
    Mounts: 
      /var/run/secrets/kubernetes.io/serviceaccount from default-
token-cg5f5 (ro)

Finally, there are events related to the Pod, such as when it was scheduled,
when its image was pulled, and if/when it had to be restarted because of
failing health checks:



Events: 
  Seen From              SubObjectPath           Type      Reason  
Message 
  ---- ----              -------------           --------  ------  
------- 
  50s  default-scheduler                         Normal    
Scheduled Success… 
  49s  kubelet, node1    spec.containers{kuard}  Normal    
Pulling   pulling… 
  47s  kubelet, node1    spec.containers{kuard}  Normal    Pulled  
Success… 
  47s  kubelet, node1    spec.containers{kuard}  Normal    
Created   Created… 
  47s  kubelet, node1    spec.containers{kuard}  Normal    
Started   Started…

Deleting a Pod
When it is time to delete a Pod, you can delete it either by name:

$ kubectl delete pods/kuard

Or you can use the same file that you used to create it:

$ kubectl delete -f kuard-pod.yaml

When a Pod is deleted, it is not immediately killed. Instead, if you run
kubectl get pods, you will see that the Pod is in the Terminating
state. All Pods have a termination grace period. By default, this is 30
seconds. When a Pod is transitioned to Terminating it no longer
receives new requests. In a serving scenario, the grace period is important
for reliability because it allows the Pod to finish any active requests that it
may be in the middle of processing before it is terminated.

WARNING
When you delete a Pod, any data stored in the containers associated with that Pod will
be deleted as well. If you want to persist data across multiple instances of a Pod, you
need to use PersistentVolumes, described at the end of this chapter.



Accessing Your Pod
Now that your Pod is running, you’re going to want to access it for a variety
of reasons. You may want to load the web service that is running in the Pod.
You may want to view its logs to debug a problem that you are seeing, or
even execute other commands inside the Pod to help debug. The following
sections detail various ways you can interact with the code and data running
inside your Pod.

Using Port Forwarding
In Chapter Seven, we’ll show you how to expose a service to the world or
other containers using load balancers —but often you simply want to access
a specific Pod, even if it’s not serving traffic on the internet.

To achieve this, you can use the port-forwarding support built into the
Kubernetes API and command-line tools.

When you run:

$ kubectl port-forward kuard 8080:8080

a secure tunnel is created from your local machine, through the Kubernetes
master, to the instance of the Pod running on one of the worker nodes.

As long as the port-forward command is still running, you can access
the Pod (in this case the kuard web interface) at http://localhost:8080.

Getting More Info with Logs
When your application needs debugging, it’s helpful to be able to dig
deeper than describe to understand what the application is doing.
Kubernetes provides two commands for debugging running containers. The
kubectl logs command downloads the current logs from the running
instance:

$ kubectl logs kuard

http://localhost:8080/


Adding the -f flag will cause you to continuously stream logs.

The kubectl logs command always tries to get logs from the currently
running container. Adding the --previous flag will get logs from a
previous instance of the container. This is useful, for example, if your
containers are continuously restarting due to a problem at container startup.

NOTE
While using kubectl logs is useful for occasional debugging of containers in
production environments, it’s generally useful to use a log aggregation service. There
are several open source log aggregation tools, like fluentd and elasticsearch,
as well as numerous cloud logging providers. These log aggregation services provide
greater capacity for storing a longer duration of logs, as well as rich log searching and
filtering capabilities. Many also provide the ability to aggregate logs from multiple Pods
into a single view.

Running Commands in Your Container with exec
Sometimes logs are insufficient, and to truly determine what’s going on you
need to execute commands in the context of the container itself. To do this
you can use:

$ kubectl exec kuard date

You can also get an interactive session by adding the -it flags:

$ kubectl exec -it kuard ash

Copying Files to and from Containers
At times you may need to copy files from a remote container to a local
machine for more in-depth exploration. For example, you can use a tool like
Wireshark to visualize tcpdump packet captures. Suppose you had a file
called /captures/capture3.txt inside a container in your Pod. You could
securely copy that file to your local machine by running:



$ kubectl cp <pod-name>:/captures/capture3.txt ./capture3.txt

Other times you may need to copy files from your local machine into a
container. Let’s say you want to copy $HOME/config.txt to a remote
container. In this case, you can run:

$ kubectl cp $HOME/config.txt <pod-name>:/config.txt

Generally speaking, copying files into a container is an anti-pattern. You
really should treat the contents of a container as immutable. But
occasionally it’s the most immediate way to stop the bleeding and restore
your service to health, since it is quicker than building, pushing, and rolling
out a new image. Once you stop the bleeding however, it is critically
important that you immediately go and do the image build and rollout, or
you are guaranteed to forget the local change that you made to your
container and overwrite it in the subsequent regularly scheduled rollout.

Health Checks
When you run your application as a container in Kubernetes, it is
automatically kept alive for you using a process health check. This health
check simply ensures that the main process of your application is always
running. If it isn’t, Kubernetes restarts it.

However, in most cases, a simple process check is insufficient. For
example, if your process has deadlocked and is unable to serve requests, a
process health check will still believe that your application is healthy since
its process is still running.

To address this, Kubernetes introduced health checks for application
liveness. Liveness health checks run application-specific logic, like loading
a web page, to verify that the application is not just still running, but is
functioning properly. Since these liveness health checks are application-
specific, you have to define them in your Pod manifest.



Liveness Probe
Once the kuard process is up and running, we need a way to confirm that
it is actually healthy and shouldn’t be restarted. Liveness probes are defined
per container, which means each container inside a Pod is health-checked
separately. In Example 4-2, we add a liveness probe to our kuard
container, which runs an HTTP request against the /healthy path on our
container.

Example 4-2. kuard-pod-health.yaml
apiVersion: v1
kind: Pod
metadata: 
  name: kuard
spec: 
  containers: 
    - image: gcr.io/kuar-demo/kuard-amd64:blue 
      name: kuard 
      livenessProbe: 
        httpGet: 
          path: /healthy 
          port: 8080 
        initialDelaySeconds: 5 
        timeoutSeconds: 1 
        periodSeconds: 10 
        failureThreshold: 3 
      ports: 
        - containerPort: 8080 
          name: http 
          protocol: TCP

The preceding Pod manifest uses an httpGet probe to perform an HTTP
GET request against the /healthy endpoint on port 8080 of the kuard
container. The probe sets an initialDelaySeconds of 5, and thus will
not be called until 5 seconds after all the containers in the Pod are created.
The probe must respond within the 1-second timeout, and the HTTP status
code must be equal to or greater than 200 and less than 400 to be considered
successful. Kubernetes will call the probe every 10 seconds. If more than
three consecutive probes fail, the container will fail and restart.



You can see this in action by looking at the kuard status page. Create a
Pod using this manifest and then port-forward to that Pod:

$ kubectl apply -f kuard-pod-health.yaml 
$ kubectl port-forward kuard 8080:8080

Point your browser to http://localhost:8080. Click the “Liveness Probe” tab.
You should see a table that lists all of the probes that this instance of
kuard has received. If you click the “Fail” link on that page, kuard will
start to fail health checks. Wait long enough and Kubernetes will restart the
container. At that point the display will reset and start over again. Details of
the restart can be found with kubectl describe pods kuard. The
“Events” section will have text similar to the following:

Killing container with id docker://2ac946...:pod 
"kuard_default(9ee84...)" 
container "kuard" is unhealthy, it will be killed and re-created.

NOTE
While the default response to a failed liveness check is to restart the Pod, the actual
behavior is governed by the Pod’s restartPolicy. There are three options for the
restart policy: Always (the default), OnFailure (restart only on liveness failure or
nonzero process exit code), or Never.

Readiness Probe
Of course, liveness isn’t the only kind of health check we want to perform.
Kubernetes makes a distinction between liveness and readiness. Liveness
determines if an application is running properly. Containers that fail
liveness checks are restarted. Readiness describes when a container is ready
to serve user requests. Containers that fail readiness checks are removed
from service load balancers. Readiness probes are configured similarly to
liveness probes. We explore Kubernetes services in detail in Chapter 6.

http://localhost:8080/
file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_r515533x/209b2rmx_pdf_out/OEBPS/Images/ch06.html#service_discovery


Combining the readiness and liveness probes helps ensure only healthy
containers are running within the cluster.

Types of Health Checks
In addition to HTTP checks, Kubernetes also supports tcpSocket health
checks that open a TCP socket; if the connection succeeds, the probe
succeeds. This style of probe is useful for non-HTTP applications; for
example, databases or other non–HTTP-based APIs.

Finally, Kubernetes allows exec probes. These execute a script or program
in the context of the container. Following typical convention, if this script
returns a zero exit code, the probe succeeds; otherwise, it fails. exec
scripts are often useful for custom application validation logic that doesn’t
fit neatly into an HTTP call.

Resource Management
Most people move into containers and orchestrators like Kubernetes
because of the radical improvements in image packaging and reliable
deployment they provide. In addition to application-oriented primitives that
simplify distributed system development, equally important is they allow
you to increase the overall utilization of the compute nodes that make up
the cluster. The basic cost of operating a machine, either virtual or physical,
is basically constant regardless of whether it is idle or fully loaded.
Consequently, ensuring that these machines are maximally active increases
the efficiency of every dollar spent on infrastructure.

Generally speaking, we measure this efficiency with the utilization metric.
Utilization is defined as the amount of a resource actively being used
divided by the amount of a resource that has been purchased. For example,
if you purchase a one-core machine, and your application uses one-tenth of
a core, then your utilization is 10%. With scheduling systems like
Kubernetes managing resource packing, you can drive your utilization to
greater than 50%. To achieve this, you have to tell Kubernetes about the



resources your application requires, so that Kubernetes can find the optimal
packing of containers onto purchased machines.

Kubernetes allows users to specify two different resource metrics. Resource
requests specify the minimum amount of a resource required to run the
application. Resource limits specify the maximum amount of a resource that
an application can consume. Let’s look at these in greater detail in the
following [<span class="keep-together">sections</span>].

Resource Requests: Minimum Required Resources
When a Pod requests the resources required to run its containers.
Kubernetes guarantees that these resources are available to the Pod. The
most commonly requested resources are CPU and memory, but Kubernetes
supports other resource types as well, such as GPUs.

For example, to request that the kuard container lands on a machine with
half a CPU free and gets 128 MB of memory allocated to it, we define the
Pod as shown in Example 4-3.

Example 4-3. kuard-pod-resreq.yaml
apiVersion: v1
kind: Pod
metadata: 
  name: kuard
spec: 
  containers: 
    - image: gcr.io/kuar-demo/kuard-amd64:blue 
      name: kuard 
      resources: 
        requests: 
          cpu: "500m" 
          memory: "128Mi" 
      ports: 
        - containerPort: 8080 
          name: http 
          protocol: TCP



NOTE
Resources are requested per container, not per Pod. The total resources requested by the
Pod is the sum of all resources requested by all containers in the Pod because the
different containers often have very different CPU requirements. For example, if a Pod
contains a web server and data synchronizer, the web server is user-facing and likely
needs a great deal of CPU, while the data synchronizer can make do with very little.

Request limit details
Requests are used when scheduling Pods to nodes. The Kubernetes
scheduler will ensure that the sum of all requests of all Pods on a node does
not exceed the capacity of the node. Therefore, a Pod is guaranteed to have
at least the requested resources when running on the node. Importantly,
“request” specifies a minimum. It does not specify a maximum cap on the
resources a Pod may use. To explore what this means, let’s look at an
example.

Imagine a container whose code attempts to use all available CPU cores.
Suppose that we create a Pod with this container that requests 0.5 CPU.
Kubernetes schedules this Pod onto a machine with a total of 2 CPU cores.

As long as it is the only Pod on the machine, it will consume all 2.0 of the
available cores, despite only requesting 0.5 CPU.

If a second Pod with the same container and the same request of 0.5 CPU
lands on the machine, then each Pod will receive 1.0 cores.

If a third identical Pod is scheduled, each Pod will receive 0.66 cores.
Finally, if a fourth identical Pod is scheduled, each Pod will receive the 0.5
core it requested, and the node will be at capacity.

CPU requests are implemented using the cpu-shares functionality in the
Linux kernel.



NOTE
Memory requests are handled similarly to CPU, but there is an important difference. If a
container is over its memory request, the OS can’t just remove memory from the
process, because it’s been allocated. Consequently, when the system runs out of
memory, the kubelet terminates containers whose memory usage is greater than their
requested memory. These containers are automatically restarted, but with less available
memory on the machine for the container to consume.

Since resource requests guarantee resource availability to a Pod, they are
critical to ensuring that containers have sufficient resources in high-load
situations.

Capping Resource Usage with Limits
In addition to setting the resources required by a Pod, which establishes the
minimum resources available to it, you can also set a maximum on a it’s
resource usage via resource limits.

In our previous example we created a kuard Pod that requested a
minimum of 0.5 of a core and 128 MB of memory. In the Pod manifest in
Example 4-4, we extend this configuration to add a limit of 1.0 CPU and
256 MB of memory.

Example 4-4. kuard-pod-reslim.yaml
apiVersion: v1
kind: Pod
metadata: 
  name: kuard
spec: 
  containers: 
    - image: gcr.io/kuar-demo/kuard-amd64:blue 
      name: kuard 
      resources: 
        requests: 
          cpu: "500m" 
          memory: "128Mi" 
        limits: 
          cpu: "1000m" 
          memory: "256Mi" 
      ports: 



        - containerPort: 8080 
          name: http 
          protocol: TCP

When you establish limits on a container, the kernel is configured to ensure
that consumption cannot exceed these limits. A container with a CPU limit
of 0.5 cores will only ever get 0.5 cores, even if the CPU is otherwise idle.
A container with a memory limit of 256 MB will not be allowed additional
memory, for example malloc will fail, if its memory usage exceeds 256
MB.

Persisting Data with Volumes
When a Pod is deleted or a container restarts, any and all data in the
container’s filesystem is also deleted. This is often a good thing, since you
don’t want to leave around cruft that happened to be written by your
stateless web application. In other cases, having access to persistent disk
storage is an important part of a healthy application. Kubernetes models
such persistent storage.

Using Volumes with Pods
To add a volume to a Pod manifest, there are two new stanzas to add to our
configuration. The first is a new spec.volumes section. This array
defines all of the volumes that may be accessed by containers in the Pod
manifest. It’s important to note that not all containers are required to mount
all volumes defined in the Pod. The second addition is the
volumeMounts array in the container definition. This array defines the
volumes that are mounted into a particular container, and the path where
each volume should be mounted. Note that two different containers in a Pod
can mount the same volume at different mount paths.

Example 4-5. kuard-pod-vol.yaml
apiVersion: v1
kind: Pod
metadata: 
  name: kuard



spec: 
  volumes: 
    - name: "kuard-data" 
      hostPath: 
        path: "/var/lib/kuard" 
  containers: 
    - image: gcr.io/kuar-demo/kuard-amd64:blue 
      name: kuard 
      volumeMounts: 
        - mountPath: "/data" 
          name: "kuard-data" 
      ports: 
        - containerPort: 8080 
          name: http 
          protocol: TCP

The manifest in Example 4-5 defines a single new volume named kuard-
data, which the kuard container mounts to the /data path.

Different Ways of Using Volumes with Pods
There are a variety of ways you can use data in your application. The
following are a few, and the recommended patterns for Kubernetes.

Communication/synchronization

In the first example of a Pod, we saw how two containers used a shared
volume to serve a site while keeping it synchronized to a remote Git
location. To achieve this, the Pod uses an emptyDir volume. Such a
volume is scoped to the Pod’s lifespan, but it can be shared between two
containers, forming the basis for communication between our Git sync
and web serving containers.

Cache

An application may use a volume that is valuable for performance, but
not required for correct operation of the application. For example,
perhaps the application keeps prerendered thumbnails of larger images.
Of course, they can be reconstructed from the original images, but that
makes serving the thumbnails more expensive. You want such a cache



to survive a container restart due to a health-check failure, and thus
emptyDir works well for the cache use case as well.

Persistent data

Sometimes you will use a volume for truly persistent data—data that is
independent of the lifespan of a particular Pod, and should move
between nodes in the cluster if a node fails or a Pod moves to a different
machine for some reason. To achieve this, Kubernetes supports a wide
variety of remote network storage volumes, including widely supported
protocols like NFS and iSCSI as well as cloud provider network storage
like Amazon’s Elastic Block Store, Azure’s Files and Disk Storage, as
well as Google’s Persistent Disk.

Mounting the host filesystem

Other applications don’t actually need a persistent volume, but they do
need some access to the underlying host filesystem. For example, they
may need access to the /dev filesystem in order to perform raw block-
level access to a device on the system. For these cases, Kubernetes
supports the hostPath volume, which can mount arbitrary locations
on the worker node into the container.

The previous example (Example 4-5) uses the hostPath volume type.
The volume created is /var/lib/kuard on the host.

Persisting Data Using Remote Disks

Often, you want the data a Pod is using to stay with the Pod, even if it is
restarted on a different host machine. To achieve this, you can mount a
remote network storage volume into your Pod. When using network-
based storage, Kubernetes automatically mounts and unmounts the
appropriate storage whenever a Pod using that volume is scheduled onto
a particular machine.



There are numerous methods for mounting volumes over the network.
Kubernetes includes support for standard protocols such as NFS and iSCSI
as well as cloud provider–based storage APIs for the major cloud providers
(both public and private). In many cases, the cloud providers will also
create the disk for you if it doesn’t already exist.

Here is an example of using an NFS server:

... 
# Rest of pod definition above here 
volumes: 
    - name: "kuard-data" 
      nfs: 
        server: my.nfs.server.local 
        path: "/exports"

Persistent volumes are a deep topic. There is a more in-depth examination
of the subject in Chapter 12.

Putting It All Together
Many applications are stateful, and as such we must preserve any data and
ensure access to the underlying storage volume regardless of what machine
the application runs on. As we saw earlier, this can be achieved using a
persistent volume backed by network-attached storage. We also want to
ensure that a healthy instance of the application is running at all times,
which means we want to make sure the container running kuard is ready
before we expose it to clients.

Through a combination of persistent volumes, readiness and liveness
probes, and resource restrictions, Kubernetes provides everything needed to
run stateful applications reliably. Example 4-6 pulls this all together into
one manifest.

Example 4-6. kuard-pod-full.yaml
apiVersion: v1
kind: Pod
metadata: 



  name: kuard
spec: 
  volumes: 
    - name: "kuard-data" 
      nfs: 
        server: my.nfs.server.local 
        path: "/exports" 
  containers: 
    - image: gcr.io/kuar-demo/kuard-amd64:blue 
      name: kuard 
      ports: 
        - containerPort: 8080 
          name: http 
          protocol: TCP 
      resources: 
        requests: 
          cpu: "500m" 
          memory: "128Mi" 
        limits: 
          cpu: "1000m" 
          memory: "256Mi" 
      volumeMounts: 
        - mountPath: "/data" 
          name: "kuard-data" 
      livenessProbe: 
        httpGet: 
          path: /healthy 
          port: 8080 
        initialDelaySeconds: 5 
        timeoutSeconds: 1 
        periodSeconds: 10 
        failureThreshold: 3 
      readinessProbe: 
        httpGet: 
          path: /ready 
          port: 8080 
        initialDelaySeconds: 30 
        timeoutSeconds: 1 
        periodSeconds: 10 
        failureThreshold: 3

You can see how the definition of the Pod has grown over the chapter. Each
new capability added to your application also adds a new section to its
definition.



Summary
Pods represent the atomic unit of work in a Kubernetes cluster. They are
comprised of one or more containers working together symbiotically. To
create one, you write a Pod manifest and submit it to the Kubernetes API
server by using the command-line tool or (less frequently) by making HTTP
and JSON calls to the server directly.

Once you’ve submitted the manifest to the API server, the Kubernetes
scheduler finds a machine where the Pod can fit and schedules the Pod to
that machine. Once scheduled, the kubelet daemon on that machine is
responsible for creating the containers that correspond to the Pod, as well as
performing any health checks defined in the Pod manifest.

Once a Pod is scheduled to a node, no rescheduling occurs if that node fails.
Additionally, to create multiple replicas of the same Pod you have to create
and name them manually. In a Chapter Nine we introduce the ReplicaSet
object and show how you can automate the creation of multiple identical
Pods and ensure that they are recreated in the event of a node machine
failure.



Chapter 5. Labels and
Annotations

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 6th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

Kubernetes was made to grow with you as your application scales in both
size and complexity. Labels and annotations are fundamental concepts in
Kubernetes that let you work in sets of things that map to how you think
about your application. You can organize, mark, and cross-index all of your
resources to represent the groups that make the most sense for your
application.

Labels are key/value pairs that can be attached to Kubernetes objects such
as Pods and ReplicaSets. They can be arbitrary, and are useful for attaching
identifying information to Kubernetes objects. Labels provide the
foundation for grouping objects.

Annotations, on the other hand, provide a storage mechanism that resembles
labels: key/value pairs designed to hold nonidentifying information that
tools and libraries can leverage.



Labels
Labels provide identifying metadata for objects. These are fundamental
qualities of the object that will be used for grouping, viewing, and
operating.

NOTE
The motivations for labels grew out of Google’s experience in running large and
complex applications. A couple of lessons that emerged from this experience.

The first lesson is that production abhors a singleton. When deploying software, users
often start with a single instance. However, as the application matures, these singletons
often multiply and become sets of objects. With this in mind, Kubernetes uses labels to
deal with sets of objects instead of single instances.

The second lesson is that any hierarchy imposed by the system will fall short for many
users. In addition, user groupings and hierarchies change over time. For instance, a user
may start out with the idea that all apps are made up of many services. However, over
time, a service may be shared across multiple apps. Kubernetes labels are flexible
enough to adapt to these situations and more.

See the great site reliability book Site Reliability Engineering by Betsy Beyer et al.
(O’Reilly) for some deeper background on how Google approaches production systems.

Labels have simple syntax. They are key/value pairs, where both the key
and value are represented by strings. Label keys can be broken down into
two parts: an optional prefix and a name, separated by a slash. The prefix, if
specified, must be a DNS subdomain with a 253-character limit. The key
name is required and must be shorter than 63 characters. Names must also
start and end with an alphanumeric character and permit the use of dashes
(-), underscores (_), and dots (.) between characters.

Label values are strings with a maximum length of 63 characters. The
contents of the label values follow the same rules as for label keys.

Table 5-1 shows some valid label keys and values.

http://shop.oreilly.com/product/0636920041528.do
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Key Value

acme.com/app-version 1.0.0

appVersion 1.0.0

app.version 1.0.0

kubernetes.io/cluster-service true



When domain names are used in labels and annotations they are expected to
be aligned to that particular entity in some way. For example, a project
might define a canonical set of labels used to identify the various stages of
application deployment such as staging, canary and production. Or a cloud
provider might define provider-specific annotations that extend Kubernetes
objects to activate features specific to their service.

Applying Labels
Here we create a few deployments (a way to create an array of Pods) with
some interesting labels. We’ll take two apps (called alpaca and
bandicoot) and have two environments and two versions for each:

First, create the alpaca-prod deployment and set the ver, app, and
env labels:

+

$ kubectl run alpaca-prod \ 
  --image=gcr.io/kuar-demo/kuard-amd64:blue \ 
  --replicas=2 \ 
  --labels="ver=1,app=alpaca,env=prod"

Next, create the alpaca-test deployment and set the ver, app, and
env labels with the appropriate values:

+

$ kubectl run alpaca-test \ 
  --image=gcr.io/kuar-demo/kuard-amd64:green \ 
  --replicas=1 \ 
  --labels="ver=2,app=alpaca,env=test"

Finally, create two deployments for bandicoot. Here we name the
environments prod and staging:

+



$ kubectl run bandicoot-prod \ 
  --image=gcr.io/kuar-demo/kuard-amd64:green \ 
  --replicas=2 \ 
  --labels="ver=2,app=bandicoot,env=prod" 
$ kubectl run bandicoot-staging \ 
  --image=gcr.io/kuar-demo/kuard-amd64:green \ 
  --replicas=1 \ 
  --labels="ver=2,app=bandicoot,env=staging"

At this point you should have four deployments—alpaca-prod,
alpaca-test, bandicoot-prod, and bandicoot-staging:

$ kubectl get deployments --show-labels 
 
NAME                ... LABELS 
alpaca-prod         ... app=alpaca,env=prod,ver=1 
alpaca-test         ... app=alpaca,env=test,ver=2 
bandicoot-prod      ... app=bandicoot,env=prod,ver=2 
bandicoot-staging   ... app=bandicoot,env=staging,ver=2

We can visualize this as a Venn diagram based on the labels (Figure 5-1).



Figure 5-1. Visualization of labels applied to our deployments

Modifying Labels
You can also apply or update labels on objects after you create them
created:

$ kubectl label deployments alpaca-test "canary=true"



WARNING
There is a caveat here. In this example, the kubectl label command will only
change the label on the deployment itself; it won’t affect any objects that the
deployment creates, such as ReplicaSets and Pods. To change those, you’ll need to
change the template embedded in the deployment (see Chapter 9).

You can also use the -L option to kubectl get to show a label value as
a column:

$ kubectl get deployments -L canary 
 
NAME                DESIRED   CURRENT   ... CANARY 
alpaca-prod         2         2         ... <none> 
alpaca-test         1         1         ... true 
bandicoot-prod      2         2         ... <none> 
bandicoot-staging   1         1         ... <none>

You can remove a label by applying a dash-suffix:

$ kubectl label deployments alpaca-test "canary-"

Label Selectors
Label selectors are used to filter Kubernetes objects based on a set of labels.
Selectors use a simple syntax for Boolean expressions. They are used both
by end users (via tools like kubectl) and by different types of objects
(such as how a ReplicaSet relates to its Pods).

Each deployment (via a ReplicaSet) creates a set of Pods using the labels
specified in the template embedded in the deployment. This is configured
by the kubectl run command.

Running the kubectl get pods command should return all the Pods
currently running in the cluster. We should have a total of six kuard Pods
across our three environments:



$ kubectl get pods --show-labels 
 
NAME                              ... LABELS 
alpaca-prod-3408831585-4nzfb      ... 
app=alpaca,env=prod,ver=1,... 
alpaca-prod-3408831585-kga0a      ... 
app=alpaca,env=prod,ver=1,... 
alpaca-test-1004512375-3r1m5      ... 
app=alpaca,env=test,ver=2,... 
bandicoot-prod-373860099-0t1gp    ... 
app=bandicoot,env=prod,ver=2,... 
bandicoot-prod-373860099-k2wcf    ... 
app=bandicoot,env=prod,ver=2,... 
bandicoot-staging-1839769971-3ndv ... 
app=bandicoot,env=staging,ver=2,...

NOTE
You may see a new label that you haven’t seen before: pod-template-hash. This
label is applied by the deployment so it can keep track of which Pods were generated
from which template versions. This allows the deployment to manage updates in a
cleanly, as will be covered in depth in Chapter 9.

If we only want to list Pods that have the ver label set to 2, we could use
the --selector flag:

$ kubectl get pods --selector="ver=2" 
 
NAME                                 READY     STATUS    RESTARTS  
AGE 
alpaca-test-1004512375-3r1m5         1/1       Running   0         
3m 
bandicoot-prod-373860099-0t1gp       1/1       Running   0         
3m 
bandicoot-prod-373860099-k2wcf       1/1       Running   0         
3m 
bandicoot-staging-1839769971-3ndv5   1/1       Running   0         
3m

If we specify two selectors separated by a comma, only the objects that
satisfy both will be returned. This is a logical AND operation:



$ kubectl get pods --selector="app=bandicoot,ver=2" 
 
NAME                                 READY     STATUS    RESTARTS  
AGE 
bandicoot-prod-373860099-0t1gp       1/1       Running   0         
4m 
bandicoot-prod-373860099-k2wcf       1/1       Running   0         
4m 
bandicoot-staging-1839769971-3ndv5   1/1       Running   0         
4m

We can also ask if a label is one of a set of values. Here we ask for all Pods
where the app label is set to alpaca or bandicoot (which will be all
six Pods):

$ kubectl get pods --selector="app in (alpaca,bandicoot)" 
 
NAME                                 READY     STATUS    RESTARTS  
AGE 
alpaca-prod-3408831585-4nzfb         1/1       Running   0         
6m 
alpaca-prod-3408831585-kga0a         1/1       Running   0         
6m 
alpaca-test-1004512375-3r1m5         1/1       Running   0         
6m 
bandicoot-prod-373860099-0t1gp       1/1       Running   0         
6m 
bandicoot-prod-373860099-k2wcf       1/1       Running   0         
6m 
bandicoot-staging-1839769971-3ndv5   1/1       Running   0         
6m

Finally, we can ask if a label is set at all. Here we are asking for all of the
deployments with the canary label set to anything:

$ kubectl get deployments --selector="canary" 
 
NAME          DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE 
alpaca-test   1         1         1            1           7m

There are also “negative” versions of each of these, as shown in Table 5-2.
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Operator Description

key=value key is set to value



key!=value key is not set to value

key in (value1, value2) key is one of value1 or value2

key notin (value1, value2) key is not one of value1 or value2

key key is set

!key key is not set

For example, asking if a key, in this case canary, is not set can look like:

$ kubectl get deployments --selector='!canary'

You can combine positive and negative selectors:

$ kubectl get pods -l 'ver=2,!canary'

Label Selectors in API Objects
A Kubernetes object uses a label selector to refer to a set of other
Kubernetes objects. Instead of a simple string as described in the previous
section, we use a parsed structure.

For historical reasons (Kubernetes doesn’t break API compatibility!), there
are two forms. Most objects support a newer, more powerful set of selector
operators.

A selector of app=alpaca,ver in (1, 2) would be converted to
this:

selector: 
  matchLabels: 
    app: alpaca 
  matchExpressions: 
    - {key: ver, operator: In, values: [1, 2]}



This example uses compact YAML syntax. This is an item in a list
(matchExpressions) that is a map with three entries. The last entry
(values) has a value that is a list with two items.

All of the terms are evaluated as a logical AND. The only way to represent
the != operator is to convert it to a NotIn expression with a single value.

The older form of specifying selectors (used in
ReplicationControllers and services) only supports the = operator.
The = operator selects target objects where its set of key/value pairs all
match the object.

The selector app=alpaca,ver=1 would be represented like this:

selector: 
  app: alpaca 
  ver: 1

Labels in the Kubernetes Architecture
In addition to enabling users to organize their infrastructure, labels play a
critical role in linking various related Kubernetes objects. Kubernetes is a
purposefully decoupled system. There is no hierarchy and all components
operate independently. However, in many cases objects need to relate to one
another, and these relationships are defined by labels and label selectors.

For example, ReplicaSets, which create and maintain multiple replicas of a
Pod, find the Pods that they are managing via a selector. Likewise, a service
load balancer finds the Pods to which it should bring traffic via a selector
query. When a Pod is created, it can use a node selector to identify a
particular set of nodes onto which it can be scheduled. When people want to
restrict network traffic in their cluster, they use NetworkPolicy in
conjunction with specific labels to identify Pods that should or should not
be allowed to communicate with each other.

Labels are a powerful and ubiquitous glue that holds a Kubernetes
application together. Though your application will likely start out with a



simple set of labels and queries, you should expect it to grow in size and
sophistication with time.

Annotations
Annotations provide a place to store additional metadata for Kubernetes
objects where the sole purpose of the metadata is assisting tools and
libraries. They are a way for other programs driving Kubernetes via an API
to store some opaque data with an object. Annotations can be used for the
tool itself or to pass configuration information between external systems.

While labels are used to identify and group objects, annotations are used to
provide extra information about where an object came from, how to use it,
or policy around that object. There is overlap, and it is a matter of taste as to
when to use an annotation or a label. When in doubt, add information to an
object as an annotation and promote it to a label if you find yourself
wanting to use it in a selector.

Annotations are used to:

Keep track of a “reason” for the latest update to an object.

Communicate a specialized scheduling policy to a specialized
scheduler.

Extend data about the last tool to update the resource and how it
was updated (used for detecting changes by other tools and doing a
smart merge).

Attach build, release, or image information that isn’t appropriate
for labels (may include a Git hash, timestamp, PR number, etc.).

Enable the Deployment object (Chapter 9) to keep track of
ReplicaSets that it is managing for rollouts.

Provide extra data to enhance the visual quality or usability of a
UI. For example, objects could include a link to an icon (or a
base64-encoded version of an icon).



Prototype alpha functionality in Kubernetes (instead of creating a
first-class API field, the parameters for that functionality are
encoded in an annotation).

Annotations are used in various places in Kubernetes, with the primary use
case being rolling deployments. During rolling deployments, annotations
are used to track rollout status and provide the necessary information
required to roll back a deployment to a previous state.

Avoid using the Kubernetes API server as a general-purpose database.
Annotations are good for small bits of data that are highly associated with a
specific resource. If you want to store data in Kubernetes but you don’t
have an obvious object to associate it with, consider storing that data in
some other, more appropriate database.

Defining Annotations
Annotation keys use the same format as label keys. However, because they
are often used to communicate information between tools, the “namespace”
part of the key is more important. Example keys include
deployment.kubernetes.io/revision or
kubernetes.io/change-cause.

The value component of an annotation is a free-form string field. While this
allows maximum flexibility as users can store arbitrary data, because this is
arbitrary text, there is no validation of any format. For example, it is not
uncommon for a JSON document to be encoded as a string and stored in an
annotation. It is important to note that the Kubernetes server has no
knowledge of the required format of annotation values. If annotations are
used to pass or store data, there is no guarantee the data is valid. This can
make tracking down errors more difficult.

Annotations are defined in the common metadata section in every
Kubernetes object:

... 
metadata: 



  annotations: 
    example.com/icon-url: "https://example.com/icon.png" 
...

WARNING
Annotations are very convenient and provide powerful loose coupling. However, use
them judiciously to avoid an untyped mess of data.

Cleanup
It is easy to clean up all of the deployments that we started in this chapter:

$ kubectl delete deployments --all

If you want to be more selective, you can use the --selector flag to
choose which deployments to delete.

Summary
Labels are used to identify and optionally group objects in a Kubernetes
cluster. They are also used in selector queries to provide flexible runtime
grouping of objects, such as Pods.

Annotations provide object-scoped key/value metadata storage used by
automation tooling and client libraries. They can also be used to hold
configuration data for external tools such as third-party schedulers and
monitoring tools.

Labels and annotations are vital to understanding how key components in a
Kubernetes cluster work together to ensure the desired cluster state. Using
them properly unlocks the true power of Kubernetes’s flexibility and
provides a starting point for building automation tools and deployment
workflows.



Chapter 7. HTTP Load
Balancing with Ingress

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 8th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

A critical part of any application is getting network traffic to and from that
application. As described in Chapter 6, Kubernetes has a set of capabilities
to enable services to be exposed outside of the cluster. For many users and
simple use cases these capabilities are sufficient.

But the Service object operates at Layer 4 (according to the OSI model ).
This means that it only forwards TCP and UDP connections and doesn’t
look inside of those connections. Because of this, hosting many applications
on a cluster uses many different exposed services. In the case where these
services are type: NodePort, you’ll have to have clients connect to a
unique port per service. In the case where these services are type:
LoadBalancer, you’ll be allocating (often expensive or scarce) cloud
resources for each service. But for HTTP (Layer 7)-based services, we can
do better.
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When solving a similar problem in non-Kubernetes situations, users often
turn to the idea of “virtual hosting.” This is a mechanism to host many
HTTP sites on a single IP address. Typically, the user uses a load balancer
or reverse proxy to accept incoming connections on HTTP (80) and HTTPS
(443) ports. That program then parses the HTTP connection and, based on
the Host header and the URL path that is requested, proxies the HTTP call
to some other program. In this way, that load balancer or reverse proxy
plays “traffic cop” for decoding and directing incoming connections to the
right “upstream” server.

Kubernetes calls its HTTP-based load-balancing system Ingress. Ingress is
a Kubernetes-native way to implement the “virtual hosting” pattern we just
discussed. One of the more complex aspects of the pattern is that the user
has to manage the load balancer configuration file. In a dynamic
environment and as the set of virtual hosts expands, this can be very
complex. The Kubernetes Ingress system works to simplify this by (a)
standardizing that configuration, (b) moving it to a standard Kubernetes
object, and (c) merging multiple Ingress objects into a single config for the
load balancer.

The typical software base implementation looks something like what is
depicted in Figure 7-1. The Ingress controller is a software system exposed
outside the cluster using a service of type: LoadBalancer. It then
proxies requests to “upstream” servers. The configuration for how it does
this is the result of reading and monitoring Ingress objects.



Figure 7-1. The typical software Ingress controller configuration

Ingress Spec Versus Ingress Controllers
While conceptually simple, at an implementation level Ingress is very
different from pretty much every other regular resource object in
Kubernetes. Specifically, it is split into a common resource specification
and a controller implementation. There is no “standard” Ingress controller
that is built into Kubernetes, so the user must install one of many optional
implementations.

Users can create and modify Ingress objects just like every other object.
But, by default, there is no code running to actually act on those objects. It



is up to the users (or the distribution they are using) to install and manage
an outside controller. In this way, the controller is pluggable.

There are multiple reasons that Ingress ended up like this. First of all, there
is no one single HTTP load balancer that can universally be used. In
addition to many software load balancers (both open source and
proprietary), there are also load-balancing capabilities provided by cloud
providers (e.g., ELB on AWS), and hardware-based load balancers. The
second reason is that the Ingress object was added to Kubernetes before any
of the common extensibility capabilities were added (see [Link to Come]).
As Ingress progresses, it is likely that it will evolve to use these
mechanisms.

Installing Contour
While there are many available Ingress controllers, for the examples here
we use an Ingress controller called Contour. This is a controller built to
configure the open source (and CNCF project) load balancer called Envoy.
Envoy is built to be dynamically configured via an API. The Contour
Ingress controller takes care of translating the Ingress objects into
something that Envoy can understand.

NOTE
The Contour project is hosted at https://github.com/projectcontour/contour. It was
created by Heptio, in collaboration with real-world customers and is used in production
settings but is now an independent open source project.

You can install Contour with a simple one-line invocation:

$ kubectl apply -f 
https://projectcontour.io/quickstart/contour.yaml

Note that this requires execution by a user who has cluster-admin
permissions.

https://github.com/projectcontour/contour


This one line works for most configurations. It creates a namespace called
projectcontour. Inside of that namespace it creates a deployment
(with two replicas) and an external-facing service of type:
LoadBalancer. In addition, it sets up the correct permissions via a
service account and installs a CustomResourceDefinition (see [Link to
Come]) for some extended capabilities discussed in “The Future of
Ingress”.

Because it is a global install, you need to ensure that you have wide admin
permissions on the cluster you are installing into.

After you install it, you can fetch the external address of Contour via:

$  kubectl get -n projectcontour service contour -o wide 
NAME      CLUSTER-IP     EXTERNAL-IP          PORT(S)      ... 
contour   10.106.53.14   a477...amazonaws.com 80:30274/TCP ...

Look at the EXTERNAL-IP column. This can be either an IP address (for
GCP and Azure) or a hostname (for AWS). Other clouds and environments
may differ. If your Kubernetes cluster doesn’t support services of type:
LoadBalancer, you’ll have to change the YAML for installing Contour
to simply use type: NodePort and route traffic to machines on the
cluster via a mechanism that works in your configuration.

If you are using minikube, you probably won’t have anything listed for
EXTERNAL-IP. To fix this, you need to open a separate terminal window
and run minikube tunnel. This configures networking routes such that
you have unique IP addresses assigned to every service of type:
LoadBalancer.

Configuring DNS
To make Ingress work well, you need to configure DNS entries to the
external address for your load balancer. You can map multiple hostnames to
a single external endpoint and the Ingress controller will play traffic cop
and direct incoming requests to the appropriate upstream service based on
that hostname.



For this chapter, we assume that you have a domain called example.com.
You need to configure two DNS entries: alpaca.example.com and
bandicoot.example.com. If you have an IP address for your external
load balancer, you’ll want to create A records. If you have a hostname,
you’ll want to configure CNAME records.

Configuring a Local hosts File
If you don’t have a domain or if you are using a local solution such as
minikube, you can set up a local configuration by editing your /etc/hosts
file to add an IP address. You need admin/root privileges on your
workstation. The location of the file may differ on your platform, and
making it take effect may require extra steps. For example, on Windows the
file is usually at C:\Windows\System32\drivers\etc\hosts, and for recent
versions of macOS you need to run sudo killall -HUP
mDNSResponder after changing the file.

Edit the file to add a line like the following:

<ip-address> alpaca.example.com bandicoot.example.com

For <ip-address>, fill in the external IP address for Contour. If all you
have is a hostname (like from AWS), you can get an IP address (that may
change in the future) by executing host -t a <address>.

Don’t forget to undo these changes when you are done!

Using Ingress
Now that we have an Ingress controller configured, let’s put it through its
paces. First we’ll create a few upstream (also sometimes referred to as
“backend”) services to play with by executing the following commands:

$ kubectl run be-default \ 
  --image=gcr.io/kuar-demo/kuard-amd64:blue \ 
  --replicas=3 \ 



  --port=8080 
$ kubectl expose deployment be-default 
$ kubectl run alpaca \ 
  --image=gcr.io/kuar-demo/kuard-amd64:green \ 
  --replicas=3 \ 
  --port=8080 
$ kubectl expose deployment alpaca 
$ kubectl run bandicoot \ 
  --image=gcr.io/kuar-demo/kuard-amd64:purple \ 
  --replicas=3 \ 
  --port=8080 
$ kubectl expose deployment bandicoot 
$ kubectl get services -o wide 
 
NAME             CLUSTER-IP    ... PORT(S)  ... SELECTOR 
alpaca           10.115.245.13 ... 8080/TCP ... run=alpaca 
bandicoot        10.115.242.3  ... 8080/TCP ... run=bandicoot 
be-default       10.115.246.6  ... 8080/TCP ... run=be-default 
kubernetes       10.115.240.1  ... 443/TCP  ... <none>

Simplest Usage
The simplest way to use Ingress is to have it just blindly pass everything
that it sees through to an upstream service. There is limited support for
imperative commands to work with Ingress in kubectl, so we’ll start with
a YAML file (see Example 7-1).

Example 7-1. simple-ingress.yaml
apiVersion: extensions/v1beta1
kind: Ingress
metadata: 
  name: simple-ingress
spec: 
  backend: 
    serviceName: alpaca 
    servicePort: 8080

Create this Ingress with kubectl apply:

$ kubectl apply -f simple-ingress.yaml 
ingress.extensions/simple-ingress created



You can verify that it was set up correctly using kubectl get and
kubectl describe:

$ kubectl get ingress 
NAME             HOSTS   ADDRESS   PORTS   AGE 
simple-ingress   *                 80      13m 
 
$ kubectl describe ingress simple-ingress 
Name:             simple-ingress 
Namespace:        default 
Address: 
Default backend:  be-default:8080 
(172.17.0.6:8080,172.17.0.7:8080,172.17.0.8:8080) 
Rules: 
  Host  Path  Backends 
  ----  ----  -------- 
  *     *     be-default:8080 
(172.17.0.6:8080,172.17.0.7:8080,172.17.0.8:8080) 
Annotations: 
  ... 
 
Events:  <none>

This sets things up so that any HTTP request that hits the Ingress controller
is forwarded on to the alpaca service. You can now access the alpaca
instance of kuard on any of the raw IPs/CNAMEs of the service; in this
case, either alpaca.example.com or bandicoot.example.com.

This doesn’t, at this point, add much value above a simple service of
type: LoadBalancer. We experiment with more complex
configurations in the following sections.

Using Hostnames
Things start to get interesting when we start to direct traffic based on
properties of the request. The most common example of this is to have the
Ingress system look at the HTTP host header (which is set to the DNS
domain in the original URL) and direct traffic based on that header. Let’s
add another Ingress object for directing traffic to the alpaca service for
any traffic directed to alpaca.example.com (see Example 7-2).



Example 7-2. host-ingress.yaml
apiVersion: extensions/v1beta1
kind: Ingress
metadata: 
  name: host-ingress
spec: 
  rules: 
  - host: alpaca.example.com 
    http: 
      paths: 
      - backend: 
          serviceName: alpaca 
          servicePort: 8080

Create this Ingress with kubectl apply:

$ kubectl apply -f host-ingress.yaml 
ingress.extensions/host-ingress created

We can verify that things are set up correctly as follows:

$ kubectl get ingress 
NAME             HOSTS               ADDRESS   PORTS   AGE 
host-ingress     alpaca.example.com            80      54s 
simple-ingress   *                             80      13m 
 
$ kubectl describe ingress host-ingress 
Name:             host-ingress 
Namespace:        default 
Address: 
Default backend:  default-http-backend:80 (<none>) 
Rules: 
  Host                Path  Backends 
  ----                ----  -------- 
  alpaca.example.com 
                      /   alpaca:8080 (<none>) 
Annotations: 
  ... 
 
Events:  <none>

There are a couple of things that are a bit confusing here. First, there is a
reference to the default-http-backend. This is a convention that



only some Ingress controllers use to handle requests that aren’t handled in
any other way. These controllers send those requests to a service called
default-http-backend in the kube-system namespace. This
convention is surfaced client-side in kubectl.

Next, there are no endpoints listed for the alpaca backend service. This is
a bug in kubectl that is fixed in Kubernetes v1.14.

Regardless, you should now be able to address the alpaca service via
http://alpaca.example.com. If instead you reach the service endpoint via
other methods, you should get the default service.

Using Paths
The next interesting scenario is to direct traffic based on not just the
hostname, but also the path in the HTTP request. We can do this easily by
specifying a path in the paths entry (see Example 7-3). In this example
we direct everything coming into http://bandicoot.example.com to the
bandicoot service, but we also send http://bandicoot.example.com/a to
the alpaca service. This type of scenario can be used to host multiple
services on different paths of a single domain.

Example 7-3. path-ingress.yaml
apiVersion: extensions/v1beta1
kind: Ingress
metadata: 
  name: path-ingress
spec: 
  rules: 
  - host: bandicoot.example.com 
    http: 
      paths: 
      - path: "/" 
        backend: 
          serviceName: bandicoot 
          servicePort: 8080 
      - path: "/a/" 
        backend: 
          serviceName: alpaca 
          servicePort: 8080



When there are multiple paths on the same host listed in the Ingress system,
the longest prefix matches. So, in this example, traffic starting with /a/ is
forwarded to the alpaca service, while all other traffic (starting with /) is
directed to the bandicoot service.

As requests get proxied to the upstream service, the path remains
unmodified. That means a request to bandicoot.example.com/a/
shows up to the upstream server that is configured for that request hostname
and path. The upstream service needs to be ready to serve traffic on that
subpath. In this case, kuard has special code for testing, where it responds
on the root path (/) along with a predefined set of subpaths (/a/, /b/, and
/c/).

Cleaning Up
To clean up, execute the following:

$ kubectl delete ingress host-ingress path-ingress simple-ingress 
$ kubectl delete service alpaca bandicoot be-default 
$ kubectl delete deployment alpaca bandicoot be-default

Advanced Ingress Topics and Gotchas
There are some other fancy features that are supported by Ingress. The level
of support for these features differs based on the Ingress controller
implementation, and two controllers may implement a feature in slightly
different ways.

Many of the extended features are exposed via annotations on the Ingress
object. Be careful, as these annotations can be hard to validate and are easy
to get wrong. Many of these annotations apply to the entire Ingress object
and so can be more general than you might like. To scope the annotations
down you can always split a single Ingress object into multiple Ingress
objects. The Ingress controller should read them and merge them together.

Running Multiple Ingress Controllers



Oftentimes, you may want to run multiple Ingress controllers on a single
cluster. In that case, you specify which Ingress object is meant for which
Ingress controller using the kubernetes.io/ingress.class
annotation. The value should be a string that specifies which Ingress
controller should look at this object. The Ingress controllers themselves,
then, should be configured with that same string and should only respect
those Ingress objects with the correct annotation.

If the kubernetes.io/ingress.class annotation is missing,
behavior is undefined. It is likely that multiple controllers will fight to
satisfy the Ingress and write the status field of the Ingress objects.

Multiple Ingress Objects
If you specify multiple Ingress objects, the Ingress controllers should read
them all and try to merge them into a coherent configuration. However, if
you specify duplicate and conflicting configurations, the behavior is
undefined. It is likely that different Ingress controllers will behave
differently. Even a single implementation may do different things
depending on nonobvious factors.

Ingress and Namespaces
Ingress interacts with namespaces in some nonobvious ways.

First, due to an abundance of security caution, an Ingress object can only
refer to an upstream service in the same namespace. This means that you
can’t use an Ingress object to point a subpath to a service in another
namespace.

However, multiple Ingress objects in different namespaces can specify
subpaths for the same host. These Ingress objects are then merged together
to come up with the final config for the Ingress controller.

This cross-namespace behavior means that it is necessary that Ingress be
coordinated globally across the cluster. If not coordinated carefully, an



Ingress object in one namespace could cause problems (and undefined
behavior) in other namespaces.

Typically there are no restrictions built into the Ingress controller around
what namespaces are allowed to specify what hostnames and paths.
Advanced users may try to enforce a policy for this using a custom
admission controller. There are also evolutions of Ingress described in “The
Future of Ingress” that address this problem.

Path Rewriting
Some Ingress controller implementations support, optionally, doing path
rewriting. This can be used to modify the path in the HTTP request as it
gets proxied. This is usually specified by an annotation on the Ingress
object and applies to all requests that are specified by that object. For
example, if we were using the NGINX Ingress controller, we could specify
an annotation of nginx.ingress.kubernetes.io/rewrite-
target: /. This can sometimes make upstream services work on a
subpath even if they weren’t built to do so.

There are multiple implementations that not only implement path rewriting,
but also support regular expressions when specifying the path. For example,
the NGINX controller allows regular expressions to capture parts of the
path and then use that captured content when doing rewriting. How this is
done (and what variant of regular expressions is used) is implementation-
specific.

Path rewriting isn’t a silver bullet, though, and can often lead to bugs. Many
web applications assume that they can link within themselves using
absolute paths. In that case, the app in question may be hosted on
/subpath but have requests show up to it on /. It may then send a user to
/app-path. There is then the question of whether that is an “internal”
link for the app (in which case it should instead be /subpath/app-
path) or a link to some other app. For this reason, it is probably best to
avoid subpaths if you can help it for any complicated applications.



Serving TLS
When serving websites, it is becoming increasingly necessary to do so
securely using TLS and HTTPS. Ingress supports this (as do most Ingress
controllers).

First, users need to specify a secret with their TLS certificate and keys —
something like what is outlined in Example 7-4. You can also create a secret
imperatively with kubectl create secret tls <secret-
name> --cert <certificate-pem-file> --key
<private-key-pem-file>.

Example 7-4. tls-secret.yaml
apiVersion: v1
kind: Secret
metadata: 
  creationTimestamp: null 
  name: tls-secret-name
type: kubernetes.io/tls
data: 
  tls.crt: <base64 encoded certificate> 
  tls.key: <base64 encoded private key>

Once you have the certificate uploaded, you can reference it in an Ingress
object. This specifies a list of certificates along with the hostnames that
those certificates should be used for (see Example 7-5). Again, if multiple
Ingress objects specify certificates for the same hostname, the behavior is
undefined.

Example 7-5. tls-ingress.yaml
apiVersion: extensions/v1beta1
kind: Ingress
metadata: 
  name: tls-ingress
spec: 
  tls: 
  - hosts: 
    - alpaca.example.com 
    secretName: tls-secret-name 
  rules: 
  - host: alpaca.example.com 
    http: 



      paths: 
      - backend: 
          serviceName: alpaca 
          servicePort: 8080

Uploading and managing TLS secrets can be difficult. In addition,
certificates can often come at a significant cost. To help solve this problem,
there is a non-profit called “Let’s Encrypt” running a free Certificate
Authority that is API-driven. Since it is API-driven, it is possible to set up a
Kubernetes cluster that automatically fetches and installs TLS certificates
for you. It can be tricky to set up, but when working it’s very simple to use.
The missing piece is an open source project called cert-manager
initiated and supported by Jetstack, a UK startup. Visit its GitHub page for
instructions on installing and using cert-manager.

Alternate Ingress Implementations
There are many different implementations of Ingress controllers, each
building on the base Ingress object with unique features. It is a vibrant
ecosystem.

First, each cloud provider has an Ingress implementation that exposes the
specific cloud-based L7 load balancer for that cloud. Instead of configuring
a software load balancer running in a Pod, these controllers take Ingress
objects and use them to configure, via an API, the cloud-based load
balancers. This reduces the load on the cluster and management burden for
the operators, but can often come at a cost.

The most popular generic Ingress controller is probably the open source
NGINX ingress controller. Be aware that there is also a commercial
controller based on the proprietary NGINX Plus. The open source controller
essentially reads Ingress objects and merges them into an NGINX
configuration file. It then signals to the NGINX process to restart with the
new configuration (while responsibly serving existing in-flight
connections). The open NGINX controller has an enormous number of
features and options exposed via annotations.

https://letsencrypt.org/
https://github.com/jetstack/cert-manager
https://github.com/kubernetes/ingress-nginx/
http://bit.ly/2LMRi7N


Ambassador and Gloo are two other Envoy-based Ingress controllers that
are focused on being API gateways.

Traefik is a reverse proxy implemented in Go that also can function as an
Ingress controller. It has a set of features and dashboards that are very
developer-friendly.

This just scratches the surface. The Ingress ecosystem is very active and
there are many new projects and commercial offerings that build on the
humble Ingress object in unique ways.

The Future of Ingress
As you have seen, the Ingress object provides a very useful abstraction for
configuring L7 load balancers —but it hasn’t scaled to all the features that
users want and various implementations are looking to offer.

Many of the features in Ingress are underdefined. Implementations can
surface these features in different ways, reducing the portability of
configurations between implementations.

Another problem is that it is easy to misconfigure Ingress. The way that
multiple objects compose together opens the door for conflicts that are
resolved differently by different implementations. In addition, the way that
these are merged across namespaces breaks the idea of namespace isolation.

Ingress was also created before the idea of a Service Mesh (exemplified by
projects such as Istio and Linkerd) was well known. The intersection of
Ingress and Service Meshes is still being defined.. Service meshes are
covered in greater detail later on in this book.

The future of HTTP load balancing for Kubernetes looks to be the Gateway
API which is in the midst of development by the Kubernetes special interest
group (SIG) dedicated to Networking. The Gateway API project is intended
to develop a more modern API for routing in Kubernetes. Though it is more
focused on HTTP balancing Gateway also includes resources for
controlling layer 4 (TCP) balancing. The Gateway APIs are still very much

https://github.com/datawire/ambassador
https://github.com/solo-io/gloo
https://traefik.io/


under development so it is strongly recommended that people stick to the
existing Ingress and Service resources that are currently present in
Kubernetes. The current state of the Gateway APIs can be found at their
site: https://gateway-api.sigs.k8s.io/.

Summary
Ingress is a unique system in Kubernetes. It is simply a schema, and the
implementations of a controller for that schema must be installed and
managed separately. But it is also a critical system for exposing services to
users in a practical and cost-efficient way. As Kubernetes continues to
mature, expect to see Ingress become more and more relevant.

1  The Open Systems Interconnection (OSI) model is a standard way to describe how different
networking layers build on each other. TCP and UDP are considered to be Layer 4, while
HTTP is Layer 7.

https://en.wikipedia.org/wiki/OSI_model


Chapter 8. ReplicaSets

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 9th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

Previously, we covered how to run individual containers as Pods. But these
Pods are essentially one-off singletons. More often than not, you want
multiple replicas of a container running at a particular time. There are a
variety of reasons for this type of replication:

Redundancy

Failure toleration by running multiple instances.

Scale

Higher request processing capacity by running multiple instances.

Sharding

Different replicas can handle different parts of a computation in parallel.

Of course, you could manually create multiple copies of a Pod using
multiple different (though largely similar) Pod manifests, but doing so is



both tedious and error-prone. Logically, a user managing a replicated set of
Pods considers them as a single entity to be defined and managed --and
that’s precisely what a ReplicaSet is. A ReplicaSet acts as a cluster-wide
Pod manager, ensuring that the right types and number of Pods are running
at all times.

Because ReplicaSets make it easy to create and manage replicated sets of
Pods, they are the building blocks for common application deployment
patterns and for self-healing applications at the infrastructure level. Pods
managed by ReplicaSets are automatically rescheduled under certain failure
conditions, such as node failures and network partitions.

The easiest way to think of a ReplicaSet is that it combines a cookie cutter
and a desired number of cookies into a single API object. When we define a
ReplicaSet, we define a specification for the Pods we want to create (the
“cookie cutter”) and a desired number of replicas. Additionally, we need to
define a way of finding Pods that the ReplicaSet should control. The actual
act of managing the replicated Pods is an example of a reconciliation loop.
Such loops are fundamental to most of the design and implementation of
Kubernetes.

Reconciliation Loops
The central concept behind a reconciliation loop is the notion of desired
state versus observed or current state. Desired state is the state you want.
With a ReplicaSet, it is the desired number of replicas and the definition of
the Pod to replicate. For example, “the desired state is that there are three
replicas of a Pod running the kuard server.”

In contrast, the current state is the currently observed state of the system.
For example, “there are only two kuard Pods currently running.”

The reconciliation loop is constantly running, observing the current state of
the world and taking action to try to make the observed state match the
desired state. For instance, with the previous examples, the reconciliation



loop would create a new kuard Pod in an effort to make the observed state
match the desired state of three replicas.

There are many benefits to the reconciliation loop approach to managing
state. It is an inherently goal-driven, self-healing system, yet it can often be
easily expressed in a few lines of code.

For example, the reconciliation loop for ReplicaSets is a single loop, yet it
handles user actions to scale up or scale down the ReplicaSet as well as
node failures or nodes rejoining the cluster after being absent.

We’ll see numerous examples of reconciliation loops in action throughout
the rest of the book.

Relating Pods and ReplicaSets
Decoupling is a key theme in Kubernetes. In particular, it’s important that
all of the core concepts of Kubernetes are modular with respect to each
other and that they are swappable and replaceable with other components.
In this spirit, the relationship between ReplicaSets and Pods is loosely
coupled. Though ReplicaSets create and manage Pods, they do not own the
Pods they create. ReplicaSets use label queries to identify the set of Pods
they should be managing. They then use the exact same Pod API that you
used directly in Chapter 4 to create the Pods that they are managing. This
notion of “coming in the front door” is another central design concept in
Kubernetes. In a similar decoupling, ReplicaSets that create multiple Pods
and the services that load-balance to those Pods are also totally separate,
decoupled API objects. In addition to supporting modularity, decoupling
Pods and ReplicaSets enables several important behaviors, discussed in the
following sections.

Adopting Existing Containers
Although declarative configuration is valuable, there are times when it is
easier to build something up imperatively. In particular, early on you may
be simply deploying a single Pod with a container image without a



ReplicaSet managing it. You might even define a load balancer to serve
traffic to that single Pod.

But at some point you may want to expand your singleton container into a
replicated service and create and manage an array of similar containers. If
ReplicaSets owned the Pods they created, then the only way to start
replicating your Pod would be to delete it and then relaunch it via a
ReplicaSet. This might be disruptive, as there would be a moment in time
when there would be no copies of your container running. However,
because ReplicaSets are decoupled from the Pods they manage, you can
simply create a ReplicaSet that will “adopt” the existing Pod, and scale out
additional copies of those containers. In this way, you can seamlessly move
from a single imperative Pod to a replicated set of Pods managed by a
ReplicaSet.

Quarantining Containers
Often times, when a server misbehaves, Pod-level health checks will
automatically restart that Pod. But if your health checks are incomplete, a
Pod can be misbehaving but still be part of the replicated set. In these
situations, while it would work to simply kill the Pod, that would leave your
developers with only logs to debug the problem. Instead, you can modify
the set of labels on the sick Pod. Doing so will disassociate it from the
ReplicaSet (and service) so that you can debug the Pod. The ReplicaSet
controller will notice that a Pod is missing and create a new copy, but
because the Pod is still running it is available to developers for interactive
debugging, which is significantly more valuable than debugging from logs.

Designing with ReplicaSets
ReplicaSets are designed to represent a single, scalable microservice inside
your architecture. Their key characteristic is that every Pod the ReplicaSet
controller creates is entirely homogeneous. Typically, these Pods are then
fronted by a Kubernetes service load balancer, which spreads traffic across
the Pods that make up the service. Generally speaking, ReplicaSets are



designed for stateless (or nearly stateless) services. The elements they
create are interchangeable; when a ReplicaSet is scaled down, an arbitrary
Pod is selected for deletion. Your application’s behavior shouldn’t change
because of such a scale-down operation.

NOTE
Typically you will see applications utilize the Deployment object, because it allows you
to manage the release of new versions. ReplicaSets power Deployments under the hood
and it’s important to understand how they operate so that you can debug them should
you need to troubleshoot.

ReplicaSet Spec
Like all objects in Kubernetes, ReplicaSets are defined using a
specification. All ReplicaSets must have a unique name (defined using the
metadata.name field), a spec section that describes the number of
Pods (replicas) that should be running cluster-wide at any given time, and a
Pod template that describes the Pod to be created when the defined number
of replicas is not met. Example 8-1 shows a minimal ReplicaSet definition.
Pay attention to the replicas, selector, and template sections of the definition
as they provide more insight into how ReplicaSets operate.

Example 8-1. kuard-rs.yaml
apiVersion: apps/v1
kind: ReplicaSet
metadata: 
  labels: 
    app: kuard 
    version: "2" 
  name: kuard
spec: 
  replicas: 1 
  selector: 
    matchLabels: 
      app: kuard 
      version: "2" 
  template: 
    metadata: 



      labels: 
        app: kuard 
        version: "2" 
    spec: 
      containers: 
        - name: kuard 
          image: "gcr.io/kuar-demo/kuard-amd64:green"

Pod Templates
As mentioned previously, when the number of Pods in the current state is
less than the number of Pods in the desired state, the ReplicaSet controller
will create new Pods using a template contained in the ReplicaSet
specification. The Pods are created in exactly the same manner as when you
created a Pod from a YAML file in previous chapters, but instead of using a
file, the Kubernetes ReplicaSet controller creates and submits a Pod
manifest based on the Pod template directly to the API server.

The following shows an example of a Pod template in a ReplicaSet:

template: 
  metadata: 
    labels: 
      app: helloworld 
      version: v1 
  spec: 
    containers: 
      - name: helloworld 
        image: kelseyhightower/helloworld:v1 
        ports: 
          - containerPort: 80

Labels
In any cluster of reasonable size, there are many different Pods running at
any given time—so how does the ReplicaSet reconciliation loop discover
the set of Pods for a particular ReplicaSet? ReplicaSets monitor cluster state
using a set of Pod labels to filter Pod listings and track Pods running within
a cluster. When initially created, a ReplicaSet fetches a Pod listing from the
Kubernetes API and filters the results by labels. Based on the number of



Pods returned by the query, the ReplicaSet deletes or creates Pods to meet
the desired number of replicas. These filtering labels are defined in the
ReplicaSet spec section and are the key to understanding how ReplicaSets
work.

NOTE
The selector in the ReplicaSet spec should be a proper subset of the labels in the Pod
template.

Creating a ReplicaSet
ReplicaSets are created by submitting a ReplicaSet object to the Kubernetes
API. In this section we will create a ReplicaSet using a configuration file
and the kubectl apply command.

The ReplicaSet configuration file in Example 8-1 will ensure one copy of
the gcr.io/kuar-demo/kuard-amd64:green container is running
at any given time.

Use the kubectl apply command to submit the kuard ReplicaSet to
the Kubernetes API:

$ kubectl apply -f kuard-rs.yaml 
replicaset "kuard" created

Once the kuard ReplicaSet has been accepted, the ReplicaSet controller
will detect that there are no kuard Pods running that match the desired
state, and create a new kuard Pod based on the contents of the Pod
template:

$ kubectl get pods 
NAME          READY     STATUS    RESTARTS   AGE 
kuard-yvzgd   1/1       Running   0          11s



Inspecting a ReplicaSet
As with Pods and other Kubernetes API objects, if you are interested in
further details about a ReplicaSet, the describe command will provide
much more information about its state. Here is an example of using
describe to obtain the details of the ReplicaSet we previously created:

$ kubectl describe rs kuard 
Name:         kuard 
Namespace:    default 
Selector:     app=kuard,version=2 
Labels:       app=kuard 
              version=2 
Annotations:  <none> 
Replicas:     1 current / 1 desired 
Pods Status:  1 Running / 0 Waiting / 0 Succeeded / 0 Failed 
Pod Template:

You can see the label selector for the ReplicaSet, as well as the state of all
of the replicas it manages.

Finding a ReplicaSet from a Pod
Sometimes you may wonder if a Pod is being managed by a ReplicaSet, and
if it is, which one.

To enable this kind of discovery, the ReplicaSet controller adds an
ownerReferences section to every Pod that it creates. If you run the
following, look for the ownerReferences section:

$ kubectl get pods <pod-name> -
o=jsonpath='{.metadata.ownerReferences[0].name}'

If applicable, this will list the name of the ReplicaSet that is managing this
Pod.

Finding a Set of Pods for a ReplicaSet



You can also determine the set of Pods managed by a ReplicaSet. First, get
the set of labels using the kubectl describe command. In the
previous example, the label selector was app=kuard,version=2. To
find the Pods that match this selector, use the --selector flag or the
shorthand -l:

$ kubectl get pods -l app=kuard,version=2

This is exactly the same query that the ReplicaSet executes to determine the
current number of Pods.

Scaling ReplicaSets
You can scale ReplicaSets up or down by updating the spec.replicas
key on the ReplicaSet object stored in Kubernetes. When you scale up a
ReplicaSet, it submits new Pods to the Kubernetes API using the Pod
template defined on the ReplicaSet.

Imperative Scaling with kubectl scale
The easiest way to achieve this is using the scale command in kubectl.
For example, to scale up to four replicas, you could run:

$ kubectl scale replicasets kuard --replicas=4

While such imperative commands are useful for demonstrations and quick
reactions to emergency situations (such as a sudden increase in load), it is
important to also update any text-file configurations to match the number of
replicas that you set via the imperative scale command. The reason for
this becomes obvious when you consider the following scenario:

Alice is on call, when suddenly there is a large increase in load on the
service she is managing. Alice uses the scale command to increase the
number of servers responding to requests to 10, and the situation is



resolved. However, Alice forgets to update the ReplicaSet configurations
checked into source control.

Several days later, Bob is preparing the weekly rollouts. Bob edits the
ReplicaSet configurations stored in version control to use the new container
image, but he doesn’t notice that the number of replicas in the file is
currently 5, not the 10 that Alice set in response to the increased load. Bob
proceeds with the rollout, which both updates the container image and
reduces the number of replicas by half. This causes an immediate overload
which led to an outage.

This fictional case study illustrates the need to ensure that any imperative
changes are immediately followed by a declarative change in source
control. Indeed, if the need is not acute, we generally recommend only
making declarative changes as described in the following section.

Declaratively Scaling with kubectl apply
In a declarative world, you make changes by editing the configuration file
in version control and then applying those changes to our cluster. To scale
the kuard ReplicaSet, edit the kuard-rs.yaml configuration file and set the
replicas count to 3:

... 
spec: 
  replicas: 3 
...

In a multiuser setting, you would like to have a documented code review of
this change and eventually check the changes into version control. Either
way, you can then use the kubectl apply command to submit the
updated kuard ReplicaSet to the API server:

$ kubectl apply -f kuard-rs.yaml 
replicaset "kuard" configured



Now that the updated kuard ReplicaSet is in place, the ReplicaSet
controller will detect that the number of desired Pods has changed and that
it needs to take action to realize that desired state. If you used the
imperative scale command in the previous section, the ReplicaSet
controller will destroy one Pod to get the number to three. Otherwise, it will
submit two new Pods to the Kubernetes API using the Pod template defined
on the kuard ReplicaSet. Regardless, use the kubectl get pods
command to list the running kuard Pods. You should see output similar to
the following with three Pods in running state, two will have a smaller age
because they were recently started:

$ kubectl get pods 
NAME          READY     STATUS    RESTARTS   AGE 
kuard-3a2sb   1/1       Running   0          26s 
kuard-wuq9v   1/1       Running   0          26s 
kuard-yvzgd   1/1       Running   0          2m

Autoscaling a ReplicaSet
While there will be times when you want to have explicit control over the
number of replicas in a ReplicaSet, often you simply want to have “enough”
replicas. The definition varies depending on the needs of the containers in
the ReplicaSet. For example, with a web server like NGINX, you might
want to scale due to CPU usage. For an in-memory cache, you might want
to scale with memory consumption. In some cases you might want to scale
in response to custom application metrics. Kubernetes can handle all of
these scenarios via Horizontal Pod Autoscaling (HPA).



NOTE
HPA requires the presence of the metrics-server in your cluster. The metrics
server keeps track of metrics and provides an API for consuming metrics that HPA uses
when making scaling decisions. Most installations of Kubernetes include metrics-
server by default. You can validate its presence by listing the Pods in the kube-
system namespace:

$ kubectl get pods --namespace=kube-system

You should see a Pod with a name that starts with metrics-server somewhere in
that list. If you do not see it, autoscaling will not work correctly.

“Horizontal Pod Autoscaling” is kind of a mouthful, and you might wonder
why it is not simply called “autoscaling.” Kubernetes makes a distinction
between horizontal scaling, which involves creating additional replicas of a
Pod, and vertical scaling, which involves increasing the resources required
for a particular Pod (such as increasing the CPU required for the Pod).
Many solutions also enable cluster autoscaling, where the number of
machines in the cluster is scaled in response to resource needs, but that
solution is outside the scope of this chapter.

Autoscaling based on CPU
Scaling based on CPU usage is the most common use case for Pod
autoscaling. Generally it is most useful for request-based systems that
consume CPU proportionally to the number of requests they are receiving,
while using a relatively static amount of memory.

To scale a ReplicaSet, you can run a command like the following:

$ kubectl autoscale rs kuard --min=2 --max=5 --cpu-percent=80

This command creates an autoscaler that scales between two and five
replicas with a CPU threshold of 80%. To view, modify, or delete this
resource you can use the standard kubectl commands and the
horizontalpodautoscalers resource.



horizontalpodautoscalers is quite a bit to type, but it can be
shortened to hpa:

$ kubectl get hpa

WARNING
Because of the decoupled nature of Kubernetes, there is no direct link between the HPA
and the ReplicaSet. While this is great for modularity and composition, it also enables
some anti-patterns. In particular, it’s a bad idea to combine autoscaling with imperative
or declarative management of the number of replicas. If both you and an autoscaler are
attempting to modify the number of replicas, it’s highly likely that you will clash,
resulting in unexpected behavior.

Deleting ReplicaSets
When a ReplicaSet is no longer required it can be deleted using the
kubectl delete command. By default, this also deletes the Pods that
are managed by the ReplicaSet:

$ kubectl delete rs kuard 
replicaset "kuard" deleted

Running the kubectl get pods command shows that all the kuard
Pods created by the kuard ReplicaSet have also been deleted:

$ kubectl get pods

If you don’t want to delete the Pods that the ReplicaSet is managing, you
can set the --cascade flag to false to ensure only the ReplicaSet
object is deleted and not the Pods:

$ kubectl delete rs kuard --cascade=false

Summary



Composing Pods with ReplicaSets provides the foundation for building
robust applications with automatic failover, and makes deploying those
applications a breeze by enabling scalable and sane deployment patterns.
Use ReplicaSets for any Pod you care about, even if it is a single Pod!
Some people even default to using ReplicaSets instead of Pods. A typical
cluster will have many ReplicaSets, so apply liberally to the affected area.



Chapter 9. Deployments

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 10th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

So far, you have seen how to package your applications as containers,
create replicated sets of containers, and use Ingress controllers to load-
balance traffic to your services. You can use all of these objects (Pods,
ReplicaSets, and Services) to build a single instance of your application.
However, they do little to help you manage the daily or weekly cadence of
releasing new versions of your application. Indeed, both Pods and
ReplicaSets are expected to be tied to specific container images that don’t
change.

The Deployment object exists to manage the release of new versions.
Deployments represent deployed applications in a way that transcends any
particular version. Additionally, Deployments enable you to easily move
from one version of your code to the next. This “rollout” process is
specifiable and careful. It waits for a user-configurable amount of time
between upgrading individual Pods. It also uses health checks to ensure that
the new version of the application is operating correctly, and stops the
Deployment if too many failures occur.



Using Deployments, you can simply and reliably roll out new software
versions without downtime or errors. The actual mechanics of the software
rollout performed by a Deployment is controlled by a Deployment
controller that runs in the Kubernetes cluster itself. This means you can let a
Deployment proceed unattended and it will still operate correctly and
safely. This makes it easy to integrate Deployments with numerous
continuous delivery tools and services. Further, running server-side makes it
safe to perform a rollout from places with poor or intermittent internet
connectivity. Imagine rolling out a new version of your software from your
phone while riding on the subway. Deployments make this possible and
safe!

NOTE
When Kubernetes was first released, one of the most popular demonstrations of its
power was the “rolling update,” which showed how you could use a single command to
seamlessly update a running application without any downtime and without losing
requests. This original demo was based on the kubectl rolling-update
command, which is still available in the command-line tool, although its functionality
has largely been subsumed by the Deployment object.

Your First Deployment
Like all objects in Kubernetes, a Deployment can be represented as a
declarative YAML object that provides the details about what you want to
run. In the following case, the Deployment is requesting a single instance of
the kuard application:

apiVersion: apps/v1 
kind: Deployment 
metadata: 
  name: kuard 
  labels: 
    run: kuard 
spec: 
  selector: 
    matchLabels: 



      run: kuard 
  replicas: 1 
  template: 
    metadata: 
      labels: 
        run: kuard 
    spec: 
      containers: 
      - name: kuard 
        image: gcr.io/kuar-demo/kuard-amd64:blue

Save this YAML file as kuard-deployment.yaml, then you can create it
using:

$ kubectl create -f kuard-deployment.yaml

Deployment Internals
Let’s explore how Deployments actually work. Just as we learned that
ReplicaSets manage Pods, Deployments manage ReplicaSets. As with all
relationships in Kubernetes, this relationship is defined by labels and a label
selector. You can see the label selector by looking at the Deployment object:

$ kubectl get deployments kuard \ 
  -o jsonpath --template {.spec.selector.matchLabels} 
 
{"run":"kuard"}

From this you can see that the Deployment is managing a ReplicaSet with
the label run=kuard. You can use this in a label selector query across
ReplicaSets to find that specific ReplicaSet:

$ kubectl get replicasets --selector=run=kuard 
 
NAME              DESIRED   CURRENT   READY     AGE 
kuard-1128242161  1         1         1         13m

Now let’s look at the relationship between a dDployment and a ReplicaSet
in action. We can resize the Deployment using the imperative scale
command:



$ kubectl scale deployments kuard --replicas=2 
 
deployment.apps/kuard scaled

Now if we list that ReplicaSet again, we should see:

$ kubectl get replicasets --selector=run=kuard 
 
NAME              DESIRED   CURRENT   READY     AGE 
kuard-1128242161  2         2         2         13m

Scaling the Deployment has also scaled the ReplicaSet it controls.

Now let’s try the opposite, scaling the ReplicaSet:

$ kubectl scale replicasets kuard-1128242161 --replicas=1 
 
replicaset.apps/kuard-1128242161 scaled

Now get that ReplicaSet again:

$ kubectl get replicasets --selector=run=kuard 
 
NAME              DESIRED   CURRENT   READY     AGE 
kuard-1128242161  2         2         2         13m

That’s odd. Despite scaling the ReplicaSet to one replica, it still has two
replicas as its desired state. What’s going on?

Remember, Kubernetes is an online, self-healing system. The top-level
Deployment object is managing this ReplicaSet. When you adjust the
number of replicas to one, it no longer matches the desired state of the
Deployment, which has replicas set to 2. The Deployment controller
notices this and takes action to ensure the observed state matches the
desired state, in this case readjusting the number of replicas back to two.

If you ever want to manage that ReplicaSet directly, you need to delete the
Deployment (remember to set --cascade to false, or else it will delete
the ReplicaSet and Pods as well!).



Creating Deployments
Of course, as stated in the introduction, you should have a preference for
declarative management of your Kubernetes configurations. This means
maintaining the state of your Deployments in YAML or JSON files on disk.

As a starting point, download this Deployment into a YAML file:

$ kubectl get deployments kuard -o yaml > kuard-deployment.yaml 
$ kubectl replace -f kuard-deployment.yaml --save-config

If you look in the file, you will see something like this (note that we’ve
removed a lot of read-only and default fields for readability). Pay attention
to the annotations, selector, and strategy fields as they provide insight into
Deployment specific functionality:

apiVersion: apps/v1 
kind: Deployment 
metadata: 
  annotations: 
    deployment.kubernetes.io/revision: "1" 
  creationTimestamp: null 
  generation: 1 
  labels: 
    run: kuard 
  name: kuard 
spec: 
  progressDeadlineSeconds: 600 
  replicas: 1 
  revisionHistoryLimit: 10 
  selector: 
    matchLabels: 
      run: kuard 
  strategy: 
    rollingUpdate: 
      maxSurge: 25% 
      maxUnavailable: 25% 
    type: RollingUpdate 
  template: 
    metadata: 
      creationTimestamp: null 
      labels: 
        run: kuard 



    spec: 
      containers: 
      - image: gcr.io/kuar-demo/kuard-amd64:blue 
        imagePullPolicy: IfNotPresent 
        name: kuard 
        resources: {} 
        terminationMessagePath: /dev/termination-log 
        terminationMessagePolicy: File 
      dnsPolicy: ClusterFirst 
      restartPolicy: Always 
      schedulerName: default-scheduler 
      securityContext: {} 
      terminationGracePeriodSeconds: 30 
status: {}

NOTE
A lot of read-only and default fields were removed in the preceding listing for brevity.
You also need to run kubectl replace --save-config. This adds an
annotation so that, when applying changes in the future, kubectl will know what the
last applied configuration was for smarter merging of configs. If you always use
kubectl apply, this step is only required after the first time you create a
Deployment using kubectl create -f.

The Deployment spec has a very similar structure to the ReplicaSet spec.
There is a Pod template, which contains a number of containers that are
created for each replica managed by the Deployment. In addition to the Pod
specification, there is also a strategy object:

... 
  strategy: 
    rollingUpdate: 
      maxSurge: 25% 
      maxUnavailable: 25% 
    type: RollingUpdate 
...

The strategy object dictates the different ways in which a rollout of new
software can proceed. There are two different strategies supported by



Deployments: Recreate and RollingUpdate. These are discussed in
detail later in this chapter.

Managing Deployments
As with all Kubernetes objects, you can get detailed information about your
Deployment via the kubectl describe command. This command
provides an overview of the Deployment configuration which includes
interesting fields like the Selector, Replicas, and Events:

$ kubectl describe deployments kuard 
 
Name:                   kuard 
Namespace:              default 
CreationTimestamp:      Tue, 01 Jun 2021 21:19:46 -0700 
Labels:                 run=kuard 
Annotations:            deployment.kubernetes.io/revision: 1 
Selector:               run=kuard 
Replicas:               1 desired | 1 updated | 1 total | 1 
available | 0 unavailable 
StrategyType:           RollingUpdate 
MinReadySeconds:        0 
RollingUpdateStrategy:  25% max unavailable, 25% max surge 
Pod Template: 
  Labels:  run=kuard 
  Containers: 
   kuard: 
    Image:        gcr.io/kuar-demo/kuard-amd64:blue 
    Port:         <none> 
    Host Port:    <none> 
    Environment:  <none> 
    Mounts:       <none> 
  Volumes:        <none> 
Conditions: 
  Type           Status  Reason 
  ----           ------  ------ 
  Available      True    MinimumReplicasAvailable 
OldReplicaSets:  <none> 
NewReplicaSet:   kuard-6d69d9fc5c (2/2 replicas created) 
Events: 
  Type    Reason             Age                   From            
Message 
  ----    ------             ----                  ----            



------- 
  Normal  ScalingReplicaSet  4m6s                  deployment-
con...    ... 
  Normal  ScalingReplicaSet  113s (x2 over 3m20s)  deployment-
con...    ... 

In the output of describe there is a great deal of important information.

Two of the most important pieces of information in the output are
OldReplicaSets and NewReplicaSet. These fields point to the
ReplicaSet objects this Deployment is currently managing. If a Deployment
is in the middle of a rollout, both fields will be set to a value. If a rollout is
complete, OldReplicaSets will be set to <none>.

In addition to the describe command, there is also the kubectl
rollout command for Deployments. We will go into this command in
more detail later on, but for now, know that you can use kubectl
rollout history to obtain the history of rollouts associated with a
particular Deployment. If you have a current Deployment in progress, you
can use kubectl rollout status to obtain the current status of a
rollout.

Updating Deployments
Deployments are declarative objects that describe a deployed application.
The two most common operations on a Deployment are scaling and
application updates.

Scaling a Deployment
Although we previously showed how to imperatively scale a Deployment
using the kubectl scale command, the best practice is to manage your
Deployments declaratively via the YAML files, then use those files to
update your Deployment. To scale up a Deployment, you would edit your
YAML file to increase the number of replicas:



... 
spec: 
  replicas: 3 
...

Once you have saved and committed this change, you can update the
Deployment using the kubectl apply command:

$ kubectl apply -f kuard-deployment.yaml

This will update the desired state of the Deployment, causing it to increase
the size of the ReplicaSet it manages, and eventually create a new Pod
managed by the Deployment:

$ kubectl get deployments kuard 
 
NAME    READY   UP-TO-DATE   AVAILABLE   AGE 
kuard   3/3     3            3           10m

Updating a Container Image
The other common use case for updating a Deployment is to roll out a new
version of the software running in one or more containers. To do this, you
should likewise edit the Deployment YAML file, though in this case you are
updating the container image, rather than the number of replicas:

... 
      containers: 
      - image: gcr.io/kuar-demo/kuard-amd64:green 
        imagePullPolicy: Always 
...

Annotate the template for the Deployment to record some information
about the update:

... 
spec: 
  ... 
  template: 
    metadata: 



      annotations: 
        kubernetes.io/change-cause: "Update to green kuard" 
...

CAUTION
Make sure you add this annotation to the template and not the Deployment itself, since
the kubectl apply command uses this field in the Deployment object. Also, do not
update the change-cause annotation when doing simple scaling operations. A
modification of change-cause is a significant change to the template and will trigger
a new rollout.

Again, you can use kubectl apply to update the Deployment:

$ kubectl apply -f kuard-deployment.yaml

After you update the Deployment it will trigger a rollout, which you can
then monitor via the kubectl rollout command:

$ kubectl rollout status deployments kuard 
deployment "kuard" successfully rolled out

You can see the old and new ReplicaSets managed by the Deployment
along with the images being used. Both the old and new ReplicaSets are
kept around in case you want to roll back:

$ kubectl get replicasets -o wide 
 
NAME               DESIRED   CURRENT   READY   ...   IMAGE(S)      
... 
kuard-1128242161   0         0         0       ...   gcr.io/kuar-
demo/   ... 
kuard-1128635377   3         3         3       ...   gcr.io/kuar-
demo/   ...

If you are in the middle of a rollout and you want to temporarily pause it for
some reason (e.g., if you start seeing weird behavior in your system and you
want to investigate), you can use the pause command:



$ kubectl rollout pause deployments kuard 
deployment.apps/kuard paused

If, after investigation, you believe the rollout can safely proceed, you can
use the resume command to start up where you left off:

$ kubectl rollout resume deployments kuard 
deployment.apps/kuard resumed

Rollout History
Kubernetes Deployments maintain a history of rollouts, which can be useful
both for understanding the previous state of the Deployment and for rolling
back to a specific version.

You can see the Deployment history by running:

$ kubectl rollout history deployment kuard 
 
deployment.apps/kuard 
REVISION  CHANGE-CAUSE 
1         <none> 
2         Update to green kuard 

The revision history is given in oldest to newest order. A unique revision
number is incremented for each new rollout. So far we have two: the initial
Deployment, and the update of the image to kuard:green.

If you are interested in more details about a particular revision, you can add
the --revision flag to view details about that specific revision:

$ kubectl rollout history deployment kuard --revision=2 
 
deployment.apps/kuard with revision #2 
Pod Template: 
  Labels:       pod-template-hash=54b74ddcd4 
        run=kuard 
  Annotations:  kubernetes.io/change-cause: Update to green kuard 
  Containers: 
   kuard: 
    Image:      gcr.io/kuar-demo/kuard-amd64:green 



    Port:       <none> 
    Host Port:  <none> 
    Environment:        <none> 
    Mounts:     <none> 
  Volumes:      <none> 

Let’s do one more update for this example. Update the kuard version back
to blue by modifying the container version number and updating the
change-cause annotation. Apply it with kubectl apply. The
history should now have three entries:

$ kubectl rollout history deployment kuard 
 
deployment.apps/kuard 
REVISION  CHANGE-CAUSE 
1         <none> 
2         Update to green kuard 
3         Update to blue kuard 

Let’s say there is an issue with the latest release and you want to roll back
while you investigate. You can simply undo the last rollout:

$ kubectl rollout undo deployments kuard 
deployment.apps/kuard rolled back

The undo command works regardless of the stage of the rollout. You can
undo both partially completed and fully completed rollouts. An undo of a
rollout is actually simply a rollout in reverse (for example from v2 to v1,
instead of from v1 to v2), and all of the same policies that control the rollout
strategy apply to the undo strategy as well. You can see the Deployment
object simply adjusts the desired replica counts in the managed ReplicaSets:

$ kubectl get replicasets -o wide 
 
NAME               DESIRED   CURRENT   READY   ...   IMAGE(S)      
... 
kuard-1128242161   0         0         0       ...   gcr.io/kuar-
demo/   ... 
kuard-1570155864   0         0         0       ...   gcr.io/kuar-
demo/   ... 



kuard-2738859366   3         3         3       ...   gcr.io/kuar-
demo/   ...

CAUTION
When using declarative files to control your production systems, as much as possible,
ensure that the checked-in manifests match what is actually running in your cluster.
When you do a kubectl rollout undo you are updating the production state in a
way that isn’t reflected in your source control.

An alternative (and perhaps preferable) way to undo a rollout is to revert your YAML
file and kubectl apply the previous version. In this way, your “change tracked
configuration” more closely tracks what is really running in your cluster.

Let’s look at the Deployment history again:

$ kubectl rollout history deployment kuard 
 
deployment.apps/kuard 
REVISION  CHANGE-CAUSE 
1         <none> 
3         Update to blue kuard 
4         Update to green kuard 

Revision 2 is missing! It turns out that when you roll back to a previous
revision, the Deployment simply reuses the template and renumbers it so
that it is the latest revision. What was revision 2 before is now reordered
into revision 4.

We previously saw that you can use the kubectl rollout undo
command to roll back to a previous version of a Deployment. Additionally,
you can roll back to a specific revision in the history using the --to-
revision flag:

$ kubectl rollout undo deployments kuard --to-revision=3 
deployment.apps/kuard rolled back 
$ kubectl rollout history deployment kuard 
deployment.apps/kuard 
REVISION  CHANGE-CAUSE 
1         <none> 



4         Update to green kuard 
5         Update to blue kuard 

Again, the undo took revision 3, applied it, and renumbered it as revision
5.

Specifying a revision of 0 is a shorthand way of specifying the previous
revision. In this way, kubectl rollout undo is equivalent to
kubectl rollout undo --to-revision=0.

By default, the last 10 revisions of a Deployment is kept attached to the
Deployment object itself. It is recommended that if you have Deployments
that you expect to keep around for a long time you set a maximum history
size for the Deployment revision history. For example, if you do a daily
update you may limit your revision history to 14, to keep a maximum of 2
weeks’ worth of revisions (if you don’t expect to need to roll back beyond 2
weeks).

To accomplish this, use the revisionHistoryLimit property in the
Deployment specification:

... 
spec: 
  # We do daily rollouts, limit the revision history to two weeks 
of 
  # releases as we don't expect to roll back beyond that. 
  revisionHistoryLimit: 14 
...

Deployment Strategies
When it comes time to change the version of software implementing your
service, a Kubernetes deployment supports two different rollout strategies,
Recreate and RollingUpdate. Let’s look at each in turn.

Recreate Strategy



The Recreate strategy is the simpler of the two. It simply updates the
ReplicaSet it manages to use the new image and terminates all of the Pods
associated with the Deployment. The ReplicaSet notices that it no longer
has any replicas and re-creates all Pods using the new image. Once the Pods
are re-created, they are running the new version.

While this strategy is fast and simple, it will result in workload downtime.
Because of this, the Recreate strategy should only be used for test
Deployments where a service downtime is acceptable.

RollingUpdate Strategy
The RollingUpdate strategy is the generally preferable strategy for any
user-facing service. While it is slower than Recreate, it is also
significantly more sophisticated and robust. Using RollingUpdate, you
can roll out a new version of your service while it is still receiving user
traffic, without any downtime.

As you might infer from the name, the RollingUpdate strategy works
by updating a few Pods at a time, moving incrementally until all of the Pods
are running the new version of your software.

Managing multiple versions of your service
Importantly, this means that for a while, both the new and the old version of
your service will be receiving requests and serving traffic. This has
important implications for how you build your software. Namely, it is
critically important that each version of your software, and each of its
clients, is capable of talking interchangeably with both a slightly older and a
slightly newer version of your software.

As an example of why this is important, consider the following scenario:

You are in the middle of rolling out your frontend software; half of your
servers are running version 1 and half are running version 2. A user makes
an initial request to your service and downloads a client-side JavaScript
library that implements your UI. This request is serviced by a version 1



server and thus the user receives the version 1 client library. This client
library runs in the user’s browser and makes subsequent API requests to
your service. These API requests happen to be routed to a version 2 server;
thus, version 1 of your JavaScript client library is talking to version 2 of
your API server. If you haven’t ensured compatibility between these
versions, your application won’t function correctly.

At first, this might seem like an extra burden. But in truth, you always had
this problem; you may just not have noticed. Concretely, a user can make a
request at time t just before you initiate an update. This request is serviced
by a version 1 server. At t_1 you update your service to version 2. At t_2
the version 1 client code running on the user’s browser runs and hits an API
endpoint being operated by a version 2 server. No matter how you update
your software, you have to maintain backward and forward compatibility
for reliable updates. The nature of the RollingUpdate strategy simply
makes that more clear and explicit.

Note that this doesn’t just apply to JavaScript clients—the same thing is
true of client libraries that are compiled into other services that make calls
to your service. Just because you updated doesn’t mean they have updated
their client libraries. This sort of backward compatibility is critical to
decoupling your service from systems that depend on your service. If you
don’t formalize your APIs and decouple yourself, you are forced to
carefully manage your rollouts with all of the other systems that call into
your service. This kind of tight coupling makes it extremely hard to produce
the necessary agility to be able to push out new software every week, let
alone every hour or every day. In the decoupled architecture shown in
Figure 9-1, the frontend is isolated from the backend via an API contract
and a load balancer, whereas in the coupled architecture, a thick client
compiled into the frontend is used to connect directly to the backends.



Figure 9-1. Diagrams of both decoupled (left) and coupled (right) application architectures

Configuring a rolling update
RollingUpdate is a fairly generic strategy; it can be used to update a
variety of applications in a variety of settings. Consequently, the rolling
update itself is quite configurable; you can tune its behavior to suit your
particular needs. There are two parameters you can use to tune the rolling
update behavior: maxUnavailable and maxSurge.



The maxUnavailable parameter sets the maximum number of Pods that
can be unavailable during a rolling update. It can either be set to an absolute
number (e.g., 3, meaning a maximum of three Pods can be unavailable) or
to a percentage (e.g., 20%, meaning a maximum of 20% of the desired
number of replicas can be unavailable). Generally speaking, using a
percentage is a good approach for most services, since the value is correctly
applicable regardless of the desired number of replicas in the Deployment.
However, there are times when you may want to use an absolute number
(e.g., limiting the maximum unavailable Pods to one).

At its core, the maxUnavailable parameter helps tune how quickly a
rolling update proceeds. For example, if you set maxUnavailable to
50%, then the rolling update will immediately scale the old ReplicaSet
down to 50% of its original size. If you have four replicas, it will scale it
down to two replicas. The rolling update will then replace the removed
Pods by scaling the new ReplicaSet up to two replicas, for a total of four
replicas (two old, two new). It will then scale the old ReplicaSet down to
zero replicas, for a total size of two new replicas. Finally, it will scale the
new ReplicaSet up to four replicas, completing the rollout. Thus, with
maxUnavailable set to 50%, the rollout completes in four steps, but
with only 50% of the service capacity at times.

Consider what happens if we instead set maxUnavailable to 25%. In
this situation, each step is only performed with a single replica at a time and
thus it takes twice as many steps for the rollout to complete, but availability
only drops to a minimum of 75% during the rollout. This illustrates how
maxUnavailable allows us to trade rollout speed for availability.

NOTE
The observant among you will note that the Recreate strategy is identical to the
RollingUpdate strategy with maxUnavailable set to 100%.



Using reduced capacity to achieve a successful rollout is useful either when
your service has cyclical traffic patterns (for example, if there’s much less
traffic at night) or when you have limited resources, so scaling to larger
than the current maximum number of replicas isn’t possible.

However, there are situations where you don’t want to fall below 100%
capacity, but you are willing to temporarily use additional resources in
order to perform a rollout. In these situations, you can set the
maxUnavailable parameter to 0%, and instead control the rollout using
the maxSurge parameter. Like maxUnavailable, maxSurge can be
specified either as a specific number or a percentage.

The maxSurge parameter controls how many extra resources can be
created to achieve a rollout. To illustrate how this works, imagine a service
with 10 replicas. We set maxUnavailable to 0 and maxSurge to 20%.
The first thing the rollout will do is scale the new ReplicaSet up to 2
replicas, for a total of 12 (120%) in the service. It will then scale the old
ReplicaSet down to 8 replicas, for a total of 10 (8 old, 2 new) in the service.
This process proceeds until the rollout is complete. At any time, the
capacity of the service is guaranteed to be at least 100% and the maximum
extra resources used for the rollout are limited to an additional 20% of all
resources.

NOTE
Setting maxSurge to 100% is equivalent to a blue/green Deployment. The Deployment
controller first scales the new version up to 100% of the old version. Once the new
version is healthy, it immediately scales the old version down to 0%.

Slowing Rollouts to Ensure Service Health
The purpose of a staged rollout is to ensure that the rollout results in a
healthy, stable service running the new software version. To do this, the
Deployment controller always waits until a Pod reports that it is ready
before moving on to updating the next Pod.



WARNING
The Deployment controller examines the Pod’s status as determined by its readiness
checks. Readiness checks are part of the Pod’s health probes, described in detail in
Chapter 4. If you want to use Deployments to reliably roll out your software, you have
to specify readiness health checks for the containers in your Pod. Without these checks,
the Deployment controller is running without context of the Pod’s status.

Sometimes, however, simply noticing that a Pod has become ready doesn’t
give you sufficient confidence that the Pod actually is behaving correctly.
Some error conditions don’t occur immediately. For example, you could
have a serious memory leak that takes a few minutes to show up, or you
could have a bug that is only triggered by 1% of all requests. In most real-
world scenarios, you want to wait a period of time to have high confidence
that the new version is operating correctly before you move on to updating
the next Pod.

For Deployments, this time to wait is defined by the minReadySeconds
parameter:

... 
spec: 
  minReadySeconds: 60 
...

Setting minReadySeconds to 60 indicates that the Deployment must
wait for 60 seconds after seeing a Pod become healthy before moving on to
updating the next Pod.

In addition to waiting for a Pod to become healthy, you also want to set a
timeout that limits how long the system will wait. Suppose, for example, the
new version of your service has a bug and immediately deadlocks. It will
never become ready, and in the absence of a timeout, the Deployment
controller will stall your roll-out forever.

The correct behavior in such a situation is to time out the rollout. This in
turn marks the rollout as failed. This failure status can be used to trigger



alerting that can indicate to an operator that there is a problem with the
rollout.

NOTE
At first blush, timing out a rollout might seem like an unnecessary complication.
However, increasingly, things like rollouts are being triggered by fully automated
systems with little to no human involvement. In such a situation, timing out becomes a
critical exception, which can either trigger an automated rollback of the release or create
a ticket/event that triggers human intervention.

To set the timeout period, use the Deployment parameter
progressDeadlineSeconds:

... 
spec: 
  progressDeadlineSeconds: 600 
...

This example sets the progress deadline to 10 minutes. If any particular
stage in the rollout fails to progress in 10 minutes, then the Deployment is
marked as failed, and all attempts to move the Deployment forward are
halted.

It is important to note that this timeout is given in terms of Deployment
progress, not the overall length of a Deployment. In this context, progress is
defined as any time the Deployment creates or deletes a Pod. When that
happens, the timeout clock is reset to zero. Figure 9-2 shows the
Deployment lifecycle.



Figure 9-2. The Kubernetes Deployment lifecycle

Deleting a Deployment
If you ever want to delete a Deployment, you can do it with the imperative
command:

$ kubectl delete deployments kuard

You can also do it using the declarative YAML file you created earlier:

$ kubectl delete -f kuard-deployment.yaml

In either case, by default, deleting a Deployment deletes the entire service.
The means it will delete not just the Deployment, but also any ReplicaSets
it manages, as well as any Pods the ReplicaSets manage. As with
ReplicaSets, if this is not the desired behavior, you can use the --
cascade=false flag to delete only the Deployment object.



Monitoring a Deployment
If a Deployment fails to makes progress after a specified amount of time, it
will time out. When this happens, the status of the Deployment will
transition to a failed state. This status can be obtained from the
status.conditions array, where there will be a Condition whose
Type is Progressing and whose Status is False. A Deployment in
such a state has failed and will not progress further. To set how long the
Deployment controller should wait before transitioning into this state, use
the spec.progressDeadlineSeconds field.

Summary
At the end of the day, the primary goal of Kubernetes is to make it easy for
you to build and deploy reliable distributed systems. This means not just
instantiating the application once, but managing the regularly scheduled
rollout of new versions of that software service. Deployments are a critical
piece of reliable rollouts and rollout management for your services. In the
next chapter we will cover DaemonSets which ensure only a single copy of
a Pod is running across a set of nodes in a Kubernetes cluster.



Chapter 10. DaemonSets

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 11th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

Deployments and ReplicaSets are generally about creating a service (such
as a web server) with multiple replicas for redundancy. But that is not the
only reason to replicate a set of Pods within a cluster. Another reason is to
schedule a single Pod on every node within the cluster. Generally, the
motivation for replicating a Pod to every node is to land some sort of agent
or daemon on each node, and the Kubernetes object for achieving this is the
DaemonSet.

A DaemonSet ensures that a copy of a Pod is running across a set of nodes
in a Kubernetes cluster. DaemonSets are used to deploy system daemons
such as log collectors and monitoring agents, which typically must run on
every node. DaemonSets share similar functionality with ReplicaSets; both
create Pods that are expected to be long-running services and ensure that
the desired state and the observed state of the cluster match.

Given the similarities between DaemonSets and ReplicaSets, it’s important
to understand when to use one over the other. ReplicaSets should be used
when your application is completely decoupled from the node and you can



run multiple copies on a given node without special consideration.
DaemonSets should be used when a single copy of your application must
run on all or a subset of the nodes in the cluster.

You should generally not use scheduling restrictions or other parameters to
ensure that Pods do not colocate on the same node. If you find yourself
wanting a single Pod per node, then a DaemonSet is the correct Kubernetes
resource to use. Likewise, if you find yourself building a homogeneous
replicated service to serve user traffic, then a ReplicaSet is probably the
right Kubernetes resource to use.

You can use labels to run DaemonSet Pods on specific nodes; for example,
you may want to run specialized intrusion-detection software on nodes that
are exposed to the edge network.

You can also use DaemonSets to install software on nodes in a cloud-based
cluster. For many cloud services, an upgrade or scaling of a cluster can
delete and/or recreate new virtual machines. This dynamic immutable
infrastructure approach can cause problems if you want (or are required by
central IT) to have specific software on every node. To ensure that specific
software is installed on every machine despite upgrades and scale events, a
DaemonSet is the right approach. You can even mount the host filesystem
and run scripts that install RPM/DEB packages onto the host operating
system. In this way, you can have a cloud-native cluster that still meets the
enterprise requirements of your IT department.

DaemonSet Scheduler
By default a DaemonSet will create a copy of a Pod on every node unless a
node selector is used, which will limit eligible nodes to those with a
matching set of labels. DaemonSets determine which node a Pod will run
on at Pod creation time by specifying the nodeName field in the Pod spec.
As a result, Pods created by DaemonSets are ignored by the Kubernetes
scheduler.



Like ReplicaSets, DaemonSets are managed by a reconciliation control loop
that measures the desired state (a Pod is present on all nodes) with the
observed state (is the Pod present on a particular node?). Given this
information, the DaemonSet controller creates a Pod on each node that
doesn’t currently have a matching Pod.

If a new node is added to the cluster, then the DaemonSet controller notices
that it is missing a Pod and adds the Pod to the new node.

NOTE
DaemonSets and ReplicaSets are a great demonstration of the value of Kubernetes’s
decoupled architecture. It might seem that the right design would be for a ReplicaSet to
own the Pods it manages, and for Pods to be subresources of a ReplicaSet. Likewise, the
Pods managed by a DaemonSet would be subresources of that DaemonSet. However,
this kind of encapsulation would require that tools for dealing with Pods be written
twice: once for DaemonSets and once for ReplicaSets. Instead, Kubernetes uses a
decoupled approach where Pods are top-level objects. This means that every tool you
have learned for introspecting Pods in the context of ReplicaSets (e.g., kubectl
logs <pod-name>) is equally applicable to Pods created by DaemonSets.

Creating DaemonSets
DaemonSets are created by submitting a DaemonSet configuration to the
Kubernetes API server. The DaemonSet in Example 10-1 will create a
fluentd logging agent on every node in the target cluster.

Example 10-1. fluentd.yaml
apiVersion: apps/v1
kind: DaemonSet
metadata: 
  name: fluentd 
  labels: 
    app: fluentd
spec: 
  selector: 
    matchLabels: 
      app: fluentd 
  template: 
    metadata: 



      labels: 
        app: fluentd 
    spec: 
      containers: 
      - name: fluentd 
        image: fluent/fluentd:v0.14.10 
        resources: 
          limits: 
            memory: 200Mi 
          requests: 
            cpu: 100m 
            memory: 200Mi 
        volumeMounts: 
        - name: varlog 
          mountPath: /var/log 
        - name: varlibdockercontainers 
          mountPath: /var/lib/docker/containers 
          readOnly: true 
      terminationGracePeriodSeconds: 30 
      volumes: 
      - name: varlog 
        hostPath: 
          path: /var/log 
      - name: varlibdockercontainers 
        hostPath: 
          path: /var/lib/docker/containers

DaemonSets require a unique name across all DaemonSets in a given
Kubernetes namespace. Each DaemonSet must include a Pod template spec,
which will be used to create Pods as needed. This is where the similarities
between ReplicaSets and DaemonSets end. Unlike ReplicaSets,
DaemonSets will create Pods on every node in the cluster by default unless
a node selector is used.

Once you have a valid DaemonSet configuration in place, you can use the
kubectl apply command to submit the DaemonSet to the Kubernetes
API. In this section we will create a DaemonSet to ensure the fluentd
HTTP server is running on every node in our cluster:

$ kubectl apply -f fluentd.yaml 
daemonset.apps/fluentd created



Once the fluentd DaemonSet has been successfully submitted to the
Kubernetes API, you can query its current state using the kubectl
describe command:

$ kubectl describe daemonset fluentd 
Name:           fluentd 
Selector:       app=fluentd 
Node-Selector:  <none> 
Labels:         app=fluentd 
Annotations:    deprecated.daemonset.template.generation: 1 
Desired Number of Nodes Scheduled: 3 
Current Number of Nodes Scheduled: 3 
Number of Nodes Scheduled with Up-to-date Pods: 3 
Number of Nodes Scheduled with Available Pods: 3 
Number of Nodes Misscheduled: 0 
Pods Status:  3 Running / 0 Waiting / 0 Succeeded / 0 Failed 
...

This output indicates a fluentd Pod was successfully deployed to all
three nodes in our cluster. We can verify this using the kubectl get
pods command with the -o flag to print the nodes where each fluentd
Pod was assigned:

$ kubectl get pods -l app=fluentd -o wide 
NAME            READY   STATUS    RESTARTS   AGE   IP             
NODE                            NOMINATED NODE   READINESS GATES 
fluentd-1q6c6   1/1     Running   0          13m   10.240.0.101   
k0-default-pool-35609c18-z7tb   <none>     <none> 
fluentd-mwi7h   1/1     Running   0          13m   10.240.0.80    
k0-default-pool-35609c18-ydae   <none>     <none> 
fluentd-zr6l7   1/1     Running   0          13m   10.240.0.44    
k0-default-pool-35609c18-pol3   <none>     <none>

With the fluentd DaemonSet in place, adding a new node to the cluster
will result in a fluentd Pod being deployed to that node automatically:

$ kubectl get pods -l app=fluentd -o wide 
NAME            READY   STATUS    RESTARTS   AGE   IP             
NODE                            NOMINATED NODE   READINESS GATES 
fluentd-1q6c6   1/1     Running   0          13m   10.240.0.101   
k0-default-pool-35609c18-z7tb   <none>     <none> 
fluentd-mwi7h   1/1     Running   0          13m   10.240.0.80    



k0-default-pool-35609c18-ydae   <none>     <none> 
fluentd-oipmq   1/1     Running   0          43s   10.240.0.96    
k0-default-pool-35609c18-0xnl   <none>     <none> 
fluentd-zr6l7   1/1     Running   0          13m   10.240.0.44    
k0-default-pool-35609c18-pol3   <none>     <none>

This is exactly the behavior you want when managing logging daemons and
other cluster-wide services. No action was required from our end; this is
how the Kubernetes DaemonSet controller reconciles its observed state with
our desired state.

Limiting DaemonSets to Specific Nodes
The most common use case for DaemonSets is to run a Pod across every
node in a Kubernetes cluster. However, there are some cases where you
want to deploy a Pod to only a subset of nodes. For example, maybe you
have a workload that requires a GPU or access to fast storage only available
on a subset of nodes in your cluster. In cases like these, node labels can be
used to tag specific nodes that meet workload requirements.

Adding Labels to Nodes
The first step in limiting DaemonSets to specific nodes is to add the desired
set of labels to a subset of nodes. This can be achieved using the kubectl
label command.

The following command adds the ssd=true label to a single node:

$ kubectl label nodes k0-default-pool-35609c18-z7tb ssd=true 
node/k0-default-pool-35609c18-z7tb labeled

Just like with other Kubernetes resources, listing nodes without a label
selector returns all nodes in the cluster:

$ kubectl get nodes 
NAME                            STATUS   ROLES    AGE   VERSION 
k0-default-pool-35609c18-0xnl   Ready    agent    23m   v1.21.1 
k0-default-pool-35609c18-pol3   Ready    agent    1d    v1.21.1 



k0-default-pool-35609c18-ydae   Ready    agent    1d    v1.21.1 
k0-default-pool-35609c18-z7tb   Ready    agent    1d    v1.21.1

Using a label selector, we can filter nodes based on labels. To list only the
nodes that have the ssd label set to true, use the kubectl get
nodes command with the --selector flag:

$ kubectl get nodes --selector ssd=true 
NAME                            STATUS   ROLES   AGE   VERSION 
k0-default-pool-35609c18-z7tb   Ready    agent   1d    v1.21.1

Node Selectors
Node selectors can be used to limit what nodes a Pod can run on in a given
Kubernetes cluster. Node selectors are defined as part of the Pod spec when
creating a DaemonSet. The DaemonSet configuration in Example 10-2
limits NGINX to running only on nodes with the ssd=true label set.

Example 10-2. nginx-fast-storage.yaml
apiVersion: apps/v1
kind: "DaemonSet"
metadata: 
  labels: 
    app: nginx 
    ssd: "true" 
  name: nginx-fast-storage
spec: 
  selector: 
    matchLabels: 
      app: nginx 
      ssd: "true" 
  template: 
    metadata: 
      labels: 
        app: nginx 
        ssd: "true" 
    spec: 
      nodeSelector: 
        ssd: "true" 
      containers: 
        - name: nginx 
          image: nginx:1.10.0



Let’s see what happens when we submit the nginx-fast-storage
DaemonSet to the Kubernetes API:

$ kubectl apply -f nginx-fast-storage.yaml 
daemonset.apps/nginx-fast-storage created

Since there is only one node with the ssd=true label, the nginx-
fast-storage Pod will only run on that node:

$ kubectl get pods -l app=nginx -o wide 
NAME                       READY   STATUS    RESTARTS   AGE   IP   
NODE                            NOMINATED NODE   READINESS GATES 
nginx-fast-storage-7b90t   1/1     Running   0          44s   
10.240.0.48   k0-default-pool-35609c18-z7tb   <none>           
<none>

Adding the ssd=true label to additional nodes will cause the nginx-
fast-storage Pod to be deployed on those nodes. The inverse is also
true: if a required label is removed from a node, the Pod will be removed by
the DaemonSet controller.

WARNING
Removing labels from a node that are required by a DaemonSet’s node selector will
cause the Pod being managed by that DaemonSet to be removed from the node.

Updating a DaemonSet
DaemonSets are great for deploying services across an entire cluster, but
what about upgrades? Prior to Kubernetes 1.6, the only way to update Pods
managed by a DaemonSet was to update the DaemonSet and then manually
delete each Pod that was managed by the DaemonSet so that it would be re-
created with the new configuration. With the release of Kubernetes 1.6,
DaemonSets gained an equivalent to the Deployment object that manages a
DaemonSet rollout inside the cluster.



Rolling Update of a DaemonSet
DaemonSets can be rolled out using the same RollingUpdate strategy
that deployments use. You can configure the update strategy using the
spec.updateStrategy.type field, which should have the value
RollingUpdate. When a DaemonSet has an update strategy of
RollingUpdate, any change to the spec.template field (or
subfields) in the DaemonSet will initiate a rolling update.

As with rolling updates of deployments (see Chapter 9), the
RollingUpdate strategy gradually updates members of a DaemonSet
until all of the Pods are running the new configuration. There are two
parameters that control the rolling update of a DaemonSet:

spec.minReadySeconds, which determines how long a Pod
must be “ready” before the rolling update proceeds to upgrade
subsequent Pods

spec.updateStrategy.rollingUpdate.maxUnavaila
ble, which indicates how many Pods may be simultaneously
updated by the rolling update

You will likely want to set spec.minReadySeconds to a reasonably
long value, for example 30–60 seconds, to ensure that your Pod is truly
healthy before the rollout proceeds.

The setting for
spec.updateStrategy.rollingUpdate.maxUnavailable is
more likely to be application-dependent. Setting it to 1 is a safe, general-
purpose strategy, but it also takes a while to complete the rollout (number of
nodes × minReadySeconds). Increasing the maximum unavailability
will make your rollout move faster, but increases the “blast radius” of a
failed rollout. The characteristics of your application and cluster
environment dictate the relative values of speed versus safety. A good
approach might be to set maxUnavailable to 1 and only increase it if
users or administrators complain about DaemonSet rollout speed.



Once a rolling update has started, you can use the kubectl rollout
commands to see the current status of a DaemonSet rollout.

For example, kubectl rollout status daemonSets my-
daemon-set will show the current rollout status of a DaemonSet named
my-daemon-set.

Deleting a DaemonSet
Deleting a DaemonSet using the kubectl delete command is pretty
straightfoward. Just be sure to supply the correct name of the DaemonSet
you would like to delete:

$ kubectl delete -f fluentd.yaml

WARNING
Deleting a DaemonSet will also delete all the Pods being managed by that DaemonSet.
Set the --cascade flag to false to ensure only the DaemonSet is deleted and not
the Pods.

Summary
DaemonSets provide an easy-to-use abstraction for running a set of Pods on
every node in a Kubernetes cluster, or, if the case requires it, on a subset of
nodes based on labels. The DaemonSet provides its own controller and
scheduler to ensure key services like monitoring agents are always up and
running on the right nodes in your cluster.

For some applications, you simply want to schedule a certain number of
replicas; you don’t really care where they run as long as they have sufficient
resources and distribution to operate reliably. However, there is a different
class of applications, like agents and monitoring applications, that need to
be present on every machine in a cluster to function properly. These
DaemonSets aren’t really traditional serving applications, but rather add



additional capabilities and features to the Kubernetes cluster itself. Because
the DaemonSet is an active declarative object managed by a controller, it
makes it easy to declare your intent that an agent run on every machine
without explicitly placing it on every machine. This is especially useful in
the context of an autoscaled Kubernetes cluster where nodes may constantly
be coming and going without user intervention. In such cases, the
DaemonSet automatically adds the proper agents to each node as the
autoscaler adds the node to the cluster.



Chapter 11. Jobs

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 12th chapter of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this chapter,
please reach out to the editor at sgrey@oreilly.com.

So far we have focused on long-running processes such as databases and web
applications. These types of workloads run until either they are upgraded or the
service is no longer needed. While long-running processes make up the large
majority of workloads that run on a Kubernetes cluster, there is often a need to
run short-lived, one-off tasks. The Job object is made for handling these types
of tasks.

A job creates Pods that run until successful termination (for instance, exit with
0). In contrast, a regular Pod will continually restart regardless of its exit code.
Jobs are useful for things you only want to do once, such as database
migrations or batch jobs. If run as a regular Pod, your database migration task
would run in a loop, continually repopulating the database after every exit.

In this chapter we’ll explore the most common job patterns Kubernetes affords.
We will also show you how to leverage these patterns in real-life scenarios.

The Job Object



The Job object is responsible for creating and managing Pods defined in a
template in the job specification. These Pods generally run until successful
completion. The Job object coordinates running a number of Pods in parallel.

If the Pod fails before a successful termination, the job controller will create a
new Pod based on the Pod template in the job specification. Given that Pods
have to be scheduled, there is a chance that your job will not execute if the
scheduler does not find the required resources. Also, due to the nature of
distributed systems, there is a small chance that duplicate Pods will be created
for a specific task during certain failure scenarios.

Job Patterns
Jobs are designed to manage batch-like workloads where work items are
processed by one or more Pods. By default, each job runs a single Pod once
until successful termination. This job pattern is defined by two primary
attributes of a job: namely the number of job completions and the number of
Pods to run in parallel. In the case of the “run once until completion” pattern,
the completions and parallelism parameters are set to 1.

Table 11-1 highlights job patterns based on the combination of completions
and parallelism for a job configuration.
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One shot Database 
migrations

A single Pod 
running once until 
successful 
termination

1 1

Parallel fixed 
completions

Multiple Pods 
processing a set of 
work in parallel

One or more Pods 
running one or 
more times until 
reaching a fixed 
completion count

1+ 1+



Work queue: 
parallel jobs

Multiple Pods 
processing from a 
centralized work 
queue

One or more Pods 
running once until 
successful 
termination

1 2+

One Shot
One-shot jobs provide a way to run a single Pod once until successful
termination. While this may sound like an easy task, there is some work
involved in pulling this off. First, a Pod must be created and submitted to the
Kubernetes API. This is done using a Pod template defined in the job
configuration. Once a job is up and running, the Pod backing the job must be
monitored for successful termination. A job can fail for any number of reasons,
including an application error, an uncaught exception during runtime, or a node
failure before the job has a chance to complete. In all cases, the job controller is
responsible for recreating the Pod until a successful termination occurs.

There are multiple ways to create a one-shot job in Kubernetes. The easiest is
to use the kubectl command-line tool:

$ kubectl run -i oneshot \ 
  --image=gcr.io/kuar-demo/kuard-amd64:blue \ 
  --restart=OnFailure \ 
  --command /kuard \ 
  -- --keygen-enable \ 
     --keygen-exit-on-complete \ 
     --keygen-num-to-gen 10 
 
... 
(ID 0) Workload starting 
(ID 0 1/10) Item done: SHA256:nAsUsG54XoKRkJwyN+OShkUPKew3mwq7OCc 
(ID 0 2/10) Item done: SHA256:HVKX1ANns6SgF/er1lyo+ZCdnB8geFGt0/8 
(ID 0 3/10) Item done: SHA256:irjCLRov3mTT0P0JfsvUyhKRQ1TdGR8H1jg 
(ID 0 4/10) Item done: SHA256:nbQAIVY/yrhmEGk3Ui2sAHuxb/o6mYO0qRk 
(ID 0 5/10) Item done: SHA256:CCpBoXNlXOMQvR2v38yqimXGAa/w2Tym+aI 
(ID 0 6/10) Item done: SHA256:wEY2TTIDz4ATjcr1iimxavCzZzNjRmbOQp8 
(ID 0 7/10) Item done: SHA256:t3JSrCt7sQweBgqG5CrbMoBulwk4lfDWiTI 
(ID 0 8/10) Item done: SHA256:E84/Vze7KKyjCh9OZh02MkXJGoty9PhaCec 
(ID 0 9/10) Item done: SHA256:UOmYex79qqbI1MhcIfG4hDnGKonlsij2k3s 
(ID 0 10/10) Item done: SHA256:WCR8wIGOFag84Bsa8f/9QHuKqF+0mEnCADY 
(ID 0) Workload exiting



There are some things to note here:

The -i option to kubectl indicates that this is an interactive
command. kubectl will wait until the job is running and then show
the log output from the first (and in this case only) Pod in the job.

--restart=OnFailure is the option that tells kubectl to create
a Job object.

All of the options after -- are command-line arguments to the
container image. These instruct our test server (kuard) to generate 10
4,096-bit SSH keys and then exit.

Your output may not match this exactly. kubectl often misses the
first couple of lines of output with the -i option.

After the job has completed, the Job object and related Pod are still around.
This is so that you can inspect the log output. Note that this job won’t show up
in kubectl get jobs unless you pass the -a flag. Without this flag,
kubectl hides completed jobs. Delete the job before continuing:

$ kubectl delete pods oneshot

The other option for creating a one-shot job is using a configuration file, as
shown in Example 11-1.

Example 11-1. job-oneshot.yaml
apiVersion: batch/v1
kind: Job
metadata: 
  name: oneshot
spec: 
  template: 
    spec: 
      containers: 
      - name: kuard 
        image: gcr.io/kuar-demo/kuard-amd64:blue 
        imagePullPolicy: Always 
        command: 
        - "/kuard" 
        args: 
        - "--keygen-enable" 
        - "--keygen-exit-on-complete" 



        - "--keygen-num-to-gen=10" 
      restartPolicy: OnFailure

Submit the job using the kubectl apply command:

$ kubectl apply -f job-oneshot.yaml 
job.batch/oneshot created

Then describe the oneshot job:

$ kubectl describe jobs oneshot 
 
Name:           oneshot 
Namespace:      default 
Selector:       controller-uid=a2ed65c4-cfda-43c8-bb4a-707c4ed29143 
Labels:         controller-uid=a2ed65c4-cfda-43c8-bb4a-707c4ed29143 
                job-name=oneshot 
Annotations:    <none> 
Parallelism:    1 
Completions:    1 
Start Time:     Wed, 02 Jun 2021 21:23:23 -0700 
Completed At:   Wed, 02 Jun 2021 21:23:51 -0700 
Duration:       28s 
Pods Statuses:  0 Running / 1 Succeeded / 0 Failed 
Pod Template: 
  Labels:  controller-uid=a2ed65c4-cfda-43c8-bb4a-707c4ed29143 
           job-name=oneshot 
Events: 
  ... Reason             Message 
  ... ------             ------- 
  ... SuccessfulCreate   Created pod: oneshot-4kfdt

You can view the results of the job by looking at the logs of the Pod that was
created:

$ kubectl logs oneshot-4kfdt 
 
... 
Serving on :8080 
(ID 0) Workload starting 
(ID 0 1/10) Item done: 
SHA256:+r6b4W81DbEjxMcD3LHjU+EIGnLEzbpxITKn8IqhkPI 
(ID 0 2/10) Item done: 
SHA256:mzHewajaY1KA8VluSLOnNMk9fDE5zdn7vvBS5Ne8AxM 
(ID 0 3/10) Item done: 
SHA256:TRtEQHfflJmwkqnNyGgQm/IvXNykSBIg8c03h0g3onE 



(ID 0 4/10) Item done: 
SHA256:tSwPYH/J347il/mgqTxRRdeZcOazEtgZlA8A3/HWbro 
(ID 0 5/10) Item done: 
SHA256:IP8XtguJ6GbWwLHqjKecVfdS96B17nnO21I/TNc1j9k 
(ID 0 6/10) Item done: 
SHA256:ZfNxdQvuST/6ZzEVkyxdRG98p73c/5TM99SEbPeRWfc 
(ID 0 7/10) Item done: 
SHA256:tH+CNl/IUl/HUuKdMsq2XEmDQ8oAvmhMO6Iwj8ZEOj0 
(ID 0 8/10) Item done: 
SHA256:3GfsUaALVEHQcGNLBOu4Qd1zqqqJ8j738i5r+I5XwVI 
(ID 0 9/10) Item done: 
SHA256:5wV4L/xEiHSJXwLUT2fHf0SCKM2g3XH3sVtNbgskCXw 
(ID 0 10/10) Item done: 
SHA256:bPqqOonwSbjzLqe9ZuVRmZkz+DBjaNTZ9HwmQhbdWLI 
(ID 0) Workload exiting

Congratulations, your job has run successfully!

NOTE
You may have noticed that we didn’t specify any labels when creating the Job object. Like
with other controllers (such as DaemonSets, ReplicaSets, and Deployments) that use labels
to identify a set of Pods, unexpected behaviors can happen if a Pod is reused across objects.

Because jobs have a finite beginning and ending, it is common for users to create many of
them. This makes picking unique labels more difficult and more critical. For this reason, the
Job object will automatically pick a unique label and use it to identify the Pods it creates. In
advanced scenarios (such as swapping out a running job without killing the Pods it is
managing), users can choose to turn off this automatic behavior and manually specify labels
and selectors.

Pod failure
We just saw how a job can complete successfully. But what happens if
something fails? Let’s try that out and see what happens.

Let’s modify the arguments to kuard in our configuration file to cause it to
fail out with a nonzero exit code after generating three keys, as shown in
Example 11-2.

Example 11-2. job-oneshot-failure1.yaml
...
spec: 
  template: 
    spec: 



      containers: 
        ... 
        args: 
        - "--keygen-enable" 
        - "--keygen-exit-on-complete" 
        - "--keygen-exit-code=1" 
        - "--keygen-num-to-gen=3"
...

Now launch this with kubectl apply -f job-oneshot-
failure1.yaml. Let it run for a bit and then look at the Pod status:

$ kubectl get pod -l job-name=oneshot 
 
NAME            READY     STATUS             RESTARTS   AGE 
oneshot-3ddk0   0/1       CrashLoopBackOff   4          3m

Here we see that the same Pod has restarted four times. Kubernetes is in
CrashLoopBackOff for this Pod. It is not uncommon to have a bug
someplace that causes a program to crash as soon as it starts. In that case,
Kubernetes will wait a bit before restarting the Pod to avoid a crash loop that
would eat resources on the node. This is all handled local to the node by the
kubelet without the job being involved at all.

Kill the job (kubectl delete jobs oneshot), and let’s try something
else. Modify the config file again and change the restartPolicy from
OnFailure to Never. Launch this with kubectl apply -f jobs-
oneshot-failure2.yaml.

If we let this run for a bit and then look at related Pods we’ll find something
interesting:

$ kubectl get pod -l job-name=oneshot -a 
 
NAME            READY     STATUS    RESTARTS   AGE 
oneshot-0wm49   0/1       Error     0          1m 
oneshot-6h9s2   0/1       Error     0          39s 
oneshot-hkzw0   1/1       Running   0          6s 
oneshot-k5swz   0/1       Error     0          28s 
oneshot-m1rdw   0/1       Error     0          19s 
oneshot-x157b   0/1       Error     0          57s



What we see is that we have multiple Pods here that have errored out. By
setting restartPolicy: Never we are telling the kubelet not to restart
the Pod on failure, but rather just declare the Pod as failed. The Job object then
notices and creates a replacement Pod. If you aren’t careful, this’ll create a lot
of “junk” in your cluster. For this reason, we suggest you use
restartPolicy: OnFailure so failed Pods are rerun in place.

Clean this up with kubectl delete jobs oneshot.

So far we’ve seen a program fail by exiting with a nonzero exit code. But
workers can fail in other ways. Specifically, they can get stuck and not make
any forward progress. To help cover this case, you can use liveness probes with
jobs. If the liveness probe policy determines that a Pod is dead, it’ll be restarted
or replaced for you.

Parallelism
Generating keys can be slow. Let’s start a bunch of workers together to make
key generation faster. We’re going to use a combination of the completions
and parallelism parameters. Our goal is to generate 100 keys by having 10
runs of kuard, with each run generating 10 keys. But we don’t want to swamp
our cluster, so we’ll limit ourselves to only five Pods at a time.

This translates to setting completions to 10 and parallelism to 5. The
config is shown in Example 11-3.

Example 11-3. job-parallel.yaml
apiVersion: batch/v1
kind: Job
metadata: 
  name: parallel 
  labels: 
    chapter: jobs
spec: 
  parallelism: 5 
  completions: 10 
  template: 
    metadata: 
      labels: 
        chapter: jobs 
    spec: 
      containers: 



      - name: kuard 
        image: gcr.io/kuar-demo/kuard-amd64:blue 
        imagePullPolicy: Always 
        command: 
        - "/kuard" 
        args: 
        - "--keygen-enable" 
        - "--keygen-exit-on-complete" 
        - "--keygen-num-to-gen=10" 
      restartPolicy: OnFailure

Start it up:

$ kubectl apply -f job-parallel.yaml 
job.batch/parallel created

Now watch as the Pods come up, do their thing, and exit. New Pods are created
until 10 have completed altogether. Here we use the --watch flag to have
kubectl stay around and list changes as they happen:

$ kubectl get pods -w 
NAME             READY     STATUS    RESTARTS   AGE 
parallel-55tlv   1/1       Running   0          5s 
parallel-5s7s9   1/1       Running   0          5s 
parallel-jp7bj   1/1       Running   0          5s 
parallel-lssmn   1/1       Running   0          5s 
parallel-qxcxp   1/1       Running   0          5s 
NAME             READY     STATUS      RESTARTS   AGE 
parallel-jp7bj   0/1       Completed   0          26s 
parallel-tzp9n   0/1       Pending   0         0s 
parallel-tzp9n   0/1       Pending   0         0s 
parallel-tzp9n   0/1       ContainerCreating   0         1s 
parallel-tzp9n   1/1       Running   0         1s 
parallel-tzp9n   0/1       Completed   0         48s 
parallel-x1kmr   0/1       Pending   0         0s 
parallel-x1kmr   0/1       Pending   0         0s 
parallel-x1kmr   0/1       ContainerCreating   0         0s 
parallel-x1kmr   1/1       Running   0         1s 
parallel-5s7s9   0/1       Completed   0         1m 
parallel-tprfj   0/1       Pending   0         0s 
parallel-tprfj   0/1       Pending   0         0s 
parallel-tprfj   0/1       ContainerCreating   0         0s 
parallel-tprfj   1/1       Running   0         2s 
parallel-x1kmr   0/1       Completed   0         52s 
parallel-bgvz5   0/1       Pending   0         0s 
parallel-bgvz5   0/1       Pending   0         0s 
parallel-bgvz5   0/1       ContainerCreating   0         0s 



parallel-bgvz5   1/1       Running   0         2s 
parallel-qxcxp   0/1       Completed   0         2m 
parallel-xplw2   0/1       Pending   0         1s 
parallel-xplw2   0/1       Pending   0         1s 
parallel-xplw2   0/1       ContainerCreating   0         1s 
parallel-xplw2   1/1       Running   0         3s 
parallel-bgvz5   0/1       Completed   0         40s 
parallel-55tlv   0/1       Completed   0         2m 
parallel-lssmn   0/1       Completed   0         2m

Feel free to study the completed jobs and check out their logs to see the
fingerprints of the keys they generated. Clean up by deleting the finished Job
object with kubectl delete job parallel.

Work Queues
A common use case for jobs is to process work from a work queue. In this
scenario, some task creates a number of work items and publishes them to a
work queue. A worker job can be run to process each work item until the work
queue is empty (Figure 11-1).

Figure 11-1. Parallel jobs

Starting a work queue
We start by launching a centralized work queue service. kuard has a simple
memory-based work queue system built in. We will start an instance of kuard
to act as a coordinator for all the work.

Next, we create a simple ReplicaSet to manage a singleton work queue
daemon. We are using a ReplicaSet to ensure that a new Pod will get created in
the face of machine failure, as shown in Example 11-4.



Example 11-4. rs-queue.yaml
apiVersion: apps/v1
kind: ReplicaSet
metadata: 
  labels: 
    app: work-queue 
    component: queue 
    chapter: jobs 
  name: queue
spec: 
  replicas: 1 
  selector: 
    matchLabels: 
      app: work-queue 
      component: queue 
      chapter: jobs 
  template: 
    metadata: 
      labels: 
        app: work-queue 
        component: queue 
        chapter: jobs 
    spec: 
      containers: 
      - name: queue 
        image: "gcr.io/kuar-demo/kuard-amd64:blue" 
        imagePullPolicy: Always

Run the work queue with the following command:

$ kubectl apply -f rs-queue.yaml 
replicaset.apps/queue created

At this point the work queue daemon should be up and running. Let’s use port
forwarding to connect to it. Leave this command running in a terminal window:

$ kubectl port-forward rs/queue 8080:8080 
Forwarding from 127.0.0.1:8080 -> 8080 
Forwarding from [::1]:8080 -> 8080

You can open your browser to http://localhost:8080 and see the kuard
interface. Switch to the “MemQ Server” tab to keep an eye on what is going
on.

http://localhost:8080/


With the work queue server in place, the next step is to expose it using a
service. This will make it easy for producers and consumers to locate the work
queue via DNS, as Example 11-5 shows.

Example 11-5. service-queue.yaml
apiVersion: v1
kind: Service
metadata: 
  labels: 
    app: work-queue 
    component: queue 
    chapter: jobs 
  name: queue
spec: 
  ports: 
  - port: 8080 
    protocol: TCP 
    targetPort: 8080 
  selector: 
    app: work-queue 
    component: queue

Create the queue service with kubectl:

$ kubectl apply -f service-queue.yaml 
service/queue created

Loading up the queue
We are now ready to put a bunch of work items in the queue. For the sake of
simplicity, we’ll just use curl to drive the API for the work queue server and
insert a bunch of work items. curl will communicate to the work queue
through the kubectl port-forward we set up earlier, as shown in
Example 11-6.

Example 11-6. load-queue.sh
# Create a work queue called 'keygen' 
curl -X PUT localhost:8080/memq/server/queues/keygen 
 
# Create 100 work items and load up the queue. 
for i in work-item-{0..99}; do 
  curl -X POST localhost:8080/memq/server/queues/keygen/enqueue \ 
    -d "$i" 
done



Run these commands, and you should see 100 JSON objects output to your
terminal with a unique message identifier for each work item. You can confirm
the status of the queue by looking at the “MemQ Server” tab in the UI, or you
can ask the work queue API directly:

$ curl 127.0.0.1:8080/memq/server/stats 
{ 
    "kind": "stats", 
    "queues": [ 
        { 
            "depth": 100, 
            "dequeued": 0, 
            "drained": 0, 
            "enqueued": 100, 
            "name": "keygen" 
        } 
    ] 
}

Now we are ready to kick off a job to consume the work queue until it’s empty.

Creating the consumer job
This is where things get interesting! kuard can also act in consumer mode.
We can set it up to draw work items from the work queue, create a key, and
then exit once the queue is empty, as shown in Example 11-7.

Example 11-7. job-consumers.yaml
apiVersion: batch/v1
kind: Job
metadata: 
  labels: 
    app: message-queue 
    component: consumer 
    chapter: jobs 
  name: consumers
spec: 
  parallelism: 5 
  template: 
    metadata: 
      labels: 
        app: message-queue 
        component: consumer 
        chapter: jobs 
    spec: 



      containers: 
      - name: worker 
        image: "gcr.io/kuar-demo/kuard-amd64:blue" 
        imagePullPolicy: Always 
        command: 
        - "/kuard" 
        args: 
        - "--keygen-enable" 
        - "--keygen-exit-on-complete" 
        - "--keygen-memq-server=http://queue:8080/memq/server" 
        - "--keygen-memq-queue=keygen" 
      restartPolicy: OnFailure

Here, we are telling the job to start up five Pods in parallel. As the
completions parameter is unset, we put the job into worker-pool mode.
Once the first Pod exits with a zero exit code, the job will start winding down
and will not start any new Pods. This means that none of the workers should
exit until the work is done and they are all in the process of finishing up.

Now, create the consumers job:

$ kubectl apply -f job-consumers.yaml 
job.batch/consumers created

Then you can view the Pods backing the job:

$ kubectl get pods 
NAME              READY     STATUS    RESTARTS   AGE 
queue-43s87       1/1       Running   0          5m 
consumers-6wjxc   1/1       Running   0          2m 
consumers-7l5mh   1/1       Running   0          2m 
consumers-hvz42   1/1       Running   0          2m 
consumers-pc8hr   1/1       Running   0          2m 
consumers-w20cc   1/1       Running   0          2m

Note there are five Pods running in parallel. These Pods will continue to run
until the work queue is empty. You can watch as it happens in the UI on the
work queue server. As the queue empties, the consumer Pods will exit cleanly
and the consumers job will be considered complete.

Cleaning up
Using labels, we can clean up all of the stuff we created in this section:



$ kubectl delete rs,svc,job -l chapter=jobs

CronJobs
Sometimes you want to schedule a job to be run at a certain interval. To
achieve this you can declare a CronJob in Kubernetes, which is responsible for
creating a new Job object at a particular interval. [Link to Come] is an example
CronJob declaration:

Example 11-8. job-cronjob.yaml
apiVersion: batch/v1
kind: CronJob
metadata: 
  name: example-cron
spec: 
  # Run every fifth hour 
  schedule: "0 */5 * * *" 
  jobTemplate: 
    spec: 
      template: 
        spec: 
          containers: 
          - name: batch-job 
            image: my-batch-image 
          restartPolicy: OnFailure

apiVersion: batch/v1 
kind: CronJob 
metadata: 
  name: example-cron 
spec: 
  # Run every fifth hour 
  schedule: "0 */5 * * *" 
  jobTemplate: 
    spec: 
      template: 
        spec: 
          containers: 
          - name: batch-job 
            image: my-batch-image 
          restartPolicy: OnFailure

Note the spec.schedule field, which contains the interval for the CronJob
in standard cron format.



You can save this file as cron-job.yaml, and create the CronJob with kubectl
create -f cron-job.yaml. If you are interested in the current state of a
CronJob, you can use kubectl describe <cron-job> to get the
details.

Summary
On a single cluster, Kubernetes can handle both long-running workloads such
as web applications and short-lived workloads such as batch jobs. The job
abstraction allows you to model batch job patterns ranging from simple one-
time tasks to parallel jobs that process many items until work has been
exhausted.

Jobs are a low-level primitive and can be used directly for simple workloads.
However, Kubernetes is built from the ground up to be extensible by higher-
level objects. Jobs are no exception; higher-level orchestration systems can
easily use them to take on more complex tasks.



Chapter 12. Integrating Storage
Solutions and Kubernetes

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 16th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

In many cases, decoupling state from applications and building your
microservices to be as stateless as possible results in maximally reliable,
manageable systems.

However, nearly every system that has any complexity has state in the
system somewhere, from the records in a database to the index shards that
serve results for a web search engine. At some point, you have to have data
stored somewhere.

Integrating this data with containers and container orchestration solutions is
often the most complicated aspect of building a distributed system. This
complexity largely stems from the fact that the move to containerized
architectures is also a move toward decoupled, immutable, and declarative
application development. These patterns are relatively easy to apply to
stateless web applications, but even “cloud-native” storage solutions like



Cassandra or MongoDB involve some sort of manual or imperative steps to
set up a reliable, replicated solution.

As an example of this, consider setting up a ReplicaSet in MongoDB,
which involves deploying the Mongo daemon and then running an
imperative command to identify the leader, as well as the participants in the
Mongo cluster. Of course, these steps can be scripted, but in a containerized
world it is difficult to see how to integrate such commands into a
deployment. Likewise, even getting DNS-resolvable names for individual
containers in a replicated set of containers is challenging.

Additional complexity comes from the fact that there is data gravity. Most
containerized systems aren’t built in a vacuum; they are usually adapted
from existing systems deployed onto VMs, and these systems likely include
data that has to be imported or migrated.

Finally, evolution to the cloud often means that storage is an externalized
cloud service, and in that context it can never really exist inside of the
Kubernetes cluster.

This chapter covers a variety of approaches for integrating storage into
containerized microservices in Kubernetes. First, we cover how to import
existing external storage solutions (either cloud services or running on
VMs) into Kubernetes. Next, we explore how to run reliable singletons
inside of Kubernetes that enable you to have an environment that largely
matches the VMs where you previously deployed storage solutions. Finally,
we cover StatefulSets, which are the Kubernetes resource most people use
for stateful workloads in Kubernetes.

Importing External Services
In many cases, you have an existing machine running in your network that
has some sort of database running on it. In this situation you may not want
to immediately move that database into containers and Kubernetes. Perhaps
it is run by a different team, or you are doing a gradual move, or the task of
migrating the data is simply more trouble than it’s worth.



Regardless of the reasons for staying put, this legacy server and service are
not going to move into Kubernetes —but it’s still worthwhile to represent
this server in Kubernetes. When you do this, you get to take advantage of
all of the built-in naming and service-discovery primitives provided by
Kubernetes. Additionally, this enables you to configure all your applications
so that it looks like the database that is running on a machine somewhere is
actually a Kubernetes service. This means that it is trivial to replace it with
a database that is a Kubernetes service. For example, in production, you
may rely on your legacy database that is running on a machine, but for
continuous testing you may deploy a test database as a transient container.
Since it is created and destroyed for each test run, data persistence isn’t
important in the continuous testing case. Representing both databases as
Kubernetes services enables you to maintain identical configurations in
both testing and production. High fidelity between test and production
ensures that passing tests will lead to successful deployment in production.

To see concretely how you maintain high fidelity between development and
production, remember that all Kubernetes objects are deployed into
namespaces. Imagine that we have test and production namespaces
defined. The test service is imported using an object like:

kind: Service 
metadata: 
  name: my-database 
  # note 'test' namespace here 
  namespace: test 
...

The production service looks the same, except it uses a different
namespace:

kind: Service 
metadata: 
  name: my-database 
  # note 'prod' namespace here 
  namespace: prod 
...



When you deploy a Pod into the test namespace and it looks up the
service named my-database, it will receive a pointer to my-
database.test.svc.cluster.internal, which in turn points to
the test database. In contrast, when a Pod deployed in the prod namespace
looks up the same name (my-database) it will receive a pointer to my-
database.prod.svc.cluster.internal, which is the production
database. Thus, the same service name, in two different namespaces,
resolves to two different services. For more details on how this works, see
Chapter 6.

NOTE
The following techniques all use database or other storage services, but these
approaches can be used equally well with other services that aren’t running inside your
Kubernetes cluster.

Services Without Selectors
When we first introduced services, we talked at length about label queries
and how they were used to identify the dynamic set of Pods that were the
backends for a particular service. With external services, however, there is
no such label query. Instead, you generally have a DNS name that points to
the specific server running the database. For our example, let’s assume that
this server is named database.company.com. To import this external
database service into Kubernetes, we start by creating a service without a
Pod selector that references the DNS name of the database server
(Example 12-1).

Example 12-1. dns-service.yaml
kind: Service
apiVersion: v1
metadata: 
  name: external-database
spec: 
  type: ExternalName 
  externalName: database.company.com

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_r515533x/209b2rmx_pdf_out/OEBPS/Images/ch06.html#service_discovery


When a typical Kubernetes service is created, an IP address is also created
and the Kubernetes DNS service is populated with an A record that points
to that IP address. When you create a service of type ExternalName, the
Kubernetes DNS service is instead populated with a CNAME record that
points to the external name you specified (database.company.com in
this case). When an application in the cluster does a DNS lookup for the
hostname external-database.svc.default.cluster, the DNS
protocol aliases that name to database.company.com. This then
resolves to the IP address of your external database server. In this way, all
containers in Kubernetes believe that they are talking to a service that is
backed with other containers, when in fact they are being redirected to the
external database.

Note that this is not restricted to databases you are running on your own
infrastructure. Many cloud databases and other services provide you with a
DNS name to use when accessing the database (e.g., my-
database.databases.cloudprovider.com). You can use this
DNS name as the externalName. This imports the cloud-provided
database into the namespace of your Kubernetes cluster.

Sometimes, however, you don’t have a DNS address for an external
database service, just an IP address. In such cases, it is still possible to
import this service as a Kubernetes service, but the operation is a little
different. First, you create a Service without a label selector, but also
without the ExternalName type we used before (Example 12-2).

Example 12-2. external-ip-service.yaml
kind: Service
apiVersion: v1
metadata: 
  name: external-ip-database

At this point, Kubernetes will allocate a virtual IP address for this service
and populate an A record for it. However, because there is no selector for
the service, there will be no endpoints populated for the load balancer to
redirect traffic to.



Given that this is an external service, the user is responsible for populating
the endpoints manually with an Endpoints resource (Example 12-3).

Example 12-3. external-ip-endpoints.yaml
kind: Endpoints
apiVersion: v1
metadata: 
  name: external-ip-database
subsets: 
  - addresses: 
    - ip: 192.168.0.1 
    ports: 
    - port: 3306

If you have more than one IP address for redundancy, you can repeat them
in the addresses array. Once the endpoints are populated, the load
balancer will start redirecting traffic from your Kubernetes service to the IP
address endpoint(s).

NOTE
Because the user has assumed responsibility for keeping the IP address of the server up
to date, you need to either ensure that it never changes or make sure that some
automated process updates the Endpoints record.

Limitations of External Services: Health Checking
External services in Kubernetes have one significant restriction: they do not
perform any health checking. The user is responsible for ensuring that the
endpoint or DNS name supplied to Kubernetes is as reliable as necessary
for the application.

Running Reliable Singletons
The challenge of running storage solutions in Kubernetes is often that
primitives like ReplicaSet expect that every container is identical and
replaceable, but for most storage solutions this isn’t the case. One option to



address this is to use Kubernetes primitives, but not attempt to replicate the
storage. Instead, simply run a single Pod that runs the database or other
storage solution. In this way the challenges of running replicated storage in
Kubernetes don’t occur, since there is no replication.

At first blush, this might seem to run counter to the principles of building
reliable distributed systems, but in general, it is no less reliable than running
your database or storage infrastructure on a single virtual or physical
machine, which is how many people currently have built their systems.
Indeed, in reality, if you structure the system properly the only thing you are
sacrificing is potential downtime for upgrades or in case of machine failure.
While for large-scale or mission-critical systems this may not be acceptable,
for many smaller-scale applications this kind of limited downtime is a
reasonable trade-off for the reduced complexity. If this is not true for you,
feel free to skip this section and either import existing services as described
in the previous section, or move on to Kubernetes-native StatefulSets,
described in the following section. For everyone else, we’ll review how to
build reliable singletons for data storage.

Running a MySQL Singleton
In this section, we’ll describe how to run a reliable singleton instance of the
MySQL database as a Pod in Kubernetes, and how to expose that singleton
to other applications in the cluster.

To do this, we are going to create three basic objects:

A persistent volume to manage the lifespan of the on-disk storage
independently from the lifespan of the running MySQL application

A MySQL Pod that will run the MySQL application

A service that will expose this Pod to other containers in the cluster

In Chapter 4 we described persistent volumes, but a quick review makes
sense. A persistent volume is a storage location that has a lifetime
independent of any Pod or container. This is very useful in the case of



persistent storage solutions where the on-disk representation of a database
should survive even if the containers running the database application crash,
or move to different machines. If the application moves to a different
machine, the volume should move with it, and data should be preserved.
Separating the data storage out as a persistent volume makes this possible.

To begin, we’ll create a persistent volume for our MySQL database to use.
This example uses NFS for maximum portability, but Kubernetes supports
many different persistent volume drive types. For example, there are
persistent volume drivers for all major public cloud providers, as well as
many private cloud providers. To use these solutions, simply replace nfs
with the appropriate cloud provider volume type (e.g., azure,
awsElasticBlockStore, or gcePersistentDisk). In all cases,
this change is all you need. Kubernetes knows how to create the appropriate
storage disk in the respective cloud provider. This is a great example of how
Kubernetes simplifies the development of reliable distributed systems.

Example 12-4 shows the PersistentVolume object.

Example 12-4. nfs-volume.yaml
apiVersion: v1
kind: PersistentVolume
metadata: 
  name: database 
  labels: 
    volume: my-volume
spec: 
  accessModes: 
  - ReadWriteMany 
  capacity: 
    storage: 1Gi 
  nfs: 
    server: 192.168.0.1 
    path: "/exports"

This defines an NFS PersistentVolume object with 1 GB of storage
space.

We can create this persistent volume as usual with:

$ kubectl apply -f nfs-volume.yaml



Now that we have a persistent volume created, we need to claim that
persistent volume for our Pod. We do this with a
PersistentVolumeClaim object (Example 12-5).

Example 12-5. nfs-volume-claim.yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata: 
  name: database
spec: 
  accessModes: 
  - ReadWriteMany 
  resources: 
    requests: 
      storage: 1Gi 
  selector: 
    matchLabels: 
      volume: my-volume

The selector field uses labels to find the matching volume we defined
previously.

This kind of indirection may seem overly complicated, but it has a purpose
—it serves to isolate our Pod definition from our storage definition. You can
declare volumes directly inside a Pod specification, but this locks that Pod
specification to a particular volume provider (e.g., a specific public or
private cloud). By using volume claims, you can keep your Pod
specifications cloud-agnostic; simply create different volumes, specific to
the cloud, and use a PersistentVolumeClaim to bind them together.
Furthermore, in many cases, the persistent volume controller will actually
automatically create a volume for you—there are more details of this
process in the following section.

Now that we’ve claimed our volume, we can use a ReplicaSet to construct
our singleton Pod. It might seem odd that we are using a ReplicaSet to
manage a single Pod, but it is necessary for reliability. Remember that once
scheduled to a machine, a bare Pod is bound to that machine forever. If the
machine fails, then any Pods that are on that machine that are not being
managed by a higher-level controller like a ReplicaSet vanish along with
the machine and are not rescheduled elsewhere. Consequently, to ensure



that our database Pod is rescheduled in the presence of machine failures, we
use the higher-level ReplicaSet controller, with a replica size of one, to
manage our database (Example 12-6).

Example 12-6. mysql-replicaset.yaml
apiVersion: extensions/v1
kind: ReplicaSet
metadata: 
  name: mysql 
  # labels so that we can bind a Service to this Pod 
  labels: 
    app: mysql
spec: 
  replicas: 1 
  selector: 
    matchLabels: 
      app: mysql 
  template: 
    metadata: 
      labels: 
        app: mysql 
    spec: 
      containers: 
      - name: database 
        image: mysql 
        resources: 
          requests: 
            cpu: 1 
            memory: 2Gi 
        env: 
        # Environment variables are not a best practice for 
security, 
        # but we're using them here for brevity in the example. 
        # See Chapter 11 for better options. 
        - name: MYSQL_ROOT_PASSWORD 
          value: some-password-here 
        livenessProbe: 
          tcpSocket: 
            port: 3306 
        ports: 
        - containerPort: 3306 
        volumeMounts: 
          - name: database 
            # /var/lib/mysql is where MySQL stores its databases 
            mountPath: "/var/lib/mysql" 
      volumes: 



      - name: database 
        persistentVolumeClaim: 
          claimName: database

Once we create the ReplicaSet it will, in turn, create a Pod running MySQL
using the persistent disk we originally created. The final step is to expose
this as a Kubernetes service (Example 12-7).

Example 12-7. mysql-service.yaml
apiVersion: v1
kind: Service
metadata: 
  name: mysql
spec: 
  ports: 
  - port: 3306 
    protocol: TCP 
  selector: 
    app: mysql

Now we have a reliable singleton MySQL instance running in our cluster
and exposed as a service named mysql, which we can access at the full
domain name mysql.svc.default.cluster.

Similar instructions can be used for a variety of data stores, and if your
needs are simple and you can survive limited downtime in the face of a
machine failure or when you need to upgrade the database software, a
reliable singleton may be the right approach to storage for your application.

Dynamic Volume Provisioning
Many clusters also include dynamic volume provisioning. With dynamic
volume provisioning, the cluster operator creates one or more
StorageClass objects. Example 12-8 shows a default storage class that
automatically provisions disk objects on the Microsoft Azure platform.

Example 12-8. storageclass.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata: 
  name: default 
  annotations: 



    storageclass.beta.kubernetes.io/is-default-class: "true" 
  labels: 
    kubernetes.io/cluster-service: "true"
provisioner: kubernetes.io/azure-disk

Once a storage class has been created for a cluster, you can refer to this
storage class in your persistent volume claim, rather than referring to any
specific persistent volume. When the dynamic provisioner sees this storage
claim, it uses the appropriate volume driver to create the volume and bind it
to your persistent volume claim.

Example 12-9 shows an example of a PersistentVolumeClaim that
uses the default storage class we just defined to claim a newly created
persistent volume.

Example 12-9. dynamic-volume-claim.yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata: 
  name: my-claim 
  annotations: 
    volume.beta.kubernetes.io/storage-class: default
spec: 
  accessModes: 
  - ReadWriteOnce 
  resources: 
    requests: 
      storage: 10Gi

The volume.beta.kubernetes.io/storage-class annotation
is what links this claim back up to the storage class we created.



CAUTION
Automatic provisioning of a persistent volume is a great feature that makes it
significantly easier to build and manage stateful applications in Kubernetes. However,
the lifespan of these persistent volumes is dictated by the reclamation policy of the
PersistentVolumeClaim and the default is to bind that lifespan to the lifespan of
the Pod that creates the volume.

This means that if you happen to delete the Pod (e.g., via a scale-down or other event),
then the volume is deleted as well. While this may be what you want in certain
circumstances, you need to be careful to ensure that you don’t accidentally delete your
persistent volumes.

Persistent volumes are great for traditional applications that require storage,
but if you need to develop high-availability, scalable storage in a
Kubernetes-native fashion, the newly released StatefulSet object can be
used instead. We’ll describe how to deploy MongoDB using StatefulSets in
the next section.

Kubernetes-Native Storage with StatefulSets
When Kubernetes was first developed, there was a heavy emphasis on
homogeneity for all replicas in a replicated set. In this design, no replica
had an individual identity or configuration. It was up to the application
developer to determine a design that could establish this identity for their
application.

While this approach provides a great deal of isolation for the orchestration
system, it also makes it quite difficult to develop stateful applications. After
significant input from the community and a great deal of experimentation
with various existing stateful applications, StatefulSets were introduced in
Kubernetes version 1.5.

Properties of StatefulSets
StatefulSets are replicated groups of Pods, similar to ReplicaSets. But
unlike a ReplicaSet, they have certain unique properties:



Each replica gets a persistent hostname with a unique index (e.g.,
database-0, database-1, etc.).

Each replica is created in order from lowest to highest index, and
creation will block until the Pod at the previous index is healthy
and available. This also applies to scaling up.

When a StatefulSet is deleted, each of the managed replica Pods is
also deleted in order from highest to lowest. This also applies to
scaling down the number of replicas.

It turns out that this simple set of requirements makes it drastically easier to
deploy storage applications on Kubernetes. For example, the combination
of stable hostnames (e.g., database-0) and the ordering constraints
mean that all replicas, other than the first one, can reliably reference
database-0 for the purposes of discovery and establishing replication
quorum.

Manually Replicated MongoDB with StatefulSets
In this section, we’ll deploy a replicated MongoDB cluster. For now, the
replication setup itself will be done manually to give you a feel for how
StatefulSets work. Eventually we will automate this setup as well.

To start, we’ll create a replicated set of three MongoDB Pods using a
StatefulSet object (Example 12-10).

Example 12-10. mongo-simple.yaml
apiVersion: apps/v1
kind: StatefulSet
metadata: 
  name: mongo
spec: 
  serviceName: "mongo" 
  replicas: 3 
  selector: 
    matchLabels: 
      app: mongo 
  template: 
    metadata: 



      labels: 
        app: mongo 
    spec: 
      containers: 
      - name: mongodb 
        image: mongo:3.4.24 
        command: 
        - mongod 
        - --replSet 
        - rs0 
        ports: 
        - containerPort: 27017 
          name: peer

As you can see, the definition is similar to the ReplicaSet definitions we’ve
seen previously. The only changes are in the apiVersion and kind
fields.

Create the StatefulSet:

$ kubectl apply -f mongo-simple.yaml

Once created, the differences between a ReplicaSet and a StatefulSet
become apparent. Run kubectl get pods and you will likely see:

NAME      READY     STATUS            RESTARTS   AGE 
mongo-0   1/1       Running           0          1m 
mongo-1   0/1       ContainerCreating 0          10s

There are two important differences between this and what you would see
with a ReplicaSet. The first is that each replicated Pod has a numeric index
(0, 1, …), instead of the random suffix that is added by the ReplicaSet
controller. The second is that the Pods are being slowly created in order, not
all at once as they would be with a ReplicaSet.

Once the StatefulSet is created, we also need to create a “headless” service
to manage the DNS entries for the StatefulSet. In Kubernetes a service is
called “headless” if it doesn’t have a cluster virtual IP address. Since with
StatefulSets each Pod has a unique identity, it doesn’t really make sense to
have a load-balancing IP address for the replicated service. You can create a



headless service using clusterIP: None in the service specification
(Example 12-11).

Example 12-11. mongo-service.yaml
apiVersion: v1
kind: Service
metadata: 
  name: mongo
spec: 
  ports: 
  - port: 27017 
    name: peer 
  clusterIP: None 
  selector: 
    app: mongo

Once you create that service, there are usually four DNS entries that are
populated. As usual, mongo.default.svc.cluster.local is
created, but unlike with a standard service, doing a DNS lookup on this
hostname provides all the addresses in the StatefulSet. In addition, entries
are created for mongo-0 .mongo .default .svc .cluster .local as
well as mongo-1.mongo and mongo-2.mongo. Each of these resolves
to the specific IP address of the replica index in the StatefulSet. Thus, with
StatefulSets you get well-defined, persistent names for each replica in the
set. This is often very useful when you are configuring a replicated storage
solution. You can see these DNS entries in action by running the following
commands in one of the Mongo replicas:

$ kubectl run -it --rm --image busybox busybox ping mongo-1.mongo

Next, we’re going to manually set up Mongo replication using these per-
Pod hostnames.

We’ll choose mongo-0.mongo to be our initial primary. Run the mongo
tool in that Pod:

$ kubectl exec -it mongo-0 mongo 
> rs.initiate( { 
  _id: "rs0", 
  members:[ { _id: 0, host: "mongo-0.mongo:27017" } ] 



 }); 
 OK

This command tells mongodb to initiate the ReplicaSet rs0 with mongo-
0.mongo as the primary replica.

NOTE
The rs0 name is arbitrary. You can use whatever you’d like, but you’ll need to change
it in the mongo-simple.yaml StatefulSet definition as well.

Once you have initiated the Mongo ReplicaSet, you can add the remaining
replicas by running the following commands in the mongo tool on the
mongo-0.mongo Pod:

> rs.add("mongo-1.mongo:27017"); 
> rs.add("mongo-2.mongo:27017");

As you can see, we are using the replica-specific DNS names to add them
as replicas in our Mongo cluster. At this point, we’re done. Our replicated
MongoDB is up and running. But it’s really not as automated as we’d like it
to be—in the next section, we’ll see how to use scripts to automate the
setup.

Automating MongoDB Cluster Creation
To automate the deployment of our StatefulSet-based MongoDB cluster,
we’re going to add an additional container to our Pods to perform the
initialization.

To configure this Pod without having to build a new Docker image, we’re
going to use a ConfigMap to add a script into the existing MongoDB
image..

We are going to run this script using an initialization container.
Initialization containers (or “init” containers) are specialized containers that



run once at the startup of a Pod. They are generally used for cases like this
where there is a small amount of setup work that is useful to do before the
main application runs. In the Pod definition there is a separate
initContainers list where init containers can be defined. An example
of this is given below.

... 
      initContainers: 
      - name: init-mongo 
        image: mongo:3.4.24 
        command: 
        - bash 
        - /config/init.sh 
        volumeMounts: 
        - name: config 
          mountPath: /config 
 ... 
      volumes: 
      - name: config 
        configMap: 
          name: "mongo-init"

Note that it is mounting a ConfigMap volume whose name is mongo-
init. This ConfigMap holds a script that performs our initialization. First,
the script determines whether it is running on mongo-0 or not. If it is on
mongo-0, it creates the ReplicaSet using the same command we ran
imperatively previously. If it is on a different Mongo replica, it waits until
the ReplicaSet exists, and then it registers itself as a member of that
ReplicaSet.

Example 12-12 has the complete ConfigMap object.

Example 12-12. mongo-configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata: 
  name: mongo-init
data: 
  init.sh: | 
    #!/bin/bash 
 
    # Need to wait for the readiness health check to pass so that 



the 
    # mongo names resolve. This is kind of wonky. 
    until ping -c 1 ${HOSTNAME}.mongo; do 
      echo "waiting for DNS (${HOSTNAME}.mongo)..." 
      sleep 2 
    done 
 
    until /usr/bin/mongo --eval 'printjson(db.serverStatus())'; do 
      echo "connecting to local mongo..." 
      sleep 2 
    done 
    echo "connected to local." 
 
    HOST=mongo-0.mongo:27017 
 
    until /usr/bin/mongo --host=${HOST} --eval 
'printjson(db.serverStatus())'; do 
      echo "connecting to remote mongo..." 
      sleep 2 
    done 
    echo "connected to remote." 
 
    if [[ "${HOSTNAME}" != 'mongo-0' ]]; then 
      until /usr/bin/mongo --host=${HOST} --
eval="printjson(rs.status())" \ 
            | grep -v "no replset config has been received"; do 
        echo "waiting for replication set initialization" 
        sleep 2 
      done 
      echo "adding self to mongo-0" 
      /usr/bin/mongo --host=${HOST} \ 
         --eval="printjson(rs.add('${HOSTNAME}.mongo'))" 
    fi 
 
    if [[ "${HOSTNAME}" == 'mongo-0' ]]; then 
      echo "initializing replica set" 
      /usr/bin/mongo --eval="printjson(rs.initiate(\ 
          {'_id': 'rs0', 'members': [{'_id': 0, \ 
           'host': 'mongo-0.mongo:27017'}]}))" 
    fi 
    echo "initialized"

You’ll notice that this script immediately exits. This is important when
using initContainers. Each initialization container waits until the
previous container is done, before running. The main application container



waits until all of the initialization containers are done. If this script didn’t
exit, the main mongo server would never start up.

Putting it all together, Example 12-13 is the complete StatefulSet that uses
the ConfigMap.

Example 12-13. mongo.yaml
apiVersion: apps/v1
kind: StatefulSet
metadata: 
  name: mongo
spec: 
  serviceName: "mongo" 
  replicas: 3 
  selector: 
    matchLabels: 
      app: mongo 
  template: 
    metadata: 
      labels: 
        app: mongo 
    spec: 
      containers: 
      - name: mongodb 
        image: mongo:3.4.24 
        command: 
        - mongod 
        - --replSet 
        - rs0 
        ports: 
        - containerPort: 27017 
          name: web 
      # This container initializes the mongodb server, then sleeps. 
      - name: init-mongo 
        image: mongo:3.4.24 
        command: 
        - bash 
        - /config/init.sh 
        volumeMounts: 
        - name: config 
          mountPath: /config 
      volumes: 
      - name: config 
        configMap: 
          name: "mongo-init"



Given all of these files, you can create a Mongo cluster with:

$ kubectl apply -f mongo-config-map.yaml 
$ kubectl apply -f mongo-service.yaml 
$ kubectl apply -f mongo-simple.yaml

Or if you want, you can combine them all into a single YAML file where
the individual objects are separated by ---. Ensure that you keep the same
ordering, since the StatefulSet definition relies on the ConfigMap definition
existing.

Persistent Volumes and StatefulSets
For persistent storage, you need to mount a persistent volume into the
/data/db directory. In the Pod template, you need to update it to mount a
persistent volume claim to that directory:

... 
        volumeMounts: 
        - name: database 
          mountPath: /data/db

While this approach is similar to the one we saw with reliable singletons,
because the StatefulSet replicates more than one Pod you cannot simply
reference a persistent volume claim. Instead, you need to add a persistent
volume claim template. You can think of the claim template as being
identical to the Pod template, but instead of creating Pods, it creates volume
claims. You need to add the following onto the bottom of your StatefulSet
definition:

  volumeClaimTemplates: 
  - metadata: 
      name: database 
      annotations: 
        volume.alpha.kubernetes.io/storage-class: anything 
    spec: 
      accessModes: [ "ReadWriteOnce" ] 
      resources: 



        requests: 
          storage: 100Gi

When you add a volume claim template to a StatefulSet definition, each
time the StatefulSet controller creates a Pod that is part of the StatefulSet it
will create a persistent volume claim based on this template as part of that
Pod.

NOTE
In order for these replicated persistent volumes to work correctly, you either need to
have autoprovisioning set up for persistent volumes, or you need to prepopulate a
collection of persistent volume objects for the StatefulSet controller to draw from. If
there are no claims that can be created, the StatefulSet controller will not be able to
create the corresponding Pods.

One Final Thing: Readiness Probes
The final piece in productionizing our MongoDB cluster is to add liveness
checks to our Mongo-serving containers. As we learned in “Health
Checks”, the liveness probe is used to determine if a container is operating
correctly. For the liveness checks, we can use the mongo tool itself by
adding the following to the Pod template in the StatefulSet object:

... 
 livenessProbe: 
   exec: 
     command: 
     - /usr/bin/mongo 
     - --eval 
     - db.serverStatus() 
   initialDelaySeconds: 10 
   timeoutSeconds: 10 
 ...

Summary



Once we have combined StatefulSets, persistent volume claims, and
liveness probing, we have a hardened, scalable cloud-native MongoDB
installation running on Kubernetes. While this example dealt with
MongoDB, the steps for creating StatefulSets to manage other storage
solutions are quite similar and similar patterns can be followed.



Chapter 13. Accessing
Kubernetes from Common
Programming Languages

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 18th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

Though most of this book is dedicated to using declarative YAML
configurations either directly via kubectl or through tools like Helm,
there are situations when it is necessary to interact with the Kubernetes API
directly from a programming language. For example the authors of the
Helm tool itself needed to write that application in a programming
language. More generally this is common if you need to write some
additional tool, like a kubectl plugin, or a more complex piece of code,
like a Kubernetes operator.

While much of the Kubernetes ecosystem is written in the Go programming
language, and indeed the Go client for Kubernetes has the richest and most
extensive client. There are a high quality clients for most common
programming languages (and even some uncommon ones as well). Because
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there is so much documentation, code and examples of how to use the Go
client already out on the internet, this chapter will cover the basics of
interacting with the Kubernetes API server with examples in Python, Java
and C#.

The Kubernetes API: A client’s perspective
At the end of the day, the Kubernetes API server is just an HTTP(S) server
and that is exactly how each client library perceives it. Though each client
has a lot of additional logic that implements the various API calls and
serializes to and from JSON. Given this, you might be tempted to simply
use a plain HTTP client to work with the Kubernetes APIs, but the client
libraries wrap these various HTTP calls into meaningful APIs (e.g.
readNamespacedPod(...)) that make your code more readable, and
meaningful typed object-models (e.g. Deployment) which facilitate static
type-checking and therefor fewer bugs. Perhaps more importantly, the client
libraries also implement Kubernetes specific capabilities like loading
authorization information from a “Kubeconfig” file or from a Pod’s
environment. The clients also provide implementations of the non RESTful
parts of the Kubernetes API surface area like port-forward, logs and
watches. We’l describe these advanced capabilities in later sections.

OpenAPI and generated client libraries
The set of resources and functions in the Kubernetes API is huge. There are
many different resources in different api groups and many different
operations on each of these resources. Keeping up with all of these different
resources and resource versions would be a massive (and unmistakeably
boring) undertaking if developers had to hand-author all of these API calls.
Especially when considering that clients have to be hand-written across
each of the different programming languages. Instead the clients take a
different approach and the basics of interacting with the Kubernetes API
server are all generated by a computer program that is sort of like a
compiler in reverse. The code generator for the API clients takes a data



specification for the Kubernetes API and uses this specification to generate
a client for a specific languag.

The Kubernetes API is expressed in a format known as OpenAPI (or
previously as Swagger) which is the most common schema for representing
REST-ful APIs. To give you a sense of the size of the Kubernetes API, the
OpenAPI specification found on GitHub
(https://github.com/kubernetes/kubernetes/blob/master/api/openapi-
spec/swagger.json) is over four megabytes in size. That’s a pretty big text
file! The official Kubernetes client libraries are all generated using the same
core code generation logic, which can be found on GitHub at
https://github.com/kubernetes-client/gen. It is unlikely that you will actually
have to generate the client libraries yourself, but nonetheless it is useful to
understand the process by which these libraries are created. In particular,
because most of the client code is generated, updates and fixes can’t be
made directly in the generated client code, since it would be overwritten the
next time the API was generated. Instead, when an error in a client is found,
fixes need to be made to either the OpenAPI specification (if the error is in
the specification itself) or in the code generator (if the error is in the
generated code). Although this process can seem excessively complex, it is
the only way that a small number of Kubernetes client authors can keep up
with the breadth of the Kubernetes API.

But what about kubectl x ...?
When you start implementing your own logic for interacting with the
Kubernetes API, it probably won’t be long before you find yourself asking
how to do kubectl x. Most people start with the kubectl tool when
they begin learning Kubernetes and they consequently expect that there is a
1-1 mapping between the capabilities in kubectl and the Kubernetes API.
While it is the case that some commands (e.g. kubectl get pods) are
directly represented in the Kubernetes API. Most of the more sophisticated
features are actually a larger number of API calls with complex logic in the
kubectl tool.

https://github.com/kubernetes/kubernetes/blob/master/api/openapi-spec/swagger.json
https://github.com/kubernetes-client/gen


This balance between client side and server side features has been a design
trade-off since the beginning of Kubernetes. Many features that are now
present in the API server began as client side implementions in kubectl.
For example, the rollout capabilities now implemented on the server by the
Deployment resource were previously implemented in the client. Likewise
until very recently kubectl apply ... was only available within the
command line tool, but was migrated to the server as the server side apply
capabilities that will be discussed later in this chapter.

Despite the general trajectory towards server side implementations, there
are still significant capabilities which remain in the client. For these
capabilities, there has been significant work in some of the clients (e.g. the
io.kubernetes.client.extended.kubectl package in the Java
client) that attempt to emulate many of the kubectl capabilities.

If you can’t find the functionality that you are looking for in your client
library, a useful trick is to add the --v=10 flag to your kubectl
command which will turn on verbose logging including all of the HTTP
requests and responses sent to the Kubernetes API server. You can use this
logging to reconstruct much of what kubectl is doing. If you still need to
dig deeper, the kubectl source code is also available within the Kubernetes
repository.

Programming the Kubernetes API
Now you have a deeper perspective about how the Kubernetes API works
and the client and server interact. In the following sections we’ll go through
how to authenticated to the Kubernetes API server, interact with resources
and finally close with advanced topics from writing operators to interacting
with Pods for interactive operations.

Installing the client libraries
Before you can start programming with the Kubernetes API you need to
find the client libraries. We will be using the official client libraries



produced by the Kubernetes project itself, though there are also a number of
high-quality clients developed as independent projects. The client libraries
are all hosted under the kubernetes-client repository on Github:

Python

Java

Javascript

.NET

Each of these projects features a compatability matrix to show which
versions of the client work with which versions of the Kubernetes API and
also give instructions for installing the libraries using the package managers
(e.g. npm) associated with a particular programming language.

Authenticating to the Kubernetes API
The Kubernetes API server wouldn’t be very safe if it allowed anyone in
the world to access it and read or write the resources that it orchestrates.
Consequentally the first step in programming the Kubernetes API is
connecting to it and identifying yourself for authentication. Because the
API server is an HTTP server at it’s core, these methods of authentication
are core HTTP authentication methods. The very first implementations of
Kubernetes used basic HTTP authentication via a user and password
combination, but this approach has been deprecated in favor of more
modern authentication infrastructure.

If you have been using the kubectl command line tool for your interactions
with Kubernetes, you may not have considered the implementation details
of authentication. Fortunately the client libraries generally make it easy to
connect to the API. However, a basic understanding of how Kubernetes
authentication works is still useful for debugging when things go wrong.

There are two basic ways that the kubectl tool and clients obtain
authentication information: * From a “kubeconfig” file * From the context
of a Pod within the Kubernetes cluster.

https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/java
https://github.com/kubernetes-client/javascript
https://github.com/kubernetes-client/csharp


Code that is not running inside a Kubernetes cluster requires a “kubeconfig”
file to provide the necessary information for authentication. By default the
client searches for this file in ${HOME}/.kube/config or the
$KUBECONFIG environment variables. If the KUBECONFIG variable is
present it takes precedence over any config located in the default home
location. The kubeconfig file contains all of the information necessary to
access the Kubernetes API server. The clients all have easy to use calls to
create a client either from the default locations, or from a Kubeconfig file
supplied in the code itself:

Java

ApiClient client = Config.defaultClient();
Configuration.setDefaultApiClient(client);

Python

config.load_kube_config()

.NET

var config = KubernetesClientConfiguration.BuildDefaultConfig();
var client = new Kubernetes(config);

NOTE
Authentication for many cloud providers occurs via an external executable which knows
how to generate a token for the Kubernetes cluster. This executable is often installed as
part of the cloud providers command line tooling. When you write code to interact with
the Kubernetes API, you need to make sure that this executable is also available in the
context where the code is running so that it can be executed to obtain the token.

Within the context of a Pod in a Kubernetes cluster, the code running in the
Pod has access to a Kubernetes service account which is associated with
that Pod. The files containing the relevant token and certificate authority are
placed into the Pod by Kubernetes as a volume when the Pod is created and



within a Kubernetes cluster, the api server is always available at a fixed
DNS name, generally kubernetes. Because all of the necessary data is
present in the Pod a kubeconfig file is unnecessary and the client can
synthesisze it’s configuration from its context. The clients all have easy to
use calls to create such an “in cluster” client:

Java

ApiClient client = ClientBuilder.cluster().build();
Configuration.setDefaultApiClient(client);

Python

config.load_incluster_config()

.NET

var config = KubernetesClientConfiguration.InClusterConfig()
var client = new Kubernetes(config);

NOTE
The default service account associated with Pods has minimal roles (RBAC) granted to
it. This means that by default the code running in a Pod can’t do much with the
Kubernetes API. If you are getting authorization errors you may need to adjust the
service account to one that is specific to your code and has access to the necessary roles
in the cluster.

Accessing the Kubernetes API
The most common ways that people interact with the Kubernetes API is via
basic operations like creating, listing and deleting resources. Because all of
the clients are generated from the same OpenAPI specification they all
follow the same rough pattern. Before diving into the code, there are a
couple more details of the Kubernetes API that are necessary to understand.

The first is that in Kubernetes there is a distinction between “namespaced”
and “cluster” level resources. Namespaced resources exist within a



Kubernetes namespace, for example a Pod or Deployment may exist in the
kube-system namespace. Cluster-level resources exist once throughout
the entire cluster. The most obvious example of such a resource is a
Namespace, but other cluster-level resources include
CustomResourceDefinitions and ClusterRoleBindings. This distinction is
important because it is preserved in the function calls that you use to access
the resources. For example, to list pods in the default namespace in
Python you would write
api.list_namespaced_pods('default'). To list Namespaces
you would write api.list_namespaces().

The second concept you need to understand is an API group. In Kubernetes
all of the resources are grouped into different sets of APIs. This is largely
hidden from users of the kubectl tool, though you may have seen it
within the apiVersion field in a YAML specification of a Kubernetes
object. When programming against the Kubernetes API this grouping
becomes important, because often each API group has its own client for
interacting with that set of resources. For example, create a client to interact
with a Deployment resource (which exists in the “apps/v1” API group and
version) you create a new AppsV1Api() object which knows how to
interact with all resources in the apps/v1 API group and version. An
example of how to create a client for an API group is shown in the
following section.

Putting it all together: Listing & Creating Pods in Python,
Java and .NET
We’re now ready to actually write some code. First we begin by creating a
client object, then we use that to list the Pods in the “default” namespace,
here is code to do that in Python, Java and .NET.

Python

config.load_kube_config()
api = client.CoreV1Api()
pod_list = api.list_namespaced_pod('default')



Java

ApiClient client = Config.defaultClient();
Configuration.setDefaultApiClient(client);
CoreV1Api api = new CoreV1Api();
V1PodList list = api.listNamespacedPod("default");

.NET

var config = KubernetesClientConfiguration.BuildDefaultConfig();
var client = new Kubernetes(config);
var list = client.ListNamespacedPod("default");

Once you have figured out how to list, read and delete objects, the next
common task is creating new objects. The API call to create the object is
easy enough to figure out (e.g. create_namespaced_pod in Python),
but actually defining the new Pod resources can be more complicated.

Here’s how you create a Pod in Python, Java and .NET:

Python

container = client.V1Container( 
     name="myapp", 
     image="my_cool_image:v1", 
 ) 
 
 
pod = client.V1Pod( 
    metadata = client.V1ObjectMeta( 
      name="myapp", 
    ), 
    spec=client.V1PodSpec(containers=[container]),
)

Java

V1Pod pod = 
    new V1PodBuilder() 
        .withNewMetadata().withName("myapp").endMetadata() 
        .withNewSpec() 
          .addNewContainer() 



            .withName("myapp") 
            .withImage("my_cool_image:v1") 
          .endContainer() 
        .endSpec() 
        .build();

.NET

var pod = new V1Pod()
{ 
    Metadata = new V1ObjectMeta{ Name = "myapp", }, 
    Spec = new V1PodSpec 
    { 
        Containers = new[] { new V1Container() { Name = "myapp", 
Image = "my_cool_image:v1", }, }, 
    } 
 };

Creating & Patching objects
One thing that you will notice when you explore the client API for
Kubernetes is that there are seemingly three different ways to manipulate
resources, namely create, replace and patch. All three different
verbs represent slightly different semantics for interacting with resources.

Create

As you can tell from the name, creates a new resource. However, it will
fail if the resource already exists.

Replace

Replaces an existing resource completely, without looking at the
existing resource. When you use replace you have to specify a
complete resource.

Patch

Modifies an existing resource leaving untouched parts of the resource
the same as they were. When using patch you use a special patch



resource rather than sending the resource (e.g. the Pod) that you are
modifying.

NOTE
Patching a resource can be complicated. In many cases it is easier to just replace it.
However, in some cases, especially with large resources, patching the resource can be
much more efficient in terms of network bandwidth and API server processing.
Additionally, multiple different actors can patch different parts of the resource
simultaneously without worrying about write conflicts, which reduces overhead.

To patch a Kubernetes resource you have to create a Patch object
representing the change that you want to make to the resource. There are
three different formats for this patch supported by Kubernetes: “JSON
patch”, “JSON merge patch” and “strategic merge patch” The first two
patch formats are RFC standards used in other places, the third is a
Kubernetes developed patch format. Each of the patch formats has
advantages and disadvantages. In these examples we will use JSON Patch
because it is the simplest to understand.

Here’s how you patch a Deployment to increase the replicas to three:

Java

// JSON-patch format
static String jsonPatch = 
  "
[{\"op\":\"replace\",\"path\":\"/spec/replicas\",\"value\":3}]"; 
 
V1Deployment patched = 
          PatchUtils.patch( 
              V1Deployment.class, 
              () -> 
                  api.patchNamespacedDeploymentCall( 
                      "my-deployment", 
                      "some-namespace", 
                      new V1Patch(jsonPatchStr), 
                      null, 
                      null, 
                      null, 



                      null, 
                      null), 
              V1Patch.PATCH_FORMAT_JSON_PATCH, 
              api.getApiClient());

Python

deployment.spec.replicas = 3 
 
api_response = api_instance.patch_namespaced_deployment( 
    name="my-deployment", 
    namespace="some-namespace", 
    body=deployment)

.NET

var jsonPatch = @"
[{
    ""op"": ""replace"",
    ""path"": ""/spec/replicas"",
    ""value"": 3
}]"; 
 
client.PatchNamespacedPod(new V1Patch(patchStr, 
V1Patch.PatchType.JsonPatch), "my-deployment", "some-namespace");

In each of these code samples, the Deployment resource has been patched
to set the number of replicas in the deployment to three.

Watching Kubernetes APIs for changes
Resources in Kubernetes are declarative. They represent the desired state of
the system. To make that desired state a reality a program must watch the
desired state for changes and take action to make the current state of the
world match the desired state.

Because of this pattern, one of the most common tasks when programming
against the Kubernetes API is to watch for changes to a resource and then
take some action based on those changes. The easiest way to do this is
through polling. Polling simply calls the list function described above at a



constant interval (such as every 60 seconds) and enumerates all of the
resources that the code is interested in. While this code is easy to write, it
has numerous drawbacks for both the client code and the API server.
Polling introduces unnecessary latency, since waiting for the polling cycle
to come around introduces delays for changes that occur just after the
previous poll completed. Additionally, polling causes heavier load on the
API server, because it repeatedly returns resources that haven’t changed.
While many simple clients begin by using polling, to many clients polling
the API server can overload it and add latency.

To solve this problem the Kuberentes API also provides “watch” or event-
based semantics. Using a watch call, you can register interest in specific
changes with the API server and instead of repeatedly polling, the API
server will send notifications whenever a change occurs. In practicle terms,
the client performs a hanging GET to the HTTP API Server. The TCP
connection that underlies this HTTP request stays open for the duration of
the watch and the server writes a response to that stream (but does not close
the stream) whenever a change occurs.

From a programmatic perspective, Watch semantics enable event-based
programming, changing a while loop that repeatedly polls into a
collection of callbacks. Here are examples of watching Pods for changes:

Java

    ApiClient client = Config.defaultClient(); 
    CoreV1Api api = new CoreV1Api(); 
 
    Watch<V1Namespace> watch = 
        Watch.createWatch( 
            client, 
            api.listNamespacedPodCall( 
                "some-namespace", 
                null, 
                null, 
                null, 
                null, 
                null, 
                Integer.MAX_VALUE, 
                null, 



                null, 
                60, 
                Boolean.TRUE); 
            new TypeToken<Watch.Response<V1Pod>>() {}.getType()); 
 
    try { 
      for (Watch.Response<V1Pod> item : watch) { 
        System.out.printf("%s : %s%n", item.type, 
item.object.getMetadata().getName()); 
      } 
    } finally { 
      watch.close(); 
    }

Python

config.load_kube_config()
api = client.CoreV1Api()
w = watch.Watch() 
 
for event in w.stream(v1.list_namespaced_pods, "some-namespace"): 
  print(event)

.NET

var config = 
KubernetesClientConfiguration.BuildConfigFromConfigFile();
var client = new Kubernetes(config); 
 
var watch = 
client.ListNamespacedPodWithHttpMessagesAsync("default", watch: 
true);
using (watch.Watch<V1Pod, V1PodList>((type, item) =>
{ 
  Console.WriteLine(item);
}

In each of these examples, rather than a repetative polling loop, the watch
API call delivers each change to a resource to a callback provided by the
user. This both reduces latency and load on the Kubernetes API server.

Interacting with Pods



The Kubernetes API also provides functions for directly interacting with the
applications running in a Kubernetes Pod. The kubectl tool provides a
number of commands for interacting with Pods, namely logs, exec and
port-forward and it is possible to use each of these from within custom
code as well.

NOTE
Because the logs, exec and port-forward APIs are non-standard in a RESTful
sense, they require custom logic in the client libraries and are thus somewhat less
consistent between the different clients. Unfortunately there is no option other than
learning the implementation for each language.

When getting the logs for a Pod you have to decide if you are going to read
the pod logs to get a snapshot of their current state or if you are going to
stream them to receive new logs as they happen. If you stream the logs (the
equivalent of kubectl logs -f ...) then you create an open
connection to the API server and new log lines are written to this stream as
they are written to the pod. If not, you simply receive the current contents
of the logs.

Here’s how you both read and stream the logs:

Java

V1Pod pod = ...; // some code to define or get a Pod here
PodLogs logs = new PodLogs();
InputStream is = logs.streamNamespacedPodLog(pod);

Python

config.load_kube_config()
api = client.CoreV1Api()
log = api_instance.read_namespaced_pod_log(name="my-pod", 
namespace="some-namespace")

.NET



IKubernetes client = new Kubernetes(config);
var response = await 
client.ReadNamespacedPodLogWithHttpMessagesAsync( 
    "my-pod", "my-namespace", follow: true);
var stream = response.Body;

Another common task is to execute some command within a Pod and get
the output of running that task. You can use the kubectl exec ...
command on the command line. Under the hood the API that implements
this is creating a WebSocket connection to the API server. WebSockets
enable multiple streams of data (in this case stdin, stdout & stderr)
to co-exist on the same HTTP connection. If you’ve never had experience
with WebSockets before, don’t worry, the details of interacting with
WebSockets are handled by the client libraries.

Here’s how you exec the ls /foo command in a Pod:

Java

ApiClient client = Config.defaultClient();
Configuration.setDefaultApiClient(client);
Exec exec = new Exec();
final Process proc = 
  exec.exec("some-namespace", "my-pod", new String[] {"ls", 
"/foo"}, true, true /*tty*/);

Python

cmd = [ 'ls', '/foo' ]
response = stream( 
    api_instance.connect_get_namespaced_pod_exec, 
    "my-pod", 
    "some-namespace", 
    command=cmd, 
    stderr=True, 
    stdin=False, 
    stdout=True, 
    tty=False)

.NET



var config = 
KubernetesClientConfiguration.BuildConfigFromConfigFile();
IKubernetes client = new Kubernetes(config);
var webSocket = 
    await client.WebSocketNamespacedPodExecAsync("my-pod", "some-
namespace", "ls /foo", "my-container-name");
var demux = new StreamDemuxer(webSocket);
demux.Start();
var stream = demux.GetStream(1, 1);

In addition to running commands in a pod, you can also port-forward
network connections from a Pod to code running on the local machine. Like
exec, the port forwarded traffic goes over a WebSocket. It is up to your
code what it does with this port forwarded socket. You could simply send a
single request and receive a response as a string of bytes, or you could build
a complete proxy server (like what kubectl port-forward does) to
serve arbitrary requests through this proxy.

Regardless of what you intend to do with the connection, here’s how you
set up port-forwarding:

Java

PortForward fwd = new PortForward(); 
 
List<Integer> ports = new ArrayList<>();
int localPort = 8080;
int targetPort = 8080;
ports.add(targetPort);
final PortForward.PortForwardResult result = 
    fwd.forward("some-namespace", "my-pod", ports);

Python

pf = portforward( 
    api_instance.connect_get_namespaced_pod_portforward, 
    'my-pod', 'some-namespace', 
    ports='8080',
)

.NET



var config = 
KubernetesClientConfiguration.BuildConfigFromConfigFile();
IKubernetes client = new Kubernetes(config);
var webSocket = await 
client.WebSocketNamespacedPodPortForwardAsync("some-namespace", 
"my-pod", new int[] {8080}, "v4.channel.k8s.io");
var demux = new StreamDemuxer(webSocket, StreamType.PortForward);
demux.Start();
var stream = demux.GetStream((byte?)0, (byte?)0);

Each of these examples creates a connection for from port 8080 in a Pod to
port 8080 in your program. The code returns the byte-streams necessary
communicating across this port-forwarding channel. You can use these
streams for sending and receiving messages.

Conclusion
The Kubernetes API provides rich and powerful functionality for you to
write custom code. Writing your applications in the language that best suits
a task or a persona shares the power of the orchestration API with as many
Kubernetes users as possible. When you’re ready to move beyond scripting
calls to the kubectl executable, the Kubernetes client libraries provide a
way to dive deep into the API to build an operator, a monitoring agent, a
new user interface or what ever your imagination can dream up.



Chapter 14. Securing Pods

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 19th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

Providing a secure platform to run your workloads is critical for Kubernetes
to be broadly used in production. Thankfully, Kubernetes ships with many
different security focused APIs that allow you to construct a secure
operating environment. The challenge being there are many different
security APIs that you have to declaratively opt-in to using them. Using
these different security focused APIs can be cumbersome and convoluted
which makes it difficult to achieve your desired security goals. It’s
important to understand the following concepts when working with
securing Pods in Kubernetes, “defense in depth” and “principle of least
privilege”. Defense in depth is a concept where you utilize multiple layers
of security controls across your computing systems which include
Kubernetes. The principle of least privilege means giving your workloads
only access to resources that are required for it to operate. Both these
concepts are not destinations but instead are constatntly applied to the
everchanging computing system landscape. In this chapter we will take a
look at security focused Kubernetes APIs that can be incrementally applied
to help secure your workloads at the Pod level.



Understanding SecurityContext
At the core of securing Pods is SecurityContext which is an
aggregation of all security focused fields that may be applied at both the
Pod and container specification level. Here are some example security
controls covered by SecurityContext:

User permissions and access control. eg setting User ID and Group
ID

Read only root filesystem

Allow privilege escalation

Seccomp, AppArmor, and Selinux profile and label assignments

Run as privileged or unprivileged

Let’s take a look at an example Pod with a SecurityContext defined:

Example 14-1. kuard-pod-securitycontext.yaml
apiVersion: v1
kind: Pod
metadata: 
  name: kuard
spec: 
  securityContext: 
    runAsNonRoot: true 
    runAsUser: 1000 
    runAsGroup: 3000 
    fsGroup: 2000 
  containers: 
    - image: gcr.io/kuar-demo/kuard-amd64:blue 
      name: kuard 
      securityContext: 
          allowPrivilegeEscalation: false 
          readOnlyRootFilesystem: true 
          privileged: false 
      ports: 
        - containerPort: 8080 
          name: http 
          protocol: TCP



You can see in the example above that there is a SecurityContext at
both the Pod and the container level. Many of the security controls can be
applied at both the Pod and the container levels. In the case that they are
applied in both the container level configuration takes precedence. Let’s
take a look at fields we have defined in the Pod specification above and the
impact they have on securing your workload:

runAsNonRoot - The Pod or container must run as a non-root
user. The container will fail to start if it is running as a root user.
Running as a non-root user is considered best practice as many
misconfigurations and exploits happen via the container runtime
conflating the container process running as the root user with the
host root user. This can be set at both the
PodSecurityContext and the SecurityContext. The
kuard container image is configured to run as user nobody as
defined in the Dockerfile. It’s always best practice to run your
container as a non root user however if you are running a container
downloaded from another source that doesn’t explicitly set the
container user you may have to extend the original Dockerfile to
do so. This method doesn’t always work as the application may
have other requirements that needs to be considered.

runAsUser/runAsGroup - This setting overrides the user and
group that the container process is run as. Container images may
have this configured as part of the Dockerfile.

fsgroup - Configures Kubernetes to change the group of all files in
a volume when they are mounted into a Pod. An additional field
fsGroupChangePolicy may be used to configure the exact
behavior.

allowPrivilegeEscalation - configures whether a process in a
container can gain more privileges that it’s parent. This is a
common vector for attack and it’s important to explicitly set this to
false. It’s also important to understand that this will be set to true if
privileged: true.

https://github.com/kubernetes-up-and-running/kuard/blob/master/Dockerfile#L30


privileged - Runs the container as privileged which elevates the
container to the same permissions as the host.

readOnlyRootFilesystem - mounts the container root filesystem
to ready-only. This is a common attack vector and is best practice
to enable. Any data or logs that the workloads needs write access
to can be mounted via a volume.

The fields in the above example aren’t a complete list of all the security
controls available however they represent a good starting point when
working with SecurityContext. We will cover some more in context
later in this chapter.

Let’s now create the Pod by saving the example above to a file called
kuard-pod-securitycontext.yaml. We will demonstrate how the
SecurityContext configuration is being applied to a running Pod.
Create the Pod using the following command:

$ kubectl create -f kuard-pod-securitycontext.yaml 
pod/kuard created

Now we’ll start a shell inside the kuard container and check which user ID
and group ID the processes are running as.

$ kubectl exec -it kuard -- ash 
/ $ id 
uid=1000 gid=3000 groups=2000 
/ $ ps 
PID   USER     TIME  COMMAND 
    1 1000      0:00 /kuard 
   30 1000      0:00 ash 
   37 1000      0:00 ps 
/ $ touch file 
touch: file: Read-only file system

We can see that the shell that we started, ash, is running as user id (uid)
1000, group id (gid) 3000, and is in group 2000. We can also see that the
kuard process is running as user 1000 as defined by the
SecurityContext in the Pod specification. We also confirmed that we



aren’t able to create any new files as the container is ready-only. If you only
apply the following changes to you workloads you’re already off to a great
start.

We will now introduce several other security controls covered by
SecurityContext that enable even more fine grained control over what
access and privileges your workloads have. First we will introduce the
operating system level security controls and then how to configure them via
SecurityContext. It’s important to note that many of these controls are
host operating system dependent. This means that they may only apply to
containers running on Linux operating systems as opposed to other
supported Kubernetes operating systems like Windows. Here are a list of
the core set of operating system controls that are covered by
SecurityContext:

Capabilities - Allow either the addition or removal of groups of
privilege that may be required for a workload to operate. For
example your workload my configure the hosts’ network
configuration. Rather than configuring the Pod to be privileged
which is effectively host root access you could add the specific
capability to configure the host networking configuration
(NET_ADMIN is the specific capability name). This follows the
principal of least privilege.

AppArmor - controls which files processes can access. AppArmor
profiles can be applied to containers via the addition of an
annotation of
container.apparmor.security.beta.kubernetes.i
o/<container_name>: <profile_ref> to the Pod
specification. Acceptable values for the <profile ref>`
include runtime/default, localhost/<path to
profile>, or unconfined. The default is unconfined
which explicitly sets no profile to be applied.

Seccomp - Seccomp (Secure Computing) profiles allows the
creation of syscall filters. These filters allow specific syscalls to be



allowed or blocked which limits the surface area of the Linux
kernel that is exposed to the processes in the Pods.

SELinux - defines access controls for files and processes. SELinux
operators using labels that are grouped together to create a security
context (Not to be mistaken with a Kubernetes
SecurityContext) which is used to limit access to a process.
By default, Kubernetes allocates a random SELinux context for
each container however you may choose to set one via
SecurityContext.

NOTE
Both AppArmor and Seccomp have the ability to set the runtime default profile to be
used. Each container runtime ships with a default AppArmor and Seccomp profile that
has been carefully curated to reduce the attack surface area by removing syscalls and
file access they are known to be attack vectors or aren’t commonly used by applications.
These defaults are rarely workload impacting and offer a great starting point.

In order to demonstrate how these security controls are applied to a Pod we
are going to use a tool called amicontained “Am I contained” written by
Jess Frazelle. Save the following Pod sepcification to a file called
amicontained-pod.yaml. The first Pod has no SecurityContext applied
and will be used to show the what security controls are applied to a Pod by
default. Your output may look different as different Kubernetes distributions
and managed services provide different defaults.

Example 14-2. amicontained-pod.yaml
apiVersion: v1
kind: Pod
metadata: 
  name: amicontained
spec: 
  containers: 
    - image: r.j3ss.co/amicontained:v0.4.9 
      name: amicontained 
      command: [ "/bin/sh", "-c", "--" ] 
      args: [ "amicontained" ]

https://github.com/genuinetools/amicontained


Create the amicontainer Pod.

$ kubectl apply -f amicontained-pod.yaml 
pod/amicontained created

Let’s review the Pod logs to examine the output of the amicontained tool.

$ kubectl logs amicontained 
Container Runtime: kube 
Has Namespaces: 
 pid: true 
 user: false 
AppArmor Profile: docker-default (enforce) 
Capabilities: 
 BOUNDING -> chown dac_override fowner fsetid kill setgid 
setuid setpcap net_bind_service net_raw sys_chroot mknod 
audit_write setfcap 
Seccomp: disabled 
Blocked Syscalls (21): 
 SYSLOG SETPGID SETSID VHANGUP PIVOT_ROOT ACCT 
SETTIMEOFDAY UMOUNT2 SWAPON SWAPOFF REBOOT SETHOSTNAME 
SETDOMAINNAME INIT_MODULE DELETE_MODULE LOOKUP_DCOOKIE KEXEC_LOAD 
FANOTIFY_INIT OPEN_BY_HANDLE_AT FINIT_MODULE KEXEC_FILE_LOAD 
Looking for Docker.sock

From the output above we see that the AppArmor runtime default is being
applied. We also see the capabilities that are allowed by default along with
Seccomp being disabled. Finally, we see that a total of 21 syscalls are being
blocked by default. Now that we have a baseline, let’s apply Seccomp,
AppArmor, and Capabilities security controls to the Pod specification.
Create a file called amicontained-pod-securitycontext.yaml with the
following contents:

Example 14-3. amicontained-pod-securitycontext.yaml
apiVersion: v1
kind: Pod
metadata: 
  name: amicontained 
  annotations: 
    container.apparmor.security.beta.kubernetes.io/amicontained: 
"runtime/default"
spec: 



  securityContext: 
    runAsNonRoot: true 
    runAsUser: 1000 
    runAsGroup: 3000 
    fsGroup: 2000 
    seccompProfile: 
      type: RuntimeDefault 
  containers: 
    - image: r.j3ss.co/amicontained:v0.4.9 
      name: amicontained 
      command: [ "/bin/sh", "-c", "--" ] 
      args: [ "amicontained" ] 
      securityContext: 
        capabilities: 
            add: ["SYS_TIME"] 
            drop: ["NET_BIND_SERVICE"] 
        allowPrivilegeEscalation: false 
        readOnlyRootFilesystem: true 
        privileged: false

First, we need to delete the existing amicontained Pod.

$ kubectl delete pod amicontained 
pod "amicontained" deleted

Now we can create the new Pod with the SecurityContext applied.
We are specifically declaring that the runtime default AppArmor and
Seccomp profiles be applied. In addition, we have added and dropped a
Capability.

$ kubectl apply -f amicontained-pod-securitycontext.yaml 
pod/amicontained created

Let’s again review the Pod logs to examine the output of the amicontained
tool.

$ kubectl logs amicontained 
Container Runtime: kube 
Has Namespaces: 
 pid: true 
 user: false 
AppArmor Profile: docker-default (enforce) 
Capabilities: 



 BOUNDING -> chown dac_override fowner fsetid kill setgid 
setuid setpcap net_raw sys_chroot sys_time mknod audit_write 
setfcap 
Seccomp: filtering 
Blocked Syscalls (67): 
 SYSLOG SETUID SETGID SETPGID SETSID SETREUID SETREGID 
SETGROUPS SETRESUID SETRESGID USELIB USTAT SYSFS VHANGUP 
PIVOT_ROOT _SYSCTL ACCT SETTIMEOFDAY MOUNT UMOUNT2 SWAPON SWAPOFF 
REBOOT SETHOSTNAME SETDOMAINNAME IOPL IOPERM CREATE_MODULE 
INIT_MODULE DELETE_MODULE GET_KERNEL_SYMS QUERY_MODULE QUOTACTL 
NFSSERVCTL GETPMSG PUTPMSG AFS_SYSCALL TUXCALL SECURITY 
LOOKUP_DCOOKIE VSERVER MBIND SET_MEMPOLICY GET_MEMPOLICY 
KEXEC_LOAD ADD_KEY REQUEST_KEY KEYCTL MIGRATE_PAGES FUTIMESAT 
UNSHARE MOVE_PAGES PERF_EVENT_OPEN FANOTIFY_INIT 
NAME_TO_HANDLE_AT OPEN_BY_HANDLE_AT SETNS PROCESS_VM_READV 
PROCESS_VM_WRITEV KCMP FINIT_MODULE KEXEC_FILE_LOAD BPF 
USERFAULTFD PKEY_MPROTECT PKEY_ALLOC PKEY_FREE 
Looking for Docker.sock

This time we can again confirm that the runtime default (called docker-
default) AppArmor profile has been applied (same as the default). In the list
of Capabilities we see that net_bind_service is no longer in the list
and that sys_time has been added. The Seccomp status is now set to
filtering and 67 syscalls are now being block (increased from the default of
21).

SecurityContext Challenges
As you can see, you need to understand a lot of understanding needed in
order to use SecurityContext and it is not easy to apply a baseline set
of security controls by directly configuring all fields of every Pod. The
creation and management of AppArmor, Seccomp, and SELinux profiles
and contexts is no easy and is error prone. The cost of an error is breaking
the ability for an application to perform its function. There are several tools
out there which create a way to generate a Seccomp profile from a running
Pod which can then be applied using SecurityContext. One such
project is the Security Profiles Operator which makes it easy to generate
and manage Seccomp profiles. We will now take a look at other security

https://github.com/kubernetes-sigs/security-profiles-operator


APIs that make the management of how SecurityContext is applied
consistently across a cluster.

Pod Security Admission
Now that we’ve taken a look at SecurityContext as a way to manage
security controls applied to Pods and containers, we will now cover how to
make sure that a set of SecurityContext values are applied at scale.
Kubernetes has a now deprecated Pod Security Policy (PSP) API which
enabled both validation and mutation. Validation will not allow the creation
of Kubernetes resources unless they have a specific SecurityContext
applied. Mutation on the other hand will change Kubernetes resources and
apply a specific SecurityContext based on criteria applied via the Pod
Security Policy. Given that PSP is deprecated and will be removed in
Kubernetes v1.25 we will not cover it in depth but will instead cover it’s
successor, Pod Security Admission. One of the main differences between
Pod Security Admission and it’s predecessor PSP is Pod Security
Admission only performs validation and not mutation. If you want to learn
more about mutation then we encourage you to take a look at chapter 21.

What is Pod Security Admission?
Pod Security Admission allows you to declare different security profiles to
Pods. These security profiles are known as Pod Security Standards and are
applied at the namespace level. Pod Security Standards are a collection of
security sensitive fields in a Pod specification (including but not limited to
SecurityContext) and their associated values. There are three different
standards that range from restricted to permissive. The idea is that you can
apply a general security posture to all Pods in a given namespace. The three
Pod Security Standards are as follows:

Baseline - Most common privilege escalation while enabling easier
onboarding.



Restricted - Highly restricted covering security best practices.
May cause workloads to break.

Privileged - open and unrestricted.

Example 14-4.

Pod Security Admission is currently and alpha feature as of Kubernetes
v1.22 and needs to be explicitly enabled on a Kubernetes cluster to use.
Kubernetes features that are in alpha aren’t typically enabled by public
cloud managed Kubernetes offerings for stability reasons. You should
consult your Kubernetes distribution or service providers’ documentation to
see if alpha features can be enabled. The API is also subject to change when
the feature is in alpha so these commands many change but the concept the
feature enables will be consistent.

Each Pod Security Standard defines a list of fields in the Pod specification
and their allowed values. Here are some fields that are covered by these
standards:

spec.securityContext

spec.containers[*].securityContext

spec.containers[*].ports

spec.volumes[*].hostPath

You can view the complete list of fields covered by each Pod Security
Standard on the offical documentation.

Each standard is applied to a namespace using a given mode. There are
three different modes a policy may be applied. They are as follows:

Enforce - Any Pods that violate the policy will be denied

Warn - Any Pods that violate the policy will be allowed and a
warning message will be displayed to the user

https://kubernetes.io/docs/concepts/security/pod-security-standards/


Audit - Any Pods that violate the policy will generate an audit
message in the audit log

Apply Pod Security Standards
Pod Security Standards are applied to a namespace using labels. The labels
are as follows:

pod-security.kubernetes.io/<MODE>: <LEVEL>
REQUIRED

pod-security.kubernetes.io/<MODE>-version:
<VERSION> OPTIONAL (defaults to latest)

The following namespace illustrates how you may use multiple modes to
enforce at one standard (baseline in this example) and audit and warn at
another (restricted). Using multiple modes allows you to deploy a policy
with a lower security posture and audit which workloads violate a standard
with a more restricted policy. You can then remediate the policy violations
before enforcing the more restricted standard. You can also pin a mode to a
specific version eg. v1.22. This allows the policy standards to change with
each Kubernetes release and allow you to pin a specific version. In the
example below we are enforcing the baseline standard and both warning
and auditing the restricted standard. All modes are pinned to the v1.22
version of the standard.

Example 14-5. baseline-ns.yaml
apiVersion: v1
kind: Namespace
metadata: 
  name: baseline-ns 
  labels: 
    pod-security.kubernetes.io/enforce: baseline 
    pod-security.kubernetes.io/enforce-version: v1.22 
 
    pod-security.kubernetes.io/audit: restricted 
    pod-security.kubernetes.io/audit-version: v1.22 
    pod-security.kubernetes.io/warn: restricted 
    pod-security.kubernetes.io/warn-version: v1.22



Deploying policy for the first time can be a daunting task. Thankfully Pod
Security Admission has made it easier to see which existing workloads
violate a Pod Security Standard with a single dry-run command.

$ kubectl label --dry-run=server --overwrite ns --all pod-
security.kubernetes.io/enforce=baseline 
Warning: kuard: privileged 
namespace/default labeled 
namespace/kube-node-lease labeled 
namespace/kube-public labeled 
Warning: kube-proxy-vxjwb: host namespaces, hostPath volumes, 
privileged 
Warning: kube-proxy-zxqzz: host namespaces, hostPath volumes, 
privileged 
Warning: kube-apiserver-kind-control-plane: host namespaces, 
hostPath volumes 
Warning: etcd-kind-control-plane: host namespaces, hostPath 
volumes 
Warning: kube-controller-manager-kind-control-plane: host 
namespaces, hostPath volumes 
Warning: kube-scheduler-kind-control-plane: host namespaces, 
hostPath volumes 
namespace/kube-system labeled 
namespace/local-path-storage labeled

The command above evaluates all Pods on a Kubernetes cluster agains the
baseline Pod Security Standard and reports violations as warning messages
in the output.

Let’s see Pod Security Admission in action. Create a file called baseline-
ns.yaml with the following content.

Example 14-6. baseline-ns.yaml
apiVersion: v1
kind: Namespace
metadata: 
  name: baseline-ns 
  labels: 
    pod-security.kubernetes.io/enforce: baseline 
    pod-security.kubernetes.io/enforce-version: v1.22 
 
    pod-security.kubernetes.io/audit: restricted 
    pod-security.kubernetes.io/audit-version: v1.22 



    pod-security.kubernetes.io/warn: restricted 
    pod-security.kubernetes.io/warn-version: v1.22

$ kubectl apply -f baseline-ns.yaml 
namespace/baseline-ns created

Create a file called kuard-pod.yaml with the following content:

Example 14-7. kuard-pod.yaml
apiVersion: v1
kind: Pod
metadata: 
  name: kuard 
  labels: 
    app: kuard
spec: 
  containers: 
    - image: gcr.io/kuar-demo/kuard-amd64:blue 
      name: kuard 
      ports: 
        - containerPort: 8080 
          name: http 
          protocol: TCP

Create the Pod and review the output with the following command:

$ kubectl apply -f kuard-pod.yaml --namespace baseline-ns 
Warning: would violate "v1.22" version of "restricted" 
PodSecurity profile: allowPrivilegeEscalation != false (container 
"kuard" must set securityContext.allowPrivilegeEscalation=false), 
unrestricted capabilities (container "kuard" must set 
securityContext.capabilities.drop=["ALL"]), runAsNonRoot != true 
(pod or container "kuard" must set 
securityContext.runAsNonRoot=true), seccompProfile (pod or 
container "kuard" must set securityContext.seccompProfile.type to 
"RuntimeDefault" or "Localhost") 
pod/kuard created

In the output above you can see that the pod was successfully created
however it violated the restricted Pod Security Standard and the details of
the violations are provided in the output so that you can remediate. We can
also see the message in the api server audit log because we configured the
audit mode



{"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata"
,"auditID":"b1950de2-a3c8-4454-bde8-
269ee2692665","stage":"ResponseComplete","requestURI":"/api/v1/na
mespaces/baseline-ns/pods?fieldManager=kubectl-client-side-
apply","verb":"create","user":{"username":"kubernetes-
admin","groups":
["system:masters","system:authenticated"]},"sourceIPs":
["172.18.0.1"],"userAgent":"kubectl/v1.22.1 (darwin/amd64) 
kubernetes/632ed30","objectRef":
{"resource":"pods","namespace":"baseline-
ns","name":"kuard","apiVersion":"v1"},"responseStatus":
{"metadata":{},"code":201},"requestReceivedTimestamp":"2021-09-
03T04:29:15.481133Z","stageTimestamp":"2021-09-
03T04:29:15.497475Z","annotations":
{"authorization.k8s.io/decision":"allow","authorization.k8s.io/re
ason":"","pod-
security.kubernetes.io/audit":"allowPrivilegeEscalation != false 
(container \"kuard\" must set 
securityContext.allowPrivilegeEscalation=false), unrestricted 
capabilities (container \"kuard\" must set 
securityContext.capabilities.drop=[\"ALL\"]), runAsNonRoot != 
true (pod or container \"kuard\" must set 
securityContext.runAsNonRoot=true), seccompProfile (pod or 
container \"kuard\" must set securityContext.seccompProfile.type 
to \"RuntimeDefault\" or \"Localhost\")"}}

Pod Security Admission is a great way to manage the security posture of
your workloads by applying policy at the namespace level and only
allowing Pods to be created if they don’t violate the policy. It’s flexible and
offers different prebuilt policies from permissive to restricted along with
tooling to easy rolling out policy changes without the risk of breaking
workloads.

Service Account Management
Service accounts are Kubernetes resources that provide an identity to
workloads that run inside Pods. RBAC can be applied to service accounts to
control what resources via the Kubernetes API the identity has access to.
Please see the RBAC chapter to learn more. If your application doesn’t
require access to the Kubernetes API you should disable access following
least privilege principal. By default, Kubernetes creates a default service



account in each namespace which is automatically set as the service account
for all Pods. This service account contains a token that is automounted in
each Pod and is used to access the Kubernetes API. To disable this
behavior, you must add automountServiceAccountToken:
false to the service account configuration. Example 14-8 demonstrates
how this can be done for the default service account. This must be done in
each namespace.

Example 14-8. service-account.yaml
apiVersion: v1
kind: ServiceAccount
metadata: 
  name: default
automountServiceAccountToken: false

Service accounts are often overlooked when considering Pod security
however they allow direct access to the Kubernetes API and without
adequate RBAC could allow an attacker access to Kubernetes. It’s
important to understand how to limit access by making a simple change to
how service accounts tokens are handled.

Role Based Access Control
We would be remiss not to mention Kubernetes Role Based Access Control
(RBAC) in a chapter about securing Pods. Everything you need to know
about RBAC can be found in the RBAC chapter and can be applied to
compliment you workload’s security posture.

RuntimeClass
Kubernetes interacts with the container runtime on the node’s operating
system via the Container Runtime Interface (CRI). The creation and
standardization of this interface has allowed for an ecosystem of container
runtimes to exist. These container runtimes may offer different levels of
isolation which include stronger security guarantees based on how they are
implemented. Projects like Kata containers, Firecracker, and gVisor are



based on different isolation mechanisms from nested virtualization to more
sophisticated syscall filtering. These security and isolation guarantees
provide a Kubernetes administrator the flexibility to allow users to select a
container runtime based on their workload type. For example, if you
workload needs stronger security guarantees then you can choose to run in a
Pod that uses a different container runtime.

The RuntimeClass API was introduced allow container runtime
selection. It allows users to select one of a supported list of container
runtimes in the cluster. Figure 14-1 depicts how RuntimeClass functions



Figure 14-1. RuntimeClass flow diagram



NOTE
Different RuntimeClass must be configured by a cluster administrator and may
required specific nodeSelectors or tolerations on your workload in order to
be scheduled to the correct node.

You can use a RuntimeClass by specifying runtimeClassName in
the Pod specification. Example 14-9 is an example Pod that specifies a
RuntimeClass.

Example 14-9. kuard-pod-runtimeclass.yaml
apiVersion: v1
kind: Pod
metadata: 
  name: kuard 
  labels: 
    app: kuard
spec: 
  runtimeClassName: firecracker 
  containers: 
    - image: gcr.io/kuar-demo/kuard-amd64:blue 
      name: kuard 
      ports: 
        - containerPort: 8080 
          name: http 
          protocol: TCP

RuntimeClass allows users to select different container runtimes that may
have different security isolation. Using RuntimeClass can help
compliment the overall security of your workloads especially if workloads
are processing sensitive information or run untrusted code.

Network Policy
Kubernetes also has a NetworkPolicy API that allows you to create
both ingress and egress network policies for your workload. Network
policies are configured using labels which allow you to select specific Pods
and define how they can communicate with other Pods and endpoints.



NetworkPolicy like Ingress doesn’t actually ship with an associated
Kubernetes controller. This means that you can create NetworkPolicy
resources but if you haven’t installed a controller that acts upon the creation
of NetworkPolicy resources then they will not be enforced.
NetworkPolicy resources are implemented by network plugins. Some
example network plugins include Calico, Cilium, and Weave Net.

The NetworkPolicy resource is namespaced and is structured with the
podSelector, policyTypes, ingress, and egress sections with
the only required field being podSelector. If the podSelector field
is empty the policy matches all Pods in a namespace. This field may also
contain a matchLabels section which functions the in the same way as a
Service resource allowing you to add a set of labels to match a specific set
of Pods.

There are several idiosyncrasies when using NetworkPolicy that you
need to be aware of. If a Pod is matched by any NetworkPolicy
resource then any ingress or egress communication must be explicitly
defined, otherwise it will be blocked. If a Pod matches multiple
NetworkPolicy resources then the policies are additive. If a Pod isn’t
matched by any NetworkPolicy then traffic is allowed. This decision
was intentionally made to ease onboarding of new workloads. If you do
however want all traffic to be blocked by default you can create a default
deny rule per namespace. Example 14-10 is an example default deny rule
that can be applied per namespace.

Example 14-10. networkpolicy-default-deny.yaml
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata: 
  name: default-deny-ingress
spec: 
  podSelector: {} 
  policyTypes: 
  - Ingress

The ingress and egress sections are a list of rules composed of
podSelectors, NamespaceSelectors, network address ranges, port



ranges, and protocols which allow you to filter the source (for ingress) or
destination (for egress) you want to allow. If these sections are explicitly
defined then it’s a default deny. The policyTypes field connects which
direction ingress or egress to apply the rules. There is some defaulting
if this is left blank however we suggest being explicit so that the behavior is
predictable and is in line with declarative configuration.

Let’s walk through an example set of network policies to demonstrate how
you can use them to secure your workloads. First, create a namespace to test
using the following command:

$ kubectl create ns kuard-networkpolicy 
namespace/kuard-networkpolicy created

Create a file named kuard-pod.yaml with the following contents:

Example 14-11. kuard-pod.yaml
apiVersion: v1
kind: Pod
metadata: 
  name: kuard 
  labels: 
    app: kuard
spec: 
  containers: 
    - image: gcr.io/kuar-demo/kuard-amd64:blue 
      name: kuard 
      ports: 
        - containerPort: 8080 
          name: http 
          protocol: TCP

Create the kuard Pod in the kuard-networkpolicy namespace.

$ kubectl apply -f kuard-pod.yaml --namespace kuard-networkpolicy 
pod/kuard created

Expose the kuard Pod as a service.

$ kubectl expose pod kuard --port=80 --target-port=8080 --
namespace kuard-networkpolicy 



pod/kuard created

Now we can use kubectl run to spin up a Pod to test as our source and test
access to the kuard Pod without applying any NetworkPolicy.

$ kubectl run test-source --rm -ti --image busybox /bin/sh --
namespace kuard-networkpolicy 
If you don't see a command prompt, try pressing enter. 
/ # wget -q kuard -O - 
<!doctype html> 
 
<html lang="en"> 
<head> 
  <meta charset="utf-8"> 
 
  <title><KUAR Demo></title> 
... 

We can successfully connect to the kuard Pod from our test-source Pod.
Now let’s apply a default deny policy and test again. Create a file called
networkpolicy-default-deny.yaml with the following contents.

Example 14-12. networkpolicy-default-deny.yaml
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata: 
  name: default-deny-ingress
spec: 
  podSelector: {} 
  policyTypes: 
  - Ingress

Now apply the default deny network policy.

$ kubectl apply -f networkpolicy-default-deny.yaml --namespace 
kuard-networkpolicy 
networkpolicy.networking.k8s.io/default-deny-ingress created

Now let’s test access to the kuard Pod from the test-source Pod.

$ kubectl run test-source --rm -ti --image busybox /bin/sh --
namespace kuard-networkpolicy 



If you don't see a command prompt, try pressing enter. 
/ # wget -q --timeout=5 kuard -O - 
wget: download timed out 

We can no longer access the kuard pod from the test-source Pod due to the
default deny NetworkPolicy. Create a NetworkPolicy that allows
access from the test-source to the kuard Pod. Create a file called
networkpolicy-kuard-allow-test-source.yaml with the following contents.

Example 14-13. networkpolicy-kuard-allow-test-source.yaml
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata: 
  name: access-kuard
spec: 
  podSelector: 
    matchLabels: 
      app: kuard 
  ingress: 
    - from: 
      - podSelector: 
          matchLabels: 
            run: test-source

Apply the NetworkPolicy.

$ kubectl apply -f code/chapter-security/networkpolicy-kuard-
allow-test-source.yaml --namespace kuard-networkpolicy 
networkpolicy.networking.k8s.io/access-kuard created

Again, verify that the test-source Pod can indeed access the kuard Pod.

$ kubectl run test-source --rm -ti --image busybox /bin/sh --
namespace kuard-networkpolicy 
If you don't see a command prompt, try pressing enter. 
/ # wget -q kuard -O - 
<!doctype html> 
 
<html lang="en"> 
<head> 
  <meta charset="utf-8"> 
 



  <title><KUAR Demo></title> 
... 

Clean up the namespace by running the following command.

$ kubectl delete namespace kuard-networkpolicy 
namespace "kuard-networkpolicy" deleted

Applying NetworkPolicy provides and extra layer of security for you
workloads and continue to builds on the defense in depth and principle of
least privilege concepts.

Service Mesh
Service Mesh can also be used to increase your workloads security posture.
Service meshes offer both access policies which allow the configuration of
protocol aware policies based on services. For example, your access policy
might declare that ServiceA and connect to ServiceB via HTTPS on port
443. In addition, service meshes typically implement mutual TLS on all
service to service communication which means that not only is the
communication encrypted but the service identities are also verified. If you
would like to learn more about service meshes and how they can be used to
secure your workloads please checkout the Service Mesh chapter.

Security Benchmark tools
There are several open source tools that allow you to run a suite of security
benchmarks against your Kubernetes cluster to determine if your
configuration meets a predefined set of security baselines. Once such tool is
called kube-bench. Kube-bench can be used to run the CIS Benchmarks for
Kubernetes. Tools like Kube-bench running the CIS Benchmarks aren’t
specifically focused on Pod security however they can certainly expose any
cluster misconfigurations and help identify remediations. Kube-bench can
be run using the following command:

https://github.com/aquasecurity/kube-bench
https://www.cisecurity.org/benchmark/kubernetes/


$ kubectl apply -f 
https://raw.githubusercontent.com/aquasecurity/kube-
bench/main/job.yaml 
job.batch/kube-bench created

You can then review the benchmark output and remediations via the Pod
logs.

$ kubectl logs job/kube-bench 
[INFO] 4 Worker Node Security Configuration 
[INFO] 4.1 Worker Node Configuration Files 
[PASS] 4.1.1 Ensure that the kubelet service file permissions are 
set to 644 or more restrictive (Automated) 
[PASS] 4.1.2 Ensure that the kubelet service file ownership is 
set to root:root (Automated) 
[PASS] 4.1.3 If proxy kubeconfig file exists ensure permissions 
are set to 644 or more restrictive (Manual) 
[PASS] 4.1.4 Ensure that the proxy kubeconfig file ownership is 
set to root:root (Manual) 
[PASS] 4.1.5 Ensure that the --kubeconfig kubelet.conf file 
permissions are set to 644 or more restrictive (Automated) 
[PASS] 4.1.6 Ensure that the --kubeconfig kubelet.conf file 
ownership is set to root:root (Manual) 
[PASS] 4.1.7 Ensure that the certificate authorities file 
permissions are set to 644 or more restrictive (Manual) 
[PASS] 4.1.8 Ensure that the client certificate authorities file 
ownership is set to root:root (Manual) 
[PASS] 4.1.9 Ensure that the kubelet --config configuration file 
has permissions set to 644 or more restrictive (Automated) 
[PASS] 4.1.10 Ensure that the kubelet --config configuration file 
ownership is set to root:root (Automated) 
[INFO] 4.2 Kubelet 
[PASS] 4.2.1 Ensure that the anonymous-auth argument is set to 
false (Automated) 
[PASS] 4.2.2 Ensure that the --authorization-mode argument is not 
set to AlwaysAllow (Automated) 
[PASS] 4.2.3 Ensure that the --client-ca-file argument is set as 
appropriate (Automated) 
[PASS] 4.2.4 Ensure that the --read-only-port argument is set to 
0 (Manual) 
[PASS] 4.2.5 Ensure that the --streaming-connection-idle-timeout 
argument is not set to 0 (Manual) 
[FAIL] 4.2.6 Ensure that the --protect-kernel-defaults argument 
is set to true (Automated) 
[PASS] 4.2.7 Ensure that the --make-iptables-util-chains argument 
is set to true (Automated) 



[PASS] 4.2.8 Ensure that the --hostname-override argument is not 
set (Manual) 
[WARN] 4.2.9 Ensure that the --event-qps argument is set to 0 or 
a level which ensures appropriate event capture (Manual) 
[WARN] 4.2.10 Ensure that the --tls-cert-file and --tls-private-
key-file arguments are set as appropriate (Manual) 
[PASS] 4.2.11 Ensure that the --rotate-certificates argument is 
not set to false (Manual) 
[PASS] 4.2.12 Verify that the RotateKubeletServerCertificate 
argument is set to true (Manual) 
[WARN] 4.2.13 Ensure that the Kubelet only makes use of Strong 
Cryptographic Ciphers (Manual) 
 
== Remediations node == 
4.2.6 If using a Kubelet config file, edit the file to set 
protectKernelDefaults: true. 
If using command line arguments, edit the kubelet service file 
/etc/systemd/system/kubelet.service.d/10-kubeadm.conf on each 
worker node and 
set the below parameter in KUBELET_SYSTEM_PODS_ARGS variable. 
--protect-kernel-defaults=true 
Based on your system, restart the kubelet service. For example: 
systemctl daemon-reload 
systemctl restart kubelet.service 
 
4.2.9 If using a Kubelet config file, edit the file to set 
eventRecordQPS: to an appropriate level. 
If using command line arguments, edit the kubelet service file 
/etc/systemd/system/kubelet.service.d/10-kubeadm.conf on each 
worker node and 
set the below parameter in KUBELET_SYSTEM_PODS_ARGS variable. 
Based on your system, restart the kubelet service. For example: 
systemctl daemon-reload 
systemctl restart kubelet.service 
... 

Using tools like Kube-bench with the CIS benchmarks can help identify if
your Kubernetes cluster meets a security baseline and provide remediations
if needed.

Summary
In this chapter we covered many different security focused APIs and
resources that can be composed to improve the security posture of your



workloads. By practicing defense in depth and principle of least privilege
you can incrementally improve the baseline security of your Kubernetes
cluster. It’s never too late to start practicing better security and this chapter
provides everything you need to be confident that you have an
understanding of the security controls Kubernetes offers.



Chapter 15. Policy and
Governance for Kubernetes
Clusters

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 20th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

Throughout this book we have introduced many different Kubernetes
resource types, each with a specific purpose. It doesn’t take long before the
resources on a Kubernetes cluster go from several, for a single microservice
application, to hundreds and thousands, for a complete distributed
application. In the context of a production cluster it isn’t hard to imagine the
challenges associated with managing thousands of resources.

In this chapter we introduce the concepts of policy and governance. Policy
is a set of contraints and conditions for how Kubernetes resources can be
configured. Governance provides the ability to verify and enforce
organizational policies for all resources deployed to a Kubernetes cluster,
such as ensuring all resources utilize current best practices, comply with
security policy, or adhere to company conventions. Whatever your case may

mailto:sgrey@oreilly.com


be, your tooling needs to be flexible and scalable so that all resources
defined on a cluster comply with your organization’s defined policies.

Why Policy and Governance Matter
There are many different types of policies in Kubernetes. For example,
NetworkPolicy allows you to specify what network services and
endpoints a Pod can connect to. PodSecurityPolicy enables fine-
grained control over the security elements of a Pod. Both configure network
or container runtime.

However, you might event want to enforce policy before Kubernetes
resources are even created. This is the problem policy and governance
solve. At this point, you might be thinking, “Isn’t this what Role-Based
Access Control does?”. However, as you’ll see in this chapter, RBAC isn’t
granular enough to restrict specific fields within resources from being set.

Here are some common examples of policies that cluster administrators
often configure:

All containers MUST only come from a specific container registry.

All Pods MUST be labelled with the department name and contact
information.

All Pods MUST have both CPU and memory resource limits set.

All Ingress hostnames must be unique across a cluster.

A certain service MUST not be made available on the Internet.

Containers MUST not listen on privileged ports.

Cluster administrators may also want to audit existing resources on a
cluster, perform dry-run policy evaluations, or even mutate a resource based
on a set of conditions --for example, applying labels to a Pod if they aren’t
present.



It’s very important for cluster administrators to be able to define policy and
perform compliance audits without interfering with the developers’ ability
to deploy applications to Kubernetes. If developers are creating non
compliant resources, you need a system to make sure they get the feedback
and remediation they need to bring their work into compliance.

Let’s take a look at how to achieve policy and governance by leveraging
core extensibility components of Kubernetes.

Admission Flow
To understand how policy and governance ensures resources are compliant
before they are created your Kubernetes cluster, you must first understand
the request flow through the Kubernetes API server. Figure 15-1 depicts the
flow of an API request through the API server. Here, we’ll focus on
mutating admission, validating admission, and webhooks.



Figure 15-1. API Request flow through the Kuberenetes API

Admission controllers operate inline as an API request flows through the
Kubernetes API server and are used to either mutate or validate the API
request resource before it’s saved to storage. Mutating admission controllers
allow the resource to be modified; validating admission controllers do not.
There are many different types of admission controllers; this chapter
focuses on admission webhooks, which are dynamically configurable. They
allow a cluster administrator to configure an endpoint for the API server to
send requests for evaluation by creating either a
MutatingWebhookConfiguration or
ValidatingWebookConfiguration resource. The admission



webhook will respond with an “admit” or “deny” directive to let the API
server know whether to save the resource to storage.

Policy and Governance with Gatekeeper
Let’s dive into how to configure policies and ensure that Kubernetes
resources are compliant. The Kubernetes project doesn’t provide any
controllers that enable policy and governance, but there are open-source
solutions. Here, we will focus on a open source ecosystem project called
Gatekeeper.

Gatekeeper is a Kubernetes-native policy controller that evaluates resources
based on defined policy and determines whether to whether to allow a
Kubernetes resource to be created or modified. These evaluations happen
server-side as the API request flows through the Kubernetes API server,
which means each cluster has a single point of processing. Processing the
policy evaluations server-side means that you can install Gatekeeper on
existing Kubernetes clusters without changing developer tooling,
workflows, or continuous delivery pipelines.

Gatekeeper uses custom resource definitions (CRDs) to define a new set of
Kubernetes resources specific to configuring it, which allows cluster
administrators to use familiar tools like kubectl to operate Gatekeeper. In
addition, it provides real-team meaningful feedback to the user on why a
resource was denied and how to remediate the problem. These Gatekeeper-
specific custom resources can be stored in source control and managed
using GitOps workflows.

Gatekeeper also performs resource mutation (resource modification based
on defined conditions) and auditing. It is highly configurable and offers
fine-grained control over what resources to evaluate and in which
namespaces.

What is Open Policy Agent?

https://open-policy-agent.github.io/gatekeeper/website/docs/


At the core of Gatekeeper is Open Policy Agent, a cloud native open source
policy engine that is extensible and allows policy to be portable across
different applications. Open Policy Agent is responsible for performing all
policy evaluations and returning either an admit or deny. This gives
Gatekeeper access to an ecosystem of policy tooling: for example, conftest,
which enables you to write policy tests and implement them in continuous
integration pipelines before deployment.

Open Policy Agent exclusively uses a native query language called Rego
for all policies. One of the core tenets of Gatekeeper is to abstract the inner
workings of Rego from the cluster administrator and present a structured
API in the form of a Kubernetes CRD to create and apply policy. This lets
you share parameterized policies across organizations and the community.
The Gatekeeper project maintains a policy library solely for this purpose
(discussed later in this chapter).

Installing Gatekeeper
Before you start configuring policies, you’ll need to install Gatekeeper.
Gatekeeper components run as Pods in the gatekeeper-system
namespace and configures a webhook admission controller.

WARNING
Do not install Gatekeeper on a Kubernetes cluster without first understanding how to
safely create and disable policy. You should also review the installation YAML before
installing Gatekeeper to ensure that you are comfortable with the resources it creates.

You can install Gatekeeper with a simple one-line invocation:

$ kubectl apply -f https://raw.githubusercontent.com/open-policy-
agent/gatekeeper/release-3.5/deploy/gatekeeper.yaml 
namespace/gatekeeper-system created 
resourcequota/gatekeeper-critical-pods created 
customresourcedefinition.apiextensions.k8s.io/configs.config.gate
keeper.sh created 
customresourcedefinition.apiextensions.k8s.io/constraintpodstatus

https://www.openpolicyagent.org/
https://github.com/open-policy-agent/conftest
https://www.openpolicyagent.org/docs/latest/policy-language/


es.status.gatekeeper.sh created 
customresourcedefinition.apiextensions.k8s.io/constrainttemplatep
odstatuses.status.gatekeeper.sh created 
customresourcedefinition.apiextensions.k8s.io/constrainttemplates
.templates.gatekeeper.sh created 
serviceaccount/gatekeeper-admin created 
Warning: policy/v1beta1 PodSecurityPolicy is deprecated in 
v1.21+, unavailable in v1.25+ 
podsecuritypolicy.policy/gatekeeper-admin created 
role.rbac.authorization.k8s.io/gatekeeper-manager-role created 
clusterrole.rbac.authorization.k8s.io/gatekeeper-manager-role 
created 
rolebinding.rbac.authorization.k8s.io/gatekeeper-manager-
rolebinding created 
clusterrolebinding.rbac.authorization.k8s.io/gatekeeper-manager-
rolebinding created 
secret/gatekeeper-webhook-server-cert created 
service/gatekeeper-webhook-service created 
deployment.apps/gatekeeper-audit created 
deployment.apps/gatekeeper-controller-manager created 
Warning: policy/v1beta1 PodDisruptionBudget is deprecated in 
v1.21+, unavailable in v1.25+; use policy/v1 PodDisruptionBudget 
poddisruptionbudget.policy/gatekeeper-controller-manager created 
validatingwebhookconfiguration.admissionregistration.k8s.io/gatek
eeper-validating-webhook-configuration created

NOTE
Gatekeeper installation requires cluster-admin permissions and is version specific.
Please refer to the official documentation for the latest release of Gatekeeper

Once the installation is complete, confirm that Gatekeeper is up and
running:

$ kubectl get pods -n gatekeeper-system 
NAME                                             READY   STATUS    
RESTARTS   AGE 
gatekeeper-audit-54c9759898-ljwp8                1/1     Running   
0           1m 
gatekeeper-controller-manager-6bcc7f8fb5-4nbkt   1/1     Running   
0           1m 
gatekeeper-controller-manager-6bcc7f8fb5-d85rn   1/1     Running   
0           1m 

https://open-policy-agent.github.io/gatekeeper/website/docs/install


gatekeeper-controller-manager-6bcc7f8fb5-f8m8j   1/1     Running   
0           1m

You can also review how the webhook is configured using the command
below:

$ kubectl get validatingwebhookconfiguration -o yaml 
apiVersion: admissionregistration.k8s.io/v1 
kind: ValidatingWebhookConfiguration 
metadata: 
  labels: 
    gatekeeper.sh/system: "yes" 
  name: gatekeeper-validating-webhook-configuration 
webhooks: 
- admissionReviewVersions: 
  - v1 
  - v1beta1 
  clientConfig: 
    service: 
      name: gatekeeper-webhook-service 
      namespace: gatekeeper-system 
      path: /v1/admit 
  failurePolicy: Ignore 
  matchPolicy: Exact 
  name: validation.gatekeeper.sh 
  namespaceSelector: 
    matchExpressions: 
    - key: admission.gatekeeper.sh/ignore 
      operator: DoesNotExist 
  rules: 
  - apiGroups: 
    - '*' 
    apiVersions: 
    - '*' 
    operations: 
    - CREATE 
    - UPDATE 
    resources: 
    - '*' 
  sideEffects: None 
  timeoutSeconds: 3 
 ....

Under the rules section of the output above, we see that all resources are
being sent to the webhook admission controller, running as a service named



gatekeeper-webhook-service in the gatekeeper-system
namespace. Only resources from namespaces that aren’t labelled
admission.gatekeeper.sh/ignore will be considered for policy
evaluation. Finally, the failurePolicy is set to Ignore which means
that this is a fail open configuration: if the Gatekeeper service doesn’t
respond within the configured timeout of 3 seconds, the request will be
admitted.

Configuring policies
Now that you have Gatekeeper installed, you can start configuring policies.
We will first go through a canoncial example and demonstrate how the
cluster administrator creates policies. Then we’ll look at the developer
experience when creating compliant and non compliant resources. We will
then expand on each step to gain a deeper understanding. We’ll walk you
through the process of creating a sample policy stating that container
images can only come from one specific registry. This example is based on
the Gatekeeper policy library.

First, you’ll need to configure the policy we first need to create a custom
resource called a constraint template. This is usually done by a cluster
administrator. The constraint template in Example 15-1 requires you to
provide a list of container repositories as parameters that Kubernetes
resources are allowed to use.

Example 15-1. allowedrepos-constraint-template.yaml
apiVersion: templates.gatekeeper.sh/v1beta1
kind: ConstraintTemplate
metadata: 
  name: k8sallowedrepos 
  annotations: 
    description: Requires container images to begin with a repo 
string from a specified 
      list.
spec: 
  crd: 
    spec: 
      names: 
        kind: K8sAllowedRepos 

https://github.com/open-policy-agent/gatekeeper-library/tree/master/library/general/allowedrepos/samples/repo-must-be-openpolicyagent


      validation: 
        # Schema for the `parameters` field 
        openAPIV3Schema: 
          properties: 
            repos: 
              type: array 
              items: 
                type: string 
  targets: 
    - target: admission.k8s.gatekeeper.sh 
      rego: | 
        package k8sallowedrepos 
 
        violation[{"msg": msg}] { 
          container := input.review.object.spec.containers[_] 
          satisfied := [good | repo = input.parameters.repos[_] ; 
good = startswith(container.image, repo)] 
          not any(satisfied) 
          msg := sprintf("container <%v> has an invalid image repo 
<%v>, allowed repos are %v", [container.name, container.image, 
input.parameters.repos]) 
        } 
 
        violation[{"msg": msg}] { 
          container := input.review.object.spec.initContainers[_] 
          satisfied := [good | repo = input.parameters.repos[_] ; 
good = startswith(container.image, repo)] 
          not any(satisfied) 
          msg := sprintf("container <%v> has an invalid image repo 
<%v>, allowed repos are %v", [container.name, container.image, 
input.parameters.repos]) 
        }

Create the constraint template using the following command:

$ kubectl apply -f allowedrepos-constraint-template.yaml 
constrainttemplate.templates.gatekeeper.sh/k8sallowedrepos 
created

Now you can create a constraint resource to put the policy into effect
(again, playing the role of the cluster administrator). The constraint in
Example 15-2 allows all containers with the prefix of gcr.io/kuar-
demo/ in the default namespace. The enforcementAction is set to
“deny”: any noncompliant resources will be denied.



Example 15-2. allowedrepos-constraint.yaml
apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sAllowedRepos
metadata: 
  name: repo-is-kuar-demo
spec: 
  enforcementAction: deny 
  match: 
    kinds: 
      - apiGroups: [""] 
        kinds: ["Pod"] 
    namespaces: 
      - "default" 
  parameters: 
    repos: 
      - "gcr.io/kuar-demo/"

$ kubectl create -f allowedrepos-constraint.yaml 
k8sallowedrepos.constraints.gatekeeper.sh/repo-is-kuar-demo 
created

The next step is to create some Pods to test that the policy is indeed
working. Example 15-3 creates a Pod using a container image,
gcr.io/kuar-demo/kuard-amd64:blue, that complies with the
constraint we defined in the previous step. Workload resource creation is
typically performed by the developer responsible for operating the service
or a continuous delivery pipeline.

Example 15-3. compliant-pod.yaml.yaml
apiVersion: v1
kind: Pod
metadata: 
  name: kuard
spec: 
  containers: 
    - image: gcr.io/kuar-demo/kuard-amd64:blue 
      name: kuard 
      ports: 
        - containerPort: 8080 
          name: http 
          protocol: TCP



$ kubectl apply -f compliant-pod.yaml 
pod/kuard created

What happens if we create a noncompliant Pod? Example 15-4 creates a
Pod using a container image, nginx, that is NOT compliant with the
constraint we defined in the previous step and will be created. Workload
resource creation would typically be performed by the developer or
continuous delivery pipeline responsible for operating the service. Note the
output below:

Example 15-4. noncompliant-pod.yaml.yaml
apiVersion: v1
kind: Pod
metadata: 
  name: nginx-noncompliant
spec: 
  containers: 
    - name: nginx 
      image: nginx

$ kubectl apply -f noncompliant-pod.yaml 
Error from server ([repo-is-kuar-demo] container <nginx> has an 
invalid image repo <nginx>, allowed repos are ["gcr.io/kuar-
demo/"]): error when creating "noncompliant-pod.yaml": admission 
webhook "validation.gatekeeper.sh" denied the request: [repo-is-
kuar-demo] container <nginx> has an invalid image repo <nginx>, 
allowed repos are ["gcr.io/kuar-demo/"]

Example 15-4 show that this returns an error is returned the user with
details on why the resource was not created and how to remediate the issue.
Cluster administrators can configure the error message in the constraint
template.

NOTE
If your constraint’s scope is Pods and you create a resource that generates Pods, such as
ReplicaSets, Gatekeeper will return an error. However, it won’t be returned to you, the
user, but to the controller trying to create the Pod. To see these error messages, look in
the event log for the relevant resource



Understanding Constraint Templates
Now that we have walked through a canoncial example, let’s take a closer
look at the constraint template in Example 15-5 which takes a list of
container repositories that are allowed in Kubernetes resources.

Example 15-5. allowedrepos-constraint-template.yaml
apiVersion: templates.gatekeeper.sh/v1beta1
kind: ConstraintTemplate
metadata: 
  name: k8sallowedrepos 
  annotations: 
    description: Requires container images to begin with a repo 
string from a specified 
      list.
spec: 
  crd: 
    spec: 
      names: 
        kind: K8sAllowedRepos 
      validation: 
        # Schema for the `parameters` field 
        openAPIV3Schema: 
          properties: 
            repos: 
              type: array 
              items: 
                type: string 
  targets: 
    - target: admission.k8s.gatekeeper.sh 
      rego: | 
        package k8sallowedrepos 
 
        violation[{"msg": msg}] { 
          container := input.review.object.spec.containers[_] 
          satisfied := [good | repo = input.parameters.repos[_] ; 
good = startswith(container.image, repo)] 
          not any(satisfied) 
          msg := sprintf("container <%v> has an invalid image repo 
<%v>, allowed repos are %v", [container.name, container.image, 
input.parameters.repos]) 
        } 
 
        violation[{"msg": msg}] { 
          container := input.review.object.spec.initContainers[_] 
          satisfied := [good | repo = input.parameters.repos[_] ; 



good = startswith(container.image, repo)] 
          not any(satisfied) 
          msg := sprintf("container <%v> has an invalid image repo 
<%v>, allowed repos are %v", [container.name, container.image, 
input.parameters.repos]) 
        }

This constraint template has an apiVersion and kind that are part of
the custom resources used only by Gatekeeper. Under the spec section,
you’ll see the name K8sAllowedRepos: remember that name, because
you’ll use it as the constraint kind when creating constraints. You’ll also see
a schema that defines an array of strings for the cluster administrator to
configure. This is done by providing a list of allowed container registries. It
also contains the raw Rego policy definition (under the target section).
This policy evaluates containers and initContainers to ensure that the
container repository name starts with the values provided by the constraint.
The msg section defines the message that is sent back to the user if the
policy is violated.

Creating Constraints
In order to instantiate a policy, you must create a constraint that provides
the template’s required parameters. There may be many constraints that
match the kind of a specific constraint template. Let’s take a closer look at
the constraint we used in Example 15-6, which allows only container
images that originate from gcr.io/kuar-demo/.

Example 15-6. allowedrepos-constraint.yaml
apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sAllowedRepos
metadata: 
  name: repo-is-kuar-demo
spec: 
  enforcementAction: deny 
  match: 
    kinds: 
      - apiGroups: [""] 
        kinds: ["Pod"] 
    namespaces: 
      - "default" 



  parameters: 
    repos: 
      - "gcr.io/kuar-demo/"

You may notice that the constraint is of the kind “K8sAllowedRepos”,
which was defined as part of the constraint template. It also defines an
enforcementAction of “deny”, meaning that noncompliant resources
will be denied. enforcementAction also accepts “dryrun” and “warn”:
“dryrun” uses the audit feature to test policies and verify their impact;
“warn” sends a warning back to the user with the associated message, but
allows them to create or update. The match portion defines the scope of
this constraint; all Pods in the default namespace. Finally, the parameters
section is required to satisfy the constraint template (an array of strings).
The following demonstrates the user experience when the
enforcementAction is set to “warn”:

$ kubectl apply -f noncompliant-pod.yaml 
Warning: [repo-is-kuar-demo] container <nginx> has an invalid 
image repo <nginx>, allowed repos are ["gcr.io/kuar-demo/"] 
pod/nginx-noncompliant created

WARNING
Constraints are only enforced on resource CREATE and UPDATE events. If you already
have workloads running on a cluster, Gatekeeper will not re-evaluate them until a
CREATE or UPDATE event takes place.

Here is a real-world example to demonstrate: Say you create a policy that only allows
containers from a specific registry. All workloads that are already running on the cluster
will continue to do so. If you scale the workload Deployment from 1 to 2, the
ReplicaSet will attempt to create another Pod. If that Pod doesn’t have a container from
an allowed repository, then it will be denied. It’s important to set the
enforcementAction to “dryrun” and audit to confirm that any policy violations are
known before setting the enforcementAction to “deny”.

Audit
Being able to enforce policy on new resources is only one piece of the
policy and governance story. Policies often change over time, and you can



also use Gatekeeper to confirm that everything currently deployed is still
compliant. Additionally, you may already have a cluster full of services and
wish to install Gatekeeper to bring these resources into compliance.
Gatekeeper’s audit capabilities allow cluster administrators to get a list of
current noncompliant resources on a cluster.

In order to demonstrate how auditing works, let’s look at an example. We’re
going to update the repo-is-kuar-demo constraint to have an
enforcementAction action of “dryrun” (as shown in Example 15-7).
This will allow users to create non-compliant resources. We will then
determine which resources are noncompliant using audit.

Example 15-7. allowedrepos-constraint-dryrun.yaml
apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sAllowedRepos
metadata: 
  name: repo-is-kuar-demo
spec: 
  enforcementAction: dryrun 
  match: 
    kinds: 
      - apiGroups: [""] 
        kinds: ["Pod"] 
    namespaces: 
      - "default" 
  parameters: 
    repos: 
      - "gcr.io/kuar-demo/"

Update the constraint by running the following command:

$ kubectl apply -f allowedrepos-constraint-dryrun.yaml 
k8sallowedrepos.constraints.gatekeeper.sh/repo-is-kuar-demo 
configured

Create a non-compliant Pod using the following command:

$ kubectl apply -f noncompliant-pod.yaml 
pod/nginx-noncompliant created



To audit the list of noncompliant resources for a given constraint, run a
kubectl get constraint on that constraint and specify that you
want the output in YAML format as follows:

$ kubectl get constraint repo-is-kuar-demo -o yaml 
apiVersion: constraints.gatekeeper.sh/v1beta1 
kind: K8sAllowedRepos 
.... 
spec: 
  enforcementAction: dryrun 
  match: 
    kinds: 
    - apiGroups: 
      - "" 
      kinds: 
      - Pod 
    namespaces: 
    - default 
  parameters: 
    repos: 
    - gcr.io/kuar-demo/ 
status: 
  auditTimestamp: "2021-07-14T20:05:38Z" 
 .... 
  totalViolations: 1 
  violations: 
  - enforcementAction: dryrun 
    kind: Pod 
    message: container <nginx> has an invalid image repo <nginx>, 
allowed repos are 
      ["gcr.io/kuar-demo/"] 
    name: nginx-noncompliant 
    namespace: default

Under the status section, you can see the auditTimestamp, which is
the last time the audit was run. totalViolations lists the number of
resources that violate this constraint. The violations section lists the
violations. We can see that the nginx-noncompliant Pod is in violation and
the message with the details why.



NOTE
Using a constraint enforcementAction of “dryrun” along with audit is a powerful
way to confirm that your policy is having the desired impact. It also creates a workflow
to bring resources into compliance.

Mutation
So far we have covered how you can use constraints to validate if a
resource is compliant. What about modifying resources to make them
compliant? This is handled via the mutation feature in Gatekeeper. Earlier
in this chapter we discussed two different type of admission webhooks,
mutating and validating. By default, Gatekeeper is only deployed as a
validating admission webhook, but it can be configured to operate as a
mutating admission webhook.

NOTE
Mutation features in Gatekeeper are in beta state and may change. We share them to
demonstrate Gatekeeper’s upcoming capabilities. The installation steps in this chapter
do not cover enabling mutation. Please refer to the Gatekeeper project for more
information on enabling mutation.

Let’s walk through an example to demonstrate the power of mutation. In
this example we will set the imagePullPolicy to “Always” on all
Pods. We will assume that Gatekeeper is configured correctly to support
mutation. The example in Example 15-8 defines a mutation assignment that
matches all Pods except in the “system” namespace, and assigns a value of
“Always” to imagePullPolicy:

Example 15-8. imagepullpolicyalways-mutation.yaml
apiVersion: mutations.gatekeeper.sh/v1alpha1
kind: Assign
metadata: 
  name: demo-image-pull-policy
spec: 
  applyTo: 

https://open-policy-agent.github.io/gatekeeper/website/docs/mutation


  - groups: [""] 
    kinds: ["Pod"] 
    versions: ["v1"] 
  match: 
    scope: Namespaced 
    kinds: 
    - apiGroups: ["*"] 
      kinds: ["Pod"] 
    excludedNamespaces: ["system"] 
  location: "spec.containers[name:*].imagePullPolicy" 
  parameters: 
    assign: 
      value: Always

Create the mutation assignment:

$ kubectl apply -f imagepullpolicyalways-mutation.yaml 
assign.mutations.gatekeeper.sh/demo-image-pull-policy created

Now create a Pod. This Pod doesn’t have imagePullPolicy explicitly
set so by default this field is set to “IfNotPresent”. However, we expect
Gatekeeper to mutate this field to “Always”.

$ kubectl apply -f compliant-pod.yaml 
pod/kuard created

Validate that the imagePullPolicy has been successfully mutated to
“Always” by running the following:

$ kubectl get pods kuard -o=jsonpath="
{.spec.containers[0].imagePullPolicy}" 
 
Always

NOTE
Mutating admission happens before validating admission so create constraints that
validate the mutations you expect to apply to the specific resource.

Delete the Pod using the following command:



$ kubectl delete -f compliant-pod.yaml 
pod/kuard deleted

Delete the mutation assignment using the following command:

$ kubectl delete -f imagepullpolicyalways-mutation.yaml 
assign.mutations.gatekeeper.sh/demo-image-pull-policy deleted

Unlike validation, mutation provides a way to remediate noncompliant
resources automatically on behalf of the cluster administrator.

Data Replication
When writing constraints you may want to compare the value of one field to
the value of a field in another resource. A specific example of when you
might need to do this is making sure that ingress hostnames are unique
across a cluster. By default, Gatekeeper can only evaluate fields within the
current resource: if comparisons across resources are required to fulfill a
policy, it must be configured. Gatekeeper can be configured to cache
specific resources into Open Policy Agent to allow comparisons across
resources. The resource in Example 15-9 configures Gatekeeper to cache
Namespace and Pod resources.

Example 15-9. config-sync.yaml
apiVersion: config.gatekeeper.sh/v1alpha1
kind: Config
metadata: 
  name: config 
  namespace: "gatekeeper-system"
spec: 
  sync: 
    syncOnly: 
      - group: "" 
        version: "v1" 
        kind: "Namespace" 
      - group: "" 
        version: "v1" 
        kind: "Pod"



NOTE
You should only cache the specific resources needed to perform a policy evaluation.
Having hundreds or thousands of resources cached in OPA will require more memory
and may also have security implications.

The constraint template in Example 15-10 demonstrates how to compare
something in the Rego section (in this case, unique ingress hostnames).
Specifically, “data.inventory” refers to the cache resources, as opposed to
“input”, which is the resource sent for evaluation from the Kubernetes API
server as part of the admission flow. This example is based on the
Gatekeeper policy library.

Example 15-10. uniqueingresshost-constraint-template.yaml
apiVersion: templates.gatekeeper.sh/v1beta1
kind: ConstraintTemplate
metadata: 
  name: k8suniqueingresshost 
  annotations: 
    description: Requires all Ingress hosts to be unique.
spec: 
  crd: 
    spec: 
      names: 
        kind: K8sUniqueIngressHost 
  targets: 
    - target: admission.k8s.gatekeeper.sh 
      rego: | 
        package k8suniqueingresshost 
 
        identical(obj, review) { 
          obj.metadata.namespace == 
review.object.metadata.namespace 
          obj.metadata.name == review.object.metadata.name 
        } 
 
        violation[{"msg": msg}] { 
          input.review.kind.kind == "Ingress" 
          re_match("^(extensions|networking.k8s.io)$", 
input.review.kind.group) 
          host := input.review.object.spec.rules[_].host 
          other := data.inventory.namespace[ns][otherapiversion]
["Ingress"][name] 

https://github.com/open-policy-agent/gatekeeper-library/tree/master/library/general/uniqueingresshost


          re_match("^(extensions|networking.k8s.io)/.+$", 
otherapiversion) 
          other.spec.rules[_].host == host 
          not identical(other, input.review) 
          msg := sprintf("ingress host conflicts with an existing 
ingress <%v>", [host]) 
        }

Data replication is a powerful tool that allows you to make comparisons
across Kubernetes resources. We recommend only configuring it if you
have policies that require it to function. If you use it, scope it only to the
relevant resources.

Metrics
Gatekeeper emits metrics in Prometheus format to enable continuous
resource compliance monitoring. You can view simple metrics regarding
Gatekeeper’s overall health , such as the numbers of constraints, constraint
templates, and requests being set to Gatekeeper.

In addition, details on policy compliance and governance are also available:

The total number of audit violations

Number of constraints by enforcementAction

Audit duration

NOTE
Completely automating the policy and governance process is the ideal goal state, so we
strongly recommended that you monitor Gatekeeper from an external monitoring system
and set alerts based on resource compliance.

Policy Library
One of the core tenets of the Gatekeeper project is to create reusable policy
libraries that can be shared between organizations. Being able to share
policies reduces boilerplate policy work and allows cluster administrators to



focus on applying policy rather than writing it. The Gatekeeper project has
a great policy library. It contains a general library with the most common
policies as well as a pod-security-policy library that models the capabilities
of the PodSecurityPolicy API as Gatekeeper policy. The great thing
about this library is that it is always expanding and is open source, so feel
free to contribute any policies that you write.

Summary
In this chapter you’ve learned about policy and governance and why they
are important as more and more resources are deployed to Kubernetes. We
covered the Gatekeeper project, a Kubernetes-native policy controller built
on Open Policy Agent, and showed you to use it to meet your policy and
governance requirements. From writing policies to auditing, you are now
equipped with the know-how to meet your compliance needs.

https://github.com/open-policy-agent/gatekeeper-library


Chapter 16. Multi-cluster Application
Deployments

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as
they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 21th chapter of the final book. Please note that the GitHub repo will be made active later
on.

If you have comments about how we might improve the content and/or examples in this book, or if you
notice missing material within this chapter, please reach out to the editor at sgrey@oreilly.com.

Twenty chapters into this book it should be clear that Kubernetes can be a complex topic, though of course we
hope that if you have made it thus far it is less murky than it was. Given the complexities of building and
running an application in a single Kubernetes cluster, why would you incur the added complexity of designing
and deploying your application into multiple clusters?

The truth is that the demands of the real world mean that multi-cluster application deployment is a reality for
most applications. There are many different reasons for this and it is likely that your application fits under at
least one of these requirements.

The first requirement is one of redundancy and resiliency. Whether in the cloud or on-premise, a single
datacenter is generally a single failure domain. Whether it is a hunter using a fiber-optic cable for target
practice, a power outage from an ice storm or simply a botched software rollout, any application deployed to a
single location can fail completely and leave your users without a recourse. In many cases a single Kubernetes
cluster is tied to a single location and thus is a single failure domain.

In some cases, especially in cloud environments, the Kubernetes cluster is designed to be regional. Regional
clusters span across multiple independent zones and are thus resilient to the problems in the underlying
infrastructure described above. It would be tempting then to assume that such regional clusters are sufficient for
resiliency and they might be except for the fact that Kubernetes itself can be a single point of failure. Any
single Kubernetes cluster is tied to a specific version of Kubernetes (e.g. 1.21.3) and it is very possible for an
upgrade of the cluster to break your application. From time to time Kubernetes deprecates APIs or changes the
behavior of those APIs. These changes are infrequent, and the Kubernetes community takes care to make sure
that they are communicated ahead of time. Additionally, despite a great deal of testing, bugs do creep into a
release from time to time. Though it is unlikely for any one issue to affect your application, viewed over the
lifespan of most application (years) it’s probably that your application will be affected at some point. For most
applications that’s not a risk that is acceptable.

In addition to resiliency requirements, another strong driver of multi-cluster deployments is some business or
application need for regionaly affinity. For example, game servers have a strong need to be near to the players
to reduce network latency and improve the playing experience. Other applications may be subject to legal or
regulatory requirements that demand that data be located within specific geographic regions. Since any
Kubernetes cluster is tied to a specific place, these needs for application deployment to specific geographies
means that applications must span multiple clusters.

Finally, though there are numerous ways to isolate users within a single cluster (e.g. Namespaces, RBAC, Node
Pools), a Kubernetes cluster is still largely a single cooperative space. For some teams and some products the



risks of a different team impacting their application, even by accident, are not worth it and they would rather
take on the complexity of managing multiple clusters.

At this point you can see that regardless of your application its very likely that either now or sometime in the
near future your application will need to span multiple different clusters. The rest of this chapter will help you
understand how to accomplish that.

Before you even begin
As you think about multi-cluster deployments of your application it is critical that you have the right foundation
in place in a single cluster deployment before you consider moving to multiple clusters. There is inevitably a
list of TODO items that everyone has for their set-up, but such short-cuts and problems are magnified in a
multi-cluster deployment. Similarly, fixing foundationaly problems in your infrastructure is ten times harder
when you have ten clusters. Furthermore if adding an additional cluster incurs significant extra work, you will
resist adding additional clusters, when (for all of the reasons above) it is the right thing to do for your
application.

When we say “foundations” what do we mean? The most important part to get right is automation. Importantly
this includes both automation to deploy your application(s), but also automation to create and manage the
clusters themselves. When you have a single cluster, it is consistent with itself by definition. However, when
you add in additional clusters you add the possibility of version skew between all of the pieces of your cluster.
You could have clusters with different Kubernetes versions, different versions of your monitoring and logging
agents or even something as basic as the container runtime. All of this variance should be viewed as something
that makes your life harder. Differences in your infrastructure make your system “weirder.” Knowledge gained
in one cluster does not transfer over to other clusters, and problems sometimes only occur seemingly at random
in certain places because of this variability. One of the most important parts of maintaining a stable foundation
is maintaining consistency across all of your clusters.

The only way to achieve this consistency is automation. You may think “I always create clusters this way” but
experience has taught us that this is simply not true. The next chapter discusses at length the value of
infrastructure as code for managing your applications, but the same things apply to managing your clusters.
Don’t use a GUI or CLI tool to create your cluster. It may seem cumbersome at first to push all changes through
source control and CI/CD, but the stable foundation pays significant dividends.

The same thing is true of the foundational components that you deploy into your clusters. These components
are things like monitoring, logging and security scanners which need to be present before any application is
deployed. These tools also need to be managed using infrastructure as code tools like Helm and deployed using
automation.

Moving beyond the shape of your clusters, there are other aspects of consistency that are necessary. The first is
using a single identity system for all of your clusters. Though Kubernetes supports simple certificate-based
authentication, we strongly suggest using integrations with a global identity provider such as Azure Active
Directory or any other OpenID Connect compatible identity provider. Ensuring that everyone uses the same
identity when accessing all of the clusters is a critical part of maintaining security best practices and avoiding
dangerous behaviors like sharing certificates. Additionally, most of these identity providers make available
additional security controls like two-factor authentication which enhance the security of your clusters.

Just like identity, it is also critical to ensure consistent access control to your clusters. In most clouds, this
means using cloud-based RBAC where the RBAC roles and bindings are stored in a central cloud location
rather than in the clusters themselves. Defining RBAC in a single location prevents mistakes like leaving
permissions behind in one of your clusters or failing to add permissions to some single cluster. Unfortunately if
you are defining RBAC for on-premise clusters the situation is somewhat more complicated than it is for
identity. There are some solutions (e.g. Azure Arc for Kubernetes) that can provide RBAC for on-premise



clusters, but if such a service is not available in your environment, defining RBAC in source control and using
infrastructure as code to apply the rules to all of your clusters can ensure consistent privileges are applied
across your fleet.

Similarly, when you think about defining policy for your clusters, it’s critical to define those policies in a single
place and have a single dashboard for viewing the compliance state of all clusters. As with RBAC such global
services are often available via your cloud provider, but for on-premise there are limited options. Using
infrastructure as code for policies as well can help close this gap and ensure that you can define your policies in
a single place.

Just like setting up the right unit testing and build infrastructure is critical to your application development,
setting the right foundation for managing multiple Kubernetes clusters sets the stage for stable application
deployments across a broad fleet of infrastructure. In the coming sections we’ll talk about how to build your
application to operate successfully in a multi-cluster environment.

Starting at the top with a load-balancing approach
Once you begin to think about deploying your application into multiple locations it becomes essential to think
about how users get access to your application. Typically this is through a domain name (e.g.
my.company.com). Though we will spend a great deal of time discussing how to construct your application for
operation in multiple locations, a more important place to start is how access is implemented. This is both
because obviously enabling people to use your application is essential, but also because the design of how
people access your application can improve your ability to quickly respond and re-route traffic in the case of
unexpected load or failures.

Access to your application starts with a domain name. This means that the the start of your multi-cluster load-
balancing strategy starts with a DNS lookup. This DNS lookup is the first choice in your load balancing
strategy. In many traditional load-balancing approaches, this DNS lookup was used for routing traffic to
specific locations. This is generally referred to as “GeoDNS” In GeoDNS, the IP address returned by the DNS
lookup is tied to the physical location of the client. The IP address is generally the regional cluster that is
closest to the client.

Though Geo DNS is still prevalent in many applications and may be the only possibile approach for on-premise
applications, it has a number of drawbacks. The first is that DNS is cached in various places throughout the
internet and though you can set the time-to-live (TTL) for a DNS lookup, there are many places where this TTL
is ignored in pursuit of higher performance. In steady state operation this caching isn’t a big deal since DNS is
generally pretty stable regardless of the TTL. However it becomes a very big deal when you need to move
traffic from one cluster to another, for example in response to an outage in a particular data center. In such
urgent cases, the fact that DNS lookups are cached can significantly extend the duration and impact of the
outage. Additionally since GeoDNS is guessing your physical location based on your client’s IP address, it is
frequently confused and guesses the wrong locations when many different clients egress their traffic from the
same firewall’s IP address despite being in many different geographic locations.

The other alternative to using DNS to select your cluster is a load-balancing technique known as “Anycast”.
With Anycast networking a single static IP address is advertised from multiple locations around the internet
using core routing protocols. While traditionally we think of an IP address mapping to a single machine, with
Anycast networking the IP address is actually a virtual IP address that is routed to a different location
depending on your network location. Your traffic is routed to the “closest” location based on the distance in
terms of network performance rather than geographic distance. Anycast networking generally produces better
results, but it is not always available in all environments.

One final consideration as you design your load-balancing is whether the load-balancing happens at the TCP or
HTTP level. So far we have only discussed TCP level balancing, but for web-based applications there are



significant benefits for load-balancing at the HTTP layer. If you are writing an HTTP-based application (as
most applications these days are), then using a global HTTP-aware load balancer enables you to be aware of
more details of the client communication. For example you can make load-balancing decisions based on
cookies that have been set in the browser. Additionally a load balancer that is aware of the protocol can make
smarter routing decisions since it sees each HTTP request instead of just a stream of bytes across a TCP
connection.

Regardless of which approach you choose, ultimately the location of your service is mapped from a global DNS
endpoint to a collection of regional IP addresses representing the entry point to your service. These IP addresses
are generally the IP address of a Kubernetes Service or Ingress resource that you have learned about in previous
chapters of the book. Once the user traffic hits that endpoint it will flow through your cluster based on the
design of your application.

Building applications for multiple clusters.
Once you have load balancing sorted out, the next challenge for designing a multi-cluster application is
thinking about state. Ideally your application doesn’t require state, or all of the state is read-only. In such
circumstances there is little that you need to do to support multiple cluster deployments. Your application can
be deployed individually to each of your clusters, a load balancer added to the top and your multi-cluster
deployment is complete. Unfortunately, for most applications there is state that must be managed in a consistent
way across the replicas of your application. If you don’t handle state correctly, your users will end up with a
confusing, flawed experience.

To understand how replicated state impacts user experience, let’s use a simple retail shop as an example. It’s
obvious to see that if you only store a customer’s order in one of your multiple clusters, the customer may have
the unsettling experience of being unable to see their order when their requests move to a different region,
either because of load-balancing, or because they physically move geographies. So it is clear that a user’s state
needs to be replicated across regions. It may be somewhat less clear that the approach to replication also can
impact the customer experience. The challenges of replicated data and customer experience is succinctly
captured by the question: “Can I read my own write?” It may seem obvious that the answer should be “yes” but
achieving this is harder than it seems. Consider for example a customer who places an order on their computer,
but then immediately tries to view it on their phone. They may be coming at your application from two entirely
different networks and consequently landing on two completly different clusters. A user’s expectation around
their ability to see an order that they just placed are an example of data consistency.

Consistency governs how you think about replicating data. We assume that we want our data to be consistent,
that is that we will be able to read the same data regardless of where we read from, but the complicating factor
is time. How quickly must our data be consistent? And do we get any sort of error indication when it is not
consistent? There are two basic models of consistency: Strong consistency, which guarantees that a write
doesn’t succeed until it has been successfully replicated and eventual consistency where a write always
succeeds immediately and is only guaranteed to be successfully replicated at some later point in time. Some
systems also provide the ability for the client to chose their consistency needs per request. For example Azure’s
CosmosDB implements bounded consistency where there are some assurances about how stale data may be in
an eventually consistent system. Google’s Cloud Spannner enables clients to specify that they are willing to
tolerate stale reads in exchange for better performance.

It might seem that everyone would choose strong consistency, as it is clearly an easier model to reason about,
the data is always the same everywhere. But strong consistency comes at a price. It takes much more effort to
guarantee the replication at the time of the write and many more writes will fail when replication isn’t possible.
Strong consistency is more expensive and can support many fewer simultaneous transactions relative to
eventual consistency. Eventual consistency is cheaper and can support much higher write load, but it is more
complicated for the application developer and may expose some edge conditions to the end user. Both because



some storage systems only support one or the other consistency model, or the consistency model must be
chosen at the time of creating the storage and because the choice has significant implications for end-user
experience. Chosing your consistency model is an important first step before designing your application for
multiple environments.

NOTE
Deploying and managing replicated stateful storage is a complicated task that reqires a dedicated team with domain expertise to setup,
maintain and monitor. You should strongly consider using cloud-based storage for a replicated data store so that this burden is carried
by the depth of a large team at the cloud provider rather than your own teams. In an on-premise environment, you can also offload
support of storage to a company that has focused expertise on running the storage solution that you choose. Only when you are at large
scale does it make sense to invest in building your own team to manage storage.

Once you have determined your storage layer, the next step is to build up your application design.

Replicated silos: The simplest cross-regional model
The simplest way to replicate your application across multiple clusters and multiple regions is simply to copy
your application into every region. Each instance of your application is an exact clone and looks exactly alike
no matter which cluster it is running in. Because their is a load balancer at the top spreading customer requests
and you have implemented data replication in the places where you need state, your application doesn’t need to
change much in order to support this model. Depending on the consistency model for your data that you
choose, you will need to deal with the fact that data may not be replicated quickly between regions, but
especially if you opt for strong consistency this won’t require major application re-factoring.

When you design your application this way each region is it’s own silo. All of the data that it needs is present
within the region and once a request enters that region it is served entirely by the containers running in that one
cluster. This has significant benefits in terms of reduced complexity, but as is always the case, this comes at the
cost of efficiency.

To understand how the silo approach impacts efficiency, consider an application that is distributed to a large
number of geographic regions around the world in order to deliver very low latency to their users. The reality of
the world is that some geographic regions have large populations and some regions have small populations. If
every silo in each cluster of the application is exactly the same, then every silo has to be sized to meet the needs
of the largest geographic region. The result of this is that most replicas of the application in regional clusters are
massively over-provisioned and thus cost efficiency for the application is low. The obvious solution to this
excess cost is to reduce the size of the resources used by the application in the smaller geographic regions.
While it might seem easy to resize your application, it’s not always feasible due to bottlenecks or other
requirements (e.g. maintaining at least three replicas).

Especially when taking an existing application from single-cluster to multi-cluster a replicated silos design is
the easiest approach to use, but it is worth understanding that it comes with costs that may be sustainable
initially but eventually will require your application to be refactored.

Sharding: Regional data
As your application scales one of the pain points that you are likely to encounter with a regional silo approach
is that globabally replicating all of your data becomes increasingly expensive and also increasingly wasteful.
While replicating data for reliability is a good thing, it is unlikely that all of the data for your application needs
to be co-located in every cluster where you deploy your application. Most users will only access your
application from a small number of geographic regions.



Additionally, as your application grows around the world you may encounter regulatory and other legal
requirements around data locality. There may be external restrictions on where you store a user’s data
depending on their nationality or other considerations. The combination of these requirements means that
eventually you will need to think about regional data sharding. Sharding your data across regions means that
not all data is present in all of the clusters where your application is present and this (obviously) impacts the
design of your application.

As an example of what this looks like, imagine that our application is deployed into six regional clusters (A, B,
C, D, E, F). We take the data set for our application and we break the data into three subsets or shards (1, 2, 3).

Our data shard deployment then might look as follows:

A B C D E F

1 ✓ - - ✓ - -

2 - ✓ - - ✓ -

3 - - ✓ - - ✓

Each shard is present in two regions for redundancy, but each regional cluster can only serve one third of the
data. This means that you have to add an additional routing layer to your service whenever you need to access
the data. The routing layer is responsible for determining whether the request needs to go to a local or cross-
regional data shard.

While it might be tempting to simply implement this data routing as part of a client library that is linked into
your main application, we strongly recommend that the data routing be built as a separate micro-service. While
introducing a new micro-service might seem to introduce complexity, it actually introduces an abstraction that
simplifies things. Instead of every service in your application worrying about data routing, you have a single
service that encapsulates those concerns and all other services simply access the data service. Applications that
are separated into independent micro-services provide significant flexibility in multi-cluster environments.

Better flexibility: Micro-service routing
When we discussed the regional silo approach to multi-cluster application development we gave an example of
how it might reduce the cost-efficiency of your deployed multi-cluster application. But there are other impacts
to flexibility as well. In creating the silo, you are creating at a larger scale the same sort of monoliths that
containers and Kubernetes seeks to break up. Further-more you are forcing every micro-service within an
application to scale at the same time to the same number of regions.

If your application is small and contained, this may make sense, but as your services become larger and
especially when they may start being shared between multiple applications, the monolithic approach to multi-
cluster begins to significantly impact your flexibility. If a cluster is the unit of deployment and all of your
CI/CD is tied to that cluster, you will force every team to adhere to the same roll-out process and schedule even
if it is a bad fit.

To see a concrete example of this, suppose you have one very large application that is deployed to thirty cluster
and a small new application under development. It doesn’t make sense to force the small team developing a
new application to immediately reach the scale of your larger application, but if you are two rigid in your
application design, this can be exactly what happens.



A better approach is to treat each microservice within your application as a public facing service in terms of it’s
application design. It may never be expected to actually be public facing, but it should have it’s own global load
balancer as described in the sections above, it should manage it’s own data replication service. For all intents
and purposes the different micro-services should be independent of each other. When a service calls into a
different service, it’s load is balanced in the same way that external load would be. With this abstraction in
place, each team can scale and deploy their multi-cluster service independently, just like they do within a single
cluster.

Of course, doing this for every single micro-service within an application can become a significant burden on
your teams and can also increase costs via the maintenance of a load-balancer for each service and also possibly
cross-regional network traffic. Like everything in software design there is a trade-off between complexity and
performance and you will need to determine for your application the right places to add the isolation of a
service boundary, and where it makes sense to group services into a replicated silo. Just like micro-services in
the single cluster context, this design is likely to change and adapt as your application changes and grows.
Expecting (and designing for) with this fluidity in mind will help ensure that your application can adapt without
requiring massive re-factoring.

Summary
Though deploying your application to multiple clusters adds complexity, the requirements and user
expectations in the real-world make this complexity necessary for most applications that you build. Designing
your application and your infrastructure from the ground up to support multi-cluster application deployments
will greatly increase the reliability of your application and significantly reduce the probability of a costly
refactor as your application grows. One of the most important pieces of a multi-cluster deployment is managing
the configuration and deployment of the application to the cluster. Whether it is regional or multi-cluster the
following chapter will help ensure that you can quickly and reliably deploy your application.
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