

Praise for MySQL Cookbook, 4th Edition
Whether you are struggling to simply log in to your MySQL server, or
trying to architect the right replication topology, MySQL Cookbook has
your back. Sveta and Alkin share their decades of experience helping
hundreds of MySQL users complete their everyday tasks.
Henrik Ingo, Chief of Staff, Engineering, DataStax

MySQL gets better with each release. This update by long-time MySQL
experts makes it easier to keep up with the improvements. A valuable
resource whether you are a beginner or an experienced user like me.
Mark Callaghan, ProUnlimited, long-time MySQL contributor

A great learning resource for all MySQL users. Sveta and Alkin have
curated a comprehensive list of solutions to problems spanning all
aspects of MySQL.
Shlomi Noach, database engineer, PlanetScale

I recommend this comprehensive book for all MySQL users. Its examples
will help both beginners and advanced users of MySQL, and it features
excellent chapters about MySQL Shell and JSON.
Frederic Descamps, MySQL Community Manager, Oracle

Sveta and Alkin walk you through practical examples of things you will
need to do as a MySQL developer, operator, or DBA. This wealth of
knowledge, distilled and condensed, is a next level “how to” guide for
mastering MySQL.
Matt Lord, Vitess Maintainer, PlanetScale

MySQL Cookbook
FOURTH EDITION

Solutions for Database Developers and Administrators

Sveta Smirnova and Alkin Tezuysal

MySQL Cookbook
by Sveta Smirnova and Alkin Tezuysal
Copyright © 2022 Sveta Smirnova and Alkin Tezuysal. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.
O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Andy Kwan
Development Editors: Amelia Blevins and Jeff Bleiel
Production Editor: Ashley Stussy
Copyeditor: Piper Editorial Consulting, LLC
Proofreader: Liz Wheeler
Indexer: Sue Klefstad
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea
October 2002: First Edition
November 2006: Second Edition
August 2014: Third Edition
August 2022: Fourth Edition

Revision History for the Fourth Edition
2022-08-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492093169 for release
details.
The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. MySQL
Cookbook, the cover image, and related trade dress are trademarks of

http://oreilly.com/
http://oreilly.com/catalog/errata.csp?isbn=9781492093169

O’Reilly Media, Inc.
The views expressed in this work are those of the authors, and do not
represent the publisher’s views. While the publisher and the authors have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim
all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.
978-1-492-09316-9
[LSI]

Foreword
MySQL is one of the most pragmatic relational databases that I have come
across. It is fast, reliable, and easy to use. You can start off fairly easily with
a very small footprint. Yet, it can be deployed at a massive scale. Some of
the largest companies in the world run on MySQL. What makes MySQL
attractive is that it makes the bread-and-butter features of a relational
database work extremely well: these are indexes, joins and transactions. To
top it off, it provides all the benefits of being open source.
The recent trend to migrate software to cloud providers has brought a
unique momentum to MySQL. This is because some of the complexities
associated with managing a relational database are being taken on by the
cloud providers. This lets you enjoy all that is good about MySQL without
incurring the overhead of having to manage it.
I have known Alkin and Sveta for many years. We have been meeting at
various conferences, I have attended many of their sessions, and we have
spent time together at many social events. Alkin was also a colleague at
PlanetScale where he made substantial contributions to the Vitess project.
What is best about Alkin and Sveta? They are both genuine individuals who
like to work hard and want to help the community. Also, they have a vast
amount of experience and possess a deep knowledge of how to get the best
out of MySQL.
You can see their diligence in this book. They spend time making sure that
every subject is well introduced. Each chapter reads like a story. But then, at
the end, you have learned something extremely valuable. If you are getting
started with MySQL, this is a great book. If you come back to this after
using MySQL for a bit, you’ll discover hidden gems that you’ve missed
before. And finally, the Problem-Solution-Discussion format allows you to
quickly find a solution if you run into a specific problem while using
MySQL.
If you intend to learn and use MySQL, this is the book for you.
Sugu Sougoumarane
CTO, PlanetScale

Co-creator, Vitess

Preface

The MySQL database management system is popular for many reasons. It’s
fast, and it’s easy to set up, use, and administer. It runs under many varieties
of Unix and Windows, and MySQL-based programs can be written in many
languages.
MySQL’s popularity raises the need to address questions its users have
about how to solve specific problems. That is the purpose of MySQL
Cookbook: to serve as a handy resource to which you can turn for quick
solutions or techniques for attacking particular types of questions that come
up when you use MySQL. Naturally, because it’s a cookbook, it contains
recipes: straightforward instructions you can follow, rather than how to
develop your own code from scratch. It’s written using a problem-and-
solution format designed to be extremely practical and to make the contents
easy to read and assimilate. It contains many short sections, each describing
how to write a query, apply a technique, or develop a script to solve a
problem of limited and specific scope. This book doesn’t develop full-
fledged, complex applications. Instead, it assists you in developing such
applications yourself by helping you get past problems that have you
stumped.
For example, a common question is “How can I deal with quotes and
special characters in data values when I’m writing queries?” That’s not
difficult, but figuring out how to do it is frustrating when you’re not sure
where to start. This book demonstrates what to do; it shows you where to
begin and how to proceed from there. This knowledge will serve you
repeatedly because after you see what’s involved, you’ll be able to apply the
technique to any kind of data, such as text, images, sound or video clips,
news articles, compressed files, or PDF documents. Another common
question is “Can I access data from multiple tables at the same time?” The
answer is “Yes,” and it’s easy to do because it’s just a matter of knowing the
proper SQL syntax. But it’s not always clear how until you see examples,

which this book gives you. Other techniques that you’ll learn from this
book include how to do the following:

Use SQL to select, sort, and summarize rows
Find matches or mismatches between tables
Perform transactions
Determine intervals between dates or times, including age calculations
Identify or remove duplicate rows
Use LOAD DATA to read your datafiles properly or find which values in
the file are invalid
Use CHECK constraints to prevent entry of bad data into your database

Generate sequence numbers to use as unique row identifiers
Use a view as a “virtual table”
Write stored procedures and functions, set up triggers that activate to
perform specific data-handling operations when you insert or update
table rows, and use the Event Scheduler to run queries on a schedule
Set up replication
Manage user accounts
Control server logging

One part of using MySQL is understanding how to communicate with the
server—that is, how to use Structured Query Language (SQL; pronounced
“sequel”), the language in which queries are formulated. Therefore, one
major emphasis of this book is using SQL to formulate queries that answer
particular kinds of questions. One helpful tool for learning and using SQL is
the mysql client program that is included in MySQL distributions. You can
use client interactively to send SQL statements to the server and see the
results. This is extremely useful because it provides a direct interface to
SQL—so useful, in fact, that the first chapter is devoted to mysql.

But the ability to issue SQL queries alone is not enough. Information
extracted from a database often requires further processing or presentation

in a particular way. What if you have queries with complex
interrelationships, such as when you need to use the results of one query as
the basis for others? What if you need to generate a specialized report with
very specific formatting requirements? These problems bring us to the other
major emphasis of the book—how to write programs that interact with the
MySQL server through an application programming interface (API). When
you know how to use MySQL from within the context of a programming
language, you gain other ways to exploit MySQL’s capabilities:

You can save query results and reuse them later.
You have full access to the expressive power of a general-purpose
programming language. This enables you to make decisions based on the
success or failure of a query, or on the content of the rows that are
returned, and then tailor the actions taken accordingly.
You can format and display query results however you like. If you’re
writing a command-line script, you can generate plain text. If it’s a web-
based script, you can generate an HTML table. If it’s an application that
extracts information for transfer to some other system, you might
generate a datafile expressed in XML or JSON.

Combining SQL with a general-purpose programming language gives you
an extremely flexible framework for issuing queries and processing their
results. Programming languages increase your capability to perform
complex database operations. But that doesn’t mean this book is complex. It
keeps things simple, showing how to construct small building blocks using
techniques that are easy to understand and easily mastered.
We’ll leave it to you to combine these techniques in your own programs,
which you can do to produce arbitrarily complex applications. After all, the
genetic code is based on only four nucleic acids, but these basic elements
have been combined to produce the astonishing array of biological life we
see all around us. Similarly, there are only 12 notes in the scale, but in the
hands of skilled composers, they are interwoven to produce a rich and
endless variety of music. In the same way, when you take a set of simple
recipes, add your imagination, and apply them to the database programming

problems you want to solve, you can produce applications that perhaps are
not works of art but are certainly useful and will help you and others be
more productive.

Who This Book Is For
This book will be useful for anybody who uses MySQL, ranging from
individuals who want to use a database for personal projects such as a blog
or wiki, to professional database and web developers. The book is also
intended for people who do not know how to use MySQL but would like to.
If you’re new to MySQL, you’ll find lots of ways to use it here. If you’re
more experienced, you’re probably already familiar with many of the
problems addressed here but may not have had to solve them before and
should find the book a great time-saver. Take advantage of the recipes given
in the book, and use them in your own programs rather than writing the
code from scratch.
The material ranges from introductory to advanced, so if a recipe describes
techniques that seem obvious to you, skip it. Conversely, if you don’t
understand a recipe, set it aside and come back to it later, perhaps after
reading some of the other recipes.

What’s in This Book
It’s very likely when you use this book that you’re trying to develop an
application but are not sure how to implement certain pieces of it. In this
case, you already know what type of problem you want to solve; check the
table of contents or the index for a recipe that shows how to do what you
want. Ideally, the recipe will be just what you had in mind. Alternatively,
you may be able to adapt a recipe for a similar problem to suit the issue at
hand. We explain the principles involved in developing each technique so
that you can modify it to fit the particular requirements of your own
applications.
Another way to approach this book is to just read through it with no specific
problem in mind. This can give you a broader understanding of the things
MySQL can do, so we recommend that you page through the book
occasionally. It’s a more effective tool if you know the kinds of problems it
addresses.

As you get into later chapters, you’ll find recipes that assume a knowledge
of topics covered in earlier chapters. This also applies within a chapter,
where later sections often use techniques discussed earlier in the chapter. If
you jump into a chapter and find a recipe that uses a technique with which
you’re not familiar, check the table of contents or the index to find where
the technique is explained earlier. For example, if a recipe sorts a query
result using an ORDER BY clause that you don’t understand, turn to
Chapter 9, which discusses various sorting methods and explains how they
work.
Here’s a summary of each chapter to give you an overview of the book’s
contents.
Chapter 1, “Using the mysql Client Program”, describes how to use the
standard MySQL command-line client. mysql is often the first or primary
interface to MySQL that people use, and it’s important to know how to
exploit its capabilities. This program enables you to issue queries and see
their results interactively, so it’s good for quick experimentation. You can
also use it in batch mode to execute canned SQL scripts or send its output
into other programs. In addition, the chapter discusses other ways to use
mysql, such as how to make long lines more readable or generate output in
various formats.
Chapter 2, “Using MySQL Shell”, introduces the new MySQL command-
line client, developed by the MySQL Team for versions 5.7 and newer.
mysqlsh is compatible with mysql when it is running in SQL mode but
also supports NoSQL in JavaScript and Python programming interfaces.
With MySQL Shell, you can run SQL and NoSQL queries and automate
many administrative tasks easily.
Chapter 3, “MySQL Replication”, describes how to set up and use
replication. Some of the content in this chapter is advanced. However, we
decided to place it in the beginning of the book, because the replication is
necessary for stable MySQL installations that can survive such disasters as
corruptions or hardware failures. Practically, any production MySQL
installation should use one of the replication setups. While setting up a
replication is an administrative task, we believe that all MySQL users need

to have knowledge of how the replication works and, as a result, write
effective queries that would be performant on both source and replica
servers.
Chapter 4, “Writing MySQL-Based Programs”, demonstrates the essential
elements of MySQL programming: how to connect to the server, issue
queries, retrieve the results, and handle errors. It also discusses how to
handle special characters and NULL values in queries, how to write library
files to encapsulate code for commonly used operations, and various ways
to gather the parameters needed for making connections to the server.
Chapter 5, “Selecting Data from Tables”, covers several aspects of the
SELECT statement, which is the primary vehicle for retrieving data from
the MySQL server: specifying which columns and rows you want to
retrieve, dealing with NULL values, and selecting one section of a query
result. Later chapters cover some of these topics in more detail, but this
chapter provides an overview of the concepts on which they depend if you
need some introductory background on row selection or don’t yet know a
lot about SQL.
Chapter 6, “Table Management”, covers table cloning, copying results into
other tables, using temporary tables, and checking or changing a table’s
storage engine.
Chapter 7, “Working with Strings”, describes how to deal with string data.
It covers character sets and collations, string comparisons, dealing with
case-sensitivity issues, pattern matching, breaking apart and combining
strings, and performing FULLTEXT searches.

Chapter 8, “Working with Dates and Times”, shows how to work with
temporal data. It describes MySQL’s date format and how to display date
values in other formats. It also covers how to use MySQL’s special
TIMESTAMP data type, how to set the time zone, how to convert between
different temporal units, how to perform date arithmetic to compute
intervals or generate one date from another, and how to perform leap-year
calculations.

Chapter 9, “Sorting Query Results”, describes how to put the rows of a
query result in the order you want. This includes specifying the sort
direction, dealing with NULL values, accounting for string case sensitivity,
and sorting by dates or partial column values. It also provides examples that
show how to sort special kinds of values, such as domain names, IP
numbers, and ENUM values.

Chapter 10, “Generating Summaries”, shows techniques for assessing the
general characteristics of a set of data, such as how many values it contains
or its minimum, maximum, and average values.
Chapter 11, “Using Stored Routines, Triggers, and Scheduled Events”,
describes how to write functions and procedures that are stored on the
server side, triggers that activate when tables are modified, and events that
execute on a scheduled basis.
Chapter 12, “Working with Metadata”, discusses how to get information
about the data that a query returns, such as the number of rows or columns
in the result, or the name and data type of each column. It also shows how
to ask MySQL what databases and tables are available or how to determine
the structure of a table.
Chapter 13, “Importing and Exporting Data”, describes how to transfer
information between MySQL and other programs. This includes how to use
LOAD DATA, convert files from one format to another, and determine table
structure appropriate for a dataset.
Chapter 14, “Validating and Reformatting Data”, describes how to extract
or rearrange columns in datafiles, check and validate data, and rewrite
values such as dates that often come in a variety of formats.
Chapter 15, “Generating and Using Sequences”, discusses
AUTO_INCREMENT columns, MySQL’s mechanism for producing
sequence numbers. It shows how to generate new sequence values or
determine the most recent value, how to resequence a column, and how to
use sequences to generate counters. It also shows how to use
AUTO_INCREMENT values to maintain a master-detail relationship
between tables, including pitfalls to avoid.

Chapter 16, “Using Joins and Subqueries”, shows how to perform
operations that select rows from multiple tables. It demonstrates how to
compare tables to find matches or mismatches, produce master-detail lists
and summaries, and enumerate many-to-many relationships.
Chapter 17, “Statistical Techniques”, illustrates how to produce descriptive
statistics, frequency distributions, regressions, and correlations. It also
covers how to randomize a set of rows or pick rows at random from the set.
Chapter 18, “Handling Duplicates”, discusses how to identify, count, and
remove duplicate rows—and how to prevent them from occurring in the
first place.
Chapter 19, “Working with JSON”, illustrates how to use JSON in MySQL.
It covers such topics as validation, searching, and manipulation of JSON
data. The chapter also discusses how to use MySQL as a Document Store.
Chapter 20, “Performing Transactions”, shows how to handle multiple SQL
statements that must execute together as a unit. It discusses how to control
MySQL’s auto-commit mode and how to commit or roll back transactions.
Chapter 22, “Server Administration”, is written for database administrators.
It covers server configuration, the plug-in interface, and log management.
Chapter 23, “Monitoring the MySQL Server”, illustrates how to monitor
and troubleshoot MySQL issues, such as startup or connection failures. It
shows how to use MySQL log files, built-in instruments, and standard
operating system utilities to get information about the performance of
MySQL queries and internal structures.
Chapter 24, “Security”, is another administrative chapter. It discusses user
account management, including creating accounts, setting passwords, and
assigning privileges. It also describes how to implement password policy,
find and fix insecure accounts, and expire or unexpire passwords.

MySQL APIs Used in This Book
MySQL programming interfaces exist for many languages, including C,
C++, Eiffel, Go, Java, Perl, PHP, Python, Ruby, and Tcl. Given this fact,

writing a MySQL cookbook presents authors with a challenge. The book
should provide recipes for doing many interesting and useful things with
MySQL, but which API or APIs should the book use? Showing an
implementation of every recipe in every language results either in covering
very few recipes or in a very, very large book! It also results in
redundancies when implementations in different languages bear a strong
resemblance to one another. On the other hand, it’s worthwhile taking
advantage of multiple languages, because one is often more suitable than
another for solving a particular problem.
To resolve this dilemma, we’ve chosen a small number of APIs to write the
recipes in this book. This makes its scope manageable while permitting
latitude to choose from multiple APIs:

The Perl DBI module
Ruby, using the Mysql2 gem
PHP, using the PDO extension
Python, using the MySQL Connector/Python driver for the DB API
Go, using the Go-MySQL-Driver for the sql interface

Java, using the MySQL Connector/J driver for the JDBC interface
Why these languages? Perl is a widely used language that was very popular
for writing MySQL programs when the first edition of this book was
published and is still used in many applications today. Ruby has an easy-to-
use database-access module. PHP is widely deployed, especially on the
web. Go is getting very popular lately and replaces other languages,
especially Perl, in many MySQL applications. Python and Java each has a
significant number of followers.
We believe these languages taken together reflect pretty well the majority of
the existing user base of MySQL programmers. If you prefer some
language not shown here, be sure to pay careful attention to Chapter 4, to
familiarize yourself with the book’s primary APIs. Knowing how to
perform database operations with the programming interfaces used here will
help you translate recipes for other languages.

Version and Platform Notes
Development of the code in this book took place under MySQL 5.7 and 8.0.
Because new features are added to MySQL on a regular basis, some
examples will not work under older versions. For example, MySQL 5.7
introduces group replication, and MySQL 8.0 introduces CHECK constraints
and common table expressions.
We do not assume that you are using Unix, although that is our own
preferred development platform. (In this book, Unix also refers to Unix-like
systems such as Linux and macOS X.) Most of the material here is
applicable both to Unix and Windows.

Conventions Used in This Book
This book uses the following font conventions:

Constant width
Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold
Used to indicate text that you type when running commands.

Constant width italic
Used to indicate variable input; you should substitute a value of your
own choosing.

Italic
Used for URLs, hostnames, names of directories and files, Unix
commands and options, programs, and occasionally for emphasis.

TIP
This element signifies a tip or suggestion.

CAUTION
This element indicates a warning or caution.

NOTE
This element signifies a general note.

Commands often are shown with a prompt to illustrate the context in which
they are used. Commands issued from the command line are shown with a
$ prompt:

$ chmod 600 my.cnf

That prompt is one that Unix users are used to seeing, but it doesn’t
necessarily signify that a command works only under Unix. Unless
indicated otherwise, commands shown with a $ prompt generally should
work under Windows, too.
If you should run a command under Unix as the root user, the prompt is #
instead:

perl -MCPAN -e shell

Commands that are specific to Windows use the C:\> prompt:

C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysql"

SQL statements that are issued from within the mysql client program are
shown with a mysql> prompt and terminated with a semicolon:

mysql> SELECT * FROM my_table;

For examples that show a query result as you would see it when using
mysql, we sometimes truncate the output, using an ellipsis (...) to
indicate that the result consists of more rows than are shown. The following
query produces many rows of output, from which those in the middle have
been omitted:

mysql> SELECT name, abbrev FROM states ORDER BY name;
+----------------+--------+
| name | abbrev |
+----------------+--------+
Alabama	AL
Alaska	AK
Arizona	AZ
…	
West Virginia	WV
Wisconsin	WI
Wyoming	WY
+----------------+--------+

Examples that show only the syntax for SQL statements do not include the
mysql> prompt, but they do include semicolons as necessary to make it
clearer where statements end. For example, this is a single statement:

CREATE TABLE t1 (i INT)
SELECT * FROM t2;

But this example represents two statements:

CREATE TABLE t1 (i INT);
SELECT * FROM t2;

The semicolon is a notational convenience used within mysql as a
statement terminator. But it is not part of SQL itself, so when you issue
SQL statements from within programs that you write (for example, using
Perl or Java), don’t include terminating semicolons.
If a statement or a command output is too long and does not fit the book
page, we use the symbol ↩ to show that the line was indented to fit:

mysql> SELECT 'Mysql: The Definitive Guide to Using,
Programming,↩
 -> and Administering Mysql 4 (Developer\'s Library)' AS book;
+---+
| book |
+---+
| Mysql: The Definitive Guide to Using, Programming,↩
 and Administering Mysql 4 (Developer's Library) |
+---+
1 row in set (0,00 sec)

The MySQL Cookbook Companion GitHub
Repository
MySQL Cookbook has a companion GitHub repository where you can
obtain source code and sample data for examples developed throughout this
book, and auxiliary documentation.

Recipe Source Code and Data
The examples in this book are based on source code and sample data from a
distribution named recipes available at the companion GitHub
repository.
The recipes distribution is the primary source of examples, and
references to it occur throughout the book. The distribution is also available
as a compressed TAR file (recipes.tar.gz) or as a ZIP file (recipes.zip).
Either distribution format when unpacked creates a directory named
mysqlcookbook-VERSION/recipes.

Use the recipes distribution to save yourself a lot of typing. For
example, when you see a CREATE TABLE statement in the book that
describes what a database table looks like, you’ll usually find a SQL batch
file in the tables directory that you can use to create the table instead of
entering the definition manually. Change location into the tables directory
and execute the following command, where filename is the name of the
file containing the CREATE TABLE statement:

$ mysql cookbook < filename

If you need to specify MySQL username or password options, add them to
the command line.
To import all the tables from the recipes distribution, use the command:

$ mysql cookbook < cookbook.sql

https://github.com/svetasmirnova/mysqlcookbook

The recipes distribution contains programs as shown in the book, but in
many cases it also includes implementations in additional languages. For
example, a script shown in the book using Python may be available in the
recipes distribution in Perl, Ruby, PHP, Go, or Java as well. This may
save you translation effort should you wish to convert a program shown in
the book to a different language.

Amazon Review Data (2018)
Amazon-related review data used in Chapter 7, “Working with Strings”, can
be found at http://deepyeti.ucsd.edu/jianmo/amazon/index.html and can be
downloaded using this form. Justifying recommendations using distantly
labeled reviews and fined-grained aspects. Jianmo Ni, Jiacheng Li, Julian
McAuley Empirical Methods in Natural Language Processing (EMNLP),
2019.

http://deepyeti.ucsd.edu/jianmo/amazon/index.html
https://forms.gle/A8hBfPxKkKGFCP238

MySQL Cookbook Companion Documents
Some appendices included in previous MySQL Cookbook editions are now
available in standalone form at the companion GitHub repository. They
provide background information for topics covered in the book.
“Executing Programs from the Command Line” provides instructions for
executing commands at the command prompt and setting environment
variables such as PATH.

Obtaining MySQL and Related Software
To run the examples in this book, you need access to MySQL, as well as the
appropriate MySQL-specific interfaces for the programming languages that
you want to use. The following notes describe what software is required and
where to get it.
If you access a MySQL server run by somebody else, you need only the
MySQL client software on your own machine. To run your own server, you
need a full MySQL distribution.
To write your own MySQL-based programs, you communicate with the
server through a language-specific API. The Perl and Ruby interfaces rely
on the MySQL C API client library to handle the low-level client-server
protocol. This is also true for the PHP interface, unless PHP is configured to
use mysqlnd, the native protocol driver. For Perl and Ruby, you must
install the C client library and header files first. PHP includes the required
MySQL client support files but must be compiled with MySQL support
enabled or you won’t be able to use it. The Python, Go, and Java drivers for
MySQL implement the client-server protocol directly, so they do not
require the MySQL C client library.
You may not need to install the client software yourself—it might already
be present on your system. This is a common situation if you have an
account with an Internet service provider (ISP) that provides services such
as a web server already enabled for access to MySQL.

https://github.com/svetasmirnova/mysqlcookbook/blob/master/cmdline.md

MySQL
MySQL distributions and documentation, including the MySQL Reference
Manual and MySQL Shell, are available online.
If you need to install the MySQL C client library and header files, they’re
included when you install MySQL from a source distribution, or when you
install MySQL using a binary (precompiled) distribution other than an RPM
or a DEB binary distribution. Under Linux, you have the option of
installing MySQL using RPM or DEB files, but the client library and
header files are not installed unless you install the development RPM or
DEB. (There are separate RPM or DEB files for the server, the standard
client programs, and the development libraries and header files.)

Perl Support
General Perl information is available on the Perl Programming Language
website.
You can obtain Perl software from the Comprehensive Perl Archive
Network (CPAN).
To write MySQL-based Perl programs, you need the DBI module and the
MySQL-specific DBD module, DBD::mysql.
To install these modules under Unix, let Perl itself help you. For example,
to install DBI and DBD::mysql, run the following commands (you’ll
probably need to do this as root):

perl -MCPAN -e shell
cpan> install DBI
cpan> install DBD::mysql

If the last command complains about failed tests, use force install
DBD::mysql instead. Under ActiveState Perl for Windows, use the ppm
utility:

C:\> ppm
ppm> install DBI
ppm> install DBD-mysql

http://dev.mysql.com/downloads
http://dev.mysql.com/doc
http://www.perl.org/
http://cpan.perl.org/

You can also use the CPAN shell or ppm to install other Perl modules
mentioned in this book.
Once the DBI and DBD::mysql modules are installed, documentation is
available from the command line:

$ perldoc DBI
$ perldoc DBI::FAQ
$ perldoc DBD::mysql

Documentation is also available from the Perl website.

Ruby Support
The primary Ruby website provides access to Ruby distributions and
documentation.
The Ruby MySQL2 gem is available from RubyGems.

PHP Support
The primary PHP website provides access to PHP distributions and
documentation, including PDO documentation.
PHP source distributions include PDO support, so you need not obtain it
separately. However, you must enable PDO support for MySQL when you
configure the distribution. If you use a binary distribution, be sure that it
includes PDO MySQL support.

Python Support
The primary Python website provides access to Python distributions and
documentation. General documentation for the DB API database access
interface is on the Python Wiki.
For MySQL Connector/Python, the driver module that provides MySQL
connectivity for the DB API, distributions, and documentation are available
from MySQL Community Downloads and MySQL Connector/Python
Developer Guide.

http://dbi.perl.org/
http://www.ruby-lang.org/
http://www.rubygems.org/
http://www.php.net/
http://www.python.org/
http://bit.ly/py-wiki
http://bit.ly/py-connect
http://bit.ly/py-dev-guide

Go Support
The primary Go website provides access to Go distributions and
documentation, including the sql package and documentation.
The Go-MySQL-Driver and its documentation are available from the
GitHub go-sql-driver/mysql repository.

Java Support
You need a Java compiler to build and run Java programs. The javac
compiler is a part of the Java Development Kit (JDK). If no JDK is installed
on your system, versions are available for macOS, Linux, and Windows at
Oracle’s Java site. The same site provides access to documentation
(including the specifications) for JDBC, servlets, JavaServer Pages (JSP),
and the JSP Standard Tag Library (JSTL).
For MySQL Connector/J, the driver that provides MySQL connectivity for
the JDBC interface, distributions and documentation are available from
MySQL Community Downloads and MySQL Connector/J 8.0 Developer
Guide.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at https://github.com/svetasmirnova/mysqlcookbook.
If you have a technical question or a problem using the code examples,
please email bookquestions@oreilly.com.
This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant

https://go.dev/
https://github.com/go-sql-driver/mysql
http://www.oracle.com/technetwork/java
http://bit.ly/jconn-dl
http://bit.ly/j-dev-guide
https://github.com/svetasmirnova/mysqlcookbook
mailto:bookquestions@oreilly.com

amount of example code from this book into your product’s documentation
does require permission.
We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “MySQL
Cookbook, Fourth Edition by Sveta Smirnova and Alkin Tezuysal
(O’Reilly). Copyright 2022 Sveta Smirnova and Alkin Tezuysal, 978-1-
492-09316-9.”
If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

mailto:permissions@oreilly.com
http://oreilly.com/
http://oreilly.com/

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
https://oreil.ly/oreillymysql-ckbk4e.
Email bookquestions@oreilly.com to comment or ask technical questions
about this book.
For more information about our books, courses, conferences, and news, see
our website at https://www.oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-media
Follow us on Twitter: https://twitter.com/oreillymedia
Watch us on YouTube: https://www.youtube.com/oreillymedia

Acknowledgments
To each reader, thank you for reading our book. We hope that it serves you
well and that you find it useful.

From Paul DuBois, for the Third Edition
Thanks to my technical reviewers, Johannes Schlüter, Geert Vanderkelen,
and Ulf Wendel. They made several corrections and suggestions that
improved the text in many ways, and I appreciate their help.
Andy Oram prodded me to begin the third edition and served as its editor,
Nicole Shelby guided the book through production, and Kim Cofer and
Lucie Haskins provided proofreading and indexing.
Thanks to my wife, Karen, whose encouragement and support throughout
the writing process means more than I can say.

From Sveta Smirnova and Alkin Tezuysal

https://oreil.ly/oreillymysql-ckbk4e
mailto:bookquestions@oreilly.com
https://www.oreilly.com/
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://www.youtube.com/oreillymedia

Many thanks to our technical reviewers for their invaluable contributions
for this book.
Gillian Gunson not only provided comprehensive technical feedback but
also showed how our text could be read by people with different
backgrounds. Her language suggestions helped us make the recipes easier to
read. Her attentiveness to details helped us identify inaccuracies and even
potential risk areas that may show up when your database load grows.
Gillian also reviewed all code examples and suggested how to make Ruby
and Java code more aligned to current standards.
Ege Gunes reviewed all Go language examples to ensure they were aligned
with Go’s standard style.
Karthik Appigatla, Timur Solodovnikov, Daniel Guzman Burgos, and
Vladimir Fedorkov reviewed selected chapters of the book. Their suggested
corrections helped us improve the book a great deal.
Andy Kwan invited us to write the fourth edition of this book. Amelia
Blevins and Jeff Bleiel were our editors and helped make the book easier to
read. Rita Fernando reviewed a few chapters and provided feedback that
allowed us to make the book easier to read and be more aligned with
O’Reilly standards.

From Sveta Smirnova
I want to thank my colleagues at Percona Support who understood that I
needed to work a second shift on the book and allowed me to take time off
when needed.
Many thanks to my husband, Serguei Lassounov, who always supports me
in all of my professional endeavors.

From Alkin Tezuysal
I want to thank my wife, Aslihan, and my daughters, Ilayda and Lara, for
their patience and support when I needed to focus and use family time to
write this book.

Many thanks to my colleagues and team at PlanetScale, especially Deepthi
Sigireddi, for her extra care and support. Special thanks go to the MySQL
community and my friends, and family members as well.
I also want to take a moment to thank Sveta Smirnova for her endless
support while coaching me throughout my first book journey.

Chapter 1. Using the mysql
Client Program

1.0 Introduction
The MySQL database system uses a client-server architecture. The server,
mysqld, is the program that actually manipulates databases. To tell the
server what to do, use a client program that communicates your intent by
means of statements written in SQL. Client programs are written for diverse
purposes, but each interacts with the server by connecting to it, sending
SQL statements to have database operations performed, and receiving the
results.
Clients are installed locally on the machine from which you want to access
MySQL, but the server can be installed anywhere, as long as clients can
connect to it. Because MySQL is an inherently networked database system,
clients can communicate with a server running locally on your own
machine or somewhere on the other side of the planet.
The mysql program is one of the clients included in MySQL distributions.
When used interactively, mysql prompts you for a statement, sends it to
the MySQL server for execution, and displays the results. mysql can also
be used noninteractively in batch mode to read statements stored in files or
produced by programs. This enables the use of mysql from within scripts
or cron jobs or in conjunction with other applications.

This chapter describes mysql’s capabilities so that you can use it more
effectively:

Setting up a MySQL account using the cookbook database

Specifying connection parameters and using option files
Executing SQL statements interactively and in batch mode
Controlling mysql output format

Using user-defined variables to save information
To try the examples shown in this book, you need a MySQL user account
and a database. The first two recipes in this chapter describe how to use
mysql to set those up, based on these assumptions:

The MySQL server is running locally on your own system
Your MySQL username and password are cbuser and cbpass

Your database is named cookbook

If you like, you can violate any of the assumptions. Your server need not be
running locally, and you need not use the username, password, or database
name that are used in this book. Naturally, in such cases, you must modify
the examples accordingly.
Even if you choose not to use cookbook as your database name, we
recommend that you use a database dedicated to the examples shown here,
not one that you also use for other purposes. Otherwise, the names of
existing tables may conflict with those used in the examples, and you’ll
have to make modifications that would be unnecessary with a dedicated
database.
Scripts that create the tables used in this chapter are located in the tables
directory of the recipes distribution that accompanies MySQL Cookbook.
Other scripts are located in the mysql directory. To get the recipes
distribution, see the Preface.

ALTERNATIVES TO THE MYSQL PROGRAM
The mysql client is not the only program you can use for executing queries. For example, you
might prefer the graphical MySQL Workbench program, which provides a point-and-click
interface to MySQL servers. Another popular interface is phpMyAdmin, which enables you to
access MySQL through your web browser. Chapter 2 covers MySQL Shell, a powerful
command line client that supports SQL, JavaScript, and Python modes for running your queries
using both SQL and NoSQL syntaxes. However, please note that if you execute queries other
than by using mysql, some concepts covered in this chapter may not apply.

1.1 Setting Up a MySQL User Account

Problem
You need an account for connecting to your MySQL server.

Solution
Use CREATE USER and GRANT statements to set up the account. Then use
the account name and password to make connections to the server.

Discussion
Connecting to a MySQL server requires a username and password. You
may also need to specify the name of the host on which the server is
running. If you don’t specify connection parameters explicitly, mysql
assumes default values. For example, given no explicit hostname, mysql
assumes that the server is running on the local host.
If someone else has already set up an account for you and granted you
privileges to create and modify the cookbook database, use that account.
Otherwise, the following example shows how to use the mysql program to
connect to the server and issue the statements that set up a user account
with privileges for accessing a database named cookbook. The arguments
to mysql include -h localhost to connect to the MySQL server
running on the local host, -u root to connect as the MySQL root user,
and -p to tell mysql to prompt for a password:

$ mysql -h localhost -u root -p
Enter password: ******
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 54117
Server version: 8.0.27 MySQL Community Server - GPL

Copyright (c) 2000, 2021, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current
input statement.

mysql> CREATE USER 'cbuser'@'localhost' IDENTIFIED BY 'cbpass';
mysql> GRANT ALL ON cookbook.* TO 'cbuser'@'localhost';
Query OK, 0 rows affected (0.09 sec)
mysql> GRANT PROCESS ON *.* to `cbuser`@`localhost` ;
Query OK, 0 rows affected (0,01 sec)
mysql> quit
Bye

TIP
The PROCESS privilege is required if you need to generate a dump file of your MySQL data. See
also Recipe 1.4.

If you attempt to invoke mysql and receive an error message that it cannot
be found or is an invalid command, that means your command interpreter
doesn’t know where mysql is installed. See Recipe 1.3 for information
about setting the PATH environment variable that the interpreter uses to find
commands.
In the commands shown, the $ represents the prompt displayed by your
shell or command interpreter, and mysql> is the prompt displayed by
mysql. Text that you type is shown in bold. Nonbold text (including the
prompts) is program output; don’t type any of that.
When mysql prints the password prompt, enter the MySQL root
password where you see the ******; if the MySQL root user has no
password, just press the Enter (or Return) key at the password prompt. You
will see the MySQL welcome prompt, which could be slightly different for
the MySQL version you use. Then enter the CREATE USER and GRANT
statements as shown.
The quit command terminates your mysql session. You can also
terminate a session by using an exit command or (under Unix) by typing
Ctrl-D.

To grant the cbuser account access to a database other than cookbook,
substitute the database name where you see cookbook in the GRANT
statement. To grant access for the cookbook database to an existing
account, omit the CREATE USER statement and substitute that account for
'cbuser'@'localhost' in the GRANT statement.

NOTE
The MySQL user account record contains two parts: the username and the host. The username is
an identifier or the user who is accessing the MySQL server. You can specify anything for this
part. The hostname is the IP address or name of the host from which this user will connect to the
MySQL server. We discuss the MySQL security model and user accounts in Recipe 24.0.

The hostname part of 'cbuser'@'localhost' indicates the host from
which you’ll connect to the MySQL server. To set up an account that will
connect to a server running on the local host, use localhost, as shown.
If you plan to connect to the server from another host, substitute that host in
the CREATE USER and GRANT statements. For example, if you’ll connect
to the server from a host named myhost.example.com, the statements look
like this:

mysql> CREATE USER 'cbuser'@'myhost.example.com' IDENTIFIED BY
'cbpass';
mysql> GRANT ALL ON cookbook.* TO 'cbuser'@'myhost.example.com';

It may have occurred to you that there’s a paradox in the procedure just
described: to set up a cbuser account that can connect to the MySQL
server, you must first connect to the server so that you can execute the
CREATE USER and GRANT statements. I’m assuming that you can already
connect as the MySQL root user because CREATE USER and GRANT can
be used only by a user such as root that has the administrative privileges
needed to set up other user accounts. If you can’t connect to the server as
root, ask your MySQL administrator to create the cbuser account for
you.

MYSQL ACCOUNTS AND LOGIN ACCOUNTS
MySQL accounts differ from login accounts for your operating system. For example, the
MySQL root user and the Unix root user are separate and have nothing to do with each
other, even though the username is the same in each case. This means you don’t create new
MySQL accounts by creating login accounts for your operating system; use CREATE USER and
GRANT instead.

After creating the cbuser account, verify that you can use it to connect to
the MySQL server. From the host that was named in the CREATE USER
statement, run the following command to do this (the host named after -h
should be the host where the MySQL server is running):

$ mysql -h localhost -u cbuser -p
Enter password: cbpass

Now you can proceed to create the cookbook database and tables within
it, as described in Recipe 1.2. To make it easier to invoke mysql without
specifying connection parameters each time, put them in an option file (see
Recipe 1.4).

See Also
For additional information about administering MySQL accounts, see
Chapter 24.

1.2 Creating a Database and a Sample Table

Problem
You want to create a database and set up tables within it.

Solution
Use a CREATE DATABASE statement to create the database, a CREATE
TABLE statement for each table, and INSERT statements to add rows to the

tables.

Discussion
The GRANT statement shown in Recipe 1.1 sets up privileges for accessing
the cookbook database but does not create the database. This section
shows how to do that and also how to create a table and load it with the
sample data used for examples in the following sections. Similar
instructions apply for creating other tables used elsewhere in this book.
Connect to the MySQL server as shown at the end of Recipe 1.1, then
create the database like this:

mysql> CREATE DATABASE cookbook;

Now that you have a database, you can create tables in it. First, select
cookbook as the default database:

mysql> USE cookbook;

Then create a simple table:

mysql> CREATE TABLE limbs (thing VARCHAR(20), legs INT, arms INT,
PRIMARY KEY(thing));

And populate it with a few rows:

mysql> INSERT INTO limbs (thing,legs,arms) VALUES('human',2,2);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('insect',6,0);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('squid',0,10);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('fish',0,0);
mysql> INSERT INTO limbs (thing,legs,arms)
VALUES('centipede',99,0);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('table',4,0);
mysql> INSERT INTO limbs (thing,legs,arms)
VALUES('armchair',4,2);
mysql> INSERT INTO limbs (thing,legs,arms)
VALUES('phonograph',0,1);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('tripod',3,0);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('Peg Leg
Pete',1,2);

mysql> INSERT INTO limbs (thing,legs,arms) VALUES('space
alien',NULL,NULL);

TIP
To enter the INSERT statements more easily, after entering the first one, press the up arrow to
recall it, press Backspace (or Delete) a few times to erase characters back to the last open
parenthesis, then type the data values for the next statement. Or, to avoid typing the INSERT
statements altogether, skip ahead to Recipe 1.6.

The table you just created is named limbs and contains three columns to
record the number of legs and arms possessed by various life forms and
objects. The physiology of the alien in the last row is such that the proper
values for the arms and legs columns cannot be determined; NULL
indicates “unknown value.”
The PRIMARY KEY clause defines the primary key that uniquely identifies
the table row. This prevents inserting ambiguous data into the table and also
helps MySQL to perform queries faster. We discuss ambiguous data in
Chapter 18 and performance issues in Chapter 21.
Verify that the rows were added to the limbs table by executing a
SELECT statement:

mysql> SELECT * FROM limbs;
+--------------+------+------+
| thing | legs | arms |
+--------------+------+------+
human	2	2
insect	6	0
squid	0	10
fish	0	0
centipede	99	0
table	4	0
armchair	4	2
phonograph	0	1
tripod	3	0
Peg Leg Pete	1	2
space alien	NULL	NULL
+--------------+------+------+
11 rows in set (0,01 sec)

At this point, you’re all set up with a database and a table. For additional
information about executing SQL statements, see Recipes 1.5 and 1.6.

NOTE
In this book, statements show SQL keywords such as SELECT or INSERT in uppercase for
distinctiveness. That’s only a typographical convention; keywords can be any letter case.

1.3 Finding mysql Client

Problem
When you invoke mysql client from the command line, your command
interpreter can’t find it.

Solution
Add the directory where mysql is installed to your PATH setting. Then you
can run mysql from any directory easily.

Discussion
If your shell or command interpreter can’t find mysql when you invoke it,
you’ll see some sort of error message. It might look like this under Unix:

$ mysql
mysql: Command not found.

Or like this under Windows:

C:\> mysql.exe
'mysql.exe' is not recognized as an internal or external
command,↩
operable program or batch file.

One way to tell your command interpreter where to find mysql is to type
its full pathname each time you run it. The command might look like this
under Unix:

$ /usr/local/mysql/bin/mysql

Or like this under Windows:

C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysql"

Typing long pathnames gets tiresome pretty quickly. You can avoid doing
so by changing location into the directory where mysql is installed before
you run it. But if you do that, you may be tempted to put all your datafiles
and SQL batch files in the same directory as mysql, thus unnecessarily
cluttering up a location intended only for programs.
A better solution is to modify your PATH search-path environment variable,
which specifies directories where the command interpreter looks for
commands. Add to the PATH value the directory where mysql is installed.
Then you can invoke mysql from any location by entering only its name,
which eliminates pathname typing. For instructions on setting your PATH
variable, read “Executing Programs from the Command Line” on the
companion GitHub repository (see the Preface).
On Windows, another way to avoid typing the pathname or changing into
the mysql directory is to create a shortcut and place it in a more
convenient location, such as the desktop. This makes it easy to start mysql
simply by opening the shortcut. To specify command options or the startup
directory, edit the shortcut’s properties. If you don’t always invoke mysql
with the same options, it might be useful to create one shortcut for each set
of options you need. For example, create one shortcut to connect as an
ordinary user for general work and another to connect as the MySQL root
user for administrative purposes.

1.4 Specifying mysql Command Options

https://github.com/svetasmirnova/mysqlcookbook/blob/master/cmdline.md

Problem
When you invoke the mysql program without command options, it exits
immediately with an error message.

Solution
You must specify connection parameters. Do this on the command line, in
an option file, or using a mix of the two.

Discussion
If you invoke mysql with no command options, the result may be an
“access denied” error. To avoid that, connect to the MySQL server as shown
in Recipe 1.1, using mysql like this:

$ mysql -h localhost -u cbuser -p
Enter password: cbpass

Each option is the single-dash “short” form: -h and -u to specify the
hostname and username, and -p to be prompted for the password. There are
also corresponding double-dash “long” forms: --host, --user, and --
password. Use them like this:

$ mysql --host=localhost --user=cbuser --password
Enter password: cbpass

To see all options that mysql supports, use this command:

$ mysql --help

The way you specify command options for mysql also applies to other
MySQL programs such as mysqldump and mysqladmin. For example,
to generate a dump file named cookbook.sql that contains a backup of the
tables in the cookbook database, execute mysqldump like this:

$ mysqldump -h localhost -u cbuser -p cookbook > cookbook.sql
Enter password: cbpass

Some operations require an administrative MySQL account. The
mysqladmin program can perform operations that are available only to
the MySQL root account. For example, to stop the server, invoke
mysqladmin as follows:

$ mysqladmin -h localhost -u root -p shutdown
Enter password: ← enter MySQL root account password here

If the value that you use for an option is the same as its default value, you
can omit the option. However, there is no default password. If you like, you
can specify the password directly on the command line by using -
ppassword (with no space between the option and the password) or --
password=password.

WARNING
We don’t recommend this because the password is visible to onlookers and, on multiple-user
systems, may be discoverable to other users who run tools such as ps that report process
information or can read content of your shell history file.

Because the default host is localhost, the same value we’ve been
specifying explicitly, you can omit the -h (or --host) option from the
command line:

$ mysql -u cbuser -p

But suppose that you’d really rather not specify any options. How can you
get mysql to “just know” what values to use? That’s easy because MySQL
programs support option files:

If you put an option in an option file, you need not specify it on the
command line each time you invoke a given program.

You can mix command-line and option-file options. This enables you to
store the most commonly used option values in a file but override them
as desired on the command line.

The rest of this section describes these capabilities.

THE MEANING OF LOCALHOST IN MYSQL
One of the parameters you specify when connecting to a MySQL server is the host where the
server is running. Most programs treat the hostname localhost and the IP address 127.0.0.1
as synonyms for “the local host.” Under Unix, MySQL programs behave differently: by
convention, they treat the hostname localhost specially and attempt to connect to the local
server using a Unix domain socket file. To force a TCP/IP connection to the local server, use the
IP address 127.0.0.1 (or ::1 if your system is configured to support IPv6) rather than the
hostname localhost. Alternatively, you can specify a --protocol=tcp option to force use of
TCP/IP for connecting.

The default port number is 3306 for TCP/IP connections. The pathname for the Unix domain
socket varies, although it’s often /tmp/mysql.sock. To name the socket file pathname explicitly
for the mysql client in the connection string, use -S file_name or --
socket=file_name.

Specifying connection parameters using option files
To avoid entering options on the command line each time you invoke
mysql, put them in an option file for mysql to read automatically. Option
files are plain-text files:

Under Unix, your personal option file is named .my.cnf in your home
directory. There are also site-wide option files that administrators can
use to specify parameters that apply globally to all users. You can use the
my.cnf file in the /etc or /etc/mysql directory, or in the etc directory under
the MySQL installation directory.
Under Windows, files you can use include the my.ini or my.cnf file in
your MySQL installation directory (for example, C:\Program
Files\MySQL\MySQL Server 8.0), your Windows directory (likely
C:\WINDOWS), or the C:\ directory.

To see the exact list of permitted option-file locations, invoke mysql --
help.

The following example illustrates the format used in MySQL option files:

general client program connection options
[client]
host = localhost
user = cbuser
password = cbpass

options specific to the mysql program
[mysql]
skip-auto-rehash
pager="/usr/bin/less -i" # specify pager for interactive mode

With connection parameters listed in the [client] group as just shown,
you can connect as cbuser by invoking mysql with no options on the
command line:

$ mysql

The same holds for other MySQL client programs, such as mysqldump.

WARNING
The password option is stored in the configuration file in plain text format, and any user who
has access to this file can read it. If you want to secure the connection credentials, you should use
mysql_config_editor to store them securely.

mysql_config_editor stores connection credentials in a file, named .mylogin.cnf, located in
your home directory under Unix and in the %APPDATA%\MySQL directory under Windows. It
supports only the connection parameters host, user, password, and socket. The --
login-path option specifies a group under which credentials are stored. The default is
[client].

Following is an example of using mysql_config_editor to create an encrypted login file:

$ mysql_config_editor set --login-path=client \
> --host=localhost --user=cbuser --password
Enter password: cbpass

print stored credentials
$ mysql_config_editor print --all
[client]
user = cbuser
password = *****
host = localhost

MySQL option files have these characteristics:
Lines are written in groups (or sections). The first line of a group
specifies the group name within square brackets, and the remaining lines
specify options associated with the group. The example file just shown
has a [client] group and a [mysql] group. To specify options for
the server, mysqld, put them in a [mysqld] group.

The usual option group for specifying client connection parameters is
[client]. This group is actually used by all the standard MySQL
clients. By listing an option in this group, you make it easier to invoke
not only mysql but also other programs such as mysqldump and
mysqladmin. Just make sure that any option you put in this group is
understood by all client programs. Otherwise, invoking any client that
does not understand it results in an “unknown option” error.

You can define multiple groups in an option file. By convention,
MySQL clients look for parameters in the [client] group and in the
group named for the program itself. This provides a convenient way to
list general client parameters that you want all client programs to use,
but you can still specify options that apply only to a particular program.
The preceding sample option file illustrates this convention for the
mysql program, which gets general connection parameters from the
[client] group and also picks up the skip-auto-rehash and
pager options from the [mysql] group.

Within a group, write option lines in name=value format, where
name corresponds to an option name (without leading dashes) and
value is the option’s value. If an option takes no value (such as skip-
auto-rehash), list the name by itself with no trailing =value part.

In option files, only the long form of an option is permitted, not the short
form. For example, on the command line, the hostname can be given
using either -h host_name or --host=host_name. In an option
file, only host=host_name is permitted.

Many programs, mysql and mysqld included, have program variables
in addition to command options. (For the server, these are called system
variables; see Recipe 22.1.) Program variables can be specified in option
files, just like options. Internally, program variable names use
underscores, but in option files, you can write options and variables
using dashes or underscores interchangeably. For example, skip-
auto-rehash and skip_auto_rehash are equivalent. To set the
server’s sql_mode system variable in a [mysqld] option group,
sql_mode=value and sql-mode=value are equivalent. (The
interchangeability of the dash and underscore also applies for options or
variables specified on the command line.)
In option files, spaces are permitted around the = that separates an
option name and value. This contrasts with command lines, where no
spaces around = are permitted. If an option value contains spaces or

other special characters, you can quote it using single or double quotes.
The pager option illustrates this.

It’s common to use an option file to specify options for connection
parameters (such as host, user, and password). However, the file
can list options that have other purposes. The pager option shown for
the [mysql] group specifies the paging program that mysql should
use for displaying output in interactive mode. It has nothing to do with
how the program connects to the server. We do not recommend putting
password into the option file, because it is stored as plain text and
could be discovered by users who have filesystem access to the
configuration file while not necessary having access to the MySQL
installation.
If a parameter appears multiple times in an option file, the last value
found takes precedence. Normally, you should list any program-specific
groups following the [client] group so that if there is any overlap in
the options set by the two groups, the more general options are
overridden by the program-specific values.
Lines beginning with # or ; characters are ignored as comments. Blank
lines are ignored, too. # can be used to write comments at the end of
option lines, as shown for the pager option.

Options that specify file or directory pathnames should be written using
/ as the pathname separator character, even under Windows, which uses
\ as the pathname separator. Alternatively, write \ by doubling it as \\
(this is necessary because \ is the MySQL escape character in strings).

To find out which options the mysql program will read from option files,
use this command:

$ mysql --print-defaults

You can also use the my_print_defaults utility, which takes as
arguments the names of the option-file groups that it should read. For
example, mysqldump looks in both the [client] and [mysqldump]

groups for options. To check which option-file settings are in those groups,
use this command:

$ my_print_defaults client mysqldump

Mixing command-line and option-file parameters
It’s possible to mix command-line options and options in option files.
Perhaps you want to list your username and server host in an option file but
would rather not store your password there. That’s okay; MySQL programs
first read your option file to see what connection parameters are listed there,
then check the command line for additional parameters. This means you can
specify some options one way and some the other way. For example, you
can list your username and hostname in an option file but use a password
option on the command line:

$ mysql -p
Enter password: ← enter your password here

Command-line parameters take precedence over parameters found in your
option file, so to override an option file parameter, just specify it on the
command line. For example, you can list your regular MySQL username
and password in the option-file for general-purpose use. Then, if you must
connect on occasion as the MySQL root user, specify the user and
password options on the command line to override the option-file values:

$ mysql -u root -p
Enter password: ← enter MySQL root account password here

To explicitly specify “no password” when there is a nonempty password in
the option file, use --skip-password on the command line:

$ mysql --skip-password

NOTE
From this point on, we’ll usually show commands for MySQL programs with no connection-
parameter options. We assume that you’ll supply any parameters you need, either on the command
line or in an option file.

Protecting option files from other users
On a multiple-user operating system such as Unix, protect the option file
located in your home directory to prevent other users from reading it and
finding out how to connect to MySQL using your account. Use chmod to
make the file private by setting its mode to enable access only by yourself.
Either of the following commands do this:

$ chmod 600 .my.cnf
$ chmod go-rwx .my.cnf

On Windows, you can use Windows Explorer to set file permissions.

1.5 Executing SQL Statements Interactively

Problem
You’ve started mysql. Now you want to send SQL statements to the
MySQL server to be executed.

Solution
Just type them in, letting mysql know where each one ends. Alternatively,
specify “one-liners” directly on the command line.

Discussion
When you invoke mysql, by default, it displays a mysql> prompt to tell
you that it’s ready for input. To execute a SQL statement at the mysql>

prompt, type it in, add a semicolon (;) at the end to signify the end of the
statement, and press Enter. An explicit statement terminator is necessary;
mysql doesn’t interpret Enter as a terminator because you can enter a
statement using multiple input lines. The semicolon is the most common
terminator, but you can also use \g (“go”) as a synonym for the semicolon.
Thus, the following examples are equivalent ways of issuing the same
statement, even though they are entered differently and terminated
differently:

mysql> SELECT NOW();
+---------------------+
| NOW() |
+---------------------+
| 2014-04-06 17:43:52 |
+---------------------+
mysql> SELECT
 -> NOW()\g
+---------------------+
| NOW() |
+---------------------+
| 2014-04-06 17:43:57 |
+---------------------+

For the second statement, mysql changes the prompt from mysql> to ->
to let you know that it’s still waiting to see the statement terminator.
The ; and \g statement terminators are not part of the statement itself.
They’re conventions used by the mysql program, which recognizes these
terminators and strips them from the input before sending the statement to
the MySQL server.
Some statements generate output lines that are so long they take up more
than one line on your terminal, which can make query results difficult to
read. To avoid this problem, generate “vertical” output by terminating the
statement with \G rather than with ; or \g. The output shows column
values on separate lines:

mysql> USE cookbook
mysql> SHOW FULL COLUMNS FROM limbs LIKE 'thing'\G
*************************** 1. row ***************************
 Field: thing

 Type: varchar(20)
 Collation: utf8mb4_0900_ai_ci
 Null: YES
 Key:
 Default: NULL
 Extra:
Privileges: select,insert,update,references
 Comment:

To produce vertical output for all statements executed within a session,
invoke mysql with the -E (or --vertical) option. To produce vertical
output only for those results that exceed your terminal width, use --auto-
vertical-output.

To execute a statement directly from the command line, specify it using the
-e (or --execute) option. This is useful for “one-liners.” For example,
to count the rows in the limbs table, use this command:

$ mysql -e "SELECT COUNT(*) FROM limbs" cookbook
+----------+
| COUNT(*) |
+----------+
| 11 |
+----------+

To execute multiple statements, separate them with semicolons:

$ mysql -e "SELECT COUNT(*) FROM limbs;SELECT NOW()" cookbook
+----------+
| COUNT(*) |
+----------+
| 11 |
+----------+
+---------------------+
| NOW() |
+---------------------+
| 2014-04-06 17:43:57 |
+---------------------+

mysql can also read statements from a file or from another program (see
Recipe 1.6).

1.6 Executing SQL Statements Read from a
File or Program

Problem
You want mysql to read statements stored in a file so you don’t have to
enter them manually. Or you want mysql to read the output from another
program.

Solution
To read a file, redirect mysql’s input, or use the source command. To
read from a program, use a pipe.

Discussion
By default, the mysql program reads input interactively from the terminal,
but you can feed it statements using other input sources such as a file or
program.
For this purpose, MySQL supports batch mode, which is convenient for
executing a set of statements on repeated occasions without entering them
manually each time. Batch mode makes it easy to set up cron jobs that run
with no user intervention.
To create a SQL script for mysql to execute in batch mode, put your
statements in a text file. Then invoke mysql and redirect its input to read
from that file:

$ mysql cookbook < file_name

Statements read from an input file substitute for what you’d normally enter
interactively by hand, so they must be terminated with ;, \g, or \G, just as
if you were entering them manually. Interactive and batch modes do differ
in default output format. For interactive mode, the default is the tabular

(boxed) format. For batch mode, the default is the tab-delimited format. To
override the default, use the appropriate command option (see Recipe 1.7).
SQL scripts also are useful for distributing sets of SQL statements to other
people. That is, in fact, how we distribute SQL examples for this book.
Many of the examples shown here can be run using script files available in
the accompanying recipes distribution (see the Preface). Feed these files
to mysql in batch mode to avoid typing statements yourself. For example,
when a recipe shows a CREATE TABLE statement that defines a table,
you’ll usually find a SQL batch file in the recipes distribution that you
can use to create (and perhaps load data into) the table. Recall that Recipe
1.2 shows the statements for creating and populating the limbs table.
Those statements were shown as you would enter them manually, but the
tables directory of the recipes distribution includes a limbs.sql file that
contains statements to do the same thing. The file looks like this:

DROP TABLE IF EXISTS limbs;
CREATE TABLE limbs
(
 thing VARCHAR(20), # what the thing is
 legs INT, # number of legs it has
 arms INT, # number of arms it has
 PRIMARY KEY(thing)
);

INSERT INTO limbs (thing,legs,arms) VALUES('human',2,2);
INSERT INTO limbs (thing,legs,arms) VALUES('insect',6,0);
INSERT INTO limbs (thing,legs,arms) VALUES('squid',0,10);
INSERT INTO limbs (thing,legs,arms) VALUES('fish',0,0);
INSERT INTO limbs (thing,legs,arms) VALUES('centipede',99,0);
INSERT INTO limbs (thing,legs,arms) VALUES('table',4,0);
INSERT INTO limbs (thing,legs,arms) VALUES('armchair',4,2);
INSERT INTO limbs (thing,legs,arms) VALUES('phonograph',0,1);
INSERT INTO limbs (thing,legs,arms) VALUES('tripod',3,0);
INSERT INTO limbs (thing,legs,arms) VALUES('Peg Leg Pete',1,2);
INSERT INTO limbs (thing,legs,arms) VALUES('space
alien',NULL,NULL);

To execute the statements in this SQL script file, change location into the
tables directory of the recipes distribution and run this command:

$ mysql cookbook < limbs.sql

You’ll note that the script contains a statement to drop the table if it exists
before creating the table anew and loading it with data. That enables you to
experiment with the table, perhaps making changes to it, confident that you
can easily restore it to its baseline state any time by running the script again.
The command just shown illustrates how to specify an input file for mysql
on the command line. Alternatively, to read a file of SQL statements from
within a mysql session, use a source filename command (or \.
filename, which is synonymous):

mysql> source limbs.sql
mysql> \. limbs.sql

SQL scripts can themselves include source or \. commands to include
other scripts. This gives you additional flexibility, but take care to avoid
loops.
A file to be read by mysql need not be written by hand; it could be
program generated. For example, the mysqldump utility generates
database backups by writing a set of SQL statements that re-create the
database. To reload mysqldump output, feed it to mysql. For example,
you can copy a database over the network to another MySQL server like
this:

$ mysqldump cookbook > dump.sql
$ mysql -h other-host.example.com cookbook < dump.sql

mysql can also read a pipe, so it can take output from other programs as its
input. Any command that produces output consisting of properly terminated
SQL statements can be used as an input source for mysql. The dump-and-
reload example can be rewritten to connect the two programs directly with a
pipe, avoiding the need for an intermediary file:

$ mysqldump cookbook | mysql -h other-host.example.com cookbook

Program-generated SQL can also be useful for populating a table with test
data without writing the INSERT statements by hand. Create a program

that generates the statements, then send its output to mysql using a pipe:

$ generate-test-data | mysql cookbook

Recipe 6.6 discusses mysqldump further.

1.7 Controlling mysql Output Destination and
Format

Problem
You want mysql output to go somewhere other than your screen. And you
don’t necessarily want the default output format.

Solution
Redirect the output to a file, or use a pipe to send the output to a program.
You can also control other aspects of mysql output to produce tabular, tab-
delimited, HTML, or XML output; suppress column headers; or make
mysql more or less verbose.

Discussion
Unless you send mysql output elsewhere, it goes to your screen. To save
output from mysql in a file, use your shell’s redirection capability:

$ mysql cookbook > outputfile

If you run mysql interactively with the output redirected, you can’t see
what you type, so in this case you usually also read the input from a file (or
another program):

$ mysql cookbook < inputfile > outputfile

To send the output to another program (for example, to parse the output of
the query), use a pipe:

$ mysql cookbook < inputfile | sed -e "s/\t/:/g" > outputfile

The rest of this section shows how to control the mysql output format.

Producing tabular or tab-delimited output
mysql chooses its default output format by whether it runs interactively or
noninteractively. For interactive use, mysql writes output to the terminal
using the tabular (boxed) format:

$ mysql cookbook
mysql> SELECT * FROM limbs WHERE legs=0;
+------------+------+------+
| thing | legs | arms |
+------------+------+------+
squid	0	10
fish	0	0
phonograph	0	1
+------------+------+------+
3 rows in set (0.00 sec)

For noninteractive use (when the input or output is redirected), mysql
writes tab-delimited output:

$ echo "SELECT * FROM limbs WHERE legs=0" | mysql cookbook
thing legs arms
squid 0 10
fish 0 0
phonograph 0 1

To override the default output format, use the appropriate command option.
Consider a sed command, shown earlier, and change its parameters to
obfuscate the output:

$ mysql cookbook < inputfile | sed -e "s/table/XXXXX/g"

$ mysql cookbook -e "SELECT * FROM limbs where legs=4" | ↩
 sed -e "s/table/XXXXX/g"

 thing legs arms
 XXXXX 4 0
 armchair 4 2

Because mysql runs noninteractively in that context, it produces tab-
delimited output, which could be more difficult to read than tabular output.
Use the -t (or --table) option to produce more readable tabular output:

$ mysql cookbook -t -e "SELECT * FROM limbs where legs=4" | ↩
 sed -e "s/table/XXXXX/g"

+----------+------+------+
| thing | legs | arms |
+----------+------+------+
| XXXXX | 4 | 0 |
| armchair | 4 | 2 |
+----------+------+------+

The inverse operation is to produce batch (tab-delimited) output in
interactive mode. To do this, use -B (or --batch).

Producing HTML or XML output
mysql generates an HTML table from each query result set if you use the
-H (or --html) option. This enables you to easily produce output for
inclusion in a web page that shows a query result. Here’s an example (with
line breaks added to make the output easier to read):

$ mysql -H -e "SELECT * FROM limbs WHERE legs=0" cookbook
<TABLE BORDER=1>
<TR><TH>thing</TH><TH>legs</TH><TH>arms</TH></TR>
<TR><TD>squid</TD><TD>0</TD><TD>10</TD></TR>
<TR><TD>fish</TD><TD>0</TD><TD>0</TD></TR>
<TR><TD>phonograph</TD><TD>0</TD><TD>1</TD></TR>
</TABLE>

The first row of the table contains column headings. If you don’t want a
header row, see the next section for instructions.
You can save the output in a file, then view it with a web browser. For
example, on Mac OS X, do this:

$ mysql -H -e "SELECT * FROM limbs WHERE legs=0" cookbook >
limbs.html
$ open -a safari limbs.html

To generate an XML document instead of HTML, use the -X (or --xml)
option:

$ mysql -X -e "SELECT * FROM limbs WHERE legs=0" cookbook
<?xml version="1.0"?>

<resultset statement="select * from limbs where legs=0
">
 <row>
 <field name="thing">squid</field>
 <field name="legs">0</field>
 <field name="arms">10</field>
 </row>

 <row>
 <field name="thing">fish</field>
 <field name="legs">0</field>
 <field name="arms">0</field>
 </row>

 <row>
 <field name="thing">phonograph</field>
 <field name="legs">0</field>
 <field name="arms">1</field>
 </row>
</resultset>

You can reformat XML to suit a variety of purposes by running it through
XSLT transforms. This enables you to use the same input to produce many
output formats.
The -H, --html -X, and --xml options produce output only for
statements that generate a result set, not for statements such as INSERT or
UPDATE.

To write your own programs that generate XML from query results, see
Recipe 13.15.

Suppressing column headings in query output

The tab-delimited format is convenient for generating datafiles for import
into other programs. However, the first row of output for each query lists
the column headings by default, which may not always be what you want.
Suppose that a program named summarize produces descriptive statistics
for a column of numbers. If you produce output from mysql to be used
with this program, a column header row would throw off the results because
summarize would treat it as data. To create output that contains only data
values, suppress the header row with the --skip-column-names
option:

$ mysql --skip-column-names -e "SELECT arms FROM limbs" cookbook
| summarize

Specifying the “silent” option (-s or --silent) twice achieves the same
effect:

$ mysql -ss -e "SELECT arms FROM limbs" cookbook | summarize

Specifying the output column delimiter
In noninteractive mode, mysql separates output columns by tabs, and there
is no option for specifying the output delimiter. To produce output that uses
a different delimiter, postprocess mysql output. Suppose that you want to
create an output file for use by a program that expects values to be
separated by colon characters (:) rather than tabs. Under Unix, you can
convert tabs to arbitrary delimiters by using a utility such as tr or sed.
Any of the following commands change tabs to colons (TAB indicates
where you type a tab character):

$ mysql cookbook < inputfile | sed -e "s/TAB/:/g" > outputfile
$ mysql cookbook < inputfile | tr "TAB" ":" > outputfile
$ mysql cookbook < inputfile | tr "\011" ":" > outputfile

The syntax differs among versions of tr; consult your local documentation.
Also, some shells use the tab character for special purposes such as

filename completion. For such shells, type a literal tab into the command by
preceding it with Ctrl-V.
sed is more powerful than tr because it understands regular expressions
and permits multiple substitutions. This is useful for producing output in
something like the comma-separated values (CSV) format, which requires
three substitutions:

1. Escape any quote characters that appear in the data by doubling them
so that when you use the resulting CSV file, they won’t be interpreted
as column delimiters.

2. Change the tabs to commas.
3. Surround column values with quotes.

sed permits all three substitutions to be performed in a single command
line:

$ mysql cookbook < inputfile \
 | sed -e 's/"/""/g' -e 's/TAB/","/g' -e 's/^/"/' -e 's/$/"/'
> outputfile

That’s cryptic, to say the least. You can achieve the same result with other
languages that may be easier to read. Here’s a short Perl script that does the
same thing as the sed command (it converts tab-delimited input to CSV
output) and includes comments to document how it works:

#!/usr/bin/perl
csv.pl: convert tab-delimited input to comma-separated values
output
while (<>) # read next input line
{
 s/"/""/g; # double quotes within column values
 s/\t/","/g; # put "," between column values
 s/^/"/; # add " before the first value
 s/$/"/; # add " after the last value
 print; # print the result
}

If you name the script csv.pl, use it like this:

$ mysql cookbook < inputfile | perl csv.pl > outputfile

tr and sed normally are unavailable under Windows. Perl may be more
suitable as a cross-platform solution because it runs under both Unix and
Windows. (On Unix systems, Perl is usually preinstalled. On Windows, it is
freely available for you to install.)
Another way to produce CSV output is to use the Perl Text::CSV_XS
module, which was designed for that purpose. The cvt_file.pl utility,
available in the recipes distribution, uses this module to construct a general-
purpose file reformatter.

Controlling mysql’s verbosity level
When you run mysql noninteractively, not only does the default output
format change, but it becomes more terse. For example, mysql doesn’t
print row counts or indicate how long statements took to execute. To tell
mysql to be more verbose, use -v (or --verbose), specifying the option
multiple times for increasing verbosity. Try the following commands to see
how the output differs:

$ echo "SELECT NOW()" | mysql
$ echo "SELECT NOW()" | mysql -v
$ echo "SELECT NOW()" | mysql -vv
$ echo "SELECT NOW()" | mysql -vvv

The counterparts of -v and --verbose are -s and --silent, which
also can be used multiple times for increased effect.

1.8 Using User-Defined Variables in SQL
Statements

Problem
You want to use a value in one statement that is produced by an earlier
statement.

Solution
Save the value in a user-defined variable to store it for later use.

Discussion
To save a value returned by a SELECT statement, assign it to a user-defined
variable. This enables you to refer to it in other statements later in the same
session (but not across sessions). User variables are a MySQL-specific
extension to standard SQL. They will not work with other database engines.
To assign a value to a user variable within a SELECT statement, use
@var_name := value syntax. The variable can be used in subsequent
statements wherever an expression is permitted, such as in a WHERE clause
or in an INSERT statement.

Here is an example that assigns a value to a user variable, then refers to that
variable later. This is a simple way to determine a value that characterizes
some row in a table, then select that particular row:

mysql> SELECT MAX(arms+legs) INTO @max_limbs FROM limbs;
Query OK, 1 row affected (0,01 sec)
mysql> SELECT * FROM limbs WHERE arms+legs = @max_limbs;
+-----------+------+------+
| thing | legs | arms |
+-----------+------+------+
| centipede | 99 | 0 |
+-----------+------+------+

Another use for a variable is to save the result from LAST_INSERT_ID()
after creating a new row in a table that has an AUTO_INCREMENT column:

mysql> SELECT @last_id := LAST_INSERT_ID();

LAST_INSERT_ID() returns the most recent AUTO_INCREMENT value.
By saving it in a variable, you can refer to the value several times in
subsequent statements, even if you issue other statements that create their
own AUTO_INCREMENT values and thus change the value returned by
LAST_INSERT_ID(). Recipe 15.10 discusses this technique further.

User variables hold single values. If a statement returns multiple rows, the
statement will fail with an error, but the value from the first row is assigned:

mysql> SELECT thing FROM limbs WHERE legs = 0;
+------------+
| thing |
+------------+
| squid |
| fish |
| phonograph |
+------------+
3 rows in set (0,00 sec)

mysql> SELECT thing INTO @name FROM limbs WHERE legs = 0;
ERROR 1172 (42000): Result consisted of more than one row
mysql> SELECT @name;
+-------+
| @name |
+-------+
| squid |
+-------+

If the statement returns no rows, no assignment takes place, and the variable
retains its previous value. If the variable has not been used previously, its
value is NULL:

mysql> SELECT thing INTO @name2 FROM limbs WHERE legs < 0;
Query OK, 0 rows affected, 1 warning (0,00 sec)

mysql> SHOW WARNINGS;
+---------+------+---
------+
| Level | Code | Message
|
+---------+------+---
------+
| Warning | 1329 | No data - zero rows fetched, selected, or
processed |
+---------+------+---
------+
1 row in set (0,00 sec)

mysql> select @name2;
+--------+
| @name2 |
+--------+
| NULL |

+--------+
1 row in set (0,00 sec)

TIP
The SQL SHOW WARNINGS command returns informational messages about recoverable errors,
such as assigning an empty result to a variable or the use of a deprecated feature.

To set a variable explicitly to a particular value, use a SET statement. SET
syntax can use either := or = as the assignment operator:

mysql> SET @sum = 4 + 7;
mysql> SELECT @sum;
+------+
| @sum |
+------+
| 11 |
+------+

You can assign a SELECT result to a variable, provided that you write it as
a scalar subquery (a query within parentheses that returns a single value):

mysql> SET @max_limbs = (SELECT MAX(arms+legs) FROM limbs);

User variable names are not case sensitive:

mysql> SET @x = 1, @X = 2; SELECT @x, @X;
+------+------+
| @x | @X |
+------+------+
| 2 | 2 |
+------+------+

User variables can appear only where expressions are permitted, not where
constants or literal identifiers must be provided. It’s tempting to attempt to
use variables for such things as table names, but it doesn’t work. For
example, if you try to generate a temporary table name using a variable as
follows, it fails:

mysql> SET @tbl_name = CONCAT('tmp_tbl_', CONNECTION_ID());
mysql> CREATE TABLE @tbl_name (int_col INT);
ERROR 1064 (42000): You have an error in your SQL syntax; ↩
check the manual that corresponds to your MySQL server version
for ↩
the right syntax to use near '@tbl_name (int_col INT)' at line 1

However, you can generate a prepared SQL statement that incorporates
@tbl_name, then execute the result. Recipe 6.4 shows how.

SET is also used to assign values to stored program parameters, local
variables, and system variables. For examples, see Chapter 11 and Recipe
22.1.

1.9 Customizing a mysql Prompt

Problem
You opened several connections in different terminal windows and want to
visually distinguish them.

Solution
Set a mysql prompt to a custom value.

Discussion
You can customize a mysql prompt by providing the --prompt option
on start:

$ mysql --prompt="MySQL Cookbook> "
MySQL Cookbook>

If the client has already been started, you can use the prompt command to
change it interactively:

mysql> prompt MySQL Cookbook>
PROMPT set to 'MySQL Cookbook> '

MySQL Cookbook>

The command prompt, like other mysql commands, supports a short
version: \R:

mysql> \R MySQL Cookbook>
PROMPT set to 'MySQL Cookbook> '
MySQL Cookbook>

To specify the prompt value in the configuration file, put the prompt
option under the [mysql] section:

[mysql]
prompt="MySQL Cookbook> "

Quotes are optional and required only when you want to have special
characters, such as a space at the end of the prompt string.
Finally, you can specify a prompt using the environment variable
MYSQL_PS1:

$ export MYSQL_PS1="MySQL Cookbook> "
$ mysql
MySQL Cookbook>

To reset a prompt to its default value, run the prompt command without
arguments:

MySQL Cookbook> prompt
Returning to default PROMPT of mysql>
mysql>

TIP
If you used the MYSQL_PS1 environment variable, the prompt default will be the value of the
MYSQL_PS1 variable instead of mysql.

The mysql prompt is highly customizable. You can set it to show the
current date, time, user account, default database, server host, and other
information about your database connection. You will find the full list of
supported options in the MySQL User Reference Manual.
To have a user account in the prompt, use either the special sequence \u to
display just a user name or \U to show the full user account:

mysql> prompt \U>
PROMPT set to '\U> '
cbuser@localhost>

If you connect to MySQL servers on different machines, you may want to
see the MySQL server host name in the prompt. A special sequence, \h,
exists just for this:

mysql> \R \h>
PROMPT set to '\h> '
Delly-7390>

To have the current default database in the prompt, use the special sequence
\d:

mysql> \R \d>
PROMPT set to '\d> '
(none)> use cookbook
Database changed
cookbook>

mysql supports multiple options to include time into the prompt. You can
have full date and time information or just part of it:

mysql> prompt \R:\m:\s>
PROMPT set to '\R:\m:\s> '
15:30:10>
15:30:10> prompt \D>
PROMPT set to '\D> '
Sat Sep 19 15:31:19 2020>

https://oreil.ly/e76Zj

WARNING
You cannot specify the current day of the month unless you use the full current date. This was
reported at MySQL Bug #72071 and is still not fixed.

Special sequences can be combined together and with any other text,
mysql uses the UTF-8 character set, and, if your terminal supports UTF-8
too, you can use smiley characters to make your prompt more impressive.
For example, to have on hand information about the connected user
account, MySQL host, default database, and current time, you can set the
prompt to \u@\h [📁\d] (🕑\R:\m:\s)> :

mysql> prompt \u@\h [📁\d] (🕑\R:\m:\s)>
PROMPT set to '\u@\h [📁\d] (🕑\R:\m:\s)> '
cbuser@Delly-7390 [📁cookbook] (🕑16:15:41)>

1.10 Using External Programs

Problem
You want to use an external program without leaving the mysql client
command prompt.

Solution
Use the system command to call a program.

Discussion
While MySQL allows you to generate random passwords for its own
internal user accounts, it still does not have an internal function for
generating a safe user password for all other cases. Run the system
command to use one of the Operating System tools:

https://oreil.ly/oHJbO

mysql> system openssl rand -base64 16
p1+iSG9rveeKc6v0+lFUHA==

\! is a short version of the system command:

mysql> \! pwgen -synBC 16 1
Nu=3dWvrH7o_tWiE

pwgen may not be installed on your operating system. You need to install
the pwgen package before running this example.

system is a command of the mysql client and is executed locally, using
permissions belonging to the client. By default, the MySQL server is
running as user mysql, though you can connect using any user account. In
this case, you’ll be able to access only those programs and files that are
permitted for your operating system account. Thus, regular users cannot
access the data directory, which belongs to the special user mysqld
process is running as:

mysql> select @@datadir;
+-----------------+
| @@datadir |
+-----------------+
| /var/lib/mysql/ |
+-----------------+
1 row in set (0,00 sec)

mysql> system ls /var/lib/mysql/
ls: cannot open directory '/var/lib/mysql/': Permission denied
mysql> \! id
uid=1000(sveta) gid=1000(sveta) groups=1000(sveta)

For the same reason, system does not execute any command on the
remote server.
You can use any program, specify options, redirect output, and pipe it to
other commands. One useful insight the operating system can give you is
how much physical resources are occupied by the mysqld process and
compare it with data collected internally by the MySQL server itself.

MySQL stores information about memory usage in the Performance
Schema. Its companion sys schema contains views, allowing you to access
this information easily. Particularly, you can find the total amount of
allocated memory in human-readable format by querying the
sys.memory_global_total view:

mysql> SELECT * FROM sys.memory_global_total;
+-----------------+
| total_allocated |
+-----------------+
| 253.90 MiB |
+-----------------+
1 row in set (0.00 sec)

mysql> \! ps -o rss hp `pidof mysqld` | awk '{print $1/1024}'
298.66

The chain of the operating system requests statistics about physical memory
usage from the operating system and converts it into human-readable
format. This example shows that not all allocated memory is instrumented
inside the MySQL server.
Note that you need to run mysql client on the same machine with your
MySQL server for this to work.

1.11 Filtering and Processing Output

WARNING
This recipe works only on Unix platforms!

Problem
You want to change the output format of the MySQL client beyond its built-
in capabilities.

https://oreil.ly/BBMN8
https://oreil.ly/BBMN8

Solution
Set pager to a chain of commands, filtering output the way you want.

Discussion
Sometimes the formatting capabilities of the mysql client do not allow you
to work with the result set easily. For example, the number of returned rows
could be too big to fit the screen. Or the number of columns may make the
result too wide to comfortably read it on the screen. Standard operating
system pagers, such as less or more, allow you to work with long and
wide texts more comfortably.
You can specify which pager to use either by providing the --pager
option when you start mysql client or by using the pager command and
its shorter version, \P. You can specify any argument for the pager.

To tell mysql to use less as a pager, specify the --pager=less option
or assign this value interactively. Provide configuration parameters for the
command the same way you do when you’re working in your favorite shell.
In the following example, we specified options -F and -X, so less exits if
the result set is small enough to fit the screen and works normally when
needed:

mysql> pager less -F -X
PAGER set to 'less -F -X'
mysql> SELECT * FROM city;
+----------------+----------------+----------------+
| state | capital | largest |
+----------------+----------------+----------------+
Alabama	Montgomery	Birmingham
Alaska	Juneau	Anchorage
Arizona	Phoenix	Phoenix
Arkansas	Little Rock	Little Rock
California	Sacramento	Los Angeles
Colorado	Denver	Denver
Connecticut	Hartford	Bridgeport
Delaware	Dover	Wilmington
Florida	Tallahassee	Jacksonville
Georgia	Atlanta	Atlanta
Hawaii	Honolulu	Honolulu
Idaho	Boise	Boise

Illinois	Springfield	Chicago
Indiana	Indianapolis	Indianapolis
Iowa	Des Moines	Des Moines
Kansas	Topeka	Wichita
Kentucky	Frankfort	Louisville
:		
mysql> SELECT * FROM movies;		
+----+------+----------------------------+		
id	year	movie
+----+------+----------------------------+		
1	1997	The Fifth Element
2	1999	The Phantom Menace
3	2001	The Fellowship of the Ring
4	2005	Kingdom of Heaven
5	2010	Red
6	2011	Unknown
+----+------+----------------------------+
6 rows in set (0,00 sec)

You can use pager not only to beautify output but also to run any
command that can process text. One common use is to search for a pattern
in the data, printed by the diagnostic statement, using grep. For example,
to watch only History list length in the long SHOW ENGINE
INNODB STATUS output, use \P grep "History list
length." Once you are done with the search, reset the pager with the
empty pager command or instruct mysql to disable pager and print to
STDOUT using nopager or \n:

mysql> \P grep "History list length"
PAGER set to 'grep "History list length"'
mysql> SHOW ENGINE INNODB STATUS\G
History list length 30
1 row in set (0,00 sec)

mysql> SELECT SLEEP(60);
1 row in set (1 min 0,00 sec)

mysql> SHOW ENGINE INNODB STATUS\G
History list length 37
1 row in set (0,00 sec)

mysql> nopager
PAGER set to stdout

Another useful option during diagnostics is sending output nowhere. For
example, to measure the effectiveness of a query, you may want to examine
session status variable Handler_*. In this case, you’re not interested in
the result of the query but only in the output of the following diagnostic
command. Even more, you may want to send diagnostic data to professional
database consultants but do not want them to see actual query output due to
security considerations.
In this case, instruct pager to use a hashing function or to send output to
nowhere:

mysql> pager md5sum
PAGER set to 'md5sum'
mysql> SELECT 'Output of this statement is a hash';
8d83fa642dbf6a2b7922bcf83bc1d861 -
1 row in set (0,00 sec)

mysql> pager cat > /dev/null
PAGER set to 'cat > /dev/null'
mysql> SELECT 'Output of this statement goes to nowhere';
1 row in set (0,00 sec)

mysql> pager
Default pager wasn't set, using stdout.
mysql> SELECT 'Output of this statement is visible';

+-------------------------------------+
| Output of this statement is visible |
+-------------------------------------+
| Output of this statement is visible |
+-------------------------------------+
1 row in set (0,00 sec)

TIP
To redirect the output of a query, information messages, and all commands you type into a file,
use pager cat > FILENAME. To redirect to a file and still see the output, use the tee
command and its short version, \T. The built-in tee command works on both UNIX and
Windows platforms.

You can chain together pager commands using pipes. For example, to
print the content of the limbs table in different font styles, set pager to a
chain of calls as in the following list:

1. tr -d ' ' to remove extra spaces

2. awk -F'|' '{print
"+"$2"+\033[3m"$3"\033[0m+ \033[1m"$4"\033
[0m"$5"+"}' to add styles to the text

3. column -s '+' -t' for nicely formatted output

mysql> \P tr -d ' ' | ↩
awk -F'|' '{print
"+"$2"+\033[3m"$3"\033[0m+\033[1m"$4"\033[0m"$5"+"}' | ↩
column -s '+' -t
PAGER set to 'tr -d ' ' | ↩
awk -F'|' '{print
"+"$2"+\033[3m"$3"\033[0m+\033[1m"$4"\033[0m"$5"+"}' | ↩
column -s '+' -t'
mysql> select * from limbs;

thing legs arms

human 2 2
insect 6 0
squid 0 10
fish 0 0
centipede 99 0
table 4 0
armchair 4 2
phonograph 0 1
tripod 3 0
PegLegPete 1 2
spacealien NULL NULL

11 rows in set (0,00 sec)

Chapter 2. Using MySQL Shell

2.0 Introduction
We discussed the mysql Client Program in Chapter 1. MySQL Shell is the
modern alternative client. In addition to SQL, it supports nonrelational
syntax for the database queries, also known as NoSQL, via the JavaScript
or Python programming interface and provides a set of features to automate
routine tasks.
In this chapter, we will discuss how to do the following:

Connect to MySQL Shell and select the right protocol
Select the SQL, JavaScript, or Python interface
Use both SQL and NoSQL syntax
Control the output format
Use MySQL Shell’s built-in utilities
Write a script to automate your custom needs
Use the Admin API
Reuse your scripts

Although MySQL Shell is a standard tool for certain tasks, it is not included
in MySQL packages and needs to be installed separately. You can download
it from the MySQL Shell download page or using the standard package
manager of your operating system. We won’t cover MySQL Shell
installation in this book, because it is straightforward.
The MySQL Shell’s command name is mysqlsh. You can invoke it by
typing mysqlsh in the terminal.

MySQL Shell supports two protocols: the Classic MySQL protocol (similar
to the one the mysql client uses) and the new X protocol. The X protocol
is a modern protocol that communicates with the MySQL server on a

https://oreil.ly/nz43Q

separate port (the default is 33060). It supports both SQL and NoSQL APIs
and provides an asynchronous API, allowing clients to send multiple
queries to the server without waiting for the result from the previous ones.
The X protocol is the preferred way to work with MySQL Shell. It’s
especially important if you want to use NoSQL features.

2.1 Connecting to MySQL Server with MySQL
Shell

Problem
When you invoke mysqlsh, it opens a new session but does not connect to
any MySQL server.

Solution
Use the \connect command inside MySQL Shell, or provide your
MySQL server uniform resource identifier (URI) at startup.

Discussion
MySQL Shell allows you to connect to the MySQL server after you start
the tool by providing connections options as a command-line parameter.
You can also put default connection parameters in a startup script.
MySQL Shell is flexible regarding connection options. You can supply
them as a URI or name-value pairs, similar to one that mysql client
accepts.
URI uses this format:

[scheme://][user[:password]@]<host[:port]|socket>[/schema]↩
[?option=value&option=value...]

Explanations of the parameters are explained in Table 2-1.

Table 2-1. Connection options in URI

Par
am
ete
r

Explanation Default

sch
eme

A protocol to use. Could be one of mysql if you
want to use the Classic protocol or mysqlx for
the X protocol.

mysqlx

use
r

User name to connect as. Your operating system account.

pas
swo
rd

Password Asks for a password.

hos
t

Host to connect to. No default. This is the only required
parameter unless the socket option
is specified.

por
t

Port to connect to. 3306 for the Classic protocol, and
33060 for the X protocol.

soc
ket

Socket, used for the localhost connection. You must provide this or the host
parameter.

sch
ema

Database schema to connect to. No value. Do not select any schema.

opt
ion

Any additional option you want to use. No value. Choose any or no option.

So, to connect to the MySQL server on your local machine via an
interactive interface, type \connect 127.0.0.1:

 MySQL localhost JS > \connect 127.0.0.1
Creating a session to 'sveta@127.0.0.1'
Please provide the password for 'sveta@127.0.0.1':
Save password for 'sveta@127.0.0.1'? [Y]es/[N]o/Ne[v]er (default
No):
Fetching schema names for autocompletion... Press ^C to stop.
Your MySQL connection id is 1066144 (X protocol)
Server version: 8.0.27 MySQL Community Server - GPL
No default schema selected; type \use <schema> to set one.

This will create a connection using the X protocol.

NOTE
When connecting without specifying a user name, MySQL Shell uses the operating system login.
This is why a connection is created for the user sveta and not for the user cbuser that we used
everywhere else in the book. We’ll cover how to specify the MySQL user account when
connecting later.

To exit from the MySQL Shell session, use the \exit or \quit command
and its short form, \q:

 MySQL JS > \exit
Bye!

To connect interactively using a socket, type \c
(/var/run/mysqld/mysqld.sock):

 MySQL 127.0.0.1:33060+ ssl JS > \c
(/var/run/mysqld/mysqld.sock)
Creating a session to 'sveta@/var%2Frun%2Fmysqld%2Fmysqld.sock'
Fetching schema names for autocompletion... Press ^C to stop.
Your MySQL connection id is 1067565
Server version: 8.0.27 MySQL Community Server - GPL
No default schema selected; type \use <schema> to set one.

This will create a connection using the Classic protocol. If you want to
connect via the socket with the X protocol, use mysqlx_socket. You’ll
find the value of the mysqlx_socket if you run the following query:

mysql> SELECT @@mysqlx_socket;

+-----------------------------+
| @@mysqlx_socket |
+-----------------------------+
| /var/run/mysqld/mysqlx.sock |
+-----------------------------+
1 row in set (0,00 sec)

The \connect command has a shorter version, \c, that we used in the
connection via the socket example. Note the parentheses in the command
argument. Without parentheses, the command will fail with a syntax error.
Alternatively, you can replace all of the following slash symbols with their
URI-encoded value, %2F:

 MySQL localhost JS > \connect
/var%2Frun%2Fmysqld%2Fmysqld.sock
Creating a session to 'sveta@/var%2Frun%2Fmysqld%2Fmysqld.sock'
Fetching schema names for autocompletion... Press ^C to stop.
Your MySQL connection id is 1073606
Server version: 8.0.27 MySQL Community Server - GPL
No default schema selected; type \use <schema> to set one.

To connect using URI when opening a MySQL Shell session, use the
following command:

$ mysqlsh mysqlx://cbuser:cbpass@127.0.0.1/cookbook
Please provide the password for 'cbuser@127.0.0.1:33060': ******
Save password for 'cbuser@127.0.0.1:33060'? [Y]es/[N]o/Ne[v]er
(default No):
MySQL Shell 8.0.27

Copyright (c) 2016, 2021, Oracle and/or its affiliates.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates.
Other names may be trademarks of their respective owners.

Type '\help' or '\?' for help; '\quit' to exit.
Creating a session to 'cbuser@127.0.0.1:33060/cookbook'
Fetching schema names for autocompletion... Press ^C to stop.
Your MySQL connection id is 1076096 (X protocol)
Server version: 8.0.27 MySQL Community Server - GPL
Default schema `cookbook` accessible through db.
 MySQL 127.0.0.1:33060+ ssl cookbook JS >

In this case, we specified a user name and a password via the command line
and selected cookbook as the default database.

When connecting while invoking the mysqlsh command, you can also
specify connection credentials separately, similar to when you connected
with the mysql client:

$ mysqlsh --host=127.0.0.1 --port=33060 --user=cbuser --
schema=cookbook
Please provide the password for 'cbuser@127.0.0.1:33060': ******
MySQL Shell 8.0.22

Copyright (c) 2016, 2020, Oracle and/or its affiliates.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates.
Other names may be trademarks of their respective owners.

Type '\help' or '\?' for help; '\quit' to exit.
Creating a session to 'cbuser@127.0.0.1:33060/cookbook'
Fetching schema names for autocompletion... Press ^C to stop.
Your MySQL connection id is 8738 (X protocol)
Server version: 8.0.22-13 Percona Server (GPL), Release '13',
Revision '6f7822f'
Default schema `cookbook` accessible through db.
 MySQL 127.0.0.1:33060+ ssl cookbook JS >

If you want to specify the default schema, you need to pass it as a parameter
to the configuration option schema. Otherwise, mysqlsh will treat it as a
host name and fail with an error.
Inside MySQL Shell, you can also specify options via named parameters.
First, you need to create a dictionary with connection parameters, then pass
it as an option to the connect() method of the built-in automatically
created shell object:

 MySQL 127.0.0.1:33060+ ssl JS > connectionData={
 -> "host": "127.0.0.1",
 -> "user": "cbuser",
 -> "schema": "cookbook"
 -> }
 ->
{
 "host": "127.0.0.1",
 "schema": "cookbook",
 "user": "cbuser"
}
 MySQL 127.0.0.1:33060+ ssl JS > shell.connect(connectionData)
Creating a session to 'cbuser@127.0.0.1/cookbook'
Please provide the password for 'cbuser@127.0.0.1': ******
Save password for 'cbuser@127.0.0.1'? [Y]es/[N]o/Ne[v]er (default
No):
Fetching schema names for autocompletion... Press ^C to stop.
Your MySQL connection id is 1077318 (X protocol)

Server version: 8.0.27 MySQL Community Server - GPL
Default schema `cookbook` accessible through db.
<Session:cbuser@127.0.0.1:33060>
 MySQL 127.0.0.1:33060+ ssl cookbook JS >

See Also
For additional information about how to connect to the MySQL server via
MySQL Shell, see “MySQL Shell Connections”.

2.2 Selecting the Protocol

Problem
You don’t want to use MySQL Shell’s default, and you want to select either
the X protocol or the Classic protocol yourself.

Solution
To select the X protocol, use the mysqlx, mx, or sqlx option. To select
the Classic protocol, use the mysql, mc, and sqlc options.

Discussion
MySQL Shell selects the protocol automatically using connection options
and server response. If a port or socket option is not used, it tries to connect
using a default port or socket for the X protocol. If that’s not available, it
defaults to the Classic protocol. If you want to avoid this, or if you simply
want to control which protocol to use explicitly, you can specify it by
passing the mysqlx, mx, and sqlx options when starting the mysqlsh
client to select the X protocol, and the mysql, mc, and sqlc options to
select the Classic protocol:

$ mysqlsh --host=127.0.0.1 --user=cbuser --schema=cookbook --
mysqlx
Please provide the password for 'cbuser@127.0.0.1': ******
MySQL Shell 8.0.22

https://oreil.ly/A1E1w

...
Your MySQL connection id is 9143 (X protocol)

$ mysqlsh --host=127.0.0.1 --user=cbuser --schema=cookbook --
mysql
Please provide the password for 'cbuser@127.0.0.1': ******
MySQL Shell 8.0.22
...
Creating a Classic session to 'cbuser@127.0.0.1/cookbook'

Inside MySQL Shell, when opening a new connection, specify the value for
the scheme key when passing options to the connectionData
dictionary:

 MySQL 127.0.0.1:3306 ssl cookbook JS > connectionData={
 -> "scheme": "mysql",
"host": "127.0.0.1",
 -> "user": "cbuser",
"schema": "cookbook"
 -> }
{
 "host": "127.0.0.1",
 "schema": "cookbook",
 "scheme": "mysql",
 "user": "cbuser"
}
 MySQL 127.0.0.1:3306 ssl cookbook JS >
shell.connect(connectionData, "cbpass")
Creating a Classic session to 'cbuser@127.0.0.1/cookbook'

In both cases, when specifying a URI, you can prefix connection options by
the scheme:

mysqlsh mysqlx://cbuser:cbpass@127.0.0.1/cookbook

\c mysql://cbuser:cbpass@127.0.0.1/cookbook

If the specified protocol could not be used, MySQL Shell will fail with an
error:

 MySQL JS > \c mysql://cbuser:cbpass@127.0.0.1:33060/cookbook
Creating a Classic session to 'cbuser@127.0.0.1:33060/cookbook'
MySQL Error 2007 (HY000): Protocol mismatch; server version = 11,
client version = 10

$ mysqlsh --host=127.0.0.1 --port=3306 --user=cbuser --
schema=cookbook --mx
Please provide the password for 'cbuser@127.0.0.1:3306': ******
MySQL Shell 8.0.22

Copyright (c) 2016, 2020, Oracle and/or its affiliates.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates.
Other names may be trademarks of their respective owners.

Type '\help' or '\?' for help; '\quit' to exit.
Creating an X protocol session to
'cbuser@127.0.0.1:3306/cookbook' ↩
MySQL Error 2027: Requested session assumes MySQL X Protocol but
'127.0.0.1:3306' ↩
seems to speak the classic MySQL protocol
(Unexpected response received from server, msg-id:10)

You can find details of your current MySQL Shell connection by running
the shell.status() command:

 MySQL 127.0.0.1:33060+ ssl cookbook JS > shell.status()
MySQL Shell version 8.0.22

Connection Id: 61
Default schema: cookbook
Current schema: cookbook
Current user: cbuser@localhost
SSL: Cipher in use:
TLS_AES_256_GCM_SHA384 TLSv1.3
Using delimiter: ;
Server version: 8.0.22-13 Percona Server (GPL),
Release '13', ↩
 Revision '6f7822f'
Protocol version: X protocol
Client library: 8.0.22
Connection: 127.0.0.1 via TCP/IP
TCP port: 33060
Server characterset: utf8mb4
Schema characterset: utf8mb4
Client characterset: utf8mb4
Conn. characterset: utf8mb4
Result characterset: utf8mb4
Compression: Enabled (DEFLATE_STREAM)
Uptime: 4 min 57.0000 sec

TIP
MySQL Shell, like MySQL CLI, allows you to customize its prompt. To do it, you need to edit the
prompt.json file, located in the configuration home of MySQL Shell. This file is in JSON
format. MySQL Shell comes with a good number of custom prompt templates and the
README.prompt file, explaining how to modify the prompt.

We won’t cover in detail how to customize the MySQL Shell user prompt, but we will remove the
host, port, and protocol information from the default prompt, so our examples will take less space
in the book.

The configuration home of the MySQL Shell is either ~/.mysqlsh/ on Unix or
%AppData%\MySQL\mysqlsh\ on Windows. You can overwrite this location if you set the
MYSQLSH_USER_CONFIG_HOME variable. README.prompt and examples are located in the
share/mysqlsh/prompt/ directory under the MySQL Shell installation root.

See Also
For additional information about mysqlsh command options, see “A.1
mysqlsh—The MySQL Shell”.

2.3 Selecting SQL, JavaScript, or Python
Mode

Problem
MySQL Shell starts in the wrong mode, and you want to select a different
mode than the default.

Solution
Use the sql, js, or py options, or switch the mode after starting
mysqlsh.

Discussion
By default, MySQL Shell starts in JavaScript mode. You can see it by
looking at the prompt string:

https://oreil.ly/w01Fg

 MySQL cookbook JS >

You can change the default mode by starting with the --sql option to
select SQL mode or the --py option to select Python mode. To select
JavaScript mode explicitly at startup, use the --js option. You will see
that the MySQL Shell client’s prompt message will change to the selected
mode. Here, we select the Python mode:

$ mysqlsh cbuser:cbpass@127.0.0.1/cookbook --py
...
Default schema `cookbook` accessible through db.
 MySQL cookbook Py >

TIP
For SQL mode, you can explicitly instruct the tool to use not only the desired mode but also the
desired protocol with the sqlx option to select the X protocol and the sqlc option to select the
Classic protocol. This could be handy when you connect via the default TCP/IP port.

Inside mysqlsh, you can change the processing mode with the \js, \py,
and \sql commands to switch to JavaScript, Python, and SQL modes:

 MySQL cookbook SQL > \js
Switching to JavaScript mode...
 MySQL cookbook JS > \py
Switching to Python mode...
 MySQL cookbook Py > \sql
Switching to SQL mode... Commands end with ;
 MySQL cookbook SQL >

2.4 Running SQL Session

Problem
You want to have the functionality of a mysql client, but you don’t want to
leave MySQL Shell.

Solution
Use SQL mode.

Discussion
With SQL mode, MySQL Shell behaves exactly the same as the mysql
client that we described in Chapter 1. You can run queries, control output
using the \pager command, edit SQL in the system editor with the
\edit command, execute SQL from a file with the \source command,
and execute a system shell command with \system. You can view and
edit the command-line history.
There is no shortcut, \d, for the delimiter command, but the command
itself works:

 MySQL cookbook SQL > delimiter |
 MySQL cookbook SQL > CREATE PROCEDURE get_client_info()
 -> BEGIN
 -> SELECT GROUP_CONCAT(ATTR_NAME, '=',
ATTR_VALUE)
 -> FROM
performance_schema.session_account_connect_attrs
 -> WHERE ATTR_NAME IN ('_client_name',
'_client_version');
 -> END
 -> |
Query OK, 0 rows affected (0.0163 sec)
 MySQL cookbook SQL > delimiter ;
 MySQL cookbook SQL > CALL get_client_info();
+--+
| GROUP_CONCAT(ATTR_NAME, '=', ATTR_VALUE) |
+--+
| _client_name=libmysql,_client_version=8.0.22 |
+--+
1 row in set (0.0017 sec)

Query OK, 0 rows affected (0.0017 sec)

There is no tee command. If you want to log query results into a file, set
the pager to tee -a <DESIRED LOG FILE LOCATION>. However,
it will not log SQL statements. They’re available only in the history file.

TIP
By default, MySQL Shell does not save history between client sessions. This means that you
cannot access your previous commands once you exit the shell. You can overwrite this behavior if
you enable the history.autoSave option:

 MySQL JS > \option --persist history.autoSave=1

2.5 Running SQL in JavaScript Mode

Problem
You’re in JavaScript mode but want to execute traditional SQL.

Solution
Use the \sql command, or use the sql() and runSQL() methods that
belong to the Session class.

Discussion
JavaScript mode supports the object-oriented style of querying your
database. Or, you can run plain SQL.
If you want to run a single SQL statement and get results like you can in the
MySQL client without leaving JavaScript mode, use the \sql command.
In the following example, we run a plain SQL statement, selecting data
from the table limbs for things that have two or more arms:

 MySQL cookbook JS > \sql SELECT * FROM limbs WHERE arms >=2
ORDER BY arms;
Fetching table and column names from `cookbook` for auto-
completion...↩
Press ^C to stop.
+--------------+------+------+
| thing | legs | arms |
+--------------+------+------+

human	2	2
armchair	4	2
Peg Leg Pete	1	2
squid	0	10
+--------------+------+------+
4 rows in set (0.0002 sec)

The object-oriented style of running SQL is more flexible and provides
more options. To run a single statement, use the runSQL method of the
Session class:

 MySQL cookbook JS > session.runSql(
 > "SELECT * FROM limbs WHERE arms >=2 ORDER
BY arms")
+--------------+------+------+
| thing | legs | arms |
+--------------+------+------+
human	2	2
armchair	4	2
Peg Leg Pete	1	2
squid	0	10
+--------------+------+------+
4 rows in set (0.0014 sec)

TIP
When you connect to MySQL Shell, it creates a default instance of the Session class. It’s
accessible via the global session object.

The runSQL method supports placeholders: just replace the variable values
with the ? sign and pass parameters as an array:

 MySQL cookbook JS > session.runSql("SELECT * FROM limbs ↩
 WHERE arms >= ? AND legs != ? ↩
 ORDER BY arms", [2, 0])
+--------------+------+------+
| thing | legs | arms |
+--------------+------+------+
human	2	2
armchair	4	2
Peg Leg Pete	1	2

+--------------+------+------+
3 rows in set (0.0005 sec)

You can combine this method with standard JavaScript syntax and create a
script that can do more than just run SQL queries:

 MySQL cookbook JS > for (i = 1;
 -> i <= session.sql("SELECT MAX(arms) AS
maxarms FROM limbs").
 -> execute().fetchOne().
 -> getField('maxarms');
 -> i++)
 -> {
 -> species=session.sql("SELECT COUNT(*) AS
countarms \
 -> FROM limbs WHERE
arms =?").
 -> bind(i).execute();

 -> if (species.hasData() && (armscount =
species.fetchOne().
 -> getField('countarms')) > 0)
 -> {
 -> print("We have " + armscount + "
species with " + i +
 -> (i == 1 ? " arm\n" : " arms\n"));
 -> }
 -> }
 ->
We have 1 species with 1 arm
We have 3 species with 2 arms
We have 1 species with 10 arms

Select the maximum number of arms in the limbs table.

The session.sql.execute() method returns a SqlResult
object that has a method, called fetchOne, that returns the first row of
the result set.

Since our query is supposed to return one row, we didn’t traverse the
result set but simply called the getField method, which takes a
column name or its alias as a parameter to get the maximum number of
arms, stored in the table limbs.

We used this number as a stopping condition for the for loop.

In the loop, we executed queries to get the number of the species with
the specified number of arms. We used the sql method and its bind
method to bind the value of the loop iterator i to the query.

Check if we received a result and if the number of arms is greater than
0.

If both conditions are true, print the result.

NOTE
When you execute the sql or runSQL methods separately, MySQL Shell calls the execute
method for them automatically. But if using these methods in more complicated code, like in the
loops or multiple-statements blocks, you need to call the execute method explicitly. Otherwise,
only the last statement will be executed, and all previous invocations will be ignored.

See Also
For additional information about the MySQL Shell API, see “Shell API” in
the advanced MySQL User Reference Manual.

2.6 Running SQL in Python Mode

Problem
You’re in Python mode but want to execute traditional SQL.

Solution
Use the \sql command or the sql or run_sql methods of the
Session class.

Discussion

https://oreil.ly/4Sauh

Just as we saw with JavaScript mode, Python mode also supports the \sql
command. You can use it if you want to execute a SQL statement and don’t
want to do anything with its result.
The following code selects all rows from the table movies:

 MySQL cookbook Py > \sql SELECT * FROM movies;
+----+------+----------------------------+
| id | year | movie |
+----+------+----------------------------+
1	1997	The Fifth Element
2	1999	The Phantom Menace
3	2001	The Fellowship of the Ring
4	2005	Kingdom of Heaven
5	2010	Red
6	2011	Unknown
+----+------+----------------------------+
6 rows in set (0.0008 sec)

Method names in Python mode are slightly different from those in
JavaScript mode. Thus, to run a SQL statement, using the Session object
and binding parameters to it as an array, use the run_sql method:

 MySQL cookbook Py > session.run_sql("SELECT * FROM movies
WHERE year < ?",[2000])
+----+------+--------------------+
| id | year | movie |
+----+------+--------------------+
| 1 | 1997 | The Fifth Element |
| 2 | 1999 | The Phantom Menace |
+----+------+--------------------+
2 rows in set (0.0009 sec)

This example selects all movies created before the year 2000.
You can program in Python as well as in JavaScript. For example, if you
want to know the number of movies each actor was featured in as well as
years when they starred, join the movies table with the
movies_actors table, then print the result using Python code:

 MySQL cookbook Py > myres=session.sql("SELECT actor,
COUNT(movie) as movies,↩
 GROUP_CONCAT(year SEPARATOR ', ') AS

years_string,↩
 COUNT(year) AS years FROM
movies_actors ↩
 GROUP BY actor ORDER BY movies
DESC").↩
 execute().fetch_all()
 MySQL cookbook Py > for myrow in myres:
 -> print(myrow[0] + " was featured in " +
str(myrow[1]) +↩
 (" movies" if (myrow[1] > 1) else " movie")
+ ↩
 " in " + ("years " if (myrow[3] > 1) else
"the year ") +↩
 myrow[2] + ".")
 ->
Liam Neeson was featured in 3 movies in the years 2005, 1999,
2011.
Bruce Willis was featured in 2 movies in the years 1997, 2010.
Ian Holm was featured in 2 movies in the years 1997, 2001.
Orlando Bloom was featured in 2 movies in the years 2005, 2001.
Diane Kruger was featured in 1 movie in the year 2011.
Elijah Wood was featured in 1 movie in the year 2001.
Ewan McGregor was featured in 1 movie in the year 1999.
Gary Oldman was featured in 1 movie in the year 1997.
Helen Mirren was featured in 1 movie in the year 2010.
Ian McKellen was featured in 1 movie in the year 2001.

Run the query, and fetch all the rows that it returns into a variable,
myres.

Traverse this variable in a for...in loop.

Print the result.

TIP
If you’re not familiar with the query syntax yet, don’t worry: we’ll discuss ways of querying data
in Chapter 5 and how to join two or more tables in Recipe 16.0.

See Also
For additional information about the Python MySQL Shell API, use the \?
mysqlx command inside the Python shell session.

2.7 Working with Tables in JavaScript Mode

Problem
You want to query your tables using the object-oriented style in JavaScript
mode.

Solution
Use the getTable method to select a table, then the select, count,
insert, update, and delete methods to select, retrieve number of
rows, insert, update, or delete from the table.

Discussion
MySQL Shell supports object-oriented syntax for querying and modifying
database objects. Thus, to select all rows from the table limbs, we can use
the select method:

 MySQL cookbook JS >
session.getDefaultSchema().getTable('limbs').select()
+--------------+------+------+
| thing | legs | arms |
+--------------+------+------+
human	2	2
insect	6	0
squid	0	10
fish	0	0
centipede	99	0
table	4	0
armchair	4	2
phonograph	0	1
tripod	3	0
Peg Leg Pete	1	2
space alien	NULL	NULL
+--------------+------+------+
11 rows in set (0.0003 sec)

In the preceding listing, we first selected the schema using the
getDefaultSchema method, then selected a table with the getTable

method, and finally retrieved all rows with select.

The select method returns the TableSelect object that supports
methods allowing you to specify the WHERE condition, ORDER BY and
GROUP BY clauses, and other features that SQL SELECT has. It also
supports prepared statements and parameters binding. Thus, to select only
those species from the limbs table that have four or more legs and order
them by number of legs, try the following code:

 MySQL cookbook JS >
session.getDefaultSchema().getTable('limbs').select().
 -> where('legs >=
:legs').orderBy('legs').bind('legs', 4)
+-----------+------+------+
| thing | legs | arms |
+-----------+------+------+
table	4	0
armchair	4	2
insect	6	0
centipede	99	0
+-----------+------+------+
4 rows in set (0.0004 sec)

WARNING
Notice that here we’re using named parameters for placeholders instead of question marks like we
did when we queried the database with SQL.

The MySQL Shell API also supports methods to insert, update, and delete
data in the object-oriented style as well as to start and finish transactions.
For instance, if we want to experiment with the cookbook database
without actually modifying data, we can do so inside a transaction:

 MySQL cookbook JS > limbs =
session.getDefaultSchema().getTable('limbs')
<Table:limbs>
 MySQL cookbook JS > session.startTransaction()
Query OK, 0 rows affected (0.0006 sec)
 MySQL cookbook JS > limbs.insert('thing', 'legs', 'arms').
 -> values('cat', 4, 0).
 -> values('dog', 2, 2)

 ->
Query OK, 2 items affected (0.0012 sec)

Records: 2 Duplicates: 0 Warnings: 0
 MySQL cookbook JS > limbs.count()
13
 MySQL cookbook JS > limbs.update().set('legs', 4).set('arms',
0).
 -> where("thing='dog'")
Query OK, 1 item affected (0.0012 sec)

Rows matched: 1 Changed: 1 Warnings: 0
 MySQL cookbook JS > limbs.select().where("thing='dog'")
+-------+------+------+
| thing | legs | arms |
+-------+------+------+
| dog | 4 | 0 |
+-------+------+------+
1 row in set (0.0004 sec)
 MySQL cookbook JS > limbs.delete().where("thing='cat'")
Query OK, 1 item affected (0.0010 sec)
 MySQL cookbook JS > limbs.count()
12
 MySQL cookbook JS > session.rollback()
Query OK, 0 rows affected (0.0054 sec)
 MySQL cookbook JS > limbs.count()
11
 MySQL cookbook JS > limbs.select().where("thing='dog' or
thing='cat'")
Empty set (0.0010 sec)

Save the table object for the limbs table into a limbs variable.

Start a transaction, so we can roll back our experiments.

Insert two rows into the limbs table using the insert method, which
takes a list of columns as a parameter, and the values method, that
takes a list of values to be inserted as a parameter.

Check the number of rows that now exist in the table.

If you look back to the rows that we inserted, you may notice an error.
A dog actually has four legs and not two legs and two arms. To fix this
mistake, call the update method.

The select command confirmed that our changes were applied to the
limbs table.

Then we figured out that cats and dogs are not always friends with one
another, and we removed a cat from the table with the delete method.

Confirm that the cat was successfully removed.

Roll back the transaction to restore the table to its initial state.

The count and select methods confirm that the table is in its initial
state.

NOTE
Since we executed all statements one by one in the interactive session, we omitted the execute
method. This method is required if you’re executing SQL commands in loops or program scripts.

See Also
For additional information about how to work with tables in JavaScript
mode, see “Table Class Reference” in the Reference Manual.

2.8 Working with Tables in Python Mode

Problem
You have tables in your database and want to work with them in Python
mode.

Solution
Use the get_table method to get the table object, then the select,
count, insert, update, and delete methods to select, retrieve
number of rows, insert, update, or delete from the table.

https://oreil.ly/l43WN

Discussion
Like JavaScript, Python supports working with tables in the object-oriented
style. Thus, to select all rows from the movies table, try the select
method of the Table class:

 MySQL cookbook Py >
session.get_schema('cookbook').get_table('movies').select()
+----+------+----------------------------+
| id | year | movie |
+----+------+----------------------------+
1	1997	The Fifth Element
2	1999	The Phantom Menace
3	2001	The Fellowship of the Ring
4	2005	Kingdom of Heaven
5	2010	Red
6	2011	Unknown
+----+------+----------------------------+
6 rows in set (0.0003 sec)

In this example, we used the get_schema method, which allows us to
select any schema stored in the database to which the session user has been
granted access.
Python mode supports methods, allowing you to modify data in the tables
as well as transaction statements.
For our examples, we’ll save the tables movies and movies_actors
into the variables first:

 MySQL cookbook Py >
movies=session.get_schema('cookbook').get_table('movies')
 MySQL cookbook Py >
movies_actors=session.get_schema('cookbook').↩
 get_table('movies_actors')

Then, we’ll open a transaction, so our changes will apply either to both
tables or to none at all, and we’ll insert a movie, Darkest Hour, starring
Gary Oldman. Finally, we’ll commit the transaction:

 MySQL cookbook Py > session.start_transaction()
Query OK, 0 rows affected (0.0003 sec)
 MySQL cookbook Py > movies.insert('year', 'movie').↩

 values(2017, 'Darkest Hour')
Query OK, 1 item affected (0.0013 sec)
 MySQL cookbook Py > movies_actors.insert().↩
 values(1997, 'Darkest Hour', 'Gary
Oldman')
Query OK, 1 item affected (0.0011 sec)
 MySQL cookbook Py > session.commit()
Query OK, 0 rows affected (0.0075 sec)

To find all movies starring Gary Oldman we’ll use a SQL query, because
the X API does not support joins:

 MySQL cookbook Py > session.sql("SELECT * FROM movies ↩
 JOIN movies_actors USING(movie) WHERE
actor = 'Gary Oldman'")
+-------------------+----+------+------+-------------+
| movie | id | year | year | actor |
+-------------------+----+------+------+-------------+
| The Fifth Element | 1 | 1997 | 1997 | Gary Oldman |
| Darkest Hour | 7 | 2017 | 1997 | Gary Oldman |
+-------------------+----+------+------+-------------+
2 rows in set (0.0012 sec)

Oops! The year for the movie Darkest Hour is not correct in one of the
tables. Let’s update it:

 MySQL cookbook Py > session.start_transaction()
Query OK, 0 rows affected (0.0007 sec)
 MySQL cookbook Py > movies.update().set('year',
2017).where("movie='Darkest Hour'")
Query OK, 0 items affected (0.0013 sec)

Rows matched: 1 Changed: 0 Warnings: 0
 MySQL cookbook Py > movies_actors.update().set('year', 2017).↩

 where("movie='Darkest Hour'")
Query OK, 1 item affected (0.0012 sec)

Rows matched: 1 Changed: 1 Warnings: 0
 MySQL cookbook Py > session.commit()
Query OK, 0 rows affected (0.0073 sec)
 MySQL cookbook Py > session.run_sql("SELECT * FROM movies JOIN
movies_actors↩
 USING(movie) WHERE actor = 'Gary
Oldman'")
+-------------------+----+------+------+-------------+

| movie | id | year | year | actor |
+-------------------+----+------+------+-------------+
| The Fifth Element | 1 | 1997 | 1997 | Gary Oldman |
| Darkest Hour | 7 | 2017 | 2017 | Gary Oldman |
+-------------------+----+------+------+-------------+
2 rows in set (0.0005 sec)

Start a transaction, so we update either all tables or no tables.

Update the movies table.

Update the movies_actors table.

Commit the changes.

Confirm that the changes were applied to the table.
If we want to remove our newly inserted movie, we can use the delete
method:

 MySQL cookbook Py > session.start_transaction()
Query OK, 0 rows affected (0.0006 sec)
 MySQL cookbook Py > movies.delete().where("movie='Darkest
Hour'")
Query OK, 1 item affected (0.0012 sec)
 MySQL cookbook Py >
movies_actors.delete().where("movie='Darkest Hour'")
Query OK, 1 item affected (0.0004 sec)
 MySQL cookbook Py > session.commit()
Query OK, 0 rows affected (0.0061 sec)

In this example, we also started the transaction first, then called the
delete method on two tables, and finally committed the transaction.

See Also
For additional information about accessing tables in the object-oriented
style while in Python mode, see MySQL Shell’s interactive help using the
\? command.

2.9 Working with Collections in JavaScript
Mode

Problem
You have semistructured data and want to use MySQL as a Document
Store. You also want to query your data with NoSQL, without leaving the
programming style of your preferred language.

Solution
Use the Collection object and its methods.

Discussion
MySQL supports not only SQL syntax but also NoSQL. When you use
SQL, you query tables, and when you use NoSQL, you query collections.
Physically, such collections are stored in tables that have three columns: a
generated unique identifier column that is also a primary key, a JSON
column that stores the document, and an internal column that stores the
JSON schema. You can create a collection by using the
createCollection method of the Schema class:

 MySQL cookbook JS >
collectionLimbs=session.getCurrentSchema().
 -> createCollection('CollectionLimbs')
<Collection:CollectionLimbs>

The preceding code creates the NoSQL CollectionLimbs collection.

Collections support schema validation. There is no method to add a schema
validation for the existent collection, but we can add the schema when
creating the collection:

 MySQL cookbook JS > session.getCurrentSchema().
 -> dropCollection('collectionLimbs')
 ->
 MySQL cookbook JS > schema={

 -> "$schema": "http://json-
schema.org/draft-07/schema",
 -> "id":
"http://example.com/cookbook.json",
 -> "type": "object",
 -> "description": "Table limbs as a
collection",
 -> "properties": {
 -> "thing": {"type": "string"},
 -> "legs": {
 -> "anyOf": [{"type": "number"},
{"type": "null"}],
 -> "default": 0
 -> },
 -> "arms": {
 -> "anyOf": [{"type": "number"},
{"type": "null"}],
 -> "default": 0
 -> }
 -> },
 -> "required": ["thing","legs","arms"]
 -> }
 ->
{
 "$schema": "http://json-schema.org/draft-07/schema",
 "description": "Table limbs as a collection",
 "id": "http://example.com/cookbook.json",
 "properties": {
 "arms": {
 "anyOf": [
 {
 "type": "number"
 },
 {
 "type": "null"
 }
],
 "default": 0
 },
 "legs": {
 "anyOf": [
 {
 "type": "number"
 },
 {
 "type": "null"
 }
],
 "default": 0
 },

 "thing": {
 "type": "string"
 }
 },
 "required": [
 "thing",
 "legs",
 "arms"
],
 "type": "object"
}
 MySQL cookbook JS >
collectionLimbs=session.getCurrentSchema().
 -> createCollection('collectionLimbs',
 -> {"validation": {"level": "strict",
"schema": schema}})
 ->
<Collection:CollectionLimbs>

Once the NoSQL collection is created, you can insert, update, delete, and
search documents.
For example, to insert documents from the limbs table into the
CollectionLimbs collection, we can use the following code:

 MySQL cookbook JS > {
 -> limbs=session.getCurrentSchema().
 -> getTable('limbs').select().execute();

 -> while (limb = limbs.fetchOneObject()) {

 -> collectionLimbs.add(
 -> mysqlx.expr(JSON.stringify(limb))
 ->).execute();
 -> }
 -> }
 ->
Query OK, 1 item affected (0.0049 sec)

Select all rows from the limbs table.

The fetchOneObject method returns a dictionary object.

A dictionary object method cannot be saved in the collection without
converting it to the proper JSON object. Therefore, we converted it into

a JSON string first, then created an expression out of this string that
could be inserted into the collection.

The add method inserts a document into the collection.

The execute method is required every time we update a database
inside script blocks.

We enclosed the code in curly braces because otherwise, if the code is put
on multiple lines, MySQL Shell will output the result of
session.getCurrentSchema().getTable('limbs').selec
t().execute(), and the limbs variable will contain only diagnostic
messages about the number of rows affected.
Finally, we can examine data just inserted into the CollectionLimbs
collection:

 MySQL cookbook JS > collectionLimbs.count()
11
 MySQL cookbook JS > collectionLimbs.find().limit(3)
{
 "_id": "00006002f0650000000000000060",
 "arms": 2,
 "legs": 2,
 "thing": "human"
}
{
 "_id": "00006002f0650000000000000061",
 "arms": 0,
 "legs": 6,
 "thing": "insect"
}
{
 "_id": "00006002f0650000000000000062",
 "arms": 10,
 "legs": 0,
 "thing": "squid"
}
3 documents in set (0.0010 sec)

You can also modify and remove documents from your collections. We’ll
show examples of this in Recipe 2.10.

See Also
For additional information about how to use MySQL with JSON documents
and NoSQL, see Chapter 19.

2.10 Working with Collections in Python
Mode

Problem
You want to use Document Store and NoSQL in Python mode.

Solution
Use the Collection object and its methods.

Discussion
Just as you can in JavaScript mode, you can work with NoSQL in Python
mode. The syntax is also similar to JavaScript mode. However, method
names follow the naming style recommended for programs written in
Python.
Thus, to assign a collection to a variable, use the get_collection
method of the Schema class:

 MySQL cookbook Py >
collectionLimbs=session.get_current_schema().↩
 get_collection('collectionLimbs')

To select documents, use the find method:

 MySQL cookbook Py > collectionLimbs.find('legs > 3 and arms >
1')
{
 "_id": "00006002f0650000000000000066",
 "arms": 2,
 "legs": 4,

 "thing": "armchair"
}
1 document in set (0.0010 sec)

The find method supports arguments that allow you to search for specific
documents similar to the syntax of the WHERE clause in SQL. It also allows
you to aggregate results and sort them and select specific fields. It does not
support joining the collections.
To insert a new document, use the add method:

 MySQL cookbook Py > collectionLimbs.add(mysqlx.expr(↩
 '{"thing": "cat", "legs": 2, "arms":
2}'))
Query OK, 1 item affected (0.0093 sec)
 MySQL cookbook Py > collectionLimbs.find('thing="cat"')
{
 "_id": "00006002f065000000000000006b",
 "arms": 2,
 "legs": 2,
 "thing": "cat"
}
1 document in set (0.0012 sec)
 MySQL cookbook Py > collectionLimbs.add(mysqlx.expr(↩
 '{"thing": "dog", "legs": 2, "arms":
2}'))
Query OK, 1 item affected (0.0086 sec)

To modify an existing row, use either the add_or_replace_one
method or the modify method:

 MySQL cookbook Py > collectionLimbs.add_or_replace_one(↩
 '00006002f065000000000000006b',↩
 {"thing": "cat", "legs": 4, "arms": 0})
Query OK, 2 items affected (0.0056 sec)

The add_or_replace_one method takes the document _id as the first
parameter and a JSON document as the second one. If a document with the
specified _id is not found, it inserts a new document. If a document with
the specified _id is found, it replaces the existing one.

The modify method takes a search condition as an argument and returns
an object of the CollectionModify class that supports methods,
allowing you to modify parameters such as set. You can chain calls to the
set method as many times as needed:

 MySQL cookbook Py > collectionLimbs.modify('thing =
"dog"').set("legs", 4).set("arms", 0)
Query OK, 1 item affected (0.0077 sec)

Rows matched: 1 Changed: 1 Warnings: 0

To check if we successfully changed the quantity of arms and legs for the
newly inserted cat and dog documents, we can use the find method:

 MySQL cookbook Py > collectionLimbs.find('thing in ("dog",
"cat")')
{
 "_id": "00006002f065000000000000006b",
 "arms": 0,
 "legs": 4,
 "thing": "cat"
}
{
 "_id": "00006002f065000000000000006c",
 "arms": 0,
 "legs": 4,
 "thing": "dog"
}
2 documents in set (0.0013 sec)

The remove method deletes documents from the collection:

 MySQL cookbook Py > collectionLimbs.remove('thing in ("dog",
"cat")')
Query OK, 2 items affected (0.0119 sec)
 MySQL cookbook Py > collectionLimbs.find('thing in ("dog",
"cat")')
Empty set (0.0011 sec)
 MySQL cookbook Py > collectionLimbs.count()
11

The remove method supports searching conditions similar to the modify
and find methods.

See Also
For additional information about using MySQL with JSON documents and
NoSQL, see Chapter 19.

2.11 Controlling the Output Format

Problem
You want to print results in a format different from the default.

Solution
Use the configuration option resultFormat or the command-line
parameters --result-format, --table, --tabbed, --vertical,
or --json.

Discussion
By default, MySQL Shell prints results in a table format, similar to the
default format of the mysql client. However, this format can be
customized.
Inside MySQL Shell, you can customize the format with the help of the
\option command or the set method of the shell.options member
of the Shell class.

Thus, to print the content of the artist table in a tabbed format, run the
following:

 MySQL cookbook JS > \option resultFormat=tabbed
 MySQL cookbook JS >
artist=session.getCurrentSchema().getTable('artist')
<Table:artist>
 MySQL cookbook JS > artist.select()
a_id name
1 Da Vinci
2 Monet
4 Renoir

3 Van Gogh
4 rows in set (0.0009 sec)

To switch to the vertical format, run the following:

 MySQL cookbook JS > shell.options.set('resultFormat',
'vertical')
 MySQL cookbook JS > artist.select()
*************************** 1. row ***************************
a_id: 1
name: Da Vinci
*************************** 2. row ***************************
a_id: 2
name: Monet
*************************** 3. row ***************************
a_id: 4
name: Renoir
*************************** 4. row ***************************
a_id: 3
name: Van Gogh
4 rows in set (0.0009 sec)

The JSON format supports few options. By default, if the value of the
resultFormat option is set to json or MySQL Shell started with the -
-json option, it is same as json/pretty, or --json=pretty, which
means that the result is printed as a JSON, formatted for better readability:

 MySQL cookbook JS > shell.options.set('resultFormat', 'json')
 MySQL cookbook JS > artist.select()
{
 "a_id": 1,
 "name": "Da Vinci"
}
{
 "a_id": 2,
 "name": "Monet"
}
{
 "a_id": 4,
 "name": "Renoir"
}
{
 "a_id": 3,
 "name": "Van Gogh"
}
4 rows in set (0.0008 sec)

The ndjson, json/raw, and --json=raw options produce more
compact raw JSON output:

 MySQL cookbook JS > shell.options.set('resultFormat',
'json/raw')
 MySQL cookbook JS > artist.select()
{"a_id":1,"name":"Da Vinci"}
{"a_id":2,"name":"Monet"}
{"a_id":4,"name":"Renoir"}
{"a_id":3,"name":"Van Gogh"}
4 rows in set (0.0003 sec)

The json/array option represents the result as an array of JSON
documents:

 MySQL cookbook JS > shell.options.set('resultFormat',
'json/array')
 MySQL cookbook JS > artist.select()
[
{"a_id":1,"name":"Da Vinci"},
{"a_id":2,"name":"Monet"},
{"a_id":4,"name":"Renoir"},
{"a_id":3,"name":"Van Gogh"}
]
4 rows in set (0.0010 sec)

This could be especially useful if you’re selecting the data from the
command line and later passing it to another program:

$ mysqlsh cbuser:cbpass@127.0.0.1:33060/cookbook \
> -i --execute="session.getSchema('cookbook').\
> getTable('artist').select().execute()" \
> --result-format=json/array --quiet-start=2 \
> | head -n -1 \
> | jq '.[] | .name'
"Da Vinci"
"Monet"
"Renoir"
"Van Gogh"

In the preceding code, we started mysqlsh with the -i option, which
enables interactive mode, so MySQL Shell behaves as if it were run
interactively, and with the --quiet-start=2 option, which disables all

welcome messages. Then we set the --result-format option to
json/array to enable JSON array output, used the --execute option
to select from the table artist, and passed output to the jq command,
which removed all metadata information and printed only names of artists.

TIP
The head -n -1 command removes the last line from the result that shows the number of rows
returned by the select method. Note that specifying a negative number as a command head -
n parameter may not work everywhere. If you’re on such a system, you can ignore the error
message that the command jq will print or redirect it somewhere else:

$ mysqlsh cbuser:cbpass@127.0.0.1:33060/cookbook \
> -i --execute="session.getSchema('cookbook').\
> getTable('artist').select().execute()" \
> --result-format=json/array --quiet-start=2 \
> | jq '.[] | .name' 2>/dev/null
"Da Vinci"
"Monet"
"Renoir"
"Van Gogh"

When JSON wrapping is enabled at the MySQL Shell startup with --
json[=pretty|raw] option, it will also print diagnostic information in
the resulting JSON output:

 MySQL cookbook JS >
session.getCurrentSchema().getTable('artist').select()
{
 "hasData": true,
 "rows": [
 {
 "a_id": 1,
 "name": "Da Vinci"
 },
 {
 "a_id": 2,
 "name": "Monet"
 },
 {

 "a_id": 4,
 "name": "Renoir"
 },
 {
 "a_id": 3,
 "name": "Van Gogh"
 }
],
 "executionTime": "0.0007 sec",
 "affectedRowCount": 0,
 "affectedItemsCount": 0,
 "warningCount": 0,
 "warningsCount": 0,
 "warnings": [],
 "info": "",
 "autoIncrementValue": 0
}

If you enabled JSON output using the --result-
format=json[/pretty|/raw|/array] command-line option, this
additional information is not printed.
All output formats are independent from how you select data and are
available in all modes.

See Also
For additional information about MySQL Shell output formats, see “Output
Formats” in the MySQL User Reference Manual.

2.12 Running Reports with MySQL Shell

Problem
You want to run periodic reports.

Solution
Use the \show and \watch commands.

https://oreil.ly/A3KUt

Discussion
The MySQL Shell \show and \watch commands execute reports, both
built-in and user-defined. \show executes a report once, whereas \watch
runs the report continuously until interrupted.
A report is a predefined sequence of commands. Reports may support
arguments. For example, the built-in report query takes a SQL query as an
argument. The built-in report thread reports details about a specific
thread. By default, it reports details about the current thread:

 MySQL cookbook SQL > \show thread
GENERAL
Thread ID: 1434
Connection ID: 1382
Thread type: FOREGROUND
Program name: mysqlsh
User: sveta
Host: localhost
Database: cookbook
Command: Query
Time: 00:00:00
State: executing
Transaction state: NULL
Prepared statements: 0
Bytes received: 20280
Bytes sent: 40227
Info: SELECT json_object('tid',t.THR ... ↩
 JOIN information_schema.innodb
Previous statement: NULL

WARNING
The built-in report thread queries tables in performance_schema and sys; therefore, you
should connect as a user that has SELECT privilege on performance_schema and sys
schemas and EXECUTE privilege on sys schema. Otherwise, the report will fail with an “access
denied” error.

But the report thread supports arguments, so you can specify, for
example, Connection ID of the thread and output information about the
specific one:

 MySQL cookbook SQL > \show thread -c 1386
GENERAL
Thread ID: 1438
Connection ID: 1386
Thread type: FOREGROUND
Program name: mysql
User: sveta
Host: localhost
Database: cookbook
Command: Sleep
Time: 00:05:44
State: NULL
Transaction state: RUNNING
Prepared statements: 0
Bytes received: 1720
Bytes sent: 29733
Info: NULL
Previous statement: select * from adcount for update

The output of the thread report is similar to the standard PROCESSLIST
output but contains additional information, such as Transaction
state and Previous statement. The latter could be especially
useful when you’re trying to figure out what is preventing your transaction
from finishing. For example, if one of the transactions runs in multiple
statements and locks a record, it may cause other transactions to wait until
the lock is released. But since the statement was already executed, it would
not be visible in the regular PROCESSLIST output.

Even more useful information could be found in the threads report that
by default outputs information about all threads that belong to the current
user. It runs the MySQL Shell session but can print information about all
the threads running on the server and also filter them and define the output
format.
For example, to find all blocked and blocking transactions, you can define
the --where "nblocked > 0 or nblocking > 0" option:

 MySQL cookbook SQL > \show threads --foreground ↩
 --where "nblocked > 0 or nblocking >
0" ↩
 -o
tid,cid,txid,txstate,nblocked,nblocking,info,pinfo↩
 --vertical

*************************** 1. row ***************************
 tid: 1438
 cid: 1386
 txid: 292253
 txstate: RUNNING
 nblocked: 1
nblocking: 0
 info: NULL
 pinfo: select * from adcount for update
*************************** 2. row ***************************
 tid: 3320
 cid: 3268
 txid: 292254
 txstate: LOCK WAIT
 nblocked: 0
nblocking: 1
 info: update adcount set impressions = impressions + 1 where
id=3
 pinfo: NULL

Thus, in the preceding example, the thread with Connection ID 3268
is trying to execute an update:

UPDATE adcount SET impressions = impressions + 1 WHERE id=3;

but is blocked by another transaction. Otherwise, the thread with
Connection ID 1386 is not executing anything but blocks a thread. Its
previous statement was:

SELECT * FROM adcount FOR UPDATE;

which blocks all rows in the adcount table for writing. With this, we
easily found why the UPDATE in the connection 3268 couldn’t finish.

The threads report has more options. You can find all of them by
running the \show command with the report name followed by the --
help option:

 MySQL cookbook SQL > \show threads --help
NAME
 threads - Lists threads that belong to the user who owns
the current
 session.

SYNTAX
 \show threads [OPTIONS]
 \watch threads [OPTIONS]

DESCRIPTION
 This report may contain the following columns:
...

TIP
All MySQL Shell commands support help options. For built-in commands, run \? COMMAND,
\help COMMAND, or \h COMMAND. For commands with parameters, try the --help option.

The \watch command not only executes the report but does so repeatedly,
at certain intervals. This could be very useful when you want to watch
changes of a certain parameter. For example, to watch the number of
internal temporary tables created to resolve queries, run the following
command:

MySQL cookbook SQL > \watch query --nocls ↩
 SHOW GLOBAL STATUS LIKE
'Created_tmp_%tables'
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| Created_tmp_disk_tables | 4758 |
| Created_tmp_tables | 25306 |
+-------------------------+-------+
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| Created_tmp_disk_tables | 4758 |
| Created_tmp_tables | 25309 |
+-------------------------+-------+
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| Created_tmp_disk_tables | 4758 |
| Created_tmp_tables | 25310 |
+-------------------------+-------+
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+

| Created_tmp_disk_tables | 4760 |
| Created_tmp_tables | 25318 |
+-------------------------+-------+
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| Created_tmp_disk_tables | 4760 |
| Created_tmp_tables | 25319 |
+-------------------------+-------+
...

The query uses the LIKE operator and patterns to match the names of two
system variables. We discuss how the LIKE operator works and matches
patterns in Recipe 7.10.
The query runs with a default interval of 2 seconds. The --nocls
parameter instructs the command to not clear the screen before printing the
latest result. To stop watching, issue the termination command Ctrl+C.

2.13 Using MySQL Shell Utilities

Problem
You want to use MySQL Shell utilities.

Solution
In JavaScript or Python modes, use the methods of the global util object
interactively or pass the method via the command line.

Discussion
MySQL Shell comes with a number of built-in utilities that allow you to
perform common administrative tasks, such as checking if your MySQL
server can be safely updated to the new version or making a reserve copy of
the data. These utilities could be called as methods of the global util
object in JavaScript and Python modes or specified as a command-line
option.

To find out which utilities MySQL Shell supports, run the \? util
command. The names of methods are different in JavaScript and Python
modes and follow naming best practices for each of the languages. The
global util object isn’t available in the SQL mode, nor are utilities.

To figure out how a utility works, use the help command with the name of
the utility as an argument. For example, \?
checkForServerUpgrade will print comprehensive help for the
upgrade checker utility in JavaScript mode. \? dump_instance will
print detailed usage instructions for the utility that dumps the instance in
Python mode.
Calling utility methods is no different than calling any other method. For
example, the following code exports the limbs table into the limbs.csv
file in fully quoted CSV format:

 MySQL cookbook JS > util.exportTable(
 -> 'limbs', 'BACKUP/cookbook/limbs.csv',
 -> {dialect: "csv-unix"})
Preparing data dump for table `cookbook`.`limbs`
Data dump for table `cookbook`.`limbs` will not use an index
Running data dump using 1 thread.
NOTE: Progress information uses estimated values and may not be
accurate.
Data dump for table `cookbook`.`limbs` will be written to 1 file
91% (11 rows / ~12 rows), 0.00 rows/s, 0.00 B/s
Duration: 00:00:00s
Data size: 203 bytes
Rows written: 11
Bytes written: 203 bytes
Average throughput: 203.00 B/s

The dump can be loaded using:
util.importTable("BACKUP/cookbook/limbs.csv", {
 "characterSet": "utf8mb4",
 "dialect": "csv-unix",
 "schema": "cookbook",
 "table": "limbs"
})

You need to create the BACKUP/cookbook directory before running this
command or use a different location.

This Python code restores the table into the limbs table in the database
test:

 MySQL cookbook Py > \sql CREATE TABLE test.limbs LIKE limbs;
Fetching table and column names from `cookbook` for auto-
completion... ↩
Press ^C to stop.
Query OK, 0 rows affected (0.0264 sec)
 MySQL cookbook Py >
util.import_table("BACKUP/cookbook/limbs.csv", ↩
 {"dialect": "csv-unix", "schema":
"test"})
Importing from file '/home/sveta/BACKUP/cookbook/limbs.csv' to
table `test`.`limbs` ↩
in MySQL Server at 127.0.0.1:3306 using 1 thread
[Worker000] limbs.csv: Records: 11 Deleted: 0 Skipped: 0
Warnings: 0
100% (203 bytes / 203 bytes), 0.00 B/s
File '/home/sveta/BACKUP/cookbook/limbs.csv' (203 bytes) ↩
was imported in 0.0109 sec at 203.00 B/s
Total rows affected in test.limbs: Records: 11 Deleted: 0
Skipped: 0 Warnings: 0

We omitted all but the necessary options for the import example to make it
shorter.
To use import_table, you need to be in the Classic protocol session.
Otherwise, the command will fail with an error:

 MySQL cookbook Py >
util.import_table("BACKUP/cookbook/limbs.csv", ↩
 {"dialect": "csv-unix", "schema":
"test"})
Traceback (most recent call last):
 File "<string>", line 1, in <module>
SystemError: RuntimeError: Util.import_table: ↩
A classic protocol session is required to perform this operation.

TIP
It’s always a good idea to read error messages, because they clearly show what is wrong and often
contain instructions on how to fix the failure.

Following is another error you can hit:

ERROR: The 'local_infile' global system variable must be set to
ON ↩
in the target server, after the server is verified to be trusted:

To bypass this error, enable the local_infile option with the following
command:

SET GLOBAL local_infile=1;

Or leave this example until you get to the Chapter 13, which covers
exporting and importing MySQL database objects.

TIP
If you don’t understand what the utility is doing in these examples, don’t worry. We’ll cover
exporting and importing MySQL database objects in Chapter 13.

If you want to run utilities without entering interactive mode, you can
specify them after the two dashes, following standard mysqlsh options:

$ mysqlsh -- util check-for-server-upgrade root@127.0.0.1:13000
--output-format=JSON
Please provide the password for 'root@127.0.0.1:13000':
Save password for 'root@127.0.0.1:13000'? [Y]es/[N]o/Ne[v]er
(default No):
{
 "serverAddress": "127.0.0.1:13000",
 "serverVersion": "8.0.23-debug - Source distribution",
 "targetVersion": "8.0.27",
 "errorCount": 0,
 "warningCount": 0,
 "noticeCount": 0,
 "summary": "No known compatibility errors or issues were
found.",
...

In this example, we first specified the command name, then added two
dashes, followed by the global object name, the method we wanted to use,

the connection string, and, finally, the method arguments.
The command line uses the method names of JavaScript mode Camel-case
syntax, checkForServerUpgrade; Kebab-case syntax, check-for-
server-upgrade; or Snake-case syntax:
check_for_server_upgrade. For more information about using
global objects without entering interactive mode, use the \? command
interactively.

TIP
You can use -- syntax to call methods of other global objects on the command line:

$ mysqlsh cbuser:cbpass@127.0.0.1:33060/cookbook
 > -- shell status
WARNING: Using a password on the command-line interface ↩
can be insecure.
MySQL Shell version 8.0.22

Connection Id: 23563
Default schema: cookbook
Current schema: cookbook
Current user: cbuser@localhost
SSL: Cipher in use: ↩
 TLS_AES_256_GCM_SHA384 ↩
 TLSv1.3
...

However, not all global objects are supported. Check \? cmdline for the list of supported
objects.

See Also
For additional information about MySQL Shell utilities, see “MySQL Shell
Utilities” in the Reference Manual.

2.14 Using the Admin API to Automate
Replication Management

https://oreil.ly/vuAGM

Problem
You want to automate routine database administrator (DBA) tasks, such as
deploying MySQL servers.

Solution
Use the Admin API.

Discussion
MySQL Shell supports not only the X DevAPI for querying the database
but also the Admin API that allows you to manage the InnoDB ReplicaSet
and InnoDB Cluster. The Admin API consists of three classes: Dba,
Cluster, and ReplicaSet.

Admin API is accessible from the global dba object of the DBA class. It
allows you to configure MySQL instances and start either a standalone
sandbox, ReplicaSet, or Cluster.
To configure a standalone sandbox, use the deploySandboxInstance
method in JavaScript mode or deploy_sandbox_instance in Python
mode. This method takes a port number and a dictionary of parameters as
arguments:

 MySQL cookbook JS > dba.deploySandboxInstance(13000,
 -> {"portx": 13010, "mysqldOptions": ["log-
bin=cookbook"]})
A new MySQL sandbox instance will be created on this host in
/home/sveta/mysql-sandboxes/13000

Warning: Sandbox instances are only suitable for deploying and
running on your local machine for testing purposes and are not
accessible from external networks.

Please enter a MySQL root password for the new instance:

Deploying new MySQL instance...

Instance localhost:13000 successfully deployed and started.
Use shell.connect('root@localhost:13000') to connect to the
instance.

This will create a sandbox instance with X port 13010 and an enabled
binary log with a name, starting from cookbook:

 MySQL localhost:13000 ssl JS >
shell.connect('root@localhost:13000')
Creating a session to 'root@localhost:13000'
Please provide the password for 'root@localhost:13000':
Fetching schema names for autocompletion... Press ^C to stop.
Closing old connection...
Your MySQL connection id is 13
Server version: 8.0.22-13 Percona Server (GPL), Release '13',
Revision '6f7822f'
No default schema selected; type \use <schema> to set one.
 MySQL localhost:13000 ssl JS > \sql show variables like
'log_bin_basename';
+------------------+---
-----------+
| Variable_name | Value
|
+------------------+---
-----------+
| log_bin_basename | /home/sveta/mysql-
sandboxes/13000/sandboxdata/cookbook |
+------------------+---
-----------+
1 row in set (0.0027 sec)

To stop the instance, use the stopSandboxInstance method in
JavaScript mode or stop_sandbox_instance in Python mode:

 MySQL localhost:13000 ssl JS > dba.stopSandboxInstance(13000)
The MySQL sandbox instance on this host in
/home/sveta/mysql-sandboxes/13000 will be stopped

Please enter the MySQL root password for the instance
'localhost:13000':

Stopping MySQL instance...

Instance localhost:13000 successfully stopped.

To destroy the instance, use the deleteSandboxInstance method in
JavaScript mode or delete_sandbox_instance in Python mode:

 MySQL cookbook Py > dba.delete_sandbox_instance(13000)

Deleting MySQL instance...

Instance localhost:13000 successfully deleted.

The global dba object is accessible from the command line:

$ mysqlsh cbuser:cbpass@127.0.0.1:33060/cookbook -- dba kill-
sandbox-instance 13000
WARNING: Using a password on the command-line interface can be
insecure.

Killing MySQL instance...

Instance localhost:1300 successfully killed.

The global dba object is not available in SQL mode.

See Also
For additional information about using Admin API to create and manage a
ReplicaSet, see Recipe 3.17. For additional information about using Admin
API to create and manage InnoDB Cluster, see “InnoDB Cluster”.

2.15 Working with JavaScript Objects

Problem
You want to work with your documents as objects, and you want to modify
them and store them in the database using your own methods and
properties.

Solution
Create an object that will have all the necessary methods to communicate
with the database, and use it as a prototype of your data objects.

Discussion
JavaScript is an object-oriented programming language, and it’s easy to
create objects, modify them, and store them in the database. Sometimes it
may be easier to simply write myObject.save() instead of calling the
full chain of methods of the X DevAPI Collection class. For example, you
may want to replace the following code:

session.getCurrentSchema().getCollection('CollectionLimbs').↩
 addOrReplaceOne(myObject).execute()

with the following single call:

CollectionLimbs.save()

JavaScript supports inheritance; therefore, you can create an object that will
have all the necessary methods, working with the Collection class
methods, and use it as a prototype of the object, containing your business
logic.
As an example, let’s create a CookbookCollection object that will
have the find, save and remove methods. They will search for an
object in the collection, save it after modification, and remove it from the
database if necessary. The CookbookCollection object will also have
a collection property that will store an object, representing the
collection where our object is stored.
To make our methods clear, we won’t add error handling. You can add this
functionality yourself. For example, if a user forgets to set a collection
property, you can throw a custom exception or have a default collection that
will be used instead. We’re relying on JavaScript built-in exceptions.
Let’s get started and create our object:

mysql-js [cookbook]> var CookbookCollection = {
 -> // Collection where the object is stored
 -> collection: null,

First, we define the property collection where the object is stored. We don’t
set the name of the collection here, because we want our prototype to work
with any collection:

 -> // Searches collection and returns first
 -> // object that satisfies search condition.
 -> find: function(searchCondition) {
 -> return
this.collection.find(searchCondition).
 -> execute().fetchOne();
 -> },

The find function searches the collection using any search condition. It
could be '_id = "00006002f0650000000000000061"' or
'thing="human"'. In other words, it can be any condition the
Collection.find method accepts. Then we fetch one document and
return it as a result. We intentionally didn’t add any unique check code or
any other way to ensure that there is only one document satisfying our
condition because we wanted to make the example as simple as possible
and have it work with any collection:

 -> // Saves the object in the database
 -> save: function() {
 -> // If we know _id of the object we are
 -> // updating the existing one
 -> // We use the less-effective method
addOrReplaceOne
 -> // instead of modify for simplicity.
 -> if ('_id' in this) {
 ->
this.collection.addOrReplaceOne(this._id,
 -> // We use double conversion, because
we cannot
 -> // store an object with methods in
the database
 -> JSON.parse(
 -> JSON.stringify(
 -> this,
Object.getOwnPropertyNames(
 ->
Object.getPrototypeOf(this))
 ->)
 ->)
 ->)

 -> } else {
 -> // In case the object does not exist
in the
 -> // database yet, we add it and assign
 -> // generated _id to its own property.
 -> // This _id could be used later if we
want to update
 -> // or remove the database entry.
 -> this._id = this.collection.add(
 -> JSON.parse(
 -> JSON.stringify(
 -> this,
Object.getOwnPropertyNames(
 ->
Object.getPrototypeOf(this))
 ->)
 ->)
 ->).execute().getGeneratedIds()[0]
 -> }
 -> },

The save method stores the object in the database. If there is no _id field
in the object, that usually means there is no such object in the database yet.
So, we use the add method to insert it into the database and set the _id
property of the object to the value, generated by MySQL. If such a property
already exists, that either means that the object is already in the database or
we want to set _id explicitly. In this case, we use the
addOrReplaceOne method that either adds a new object with the
specified unique identifier or replaces the existing one:

 -> // Removes the entry from the database.
 -> // Once removed we unset property _id of
the object.
 -> remove: function() {
 -> this.collection.remove("_id = '" +
this._id + "'").
 -> execute()
 -> delete Object.getPrototypeOf(this)._id
 -> delete this._id
 -> }
 -> }

The remove method deletes the record from the database and also deletes
the _id property of our object so that, in case we want to store it in the

database again, it will be considered a new record, and a new unique
identifier will be generated. We remove the _id property from both the
prototype and the object.
Let’s take the CollectionLimbs collection that we created in Recipe
2.9 as an example. First, we retrieve it from the current session and set
as a collection property of the CookbookCollection object:

mysql-js [cookbook]>
CookbookCollection.collection=session.getCurrentSchema().
 -> getCollection('CollectionLimbs')
 ->
<Collection:CollectionLimbs>

TIP
In Recipe 2.9, we rolled back all our modifications to the CollectionLimbs. If you continued
your own experiments further before running the examples in this recipe, execute the following:

CookbookCollection.collection ↩
.remove("thing='cat' or thing='dog'")

Then let’s create an object, cat, with two arms and two legs:

mysql-js [cookbook]> var cat = {
 -> thing: "cat",
 -> arms: 2,
 -> legs: 2
 -> }
 ->

To be able to store our cat in the database, we need to assign the
CookbookCollection object as a prototype of the cat object:

mysql-js [cookbook]> cat =
Object.setPrototypeOf(CookbookCollection, cat)
{
 "arms": 2,
 "collection": <Collection:CollectionLimbs>,

 "find": <Function:find>,
 "legs": 2,
 "remove": <Function:remove>,
 "save": <Function:save>,
 "thing": "cat"
}

Now we can save our object in the database:

mysql-js [cookbook]> cat.save()

We can check if we can retrieve the object with the find method:

mysql-js [cookbook]> CookbookCollection.find('thing = "cat"')
{
 "_id": "000060140a2d0000000000000007",
 "arms": 2,
 "legs": 2,
 "thing": "cat"
}

We can also confirm that our object now has _id property:

mysql-js [cookbook]> cat._id
000060140a2d0000000000000007

Do you see anything wrong here? Yes! The cat has two arms and two legs,
but cats usually have no arms and four legs. Let’s fix it:

mysql-js [cookbook]> cat.arms=0
0
mysql-js [cookbook]> cat.legs=4
4
mysql-js [cookbook]> cat.save()
mysql-js [cookbook]> CookbookCollection.find('thing = "cat"')
{
 "_id": "000060140a2d0000000000000007",
 "arms": 0,
 "legs": 4,
 "thing": "cat"
}

Now our cat is in good shape.

If we want to clean up the collection and leave it in the state it was in before
our experiments, we can remove the cat document from the database:

mysql-js [cookbook]> cat.remove()

We may also notice that the cat._id property does not exist in our object
anymore:

mysql-js [cookbook]> cat._id
mysql-js [cookbook]>

If we decide to store the object in the database again, a new unique
identifier will be generated.
You’ll find the CookbookCollection code in the file
mysql_shell/CookbookCollection.js of the recipes distribution.

2.16 Filling Test Data Using Python’s Data
Science Modules

Problem
You want to fill a test table with partially random data. For example, you
need IDs to follow a sequence. You also want them to have realistic names
and surnames. The rest of the values in the table can be random, but the
index should have certain a cardinality. More about indexes in Chapter 21.

Solution
Script data population using Python and its specific data science modules.

Discussion
We’re often in the situation where we need to fill a table with fake data that
mimics real-world data for testing purposes. For example, perhaps you’ve
developed an application and want to check what happens if the volume of

data stored in it increases. Or you’ve hit a situation where a particular query
works slowly in production, and you want to experiment on the test server
but do not want to copy production data due to security or performance
reasons. This task may also be required when you want to ask third-party
consultants for help.
One such example is the patients table that we used in Recipe 24.12.
This table contains records of patients who spent more than one day in a
hospital. It stores this data as national ID, name, surname, gender,
diagnosis, and outcome, such as dates a patient spent in the hospital and if
they recovered, checked out of the hospital with the same symptoms, or
even died. You can find these details by running the SHOW CREATE
TABLE command:

 MySQL cookbook Py > session.sql('SHOW CREATE TABLE patients')
*************************** 1. row ***************************
 Table: patients
Create Table: CREATE TABLE `patients` (
 `id` int NOT NULL AUTO_INCREMENT,
 `national_id` char(32) DEFAULT NULL,
 `name` varchar(255) DEFAULT NULL,
 `surname` varchar(255) DEFAULT NULL,
 `gender` enum('F','M') DEFAULT NULL,
 `age` tinyint unsigned DEFAULT NULL,
 `additional_data` json DEFAULT NULL,
 `diagnosis` varchar(255) DEFAULT NULL,
 `result` enum('R','N','D') DEFAULT NULL↩
 COMMENT 'R=Recovered, N=Not Recovered, D=Dead',
 `date_arrived` date NOT NULL,
 `date_departed` date DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1101 ↩
DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.0009 sec)

Of course, we wouldn’t even think about using real data for examples in
this table. However, we still want to pretend that the data is real. For
example, names and surnames should be ones that are popular, and genders
should correspond to the right names. For example, John is likely a male
and Ann is likely a female. Ages should fall in realistic ranges, and
departure dates should be greater than the date when the patient arrived to

the hospital. It is also unlikely that a patient would spend 10 years in the
hospital.
Python is often used for data analysis and statistics. It has libraries, such as
pandas, that help to manipulate large datasets and has convenient methods
to read and generate data. All of these make Python ideal for performing
our task.
To use the pandas module in MySQL Shell, you need to have it installed
on your machine and add the path where the library is located, in MySQL
Shell’s sys.path. Here are the steps that will help you perform this task:

1. First, check which version of Python MySQL Shell is running. In our
case, it’s version 3.7.7:

 MySQL cookbook Py > import sys
 MySQL cookbook Py > sys.version
3.7.7 (default, Aug 12 2020, 09:13:48)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-23.0.1)]

2. MySQL Shell does not come with the python executable and pip
that you can run from outside MySQL Shell. Therefore, you need to
install the same version as MySQL Shell’s Python. We preferred to
keep the system-wide installed version 3.8.5 untouched and install the
same version that our MySQL Shell instance used: 3.7.7 into a local
directory from the source code. You can decide to have the same
version system-wide.

3. Once the correct version of Python is installed, check where it stores
its modules, and add this directory to the sys.path of the MySQL
Shell:

 MySQL cookbook Py > sys.path.append(↩
 "/home/sveta/bin/python-3.7.7/lib/python3.7/site-packages")

TIP
To avoid typing this command each time you want to use modules that are not part of the
MySQL Shell distribution, add this command to the Python mode configuration file. This
file, by default, is located at ~/.mysqlsh/mysqlshrc.py.

4. Install the necessary packages. For our example, we used numpy,
pandas, random, string, and datetime.

Once these prerequisites are met, we’re ready to fill our table with example
data.

Data filling step-by-step
First, we need to import all of the necessary packages. Type the following
in the MySQL Shell Python protocol session:

import numpy
from pandas import pandas
import random
import string
from datetime import datetime
from datetime import timedelta

Now we’re ready to generate the data.
For names and surnames, we decided to use real names found in the
datasets, available on the internet. You’ll find the datasets we used and their
licenses and distribution rights in the datasets directory of the recipes
distribution. For diagnoses, we also used publicly available data of the top 8
diagnoses and their frequencies, and the fake diagnosis “Data Phobia” with
an even higher frequency. Data for genders is stored with the names. All
other values are generated. The data doesn’t need to look real. For example,
a 16-year-old patient may end up dying from alcoholic liver disease, which
would be unlikely to happen in real life but is sufficient for demonstration
purposes. However, Python allows to solve such collisions. You can change
our example to have even more realistic data.

It’s convenient to have a variable defining the final number of rows in the
table:

 MySQL cookbook Py > num_rows=1000

Now let’s discuss how we’ll process each column in the patients table.

Names and genders
Names and genders are stored in the top-350-male-and-female-
names-since-1848-2019-02-26.csv file in the following format:

$ head datasets/top-350-male-and-female-names-since-1848-2019-02-
26.csv
Rank,Female Name,Count,Male Name,Count_
1,Mary,54276,John,108533
2,Margaret,49170,William,87239
3,Elizabeth,36556,James,69987
4,Sarah,28230,David,62774
5,Patricia,20689,Robert,56511
6,Catherine,19713,Michael,51768
7,Susan,19165,Peter,44758
8,Helen,18881,Thomas,42467
9,Emma,18192,George,39195

This means that each row contains a rank from 1 to 350, one name that is
traditionally female and one name that is traditionally male of this rank and
count of such names. We’re not interested in the rank and count. We just
need female and male names with gender information. Therefore, we need
to perform slight manipulation on this dataset after reading.
First, we read the file using the read_csv pandas method. We’ll read
the file twice: once for traditional female names and once for traditional
male names. We’ll use only the Female Name column in the first attempt
and only the Male Name column in the second attempt. We’ll also rename
this column so it corresponds with the name of the column in our database:

 MySQL cookbook Py > female_names=pandas.\
 -> read_csv(
 -> "top-350-male-and-female-names-since-
1848-2019-02-26.csv",

 -> usecols=["Female Name"]
 ->).rename(columns={'Female Name': 'name'})
 ->
 MySQL cookbook Py > male_names=pandas.\
 -> read_csv(
 -> "top-350-male-and-female-names-since-
1848-2019-02-26.csv",
 -> usecols=["Male Name"]
 ->).rename(columns={'Male Name': 'name'})
 ->

Once done, we’ll add a gender column to our datasets:

 MySQL cookbook Py > female_names['gender']=(['F']*↩
 female_names.count()['name'])
 MySQL cookbook Py > male_names['gender']=(['M']*↩
 male_names.count()['name'])

And, finally, we’ll concatenate the two datasets into one:

 MySQL cookbook Py > names=pandas.\
 -> concat([female_names, male_names],
 -> ignore_index=True)
 ->

In order to read the top-350-male-and-female-names-since-
1848-2019-02-26.csv file, it needs to be in the current working
directory, or you need to provide the absolute path to the file. To find your
current working directory, run the following:

os.getcwd()

To change the working directory, run the following:

os.chdir('/mysqlcookbook/recipes/datasets')

This will allow you to read files located in
/mysqlcookbook/recipes/datasets. Adjust the directory path to
reflect your environment.

TIP
The concat method of the Python pandas module works similarly to the SQL UNION clause.

We can examine the content of our dataset that uses the pandas
DataFrame data structure by typing its name:

 MySQL cookbook Py > names
 name gender
0 Mary F
1 Margaret F
2 Elizabeth F
3 Sarah F
4 Patricia F
..
695 Quentin M
696 Henare M
697 Joe M
698 Darcy M
699 Wade M

[700 rows x 2 columns]

The number of rows in the DataFrame is smaller than the number of rows
we want to have in our table, so we need to generate more. We also want to
shuffle the data so we have a random distribution of names. We’ll use the
sample method for this purpose. Since we’re creating a larger set than the
initial one, we need to specify the replace=True option. We’ll also re-
create the index for the new DataFrame using the pandas.Series
method, so it will be ordered:

 MySQL cookbook Py > names=names.sample(num_rows,
replace=True).\
 -> set_index(pandas.Series(range(num_rows)))
 ->

Surnames
For surnames, we’ll use a dataset stored in the
Names_2010Census.csv file. It has multiple columns, such as a rank,

the number of surnames, and so on, but we’re interested only in the first
column: name. We also don’t need the last row of this file, containing a
record for ALL OTHER NAMES. Surnames in this file are stored in
uppercase. We could format them differently, but we’ll leave them as is.
We’ll also rename the name column to surname so it matches our table
definition:

 MySQL cookbook Py >
surnames=pandas.read_csv("Names_2010Census.csv",
 -> usecols=['name'], skipfooter=1,
engine='python').\
 -> rename(columns={'name': 'surname'})
 ->

pandas prints a warning that it will use a slower but more powerful
python engine to process the file, but this warning can be ignored.

We’ll shuffle the surnames using the same method that we used for the
names:

 MySQL cookbook Py > surnames=surnames.sample(num_rows,
replace=True).\
 -> set_index(pandas.Series(range(num_rows)))
 ->

Diagnoses
We manually prepared the diagnosis.csv file that has just 9 diagnoses;
therefore, we only need to read it and don’t need to specify any option:

 MySQL cookbook Py > diagnoses=pandas.read_csv('diagnosis.csv')
 MySQL cookbook Py > diagnoses
 diagnosis frequency
0 Acute coronary syndrome 2.1
1 Alcoholic liver disease 0.3
2 Pneumonia 3.6
3 Chronic obstructive pulmonary disease 2.1
4 Gastro-intestinal bleed 0.8
5 Heart failure 0.8
6 Sepsis 0.8
7 Urinary tract infection 2.4
8 Data Phobia 6.2

Diagnoses are different from the names and surnames, because they have
different frequencies and we want them distributed in our final dataset
according to those frequencies. Therefore, we’ll pass the weights
parameter to the sample method:

 MySQL cookbook Py > diagnoses=diagnoses.sample(
 -> num_rows, replace=True,
 -> weights=diagnoses['frequency']
 ->
).set_index(pandas.Series(range(num_rows)))
 ->

Results
The data type for the results is an ENUM that can contain only three possible
values: R for recovered, N for not recovered, and D for dead. We would not
use any source for such results but generate a DataFrame interactively:

 MySQL cookbook Py > results = pandas.DataFrame({
 -> "result": ["R", "N", "D"],
 -> "frequency": [6,3,1]
 -> })
 ->

We added a frequency to our results. These frequencies have nothing to do
with reality: we need them only to distribute our results differently.
Since we have a frequency for our results, we’ll generate the dataset the
same way we did for diagnoses:

 MySQL cookbook Py > results=results.sample(
 -> num_rows, replace=True,
 -> weights=results['frequency']
 ->
).set_index(pandas.Series(range(num_rows)))
 ->

The table
Our main datasets are prepared. Now we can start inserting rows into the
table one by one.

First, let’s retrieve a Table object so we can query it comfortably:

 MySQL cookbook Py > patients=session.get_schema('cookbook').↩
 get_table('patients')

Then we’ll start the loop:

 MySQL cookbook Py > for i in range(num_rows):

All subsequent generations will be proceeded in this loop.

National ID
The format of the national ID can vary between countries, and we simply
need something unique that follows some pattern. We decided to use two
digits, followed by two uppercase letters, followed by six digits. To
generate random digits we’ll use the randrange method of the random
module, and to generate letters, we’ll use the sample method from the
random module. We’ll use the predefined set
string.ascii_uppercase as a dataset to sample. Then we’ll join the
generated array to an empty string so it will create a string:

 MySQL cookbook Py > national_id=str(random.randrange(10,99))
+\
 ->
''.join(random.sample(string.ascii_uppercase, 2)) + \
 -> str(random.randrange(100000, 999999))
 ->

Age
For the age we’ll simply choose a number between 15 and 99. We don’t
care about the frequency of ages or about how many patients of certain ages
have a certain disease:

 MySQL cookbook Py > age=random.randrange(15, 99)

Dates a patient spent in the hospital

For the date_arrived column, we decided to just use any date in the
year 2020. We can generate this date by specifying the start date as January
1, 2020, and using the timedelta method:

 MySQL cookbook Py > date_arrived=datetime.\
 -> strptime('2020-01-01', '%Y-%m-%d') +\
 -> timedelta(days=random.randrange(365))
 ->

For the date_departed column, we’ll use the same idea, but we’ll use
date_arrived as the starting date and an interval of two months:

 MySQL cookbook Py > date_departed=date_arrived +\
 -> timedelta(days=random.randrange(60))
 ->

This code creates values for date_arrived and date_departed as
datetime Python objects that could not be inserted into the MySQL
table, so we need to convert them into the string format:

 MySQL cookbook Py > date_arrived=date_arrived.strftime('%Y-%m-
%d')
 MySQL cookbook Py > date_departed=date_departed.strftime('%Y-
%m-%d')

Preparing the row
We have values to be inserted into the i-th row of our table into the
columns national_id, age, date_arrived, and date_departed.
But the rest of the values are stored in DataFrames of exactly the desired
number of rows. We need to retrieve only a specific row from the
DataFrame:

 MySQL cookbook Py > name=names['name'][i]
 MySQL cookbook Py > gender=names['gender'][i]
 MySQL cookbook Py > surname=surnames['surname'][i]
 MySQL cookbook Py > result=results['result'][i]
 MySQL cookbook Py > diagnosis=diagnoses['diagnosis'][i]

Inserting a row into a table

Now we’re ready to insert a row into our table. We’ll use the insert
method of the Table class that we discussed in detail in Recipe 2.8:

 MySQL cookbook Py > patients.insert(
 -> 'national_id', 'name', 'surname',
 -> 'gender', 'age', 'diagnosis',
 -> 'result', 'date_arrived',
'date_departed'
 ->).values(
 -> national_id, name, surname,
 -> gender, age, diagnosis,
 -> result, date_arrived, date_departed
 ->).execute()

Putting it all together
It may be convenient to define the code we just wrote as a function so we
can reuse it. Let’s create one, called generate_patients_data:

def generate_patients_data(num_rows):
 # read datasets
 # names and genders
 female_names = pandas.read_csv(
 "top-350-male-and-female-names-since-1848-2019-02-
26.csv",
 usecols = ["Female Name"]
).rename(columns = {'Female Name': 'name'})
 female_names['gender'] = (['F']*female_names.count()['name'])
 male_names = pandas.read_csv(
 "top-350-male-and-female-names-since-1848-2019-02-
26.csv",
 usecols = ["Male Name"]
).rename(columns = {'Male Name': 'name'})
 male_names['gender'] = (['M']*male_names.count()['name'])
 names = pandas.concat([female_names, male_names],
ignore_index=True)
 surnames = pandas.read_csv(
 "Names_2010Census.csv",
 usecols=['name'], skipfooter=1
).rename(columns={'name': 'surname'})
 # diagnoses
 diagnoses = pandas.read_csv('diagnosis.csv')
 # Possible results
 results = pandas.DataFrame({
 "result": ["R", "N", "D"],
 "frequency": [6,3,1]
 })

 # Start building data
 diagnoses = diagnoses.sample(
 num_rows, replace=True,
 weights=diagnoses['frequency']
).set_index(pandas.Series(range(num_rows)))
 results = results.sample(
 num_rows, replace=True,
 weights=results['frequency']
).set_index(pandas.Series(range(num_rows)))
 names=names.sample(
 num_rows, replace=True
).set_index(pandas.Series(range(num_rows)))
 surnames=surnames.sample(
 num_rows, replace=True
).set_index(pandas.Series(range(num_rows)))
 # Get table object
 patients=session.get_schema('cookbook').get_table('patients')
 # Loop, inserting rows
 for i in range(num_rows):
 national_id = str(random.randrange(10,99)) + \
 ''.join(random.sample(string.ascii_uppercase, 2)) + \
 str(random.randrange(100000, 999999))
 age = random.randrange(15, 99)
 date_arrived = datetime.strptime('2020-01-01', '%Y-%m-
%d') + \
 timedelta(days=random.randrange(365))
 date_departed = date_arrived +
timedelta(days=random.randrange(60))
 date_arrived = date_arrived.strftime('%Y-%m-%d')
 date_departed = date_departed.strftime('%Y-%m-%d')
 name = names['name'][i]
 gender = names['gender'][i]
 surname = surnames['surname'][i]
 result = results['result'][i]
 diagnosis = diagnoses['diagnosis'][i]
 patients.insert(
 'national_id', 'name', 'surname',
 'gender', 'age', 'diagnosis',
 'result', 'date_arrived', 'date_departed'
).values(
 national_id, name, surname,
 gender, age, diagnosis,
 result, date_arrived, date_departed
).execute()

We can check how it works by truncating the patients table and then
calling the function:

 MySQL cookbook Py > \sql truncate table patients
Query OK, 0 rows affected (0.0477 sec)
 MySQL cookbook Py >
session.get_schema('cookbook').get_table('patients').count()
0
 MySQL cookbook Py > generate_patients_data(1000)
__main__:17: ParserWarning: Falling back to the 'python' engine ↩
because the 'c' engine does not support skipfooter; ↩
you can avoid this warning by specifying engine='python'.
 MySQL cookbook Py > session.get_schema('cookbook'). ↩
 get_table('patients').count()
1000
 MySQL cookbook Py > session.get_schema('cookbook'). ↩
get_table('patients').select().limit(10)
+----+-------------+----------+------------+--------+-----+------
-----------+....
| id | national_id | name | surname | gender | age |
additional_data | ...
+----+-------------+----------+------------+--------+-----+------
-----------+....
| 1 | 74LM282144 | May | NESSELRODE | F | 83 | NULL
| ...
| 2 | 44PR883357 | Kathryn | DAKROUB | F | 44 | NULL
| ...
| 3 | 60JP130066 | Owen | CIELINSKI | M | 47 | NULL
| ...
| 4 | 28ST588095 | Diana | KILAR | F | 35 | NULL
| ...
| 5 | 77RP202627 | Beryl | ANGIONE | F | 43 | NULL
| ...
| 6 | 27MU569536 | Brian | HOUDEK | M | 84 | NULL
| ...
| 7 | 94AG787006 | Fredrick | WOHLMAN | M | 20 | NULL
| ...
| 8 | 42BX974594 | Jarrod | DECAPUA | M | 64 | NULL
| ...
| 9 | 63XJ322387 | Ruth | PAHUJA | F | 16 | NULL
| ...
| 10 | 91AT797455 | Frances | VANBRUGGEN | F | 63 | NULL
| ...
+----+-------------+----------+------------+--------+-----+------
-----------+....

+----+.....+-------------------------+--------+--------------+---
------------+
| id | ... | diagnosis | result | date_arrived |
date_departed |
+----+.....+-------------------------+--------+--------------+---
------------+
| 1 | ... | Data Phobia | D | 2020-03-20 |

2020-04-26 |
| 2 | ... | Data Phobia | R | 2020-03-20 |
2020-05-09 |
| 3 | ... | Pneumonia | R | 2020-04-05 |
2020-04-23 |
| 4 | ... | Acute coronary syndrome | R | 2020-04-18 |
2020-05-01 |
| 5 | ... | Pneumonia | R | 2020-01-31 |
2020-02-07 |
| 6 | ... | Acute coronary syndrome | D | 2020-01-25 |
2020-03-06 |
| 7 | ... | Data Phobia | R | 2020-08-10 |
2020-09-04 |
| 8 | ... | Pneumonia | R | 2020-02-12 |
2020-03-31 |
| 9 | ... | Pneumonia | N | 2020-11-17 |
2020-12-19 |
| 10 | ... | Sepsis | R | 2020-12-11 |
2020-12-29 |
+----+.....+-------------------------+--------+--------------+---
------------+
10 rows in set (0.0004 sec)

We can also store this function in a file and reuse it later. We’ll discuss
reusing user code in Recipe 2.17.
You’ll find the code for the generate_patients_data function in the
mysql_shell/generate_patients_data.py file of the recipes distribution.

See Also
For additional information about the Python pandas module, see the
pandas documentation.

2.17 Reusing Your Scripts for MySQL Shell

Problem
You wrote code for MySQL Shell and want to reuse it later.

Solution

https://oreil.ly/qUwgV

Store your work, and later load the files using the \source command. Or,
set up the files as startup scripts.

Discussion
MySQL Shell allows you to reuse your code. You can do it either by using
the \source command or by setting your scripts to be executed at startup.
Let’s examine each of these possibilities in detail.
The \source command is available for each of the modes and works
similarly to the \source of mysql command client. The only difference
is that your source files should be written in the same language as the
selected mode.
For example, to load the CookbookCollection object that we
discussed in Recipe 2.15, we can type this command:

 MySQL cookbook JS > \source
/cookbook/recipes/mysql_shell/CookbookCollection.js
 MySQL cookbook JS > CookbookCollection
{
 "collection": null,
 "find": <Function:find>,
 "remove": <Function:remove>,
 "save": <Function:save>
}

As you see, it immediately becomes available for use.
Similarly, you can import the definition of the
generate_patients_data function that we discussed in Recipe 2.16:

 MySQL cookbook Py > \source
/cookbook/recipes/mysql_shell/generate_patients_data.py

Or, in SQL mode, you can load any SQL file:

 MySQL cookbook SQL > \source
/cookbook/recipes/tables/patients.sql
Query OK, 0 rows affected (0.0003 sec)
Query OK, 0 rows affected (0.0202 sec)

Query OK, 0 rows affected (0.0001 sec)
Query OK, 0 rows affected (0.0334 sec)
Query OK, 0 rows affected (0.0001 sec)
Query OK, 20 rows affected (0.0083 sec)

Records: 20 Duplicates: 0 Warnings: 0

If you want to execute scripts at startup, you need to edit the
mysqlshrc.js file for JavaScript mode and mysqlshrc.py for
Python mode, located in one of the locations that MySQL Shell uses to
search for the startup scripts. These can be located in any of the following:

The global configuration file, located in
/etc/mysql/mysqlsh/mysqlshrc.[js|py] on Unix or
%PROGRAMDATA%\MySQL\mysqlsh\mysqlshrc.[js|py] on
Windows.
Your personal configuration file, located either under
$HOME/.mysqlsh/mysqlshrc.[js|py] on Unix or under
%APPDATA%\MySQL\mysqlsh\mysqlshrc.[js|py] on
Windows. Alternatively, you can specify the
MYSQLSH_USER_CONFIG_HOME variable and store the
mysqlshrc.[js|py] file under it.

The share/mysqlsh directory, located under the MySQL Shell
installation root or specified by the MYSQLSH_HOME variable.

The mysqlshrc.[js|py] format is the same as for the corresponding
modes. Thus, to preload the CookbookCollection object, you need to
convert CookbookCollection.js into a module by exporting our
CookbookCollection object:

exports.CookbookCollection = {
 // Collection where the object is stored
 collection: null,
 ...

Then you need to put two lines in the mysqlshrc.js file:

sys.path = [...sys.path, '/cookbook/recipes/mysql_shell'];
const cookbook=require('CookbookCollectionModule.js')

In the first line, we added a directory where our modules are located in the
modules’ search path. On the second line, we imported the module itself.
The CookbookCollection object is available as a property of the
global cookbook object:

 MySQL cookbook JS > cookbook
{
 "CookbookCollection": {
 "collection": null,
 "find": <Function:find>,
 "remove": <Function:remove>,
 "save": <Function:save>
 }
}

TIP
MySQL Shell uses Node.js modules. Read the Node.js documentation to explain how to write and
use JavaScript modules in MySQL Shell.

CookbookCollectionModule.js is located in the mysql_shell directory of the
recipes distribution.

To import the Python generate_patients_data function in the
startup script, we need to add the import mysqlsh instruction to our
Python file, because when the module is loaded, global objects of the
MySQL Shell are not yet available. We’ll also change the following line:

patients=session.get_schema('cookbook').get_table('patients')

to:

patients=mysqlsh.globals.session.get_schema('cookbook').get_table
('patients')

https://oreil.ly/FmGCN

Otherwise, Python will fail with an error that the session name is not yet
defined.
We’ll name our module cookbook.py for brevity.

In our function, we use local paths from the current directory to the files;
therefore, we’ll change the default search path to the directory that has all
the datasets in it. To do this, we’ll import the os module and use its chdir
method. Then we simply import the cookbook module. The resulting
mysqlshrc.py will have the following code:

sys.path.append("/home/sveta/bin/python-3.7.7/lib/python3.7/site-
packages")
sys.path.append("/cookbook/recipes/mysql_shell")

import os
os.chdir('/cookbook/recipes/datasets')
import cookbook

The cookbook.py module is located in the mysql_shell directory of the
recipes distribution.

See Also
For additional information about customizing MySQL Shell with external
scripts, see “Customizing MySQL Shell” in the MySQL User Reference
Manual.

https://oreil.ly/fZH38

Chapter 3. MySQL Replication

3.0 Introduction
MySQL replication provides a way to set up a copy (replica) server of the
active (source) database, then automatically continuously update such a
copy applying all of the changes the source server receives.
Replica is useful in many situations, particularly the following:

Hot Standby
A server, normally idle, will replace an active one in case of a failure.

Read scale
Multiple servers, replicating from the same source, can process more
parallel read requests than a single machine.

Geographical distribution
When an application serves users in different regions, having a local
database server can help users retrieve data faster.

Analytics server
Complicated analytics queries may take hours to run, set plenty of
locks, and use a lot of resources. Running them on the replica
minimizes the impact on other parts of the application.

Backup server
Taking backups from a live database involves high-IO resource usage
and locking, which is necessary to avoid data inconsistencies between
the backup and active dataset. Taking backups from the dedicated
replica reduces the impact on production.

Delayed copy

A replica, applying updates with a delay, configured by the
SOURCE_DELAY (MASTER_DELAY) option, allows for rolling back
human errors, such as the removal of an important table.

NOTE
Historically, the source server was called a “master,” and the replica server was called a “slave.”
Recently, it was discovered that the terminology master and slave do not correctly reflect how
replication works, and further, the words themselves are very problematic. In the last few years,
most software vendors are switching from the old to the new terminology. For MySQL, this
change was implemented in version 8.0.22 and is still in progress. Not all option names and
commands support the new syntax. There’s also a good chance that even if your MySQL version
fully supports the new syntax, you may still find legacy terminology on public forums and in
previously printed books. Therefore, in this book we use the terms source and replica when
discussing replication roles. For the commands and variable names that support the new syntax,
we provide both syntaxes the first time, then use the new syntax. We use the legacy syntax if the
change is still in progress.

MySQL replication requires special activities on both servers.
The source server stores all updates in binary log files. These files contain
encoded update events. The source server writes to a single binary log file.
Once it reaches max_binlog_size, the binary log is rotated and a new
file is created.
The binary log file supports two formats: STATEMENT and ROW. In the
STATEMENT format, SQL statements are written as they are and then
encoded into binary format. In the ROW format, SQL statements are not
recorded. Instead, actual updates to the table rows are stored. The ROW
binary log format is preferred.

TIP
When using the ROW binary log format it could be useful, when troubleshooting replication errors,
to know the actual statement received by the source server. Use the
binlog_rows_query_log_events option to store the information log event with the
original query. Such an event is not participating in replication and can be retrieved for
informational purposes only.

The replica server continuously requests binary log events from the source
server, then stores them in special files called relay log files. It has a
separate thread, called IO, or the connection thread, which does only this
job. Another thread, or threads, called SQL, or the applier thread, reads
events from the relay logs and applies them to the tables.
Each event in the binary log has its own unique identifier: its position. The
position is unique to each file and resets when a new one is created. The
replica may use the binary log file name and position as a unique identifier
of the event.
While the binary log position uniquely identifies an event in a particular
file, it cannot be used to identify whether a particular event was applied on
the replica or not. To resolve this problem, Global Transaction Identifiers
(GTIDs) were introduced. GTIDS are assigned to each transaction. They are
unique across the life of a MySQL installation. They also use a mechanism
to uniquely identify the server; therefore, they’re safe to use even if
replication is possible from multiple sources.
The replica stores information about source binary log coordinates in the
special repository, defined by the master_info_repository variable.
Such a repository can be stored either in a table or in a file.
This chapter describes how to set up and use MySQL replication. It covers
all typical replication scenarios, including the following:

One-way source-replica setup for two servers
Circular replication
Multisource replication
Semisynchronous replication
Group replication

3.1 Configuring Basic Replication Between
One Source and One Replica

Problem
You want to prepare two servers for the replication.

Solution
Add the configuration log-bin option to the source configuration file,
specify a unique server_id for both servers, add options to support
GTIDs and/or the nondefault binary log format, and create a user with the
REPLICATION SLAVE privilege on the source.

Discussion
First, you need to prepare both servers to be able to handle replication
events.
On the source server, do the following:

Enable the binary log by adding the log-bin option into the
configuration file. Changing this option requires a restart. The binary log
is enabled by default since version 8.0.
Set the unique server_id. server_id is a dynamic variable and
can be changed without taking the server offline, but we strongly
recommend setting it in the configuration file too, so it won’t be
overridden after restart.
Create a replication user, and grant REPLICATION SLAVE to it:

mysql> CREATE USER repl@'%' IDENTIFIED BY 'replrepl';
Query OK, 0 rows affected (0,01 sec)

mysql> GRANT REPLICATION SLAVE ON *.* TO repl@'%';
Query OK, 0 rows affected (0,03 sec)

WARNING
In MySQL 8.0, the default authentication plug-in is caching_sha2_password, which
requires TLS connection or the source public key. Therefore, if you want to use this plug-in, you
need to enable TLS connection for the replica as described in Recipe 3.14 or use the
SOURCE_PUBLIC_KEY_PATH=1 (GET_MASTER_PUBLIC_KEY=1) option of the CHANGE
REPLICATION SOURCE (CHANGE MASTER) command.

Alternatively, you can use the authentication plug-in, allowing insecure
connections:

mysql> CREATE USER repl@'%' IDENTIFIED WITH mysql_native_password
BY 'replrepl';
Query OK, 0 rows affected (0,01 sec)

mysql> GRANT REPLICATION SLAVE ON *.* TO repl@'%';
Query OK, 0 rows affected (0,03 sec)

On the replica, just set the unique server_id.

TIP
Since version 8.0, you can use SET PERSIST to save a dynamically changed variable
permanently:

mysql> SET PERSIST server_id=200;
Query OK, 0 rows affected (0,01 sec)

See “Persisted System Variables” in the MySQL User Reference Manual for details.

At this stage, you can tune other options that affect replication safety and
performance, particularly the following:

binlog_format

Binary log format

GTID support

https://oreil.ly/3ImnL

Support for global transaction identifiers

replica_parallel_type (slave_parallel_type) and
replica_parallel_workers (slave_parallel_workers)

Multithreaded replica support

Binary log on the replica
Define if and how the replica will use the binary log

We’ll cover these options in the following recipes.

3.2 Position-Based Replication in the New
Installation Environment

Problem
You want to set up a replica of the just-installed MySQL server using
position-based configuration.

Solution
Prepare the source and replica servers as described in Recipe 3.1. Obtain
the current binary log position using the SHOW MASTER STATUS
command on the source server, and point the replica to the appropriate
position using the CHANGE REPLICATION
SOURCE...source_log_file='BINARY LOG FILE NAME',
source_log_pos=POSITION; (CHANGE
MASTER...master_log_file='BINARY LOG FILE NAME',
master_log_pos=POSITION;) command.

Discussion
For this recipe, we assume that you have two freshly installed servers with
no user data in them. There is no write activity on any of the servers.

First, prepare them for replication as described in Recipe 3.1. Then, on the
source, run the SHOW MASTER STATUS command:

mysql> SHOW MASTER STATUS;
+-------------------+----------+--------------+------------------
+-------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB
| Executed_Gtid_Set |
+-------------------+----------+--------------+------------------
+-------------------+
| master-bin.000001 | 156 | |
| |
+-------------------+----------+--------------+------------------
+-------------------+
1 row in set (0.00 sec)

The field File contains the name of the current binary log, and the
Position field contains the current position. Record the values of these
fields.
On the replica, run the CHANGE REPLICATION SOURCE (CHANGE
MASTER) command:

mysql> CHANGE REPLICATION SOURCE
 -> TO SOURCE_HOST='sourcehost', -- Host of the source
server
 -> SOURCE_PORT=3306, -- Port of the source
server
 -> SOURCE_USER='repl', -- Replication user
 -> SOURCE_PASSWORD='replrepl', -- Password
 -> SOURCE_LOG_FILE='source-bin.000001', -- Binary log file
 -> SOURCE_LOG_POS=156, -- Start position
 -> GET_SOURCE_PUBLIC_KEY=1;
Query OK, 0 rows affected, 1 warning (0.06 sec)

To start the replica, use the START REPLICA (START SLAVE)
command:

mysql> START REPLICA;
Query OK, 0 rows affected (0.01 sec)

https://oreil.ly/ZDeOm

To check if the replica is running, use SHOW REPLICA STATUS (SHOW
SLAVE STATUS):

mysql> \P grep Running
PAGER set to 'grep Running'
mysql> SHOW REPLICA STATUS\G
 Replica_IO_Running: Yes
 Replica_SQL_Running: Yes
 Replica_SQL_Running_State: Slave has read all relay log;↩
 waiting for more updates
1 row in set (0.00 sec)

The preceding listing confirms that both the IO (connection) and SQL
(applier) replica threads are running and that the replication state is fine.
We’ll discuss the full output of the SHOW REPLICA STATUS command
in Recipe 3.15.
Now you can enable writes on the source server.

3.3 Setting Up a Position-Based Replica of a
MySQL Installation that Is Already in Use

Problem
Setting up a replica for the newly installed server is different from the case
in which the future source already has data. In the latter case, you need to
be especially careful to not introduce data inconsistency by specifying the
wrong starting position. In this recipe, we provide instructions on how to set
up a replica of the MySQL installation in use.

Solution
Prepare the source and replica servers as described in Recipe 3.1, stop all
writes on the source server, back it up, then obtain the current binary log
position using the SHOW MASTER STATUS command, which will be used
for pointing the replica to the appropriate position using the CHANGE

REPLICATION SOURCE...source_log_file='BINARY LOG
FILE NAME', source_log_pos=POSITION command.

Discussion
As in the case of installing a new replica, both servers need to be configured
for replication use, as described in Recipe 3.1. Before initiating setup, you
need to ensure that both servers have the unique server_id and that the
source server has binary logging enabled. You can create a replication user
now, or you can do it before setting up a replica.
If you have a server that has already been running for a while and want to
set up a replica of it, you need to make a backup first, restore it on the
replica, then point the replica to the source server. The challenge for this
setup is using the correct binary log position: if the server is accepting
writes while backup is running, the position will be consistently changing.
As a result, the SHOW MASTER STATUS command will return the wrong
result unless you stop all writes while making the backup.
Standard backup tools support special options when making a backup of the
future source server for a replica to bypass this issue.
mysqldump, described in Recipe 6.6, has the --source-data (--
master-data) option. If the --source-data option is set to 1, the
CHANGE REPLICATION SOURCE statement, with the binary log
coordinates at the time of the backup start, will be written into the resulting
dump file and executed when the dump file is loaded:

$ mysqldump --host=127.0.0.1 --user=root \
> --source-data=1 --all-databases > mydump.sql
$ grep -b5 "CHANGE REPLICATION SOURCE" -m1 mydump.sql
906-
907---
910--- Position to start replication or point-in-time recovery
from
974---
977-
978:CHANGE REPLICATION SOURCE TO SOURCE_LOG_FILE='source-
bin.000002',↩
 SOURCE_LOG_POS=156;

1052-
1053---
1056--- Current Database: `mtr`
1083---
1086-

TIP
If you want the replication position to be in the resulting dump file, but do not want the CHANGE
REPLICATION SOURCE command to be automatically executed, set the --source-data
option to 2: in this case, the statement will be written as a comment. You can execute it manually
later.

Tools that make online binary backups, such as Percona XtraBackup or
MySQL Enterprise Backup, store binary log coordinates in special metadata
files. Consult the documentation of your backup tool to find out how to
safely back up the source server.

TIP
There are several kinds of backups for MySQL. Tools that perform online backups don’t require
you to stop the MySQL server. Logical backups result in a file with a set of commands that allow
you to restore data. Binary backups copy physical database files. Binary backups are usually much
faster than logical backups. Restoring binary backups is dramatically faster compared to restoring
logical backups.

The simplest and fastest binary backup utility is cp, which requires MySQL server to be stopped.
Online backup tools allow you to copy binary data while the server is running and are the
preferable solution for large datasets.

Logical backup solutions, however, are compatible with higher differences between versions and
can be used to recover data. They are also handy when you need to migrate a small part of your
data, such as a table or even part of the table.

Once you have a backup, restore it on the replica. For mysqldump, use
mysql client to load the dump:

$ mysql < mydump.sql

https://oreil.ly/bpPMg
https://oreil.ly/hzrV5

Once the backup is restored, start replication using the START REPLICA
command.

3.4 Setting Up GTID-Based Replication

Problem
You want to set up a replica using global transaction identifiers (GTIDs).

Solution
Add the gtid_mode=ON and enforce_gtid_consistency=ON
option in both the source and replica configuration files, then point the
replica to the source server using the CHANGE REPLICATION
SOURCE...SOURCE_AUTO_POSITION=1 command.

Discussion
Position-based replication is easy to set up but is error-prone. What if you
mix up and specify a position in the future? In this case, some transactions
will be missed. Or, what happens if you specify a position in the past? In
this case, the same transaction will be applied twice, and you’ll end up with
duplicated, missed, or corrupted rows.
To solve this issue, GTIDs were introduced to uniquely identify each
transaction on the server. A GTID consists of two parts: the unique ID of
the server where this transaction as executed the first time, and the unique
ID of the transaction on this server. The source server ID is usually the
value of the server_uuid global variable, and the transaction ID is a
number starting with 1:

mysql> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: binlog.000001
 Position: 358
 Binlog_Do_DB:
 Binlog_Ignore_DB:

Executed_Gtid_Set: 467ccf91-0341-11eb-a2ae-0242dc638c6c:1
1 row in set (0.00 sec)

mysql> select @@gtid_executed;
+--+
| @@gtid_executed |
+--+
| 467ccf91-0341-11eb-a2ae-0242dc638c6c:1 |
+--+
1 row in set (0.00 sec)

Transactions, executed by the server, are stored in GTID sets, and their
GTIDs are visible in the SHOW MASTER STATUS output. You will also
find them in the gtid_executed variable. The set contains the unique
ID of the originating server and the range of transaction numbers.
In the following example, 467ccf91-0341-11eb-a2ae-
0242dc638c6c is the source server’s unique ID, and 1-299 is the range
of transaction numbers that were executed on this server:

mysql> select @@gtid_executed;
+--+
| @@gtid_executed |
+--+
| 467ccf91-0341-11eb-a2ae-0242dc638c6c:1-299 |
+--+
1 row in set (0.00 sec)

GTID sets can contain ranges, individual transactions, and groups of them,
separated by a colon symbol. GTIDs with different source IDs are separated
by a comma:

mysql> select @@gtid_executed\G
*************************** 1. row ***************************
@@gtid_executed: 000bbf91-0341-11eb-a2ae-0242dc638c6c:1,
467ccf91-0341-11eb-a2ae-0242dc638c6c:1-310:400
1 row in set (0.00 sec)

Normally, GTIDs are automatically assigned, and you don’t need to worry
about their values.

However, in order to use GTIDs, there are additional steps to prepare your
servers.
Two configuration options are required to enable GTIDs: gtid_mode=ON
and enforce-gtid-consistency=ON. They must be enabled on both
servers before starting replication.
If you’re setting up a new replica of a source that is running with GTIDs
enabled, just adding these options into the configuration file and restarting
the servers is enough. Once you’ve done that, you can enable replication
using the CHANGE REPLICATION
SOURCE...SOURCE_AUTO_POSITION=1 command and start it, as
follows:

mysql> CHANGE REPLICATION SOURCE TO
 -> SOURCE_HOST='sourcehost', -- Host of the source server
 -> SOURCE_PORT=3306, -- Port of the source server
 -> SOURCE_USER='repl', -- Replication user
 -> SOURCE_PASSWORD='replrepl', -- Password
 -> GET_SOURCE_PUBLIC_KEY=1,
 -> SOURCE_AUTO_POSITION=1;
Query OK, 0 rows affected, 1 warning (0.06 sec)

mysql> START REPLICA;
Query OK, 0 rows affected (0.01 sec)

However, if replication was already running using position-based setup, you
need to perform additional steps:

1. Stop all updates, making both servers read only:

mysql> SET GLOBAL super_read_only=1;
Query OK, 0 rows affected (0.01 sec)

2. Wait until the replica catches up with all updates from the source
server: the File and Position values from the SHOW MASTER
STATUS output on the source server should match the
Relay_Source_Log_File and Exec_Source_Log_Pos
values of the SHOW REPLICA STATUS, taken on the replica.

INACCURACY OF SECONDS_BEHIND_SOURCE

Don’t rely on the Seconds_Behind_Source value, because it’s inaccurate.

For example, in the following output on the source server:

mysql> SHOW MASTER STATUS\G
*************************** 1. row

 File: master-bin.000001
 Position: 9614
 Binlog_Do_DB:
 Binlog_Ignore_DB:
Executed_Gtid_Set:
1 row in set (0.00 sec)

the binary log position is 7090:

mysql> \P grep -E "Source_Log_Pos|Seconds_Behind_Source"
PAGER set to 'grep -E
"Source_Log_Pos|Seconds_Behind_Source"'
mysql> SHOW REPLICA STATUS\G
 Read_Source_Log_Pos: 9614
 Exec_Source_Log_Pos: 7308
 Seconds_Behind_Source: 0
1 row in set (0.00 sec)

On the replica, instead, the Read_Source_Log_Pos position that was read by the IO
thread is same as on the source server, while the value position of the latest executed
event, Exec_Source_Log_Pos, is 7308: somewhere earlier in the binary log file.
The Seconds_Behind_Source value of 0 is normal because the MySQL server can
execute thousands of updates per second. Still, this doesn’t mean that the replica fully
catches up with the source server.

3. Once the replica has caught up, stop both servers, enable the
gtid_mode=ON and enforce-gtid-consistency=ON
options, start them, and enable replication:

mysql> CHANGE REPLICATION SOURCE TO
 -> SOURCE_HOST='sourcehost', -- Host of the source
server
 -> SOURCE_PORT=3306, -- Port of the source
server
 -> SOURCE_USER='repl', -- Replication user
 -> SOURCE_PASSWORD='replrepl', -- Password

 -> GET_SOURCE_PUBLIC_KEY=1,
 -> SOURCE_AUTO_POSITION=1;
Query OK, 0 rows affected, 1 warning (0.06 sec)

mysql> START REPLICA;
Query OK, 0 rows affected (0.01 sec)

TIP
You can omit replication source connection options if they were already known to the replica
before you started switching the replication from position-based to GTID-based.

NOTE
You’re not required to enable binary logging on the replica in order to use GTIDs. But if you’re
going to write to the replica outside of the replication, its transactions wouldn’t have their own
GTID assigned. GTIDs will be used only for the replicated events.

See Also
For additional information about setting up MySQL replication with
GTIDs, see the MySQL User Reference Manual.

3.5 Configuring a Binary Log Format

Problem
You want to use the most suitable binary log format that is the most suitable
for your application.

Solution
Decide which format best suits your needs, and set it up using the
binlog_format configuration option.

Discussion

https://oreil.ly/JHoGF

ROW has been the default MySQL binary log format since version 5.7.7.
This is the safest possible format, fitting most applications. It stores
encoded table rows, modified by the binary log event.
However, the ROW binary log format may generate more disk and network
traffic than the STATEMENT format. This happens because it stores two
copies of the modified row in the binary log file: before the changes and
after the changes. If a table has several columns, the values for all of them
will be logged two times even if only one column was modified.
If you want the binary log to store only the changed column and the column
that can be used to identify the changed rows (normally the primary key),
you can use the binlog_row_image=minimal configuration option.
This will work perfectly if the tables on the source server and its replica are
identical but may cause issues if the number of columns, their data types, or
the primary key definitions do not match.
To store a full row, except TEXT or BLOB columns that weren’t changed by
the statement and are not required to uniquely identify the modified row,
use the binlog_row_image=noblob option.

If the row format still generates too much traffic, you can switch it to the
STATEMENT. In this case, statements, modifying rows, will be recorded,
then executed by the replica. To use the STATEMENT binary log format, set
the binlog_format=STATEMENT option.

The STATEMENT format is not recommended because some statements can
produce different updates on different servers, even if the data was
originally identical. These statements are called nondeterministic
statements. To deal with this downside, MySQL has a special binary log
format, MIXED, that normally logs events in the STATEMENT format and
automatically switches to ROW if a statement is nondeterministic.

WARNING
If the binary log is enabled on the replica, it should use either the same binary log format as its
source server or the MIXED format, unless you disabled binary logging of the replicated events
using the log_replica_updates=OFF (log_slave_updates=OFF) option. This is
required because the replica doesn’t convert the binary log format and simply copies received
events into its own binary log file. If the formats don’t match, replication will stop with an error.

The binary log format can be changed dynamically on the global or session
level. To change the format on the global level, run the following:

mysql> set global binlog_format='statement';
Query OK, 0 rows affected (0,00 sec)

To change the format on the global level and store it permanently, use the
following:

mysql> set persist binlog_format='row';
Query OK, 0 rows affected (0,00 sec)

Note that this will not change the binary logging format for the existing
connections. To change the format on the session level, execute the
following:

mysql> set session binlog_format='mixed';
Query OK, 0 rows affected (0,00 sec)

While the STATEMENT format usually generates less traffic than ROW, this
is not always the case. For example, complicated statements with long
WHERE or IN clauses that modify just a few rows generate a bigger binary
log event with the STATEMENT format.

Another issue with the STATEMENT format is that the replica executes
received events the same way they were running on the source server.
Therefore, if a statement isn’t effective, it will run slow on the replica too.
For example, statements on large tables that have a WHERE clause that

cannot be resolved using indexes are usually slow. In this case, switching to
the ROW format may improve performance.

WARNING
Normally, ROW events use a primary key to find the row on the replica that needs to be updated. If
a table has no primary key, the ROW format can work extremely slowly. Older versions of MySQL
could even update the wrong row because of (now-fixed) bugs. An auto-generated primary key
that is used by the InnoDB storage engine is no help here, because it may generate different values
on the source and replica servers for the same row. Therefore, it’s mandatory to define a primary
key for tables when using the ROW binary log format.

3.6 Using Replication Filters

Problem
You want to replicate only events for specific databases or tables.

Solution
Use replication filters on the source, replica, or on both.

Discussion
MySQL can filter updates to the specific databases or tables. You can set up
such filters on the source server to prevent them from being recorded in the
binary log, or on the replica server so replication won’t execute them.

Filtering on the source server

WARNING
Replication filters can cause data loss if set up incorrectly. Study this recipe very carefully, and
always test how they work for your setup before deploying on production.

To log only updates to a specific database, use the binlog-do-
db=db_name configuration option. There is no corresponding variable for
this option; therefore, changing the binary log filter requires a restart. To log
updates for two or more specific databases, specify the binlog-do-db
option as many times as needed:

[mysqld]
binlog-do-db=cookbook
binlog-do-db=test

Binary log filters behave differently for ROW and STATEMENT binary log
formats. For statement-based logging, only the default database is taken
into account. If you are using fully qualified table names, such as
mydatabase.mytable, they’ll be logged based on the default database
value and not on the database part of the update.
Thus, for the preceding configuration file snippet, the following three
updates will be logged in the binary log:

$ mysql cookbook
mysql> INSERT INTO limbs (thing, legs, arms) VALUES('horse',
4, 0);
Query OK, 1 row affected (0,01 sec)

mysql> USE cookbook
Database changed
mysql> DELETE FROM limbs WHERE thing='horse';
Query OK, 1 row affected (0,00 sec)

mysql> USE cookbook
Database changed
mysql> INSERT INTO donotlog.onlylocal (mysecret)
 -> values('I do not want to replicate it!');
Query OK, 1 row affected (0,01 sec)

However, this update on the cookbook database would not be logged:

mysql> use donotlog
Database changed
mysql> UPDATE cookbook.limbs set arms=8 WHERE thing='squid';

Query OK, 1 row affected (0,01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

When the ROW binary log format is used, the default database is ignored for
fully qualified table names. Thus, all these updates will be logged:

$ mysql cookbook
mysql> INSERT INTO limbs (thing, legs, arms) VALUES('horse', 4,
0);
Query OK, 1 row affected (0,01 sec)
mysql> USE cookbook
Database changed
mysql> DELETE FROM limbs WHERE thing='horse';
Query OK, 1 row affected (0,00 sec)
mysql> USE donotlog
Database changed
mysql> UPDATE cookbook.limbs SET arms=10 WHERE thing='squid';
Query OK, 1 row affected (0,01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

However, this statement will not be logged:

mysql> USE cookbook
Database changed
mysql> INSERT INTO donotlog.onlylocal (mysecret)
 -> VALUES('I do not want to replicate it!');
Query OK, 1 row affected (0,01 sec)

For multiple table updates, only updates to tables belonging to databases
specified by filters are logged. In the following examples, only updates to
the cookbook.limbs table are logged:

mysql> use donotlog
Database changed
mysql> UPDATE cookbook.limbs, donotlog.onlylocal SET arms=1,
 -> mysecret='I do not want to log it!';
Query OK, 12 rows affected (0,01 sec)
Rows matched: 12 Changed: 12 Warnings: 0
mysql> USE cookbook
Database changed
mysql> UPDATE cookbook.limbs, donotlog.onlylocal SET arms=0,
 -> mysecret='I do not want to log and replicate this!'
 -> WHERE cookbook.limbs.thing='table';
Query OK, 2 rows affected (0,00 sec)
Rows matched: 2 Changed: 2 Warnings: 0

WARNING
Data Definition Language (DDL) statements, such as ALTER TABLE, are always replicated in
the STATEMENT format. Therefore, filtering rules for this format apply to them no matter the
value of the binlog_format variable.

If you want to log updates to all databases on your server and skip only a
few of them, use binlog-ignore-db filters. Specify the filter multiple
times to ignore multiple databases:

[mysqld]
binlog-ignore-db=donotlog
binlog-ignore-db=mysql

binlog-ignore-db filters work similarly to binlog-do-db filters.
In the case of STATEMENT binary logging, they honor the default database
and ignore it if the ROW binary log format is used. If you didn’t specify a
default database and use the STATEMENT binary log format, all updates
will be logged.
If you use the MIXED binary log format, filtering rules will be applied
depending on whether the update is stored in the STATEMENT or ROW
format.
To find out which binary log filters are currently in use, run the SHOW
MASTER STATUS command:

mysql> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: binlog.000008
 Position: 1202
 Binlog_Do_DB: cookbook,test
 Binlog_Ignore_DB: donotlog,mysql
Executed_Gtid_Set:
1 row in set (0,00 sec)

WARNING
Binary log files are often used not only for replication but also for point-in-time recovery (PITR)
from failure. In this case, filtered updates cannot be restored, because they’re not stored anywhere.
If you want to use binary logs for PITR and still filter some databases, log everything on the
source server and filter on the replica.

Filtering on the replica
The replica has more options to filter events. You can filter either specific
databases or tables. You can also use wildcards.
Filtering on the database level works in the same fashion as on the source
server. It’s controlled by the replicate-do-db and replicate-
ignore-db options. If you want to filter multiple databases, specify these
options as many times as you need.
To filter specific tables, use the replicate-do-table and
replicate-ignore-table options. They take the fully qualified table
name as an argument:

[mysqld]
replicate-do-db=cookbook
replicate-ignore-db=donotlog
replicate-do-table=donotlog.dataforeveryone
replicate-ignore-table=cookbook.limbs

But the most flexible and safe syntax for replication filters is replicate-
wild-do-table and replicate-wild-ignore-table. As the
names suggest, they accept wildcards in the arguments. Wildcard syntax is
the same as used for the LIKE clause. Refer to Recipe 7.10 for details on
the LIKE clause syntax.

The _ symbol replaces exactly one character. Thus, replicate-wild-
ignore-table=cookbook.standings_ filters the
cookbook.standings1 and cookbook.standings2 tables, but
doesn’t filter cookbook.standings12 and cookbook.standings.

The % symbol replaces zero or more characters. Thus, replicate-
wild-do-table=cookbook.movies% instructs the replica to apply
updates to the cookbook.movies, cookbook.movies_actors, and
cookbook.movies_actors_link tables.

If a table name itself contains a wildcard character that you don’t want to
replace, you need to escape it. Thus, the replicate-wild-ignore-
table=cookbook.trip_l_g option will filter the
cookbook.trip_leg and cookbook.trip_log tables but also
cookbook.tripslag, while replicate-wild-ignore-
table=cookbook.trip_l_g will filter updates only to the
cookbook.trip_leg and cookbook.trip_log tables. Note that if
you specify this option on the command line, you may need to double
escape wildcard characters depending on the SHELL version you use.

TIP
Table-level filters are independent from the default database regardless of the binary log format.
Therefore, it is safer to use them. If you want to filter all tables in the specific database or
databases, use wildcards:

[mysqld]
replicate-wild-do-table=cookbook.%
replicate-wild-ignore-table=donotlog.%

However, unlike database filters, replicate-wild-do-table and replicate-wild-
ignore-table cannot filter stored routines or events. If you need to filter them, you have to
use database-level filters.

Replication filters can be set for the specific replication channel (Recipe
3.10). To specify the per-channel filter prefix database, table name, or
wildcard expression with the channel name, followed by a colon, run the
following:

[mysqld]
replicate-do-db=first:cookbook
replicate-ignore-db=second:donotlog

replicate-do-table=first:donotlog.dataforeveryone
replicate-ignore-table=second:cookbook.hitlog
replicate-wild-do-table=first:cookbook.movies%
replicate-wild-ignore-table=second:cookbook.movies%

You can specify replication filters not only via configuration options but
also using the CHANGE REPLICATION FILTER command:

mysql> CHANGE REPLICATION FILTER
 -> REPLICATE_DO_DB = (cookbook),
 -> REPLICATE_IGNORE_DB = (donotlog),
 -> REPLICATE_DO_TABLE = (donotlog.dataforeveryone),
 -> REPLICATE_IGNORE_TABLE = (cookbook.limbs),
 -> REPLICATE_WILD_DO_TABLE = ('cookbook.%'),
 -> REPLICATE_WILD_IGNORE_TABLE = ('cookbook.trip_l_g');
Query OK, 0 rows affected (0.00 sec)

TIP
You need to stop replication using the STOP REPLICA (STOP SLAVE) command each time
you change the replication parameters.

To find out which replication filters are currently applied, use the SHOW
REPLICA STATUS\G command or query tables
replication_applier_filters and
replication_applier_global_filters in the Performance
Schema:

mysql> SHOW REPLICA STATUS\G
*************************** 1. row ***************************
 Replica_IO_State:
 Source_Host: 127.0.0.1
 Source_User: root
 Source_Port: 13000
 Connect_Retry: 60
 Source_Log_File: binlog.000001
 Read_Source_Log_Pos: 156
 Relay_Log_File: Delly-7390-relay-bin.000002
 Relay_Log_Pos: 365
 Relay_Source_Log_File: binlog.000001
 Replica_IO_Running: No
 Replica_SQL_Running: No

 Replicate_Do_DB: cookbook
 Replicate_Ignore_DB: donotlog
 Replicate_Do_Table: donotlog.dataforeveryone
 Replicate_Ignore_Table: cookbook.limbs
 Replicate_Wild_Do_Table: cookbook.%
 Replicate_Wild_Ignore_Table: cookbook.trip_l_g
...

mysql> SELECT * FROM
performance_schema.replication_applier_filters\G
*************************** 1. row ***************************
 CHANNEL_NAME:
 FILTER_NAME: REPLICATE_DO_DB
 FILTER_RULE: cookbook
CONFIGURED_BY: CHANGE_REPLICATION_FILTER
 ACTIVE_SINCE: 2020-10-04 13:43:21.183768
 COUNTER: 0
*************************** 2. row ***************************
 CHANNEL_NAME:
 FILTER_NAME: REPLICATE_IGNORE_DB
 FILTER_RULE: donotlog
CONFIGURED_BY: CHANGE_REPLICATION_FILTER
 ACTIVE_SINCE: 2020-10-04 13:43:21.183768
 COUNTER: 0
*************************** 3. row ***************************
 CHANNEL_NAME:
 FILTER_NAME: REPLICATE_DO_TABLE
 FILTER_RULE: donotlog.dataforeveryone
CONFIGURED_BY: CHANGE_REPLICATION_FILTER
 ACTIVE_SINCE: 2020-10-04 13:43:21.183768
 COUNTER: 0
*************************** 4. row ***************************
 CHANNEL_NAME:
 FILTER_NAME: REPLICATE_IGNORE_TABLE
 FILTER_RULE: cookbook.limbs
CONFIGURED_BY: CHANGE_REPLICATION_FILTER
 ACTIVE_SINCE: 2020-10-04 13:43:21.183768
 COUNTER: 0
*************************** 5. row ***************************
 CHANNEL_NAME:
 FILTER_NAME: REPLICATE_WILD_DO_TABLE
 FILTER_RULE: cookbook.%
CONFIGURED_BY: CHANGE_REPLICATION_FILTER
 ACTIVE_SINCE: 2020-10-04 13:43:21.183768
 COUNTER: 0
*************************** 6. row ***************************
 CHANNEL_NAME:
 FILTER_NAME: REPLICATE_WILD_IGNORE_TABLE
 FILTER_RULE: cookbook.trip_l_g
CONFIGURED_BY: CHANGE_REPLICATION_FILTER

 ACTIVE_SINCE: 2020-10-04 13:43:21.183768
 COUNTER: 0
6 rows in set (0.00 sec)

See Also
For additional information about replication filters, see “How Servers
Evaluate Replication Filtering Rules”.

3.7 Rewriting a Database on the Replica

Problem
You want to replicate to a database on a replica that has a different name
from the one used on the source server.

Solution
Use the replicate-rewrite-db option on the replica server.

Discussion
MySQL allows rewriting a database name on the fly using the replication
filter replicate-rewrite-db.

You can set this filter in the configuration file command line:

[mysqld]
replicate-rewrite-db=cookbook->recipes

or via the CHANGE REPLICATION FILTER command:

mysql> CHANGE REPLICATION FILTER
 -> REPLICATE_REWRITE_DB=((cookbook,recipes));

Or, for the multiple-channel replica:

https://oreil.ly/1kmxC

[mysqld]
replicate-rewrite-db=channel_id:cookbook->recipes

or via the CHANGE REPLICATION FILTER command:

mysql> CHANGE REPLICATION FILTER
 -> REPLICATE_REWRITE_DB=((cookbook,recipes))
 -> FOR CHANNEL 'channel_id';

WARNING
Be sure to use double brackets for the filter value and quotes for the channel name.

MySQL does not support RENAME DATABASE operation. Therefore, to
rename the database, you need to first create a database with the new name,
then restore the data from the original database into the new database:

mysql> CREATE DATABASE recipes;
$ mysql recipes < cookbook.sql

You need to take a dump with the mysqldump command of the single
database. If you are dumping with the --databases option, also specify
the --no-create-db option, so the resulting file will not contain the
CREATE DATABASE statement.

3.8 Using a Multithreaded Replica

Problem
The replica is installed on better hardware than the source, and the network
connection between servers is good, but replication lag is increasing.

Solution
Use multiple replication applier threads.

Discussion
The MySQL server is multithreaded. It applies incoming updates in a
highly concurrent manner. By default, it uses all hardware CPU cores when
processing application requests. However, the replica by default uses a
single thread to apply incoming events from the source server. As a result, it
uses fewer resources to process replicated events and may lag even on
decent hardware.
To resolve this issue, use multiple applier threads. To do so, set the
replica_parallel_workers variable to a value greater than 1. This
specifies the number of parallel threads the replica will use to apply events.
It makes sense to set the value of this variable up to or below the number of
virtual CPU cores. Variable has no immediate effect; you have to restart
replication to apply the change:

mysql> SET GLOBAL replica_parallel_workers=8;
Query OK, 0 rows affected (0.01 sec)

mysql> STOP REPLICA SQL_THREAD;
Query OK, 0 rows affected (0.01 sec)

mysql> START REPLICA;
Query OK, 0 rows affected (0.04 sec)

Not all replication events can be applied in parallel. What if the binary log
contains two statements updating the same row?

update limbs set arms=8 where thing='squid';
update limbs set arms=10 where thing='squid';

Depending on the order of events, the limbs table will have either 8 or 10
arms for the squid. If these two statements are executed in different order on
the source and replica, they will end up with different data.
MySQL uses a special algorithm for dependency tracking. The current
algorithm is set by the replica_parallel_type variable on the
replica and the binlog_transaction_dependency_tracking
variable on the source.

The default value of the replica_parallel_type variable was
DATABASE before 8.0.27 and is LOGICAL_CLOCK since this version.
With this value, updates belonging to different databases can be applied in
parallel, while updates to the same database are applied sequentially. This
value does not correlate with
binlog_transaction_dependency_tracking on the source.

Parallelization on the database level does not perform much better for
setups that update fewer databases than the number of CPU cores on the
replica. To resolve this issue,
replica_parallel_type=LOGICAL_CLOCK has been introduced.
For this type, transactions belonging to the same binary log group commit
on the source are applied in parallel.
After changing the replica_parallel_type variable, you need to
restart the replica.
The value of the binlog_transaction_dependency_tracking
variable on the source server defines which transactions belong to the same
commit group. Default is COMMIT_ORDER, which is generated from the
source’s timestamps. With this value, transactions committed nearly at the
same time on the source server will be executed in parallel on the replica.
This mode works perfectly if the source actively executes many small
transactions. However, if the source server does not commit often, the
replica will execute sequentially those transactions that were committed in
different times even if they cannot interfere with each other and were
executed on the source in parallel.
To resolve this issue, the
binlog_transaction_dependency_tracking modes
WRITESET and WRITESET_SESSION were introduced. In these modes,
MySQL decides if transactions are dependent on each other using a hashing
algorithm, specified by the transaction_write_set_extraction
variable and can be either XXHASH64 (default) or MURMUR32. This means
that if the transactions modify a set of rows independent from one another,

they can be executed in parallel, no matter how much time has passed
between commits on each of them.
With the binlog_transaction_dependency_tracking mode set
to WRITESET, even transactions originally executed within the same
session can be applied in parallel. This may cause issues when the replica
sees changes in a different order from the source in some periods of time. It
may or may not be acceptable depending on your application needs. To
avoid such a situation, you can enable the
replica_preserve_commit_order
(slave_preserve_commit_order) option, which instructs the
replica to apply binary log events in the same order as they were originally
executed on the source server. Another solutions is to set
binlog_transaction_dependency_tracking to
WRITESET_SESSION. This mode ensures that transactions that originated
from the same session are never applied in parallel.
The binlog_transaction_dependency_tracking variable is
dynamic, and you can modify it without stopping the server. You can also
set it on the session level for the specific session only.

See Also
For additional information about multithreaded replicas, see “Improving the
Parallel Applier with Writeset-based Dependency Tracking”.

3.9 Setting Up Circular Replication

Problem
You want to set up a chain of servers that replicate from one another.

Solution
Make each server in the chain a source and a replica of its peers.

https://oreil.ly/TQi7f

Discussion
Sometimes you may need to write to several MySQL servers and want
updates to be visible on each of them. With MySQL replication, this is
possible. It supports such popular setups as two-server, a chain of servers (A
-> B -> C -> D ->...), circular, and star, as well as any creative
setup you can imagine. For our circular replication example, you just need
to set up every server as a source and replica of one another.
You need to be very careful when using such a replication. Because updates
are incoming from any server, they can conflict with one another. Imagine
two nodes inserting a row with id=42 at the same time. First, each node
inserts a row, then receives the exact same event from the binary log. The
replication will stop with a duplicate key error.
If you then try to delete a row with id=42 on both nodes, you will receive
an error again! Because when the DELETE statement is received by the
replication, the channel row will already have been deleted.
But the worst can happen if you update a row with the same ID. Imagine if
node1 sets the value to 42, and node2 sets the value to 25. After the
replication events are applied, node1 will have a row with the value 25
and node2 with the value 42. This is different from what they initially had
after the local update!
Still, there can be very valid reasons to use circular replication. For
example, you may want to use one of the nodes mostly for the purposes of
one application and another for another application. You can have options
and hardware that is suitable for both. Or you may have servers in different
geographical locations (e.g., countries) and want to store local data closer to
users. Or you can use your servers mostly for reads but still need to update
them. And, finally, you may set up a hot standby server that technically
allows writes but practically receives them only when the main source
server dies.
In this recipe, we’ll discuss how to set up a chain of three servers. You can
modify this recipe for two or more servers. Then we’ll discuss safety
considerations concerning the use of replication chains.

https://oreil.ly/G5MGQ

Setting up circle replication with three servers

Prepare servers to use in the circular replication
Here are the steps:

Follow the instructions in Recipe 3.1 for the source server.
Make sure the log_replica_updates option is enabled.
Otherwise, if your replication chain includes more than two servers,
updates would apply only on the neighboring ones.
Ensure that the replicate-same-server-id option is
disabled. Otherwise, you may end up in a situation where the same
update will be applying in loops forever.

Point nodes to each other
Run the CHANGE REPLICATION SOURCE command on each server,
as described in Recipe 3.2 or in Recipe 3.4. Specify the correct
connection values. For example, if you want to have a circle of servers
hostA -> hostB -> hostC -> hostA, you need to point
hostB to hostA, hostA to hostC, and hostC to hostB:

hostA> CHANGE REPLICATION SOURCE TO SOURCE_HOST='hostC', ...
hostB> CHANGE REPLICATION SOURCE TO SOURCE_HOST='hostA', ...
hostC> CHANGE REPLICATION SOURCE TO SOURCE_HOST='hostB', ...

Start replication
Start replication using the START REPLICA command.

Safety considerations when using replication chains
When writing to multiple servers which are replicating to one another, you
need to logically separate objects to which you are going to write. You can
do so on different levels.

Business Logic
Make sure at the application level that you do not update the same rows
on multiple servers at the same time.

Server
Write to only one server at a time. This is a good solution for creating
hot standby servers.

Databases and Tables
In your application, assign a specific set of tables to each server. For
example, write only to the movies, movies_actors, and
movies_actors_link tables on nodeA; to the trip_leg and
trip_log tables on nodeB; and to the weatherdata and
weekday tables on nodeC.

Rows
If you still need to write to the same table on all the servers, separate the
rows that each node can update. If you use an integer primary key with
the AUTO_INCREMENT option, you can do it by setting the
auto_increment_increment option to the number of servers and
setting auto_increment_offset to the number of the server in
the chain, starting from 1. For example, on our three-servers setup, we
set auto_increment_increment to 3 and
auto_increment_offset to 1 on nodeA, to 2 on nodeB, and to
3 on nodeC. We discuss how to tune
auto_increment_increment and auto_increment_offset
in Recipe 15.14.
If you do not use AUTO_INCREMENT, you need to create a rule at the
application level so the identifier will follow its own unique pattern on
each node.

3.10 Using Multisource Replication

Problem

You want a replica to apply events from two or more source servers that are
independent from one another.

Solution
Create multiple replication channels by running the CHANGE
REPLICATION SOURCE...FOR CHANNEL 'my source';
command for each of the source servers.

Discussion
You may want to replicate from multiple servers to one, for example, if
separate source servers are updated by different applications and you want
to use a replica for backups or for analytics. To achieve this, you need to
use multisource replica.

Prepare servers for the replication
Prepare source and replica servers as described in Recipe 3.1. For the
replica server, add an additional step: configure
master_info_repository and
relay_log_info_repository to use tables:

mysql> SET PERSIST master_info_repository = 'TABLE';
mysql> SET PERSIST relay_log_info_repository = 'TABLE';

REPLICATION COORDINATES STORAGE
MySQL stores information about source server coordinates, credentials, binary log, its
position, and about current relay log status in the repositories, called
master_info_repository and relay_log_info_repository, respectively.
These repositories are physically stored either in a file or in a table inside the database
mysql.

File storage for the replication metadata existed since the very beginning. But it has a
durability issue: when a transaction commits, MySQL has to perform synchronization
between the storage engine and the filesystem. They are two completely independent
systems; therefore, additional safety measures are performed to provide such a
synchronization. The storage engine and filesystem affect performance and are not atomic;
therefore, durability cannot be guaranteed in case of failure.

Since version 5.6, table storage for the replication information repositories was introduced.
It stores metadata in the InnoDB table, which supports transactions and does not require
additional checks to ensure that the replication position update is written to the disk. Since
then, synchronizing changes has become safe and fast.

For multisource replication, table storage has a unique row for each channel, storing
replication coordinates for each of the source servers.

In version 8.0, file storage for the replication information repositories is deprecated, and
table storage is the default. In version 5.7 and earlier, the default storage for the replication
metadata was a file.

Backup data on the source servers
Make a full backup, or back up only the databases you want to replicate.
For example, if you want to replicate the database cookbook from one
server and the database production from another server, back up
only these databases.
If you’re going to use position-based replication, use mysqldump with
the --source-data=2 option, which instructs the tool to log the
CHANGE REPLICATION SOURCE command but comment it out:

$ mysqldump --host=source_cookbook --single-transaction --
triggers --routines \
> --source-data=2 --databases cookbook > cookbook.sql

For the GTID-based replication, use the --set-gtid-
purged=COMMENTED option instead:

$ mysqldump --host=source_production --single-transaction --
triggers --routines \
> --set-gtid-purged=COMMENTED --databases production >
production.sql

TIP
You can use position-based and GTID-based replication for different channels. You can use
different binary log formats on the source servers as well, but in this case you need to set the
binary log format on the replica to MIXED so it can store updates in any format.

Restore data on the replica
Restore the data collected from the source servers:

$ mysql < cookbook.sql
$ mysql < production.sql

WARNING
Ensure the data on the source servers do not have databases with the same name. If they have
the same name, you’ll need to rename one of the databases and use the replicate-
rewrite-db filter, which will rewrite the database name while applying the replication
events. See Recipe 3.7 for details.

Configure replication channels
For the position-based replication, locate in the CHANGE
REPLICATION SOURCE command in the dump file:

$ cat cookbook.sql | grep "CHANGE REPLICATION SOURCE"
-- CHANGE REPLICATION SOURCE TO
SOURCE_LOG_FILE='binlog.000008', ↩
 SOURCE_LOG_POS=2603;

Use the resulting coordinates to set up replication. Use the FOR
CHANNEL clause of the CHANGE REPLICATION SOURCE command

to specify which channel to use:

mysql> CHANGE REPLICATION SOURCE TO
 -> SOURCE_HOST='source_cookbook',
 -> SOURCE_LOG_FILE='binlog.000008',
 -> SOURCE_LOG_POS=2603
 -> FOR CHANNEL 'cookbook_channel';

For the GTID-based replication, first locate the SET
@@GLOBAL.GTID_PURGED statement:

$ grep GTID_PURGED production.sql
/* SET @@GLOBAL.GTID_PURGED='+9113f6b1-0751-11eb-9e7d-
0242dc638c6c:1-385';*/

Do this for all channels that will use GTID-based replication:

$ grep GTID_PURGED recipes.sql
/* SET @@GLOBAL.GTID_PURGED='+910c760a-0751-11eb-9da8-
0242dc638c6c:1-385';*/

Then combine them into a single set:

'9113f6b1-0751-11eb-9e7d-0242dc638c6c:1-385,910c760a-0751-
11eb-9da8-0242dc638c6c:1-385'

run RESET MASTER to reset the GTID execution history, and set
GTID_PURGED to the set you just compiled:

mysql> RESET MASTER;
Query OK, 0 rows affected (0,03 sec)

mysql> SET @@GLOBAL.gtid_purged = '9113f6b1-0751-11eb-9e7d-
0242dc638c6c:1-385,
 '> 910c760a-0751-11eb-9da8-0242dc638c6c:1-385';
Query OK, 0 rows affected (0,00 sec)

Then use the CHANGE REPLICATION SOURCE command to set up
the new channel:

mysql> CHANGE REPLICATION SOURCE TO
 -> SOURCE_HOST='source_production',
 -> SOURCE_AUTO_POSITION=1
 -> FOR CHANNEL 'production_channel';

Start replication
Start replication using the START REPLICA command:

mysql> START REPLICA FOR CHANNEL'cookbook_channel';
Query OK, 0 rows affected (0,00 sec)

mysql> START REPLICA FOR CHANNEL 'production_channel';
Query OK, 0 rows affected (0,00 sec)

Confirm replication is running
Run SHOW REPLICA STATUS and check the records for all channels:

mysql> SHOW REPLICA STATUS\G
...
 Replica_IO_Running: Yes
 Replica_SQL_Running: Yes
 ...
 Channel_Name: cookbook_channel
 Source_TLS_Version:
 Source_public_key_path:
 Get_source_public_key: 0
 Network_Namespace:
*************************** 2. row ***************************
...
 Replica_IO_Running: Yes
 Replica_SQL_Running: Yes
 ...
 Channel_Name: production_channel
 Source_TLS_Version:
 Source_public_key_path:
 Get_source_public_key: 0
 Network_Namespace:
2 rows in set (0.00 sec)

Or query the Performance Schema:

mysql> SELECT CHANNEL_NAME, io.SERVICE_STATE as io_status,
 -> sqlt.SERVICE_STATE as sql_status,

 -> COUNT_RECEIVED_HEARTBEATS, RECEIVED_TRANSACTION_SET
 -> FROM performance_schema.replication_connection_status
AS io
 -> JOIN performance_schema.replication_applier_status AS
sqlt USING(channel_name)\G
*************************** 1. row ***************************
 CHANNEL_NAME: cookbook_channel
 io_status: ON
 sql_status: ON
COUNT_RECEIVED_HEARTBEATS: 11
 RECEIVED_TRANSACTION_SET: 9113f6b1-0751-11eb-9e7d-
0242dc638c6c:1-387
*************************** 2. row ***************************
 CHANNEL_NAME: production_channel
 io_status: ON
 sql_status: ON
COUNT_RECEIVED_HEARTBEATS: 11
 RECEIVED_TRANSACTION_SET: 910c760a-0751-11eb-9da8-
0242dc638c6c:1-385
2 rows in set (0.00 sec)

3.11 Using a Semisynchronous Replication
Plug-In

Problem
You want to ensure that at least one replica has the update before the client
receives confirmation from the server that its COMMIT operation succeeded.

Solution
Use a semisynchronous replication plug-in.

Discussion
MySQL replication is asynchronous. This means that the source server can
accept writes very fast. All it needs is to store data in the tables and write
information about changes into the binary log file. However, it does not
have any idea if any of the replicas received updates and if the updates they
received were applied.

We cannot guarantee that the asynchronous replica applies updates, but we
can set it up to ensure that updates are received and stored in the relay log
file. This does not guarantee that the update will be applied or, if applied,
that it will result in the same values as on the source server, but it does
guarantee that at least two servers will have a record of the update, which
could be applied, say, in case of a disaster recovery. To achieve this, you’ll
need to use a semisynchronous replication plug-in.
The semisynchronous replication plug-in should be installed on both the
source and replica servers.
On the source server, run:

mysql> INSTALL PLUGIN rpl_semi_sync_source SONAME
'semisync_source.so';
Query OK, 0 rows affected (0.03 sec)

On the replica, run:

mysql> INSTALL PLUGIN rpl_semi_sync_replica SONAME
'semisync_replica.so';
Query OK, 0 rows affected (0.00 sec)

Once installed, you can enable semisynchronous replication. On the source,
set the global rpl_semi_sync_source_enabled variable to 1. On
the replica, use the rpl_semi_sync_replica_enabled variable.

WARNING
Semisynchronous replication works only with the default replication channel. You cannot use it
with multisource replication.

You can control semisynchronous replication behavior with help of
variables, as seen in Table 3-1.

Table 3-1. Variables that control the behavior of the semisynchronous
replication plug-in

Variabl
e

What it controls D
e
f
a
u
lt
v
a
l
u
e

rpl_se
mi_syn
c_sour
ce_tim
eout

How many milliseconds to wait for a response from the replica. If this value is
exceeded, replication silently converts to the asynchronous.

1
0
0
0
0

rpl_se
mi_syn
c_sour
ce_wai
t_for
_repli
ca_cou
nt

The number of replicas the source server needs to receive acknowledgment from
before committing a transaction.

1

rpl_se
mi_syn
c_sour
ce_wai
t_no_
replic
a

What happens if the number of connected replicas falls below
rpl_semi_sync_source_wait_for_ replica_count. As long as
these servers later reconnect and acknowledge the transaction, semisynchronous
replication remains functional. If this variable is OFF, replication is converted to
asynchronous as soon as the number of replicas drops below
rpl_semi_sync_source_wait_for_ replica_count.

O
N

rpl_se
mi_syn
c_sour
ce_wai
t_poin
t

When to expect acknowledgment from the replica that it received the
transaction. This variable supports two possible values. In the case of
AFTER_SYNC, the source writes each transaction into the binary log, then syncs
it to the disk. The source waits for acknowledgment from the replica about the
received changes, then commits the transaction. In the case of AFTER_COMMIT,
the source commits the transaction, then waits for acknowledgment from the
replica and upon success returns to the client.

A
F
T
E
R
_
S
Y
N
C

To find out the status of the semisynchronous replication, use the
Rpl_semi_sync_* variable. The source server has plenty of them:

mysql> SHOW GLOBAL STATUS LIKE 'Rpl_semi_sync%';
+--+-------+
| Variable_name | Value |
+--+-------+
Rpl_semi_sync_source_clients	1
Rpl_semi_sync_source_net_avg_wait_time	0
Rpl_semi_sync_source_net_wait_time	0
Rpl_semi_sync_source_net_waits	9
Rpl_semi_sync_source_no_times	3
Rpl_semi_sync_source_no_tx	6
Rpl_semi_sync_source_status	ON
Rpl_semi_sync_source_timefunc_failures	0
Rpl_semi_sync_source_tx_avg_wait_time	1021
Rpl_semi_sync_source_tx_wait_time	4087
Rpl_semi_sync_source_tx_waits	4
Rpl_semi_sync_source_wait_pos_backtraverse	0
Rpl_semi_sync_source_wait_sessions	0
Rpl_semi_sync_source_yes_tx	4
+--+-------+
14 rows in set (0.00 sec)

The most important variable is Rpl_semi_sync_source_clients,
which shows if semisynchronous replication is currently in use and how
many semisynchronous replicas are connected. If
Rpl_semi_sync_source_clients is zero, no semisynchronous
replica is connected, and asynchronous replication is used.
On the replica server, only the Rpl_semi_sync_replica_status
(Rpl_semi_ sync_slave_status) variable is available and can have
values either ON or OFF.

FAILING BACK TO THE ASYNCHRONOUS REPLICATION
If no replica accepts the write in rpl_semi_sync_source_timeout milliseconds,
replication will switch to the asynchronous without any message or warning for the client. The
only way to figure out that the replication mode switched to asynchronous is to examine the
value of the Rpl_semi_sync_source_clients variable or to check the error log file for
messages like:

2020-10-12T22:25:17.654563Z 0 [ERROR] [MY-013129] [Server] ↩
A message intended for a client cannot be sent there as ↩
no client-session is attached. Therefore, ↩
we're sending the information to the error-log instead: ↩

MY-001158 - Got an error reading communication packets

2020-10-12T22:25:20.083796Z 198 [Note] [MY-010014] [Repl] ↩
While initializing dump thread for slave with UUID ↩
<09bf4498-0cd2-11eb-9161-98af65266957>, ↩
found a zombie dump thread with the same UUID. ↩
Master is killing the zombie dump thread(180).

2020-10-12T22:25:20.084088Z 180 [Note] [MY-011171] [Server] ↩
Stop semi-sync binlog_dump to slave (server_id: 2).

2020-10-12T22:25:20.084204Z 198 [Note] [MY-010462] [Repl] ↩
Start binlog_dump to master_thread_id(198) slave_server(2), ↩
pos(, 4)

2020-10-12T22:25:20.084248Z 198 [Note] [MY-011170] [Server] ↩
Start asynchronous binlog_dump to slave (server_id: 2), pos(,
4).

2020-10-12T22:25:20.657800Z 180 [Note] [MY-011155] [Server] ↩
Semi-sync replication switched OFF.

We discuss error log files in Recipe 23.2.

3.12 Using Group Replication

Problem
You want to apply updates either on all the nodes or nowhere.

Solution
Use Group Replication.

Discussion
Starting from version 5.7.17, MySQL supports fully synchronous
replication with help of the Group Replication plug-in. If the plug-in is in
use, MySQL servers, called nodes, create a group that commits a
transaction together or, if one of the members fails to apply the transaction,
rolls it back. This way the update is either replicated to all group members
or nowhere. High availability is ensured.
You can have up to nine servers in the group. More than nine is not
supported. There is a very good reason for this limitation: a higher number
of servers implies higher replication delay. In the case of synchronous
replication, all updates are applied to all the nodes before the transaction
completes. Each update transferred to each node waits to be applied and
only then commits. Thus, replication delay corresponds to the speed of the
slowest member and the network transfer rate.
While it is technically possible to have fewer than three servers in the
Group Replication setup, a smaller number does not provide high
availability. This is because the Paxos algorithm, used by the Group
Communication Engine, requires 2F + 1 nodes to create a quorum, where
F is any natural number. In other words, in case of a disaster, the number of
active nodes should be greater than the number of disconnected nodes.
Group Replication has limitations. First, and most importantly, it supports
only the InnoDB storage engine. You need to disable other storage engines
before enabling the plug-in. Each replicated table must have a primary key.
You should put servers into the local network. While having Group
Replication across the internet is possible, it may lead to longer times for
applying transactions and disconnecting nodes from the group due to
network timeouts. The LOCK TABLE and GET_LOCK statements are not
taken into account in the certification process that determines whether the
transaction should be applied or rolled back on all nodes, which means they

https://oreil.ly/nNxTr
https://oreil.ly/H0Np7

are local to the node and error prone. The full list of limitations is available
in the “Group Replication Limitations” user reference manual.
To enable Group Replication, you need to prepare all the participating
servers as described in Recipe 3.1, as they’re going to act as both source
and replica, and perform additional preparations:

1. Prepare the configuration file:

[mysqld]
Disable unsupported storage engines
disabled_storage_engines="MyISAM,BLACKHOLE,FEDERATED,ARCHIVE
,MEMORY"

Set unique server ID. Each server in the group should have
its own ID
server_id=1

Enable GTIDs
gtid_mode=ON
enforce_gtid_consistency=ON

Enable replica updates
log_replica_updates=ON

Only ROW binary log format supported
binlog_format=ROW

For versions before 8.0.21
binlog_checksum=NONE

Ensure that replication repository is TABLE
master_info_repository=TABLE
relay_log_info_repository=TABLE

Ensure that transaction_write_set_extraction is enabled
This option is deprecated starting from version 8.0.26
transaction_write_set_extraction=XXHASH64

Add Group Replication options
plugin_load_add='group_replication.so'

Any valid UUID should be the same for all group members
Use SELECT UUID() to generate a UUID
group_replication_group_name="dc527338-13d1-11eb-abf7-
98af65266957"

Host of the local node and port that will be used

https://oreil.ly/bkgV2

for communication between members
Put either hostname (in our case node1) or IP address here
Port number should be different from the one used for
serving clients
E.g., if default MySQL port is 3306, specify any different
number here
group_replication_local_address= "node1:33061"

Ports and addresses of all nodes in the group
Should be same on all nodes
group_replication_group_seeds=
"node1:33061,node2:33061,node3:33061"

Since we did not set up Group replication at this stage,
it should not be started on boot
You may set this option ON after bootstrapping the group
group_replication_start_on_boot=off
group_replication_bootstrap_group=off

Request source server public key for
#the authentication plug-in caching_sha2_password
group_replication_recovery_get_public_key=1

2. Start the servers. Do not enable replication yet.
3. Choose a node to be the first node in the group.
4. Create a replication user only on the first member, as described in

Recipe 3.1, and additionally grant BACKUP_ADMIN to it:

node1> CREATE USER repl@'%' IDENTIFIED BY 'replrepl';
Query OK, 0 rows affected (0,01 sec)

node1> GRANT REPLICATION SLAVE, BACKUP_ADMIN ON *.* TO
repl@'%';
Query OK, 0 rows affected (0,03 sec)

You do not need to create a replication user on other group members,
because the CREATE USER statement will be replicated.

5. Set up replication on the first member to use this user:

node1> CHANGE REPLICATION SOURCE TO SOURCE_USER='repl',
 -> SOURCE_PASSWORD='replrepl'
 -> FOR CHANNEL 'group_replication_recovery';
Query OK, 0 rows affected (0,01 sec)

group_replication_recovery is the special built-in name of
the Group Replication channel.

TIP
If you do not want replication credentials to be stored as plain text in the replication
repository, skip this step and provide the credentials later when you run START
GROUP_REPLICATION. See also Recipe 3.13.

6. Bootstrap the node:

node1> SET GLOBAL group_replication_bootstrap_group=ON;
Query OK, 0 rows affected (0,00 sec)

node1> START GROUP_REPLICATION;
Query OK, 0 rows affected (0,00 sec)

node1> SET GLOBAL group_replication_bootstrap_group=OFF;
Query OK, 0 rows affected (0,00 sec)

7. Check the Group Replication status by selecting from
performance_schema.replication_group_members:

node1> SELECT * FROM
performance_schema.replication_group_members\G
*************************** 1. row

 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: d8a706aa-16ee-11eb-ba5a-98af65266957
 MEMBER_HOST: node1
 MEMBER_PORT: 33361
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: PRIMARY
MEMBER_VERSION: 8.0.21
1 row in set (0.00 sec)

And wait when the first member state becomes ONLINE.

8. Start replication on the second and third nodes:

node2> CHANGE REPLICATION SOURCE TO SOURCE_USER='repl',
 -> SOURCE_PASSWORD='replrepl'
 -> FOR CHANNEL 'group_replication_recovery';
Query OK, 0 rows affected (0,01 sec)

node2> START GROUP_REPLICATION;
Query OK, 0 rows affected (0,00 sec)

Once you confirm that all members are in the ONLINE state, you can use
Group Replication. Query the
performance_schema.replication_group_members table to
get this information. A healthy setup will output something like this:

node1> SELECT * FROM
performance_schema.replication_group_members\G
*************************** 1. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: d8a706aa-16ee-11eb-ba5a-98af65266957
 MEMBER_HOST: node1
 MEMBER_PORT: 33061
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: PRIMARY
MEMBER_VERSION: 8.0.21
*************************** 2. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: e14043d7-16ee-11eb-b77a-98af65266957
 MEMBER_HOST: node2
 MEMBER_PORT: 33061
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: SECONDARY
MEMBER_VERSION: 8.0.21
*************************** 3. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: ea775284-16ee-11eb-8762-98af65266957
 MEMBER_HOST: node3
 MEMBER_PORT: 33061
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: SECONDARY
MEMBER_VERSION: 8.0.21
3 rows in set (0.00 sec)

WARNING
The SHOW REPLICA STATUS command does not work with Group Replication.

If you want to start Group Replication with existent data, restore it on the
first node before bootstrapping it. The data will be copied when the other
nodes join the group.
Finally, enable the group_replication_start_on_boot=on
option in the node configuration files, so replication will be enabled after
the node restart.

WRITING ON MULTIPLE NODES IN THE GROUP REPLICATION SETUP
In this recipe, we started Group Replication in the single-primary mode. This mode allows
writes on only one member of the group. This is the safest and recommended option. However,
if you want to write on multiple nodes, you can switch to the multiprimary node by using the
group_replication_switch_to_multi_primary_mode function:

mysql> SELECT
group_replication_switch_to_multi_primary_mode();
+--+
| group_replication_switch_to_multi_primary_mode() |
+--+
| Mode switched to multi-primary successfully. |
+--+
1 row in set (1.01 sec)

mysql> SELECT * FROM performance_schema.replication_group ↩
_members\G
*************************** 1. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: d8a706aa-16ee-11eb-ba5a-98af65266957
 MEMBER_HOST: node1
 MEMBER_PORT: 33061
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: PRIMARY
MEMBER_VERSION: 8.0.21
*************************** 2. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: e14043d7-16ee-11eb-b77a-98af65266957
 MEMBER_HOST: node2
 MEMBER_PORT: 33061
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: PRIMARY
MEMBER_VERSION: 8.0.21
*************************** 3. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: ea775284-16ee-11eb-8762-98af65266957
 MEMBER_HOST: node3
 MEMBER_PORT: 33061
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: PRIMARY
MEMBER_VERSION: 8.0.21
3 rows in set (0.00 sec)

For more details, check “Changing a Group’s Mode” in the MySQL Reference Manual.

https://oreil.ly/tRX9P

See Also
For additional information about Group Replication, see “Group
Replication” in the Reference Manual.

3.13 Storing Replication Credentials
Securely

Problem
By default, replication credentials are visible in the replication information
repository if specified as part of the CHANGE REPLICATION SOURCE
command. You want to hide them from occasional access by unauthorized
users.

Solution
Use the USER and PASSWORD options in the START REPLICA
command.

Discussion
When you specify replication user credentials using the CHANGE
REPLICATION SOURCE command, they are stored in plain text,
unencrypted, regardless of the master_info_repository option.

Thus, if master_info_repository is set to TABLE, which is the
default since version 8.0, any user with read access to the mysql database
can query the slave_master_info table and read the password:

mysql> SELECT User_name, User_password FROM slave_master_info;
+-----------+---------------+
| User_name | User_password |
+-----------+---------------+
| repl | replrepl |
+-----------+---------------+
1 row in set (0.00 sec)

https://oreil.ly/Hgibr

Or, if master_info_repository is set to FILE, any operating system
user who can access the file, by default located in the MySQL data
directory, can get replication credentials:

$ head -n6 var/mysqld.3/data/master.info
31
binlog.000001
688
127.0.0.1
repl
replrepl

If having replication credentials visible in the source information repository
is not desirable, you can specify replication credentials as part of the
START REPLICA or START GROUP_REPLICATION command:

mysql> START REPLICA USER='repl' PASSWORD='replrepl';
Query OK, 0 rows affected (0.01 sec)

However, if you previously specified replication credentials as part of the
CHANGE MASTER command, they will remain visible in the master
information repository. To clear a previously entered user and password, run
the CHANGE MASTER command with empty arguments for
MASTER_USER and MASTER_PASSWORD:

mysql> SELECT User_name, User_password FROM slave_master_info;
+-----------+---------------+
| User_name | User_password |
+-----------+---------------+
| repl | replrepl |
+-----------+---------------+
1 row in set (0.00 sec)

mysql> CHANGE REPLICATION SOURCE TO SOURCE_USER='',
SOURCE_PASSWORD='';
Query OK, 0 rows affected, 1 warning (0.01 sec)

mysql> START REPLICA USER='repl' PASSWORD='replrepl';
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT User_name, User_password FROM slave_master_info;
+-----------+---------------+
| User_name | User_password |

+-----------+---------------+
| | |
+-----------+---------------+
1 row in set (0.00 sec)

WARNING
Once you’ve cleared the replication credentials from the source information repository, they won’t
be stored anywhere, and you will need to provide them each time you restart replication.

3.14 Using TLS (SSL) for Replication

Problem
You want to transfer data between the source and replica securely.

Solution
Set up TLS (Transport Layer Security) connections for the replication
channel.

Discussion
The connection between source and replica servers is technically similar to
any other client connections to the MySQL server. Therefore, encrypting
the connection between source and replica servers via TLS requires
preparations similar to encrypting client connections, as described in Recipe
24.10.
To create an encrypted replication setup, follow these steps:

1. Obtain or create TLS keys and certificates as described in Recipe
24.10.

2. Ensure that the source server has TLS configuration parameters under
the [mysqld] section:

https://oreil.ly/f9XBK

[mysqld]
ssl_ca=ca.pem
ssl_cert=server-cert.pem
ssl_key=server-key.pem

NOTE
While MySQL uses the modern and safer TLS protocol in the latest versions, its
configuration options still use the abbreviation SSL. The MySQL User Reference Manual
also often refers to TLS as SSL.

You can figure out if TLS is enabled by checking the value of the
have_ssl system variable:

mysql> SHOW VARIABLES LIKE 'have_ssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_ssl | YES |
+---------------+-------+
1 row in set (0,01 sec)

3. If insecure replication is running, stop the replica IO thread:

mysql> STOP REPLICA IO_THREAD; -- (STOP SLAVE IO_THREAD;)
Query OK, 0 rows affected (0.00 sec)

4. On the replica server, put paths to the TLS client key and certificate
under [client] of the configuration file:

[client]
ssl-ca=ca.pem
ssl-cert=client-cert.pem
ssl-key=client-key.pem

and specify the SOURCE_SSL=1 option for the CHANGE
REPLICATION SOURCE command:

mysql> CHANGE REPLICATION SOURCE TO SOURCE_SSL=1;
Query OK, 0 rows affected (0.03 sec

Alternatively, you can specify paths to the client key and certificate as
part of the CHANGE REPLICATION SOURCE command:

mysql> CHANGE REPLICATION SOURCE TO
 -> SOURCE_SSL_CA='ca.pem',
 -> SOURCE_SSL_CERT='client-cert.pem',
 -> SOURCE_SSL_KEY='client-key.pem',
 -> SOURCE_SSL=1;
Query OK, 0 rows affected (0.02 sec)

NOTE
We intentionally omitted other parameters of the CHANGE REPLICATION SOURCE
command, such as SOURCE_HOST, for brevity. But you need to use them as described in
Recipes 3.2 or 3.4.

5. Start replication:

mysql> START REPLICA;
Query OK, 0 rows affected (0.00 sec)

The CHANGE REPLICATION SOURCE command supports other TLS
modifiers that are compatible with regular client connection encryption
options. For example, you can specify a cipher to use with the
SOURCE_SSL_CIPHER clause or enforce source server certificate
verification with the SOURCE_SSL_VERIFY_SERVER_CERT clause.

See Also
For additional information about securing connections between the source
and replica servers, see “Setting Up Replication to Use Encrypted
Connections”.

3.15 Replication Troubleshooting

https://oreil.ly/ZUAAg

Problem
Replication is not working, and you want to fix it.

Solution
Use the SHOW REPLICA STATUS command, query the replication tables
in the Performance Schema, and check the error log file to understand why
the replication failed, then fix it.

Discussion
Replication is managed by two kinds of threads: IO and SQL (or connection
and applier). The IO, or connection, thread is responsible for connecting to
the source server, retrieving updates and storing them in the relay log file.
There is always one IO thread per replication channel. The SQL, or applier,
thread reads data from the relay log file and applies changes to the tables.
One replication channel may have multiple SQL threads. Connection and
applier threads are totally independent, and their errors are reported by
different replication diagnostic instruments.
There are two main instruments to diagnose replication errors: the SHOW
REPLICA STATUS command and replication tables in the Performance
Schema. SHOW REPLICA STATUS has existed since the very beginning,
while replication tables in the Performance Schema were added in version
5.7. You’ll get very similar information by using these two instruments, and
which to use depends on your preferences. In our opinion, SHOW
REPLICA STATUS is good for manual review in the command line, while
it is much easier to write monitoring alerts, querying the Performance
Schema, rather than to parse SHOW REPLICA STATUS output.

SHOW REPLICA STATUS
SHOW REPLICA STATUS contains all the information about IO and SQL
thread configuration, status, and errors. All data is printed in a single row.
However, this row is formatted with spaces and newlines. You can examine
it comfortably by using the \G modifier of the mysql client. For a

multisource replica, SHOW REPLICA STATUS prints information about
each channel in a separate row:

mysql> SHOW REPLICA STATUS\G
*************************** 1. row ***************************
 Replica_IO_State: Waiting for master to send event
 Source_Host: 127.0.0.1
 Source_User: root
 Source_Port: 13000
 Connect_Retry: 60
 Source_Log_File: binlog.000001
 Read_Source_Log_Pos: 156
 Relay_Log_File: Delly-7390-relay-bin-
cookbook.000002
 Relay_Log_Pos: 365
 Relay_Source_Log_File: binlog.000001
 Replica_IO_Running: Yes
 Replica_SQL_Running: Yes
 ...
 Channel_Name: cookbook
 Source_TLS_Version:
 Source_public_key_path:
 Get_source_public_key: 0
 Network_Namespace:
*************************** 2. row ***************************
 Replica_IO_State: Waiting for master to send event
 Source_Host: 127.0.0.1
 Source_User: root
 Source_Port: 13004
 Connect_Retry: 60
 Source_Log_File: binlog.000001
 Read_Source_Log_Pos: 156
 Relay_Log_File: Delly-7390-relay-bin-test.000002
 Relay_Log_Pos: 365
 Relay_Source_Log_File: binlog.000001
 Replica_IO_Running: Yes
 Replica_SQL_Running: Yes
 ...
 Channel_Name: test
 Source_TLS_Version:
 Source_public_key_path:
 Get_source_public_key: 0
 Network_Namespace:
2 rows in set (0.00 sec)

We intentionally skipped part of the output for brevity. We don’t describe
each field–only those required for handling stopped replication (see

Table 3-2). If you are curious what other fields mean, consult “SHOW
REPLICA STATUS Statement” in the Reference Manual.

Table 3-2. Explanation of the SHOW REPLICA STATUS fields for
understanding and fixing errors

Field Description Subsyst
em

Replica_IO_Stat
e
(Slave_IO_State)

Status of the IO thread. Contains information on what the
connection thread is doing when running: empty if IO
thread is stopped and Connecting if connection is not
yet established.

IO thread
status

Source_Host
(Master_Host)

Host of the source server. IO thread
configura
tion

Source_User
(Master_User)

Replication user. IO thread
configura
tion

Source_Port
(Master_Port)

Port of the source server. IO thread
configura
tion

Source_Log_File
(Master_Log_Fil
e)

Binary log on the source server from which IO thread is
currently reading.

IO thread
status

Read_Source_Log
_Pos
(Read_Master_Lo
g_Pos)

Position in the binary log file on the source server from
which IO thread is reading.

IO thread
status

Relay_Log_File Current relay log file: the file the SQL thread is currently
executing from.

IO thread
status

Relay_Log_Pos The position in the relay log file the SQL thread has
executed up to.

IO thread
status

Relay_Source_Lo
g_File
(Relay_Master_L
og_File)

Binary log on the source server from which SQL thread is
executing events.

SQL
thread
status

Replica_IO_Runn
ing
(Slave_IO_Runni
ng)

If IO thread is running. Use this field to quickly identify
health of the connection thread.

IO thread
status

https://oreil.ly/eJhiK

Field Description Subsyst
em

Replica_SQL_Run
ning
(Slave_SQL_Runn
ing)

If SQL thread is running. Use to quickly identify health of
the applier thread.

SQL
thread
status

Replicate_* Replication filters. SQL
thread
configura
tion

Exec_Source_Log
_Pos
(Exec_Master_Lo
g_Pos)

Position of the binary log file on the source up to which
SQL thread executed events.

SQL
thread
status

Until_Condition Until conditions, if any. SQL
thread
configura
tion

Source_SSL_*
(Master_SSL_*)

SSL options for connecting to the source server. IO thread
configura
tion

Seconds_Behind_
Source
(Seconds_Behind
_Master)

Estimated delay between source server and replica. SQL
thread
status

Last_IO_Errno Last error number of the IO thread. Cleared once resolved. IO thread
status

Last_IO_Error Latest error on the IO thread. Cleared once resolved. IO thread
status

Last_Errno,
Last_SQL_Errno

Number of the last error, received by SQL thread. Cleared
once resolved.

SQL
thread
status

Last_Error,
Last_SQL_Error

Last error of the SQL thread. Cleared once resolved. SQL
thread
status

Replica_SQL_Run
ning_State
(Slave_SQL_Runn
ing_State)

Status of the SQL thread. Empty if stopped. SQL
thread
status

Last_IO_Error_T
imestamp

Time when last IO error happened. Cleared once resolved. IO thread
status

Field Description Subsyst
em

Last_SQL_Error_
Timestamp

Time when last SQL error happened. Cleared once
resolved.

SQL
thread
status

Retrieved_Gtid_
Set

GTIDs, retrieved by the connection thread. IO thread
status

Executed_Gtid_S
et

GTIDs, executed by the SQL thread. SQL
thread
status

Channel_Name Name of the replication channel. IO and
SQL
thread
configura
tion

We’ll refer to this table when we discuss how to deal with specific IO and
SQL threads errors.

Replication tables in the Performance Schema
An alternative diagnostic solution, tables in the Performance Schema,
unlike SHOW REPLICA STATUS, do not store all the information in a
single place but in separate spaces.
Information about the IO thread configuration is stored in the
replication_connection_configuration table, and
information about its status is in the
replication_connection_status table.

Information about SQL threads is stored in six tables, as shown in Table 3-
3.

Table 3-3. Tables with information specific to SQL thread(s)

Table name Description
replication_applier_configu
ration

SQL thread configuration

replication_applier_global_
filters

Global replication filters: filters, applicable for all
channels

Table name Description
replication_applier_filters Replication filters, specific to particular channels

replication_applier_status Status for the SQL thread, global

replication_applier_status_
by_worker

For multithreaded replica: status of each SQL
thread

replication_applier_status_
by_ coordinator

For multithreaded replica: status of the SQL thread
as seen by the coordinator

Finally, you’ll find the Group Replication network configuration and status
in the replication_group_members table, and statistics of the
Group Replication members in the
replication_group_member_stats table.

Troubleshooting an IO thread
You can determine if a replication IO thread is having issues by checking
the value of the Replica_IO_Running field of SHOW REPLICA
STATUS. If the value is not Yes, the connection thread is likely having
issues. The reason for these issues can be found in the Last_IO_Errno
and Last_IO_Error fields:

mysql> SHOW REPLICA STATUS\G
*************************** 1. row ***************************
...
 Replica_IO_Running: Connecting
 Replica_SQL_Running: Yes
...
 Last_IO_Errno: 1045
 Last_IO_Error: error connecting to master
'repl@127.0.0.1:13000' - ↩
 retry-time: 60 retries: 1 message:
↩
 Access denied for user
'repl'@'localhost'↩
 (using password: NO)
...

In the preceding example, the replica cannot connect to the source server
because access is denied for the user 'repl'@'localhost'. The IO

thread is still running and will try to connect again in 60 seconds (retry-
time: 60). The reason for such a failure is clear: either the user does not
exist on the source server or it does not have enough privileges. You need to
connect to the source server and fix the user account. Once it has been
fixed, the next connection attempt will succeed.
Alternatively, you can query the replication_connection_status
table in the Performance Schema:

mysql> SELECT SERVICE_STATE, LAST_ERROR_NUMBER,
 -> LAST_ERROR_MESSAGE, LAST_ERROR_TIMESTAMP
 -> FROM performance_schema.replication_connection_status\G
*************************** 1. row ***************************
 SERVICE_STATE: CONNECTING
 LAST_ERROR_NUMBER: 2061
 LAST_ERROR_MESSAGE: error connecting to master
'repl@127.0.0.1:13000' -↩
 retry-time: 60 retries: 1 ↩
 message: Authentication plugin
'caching_sha2_password' ↩
 reported error: Authentication requires
secure connection.
LAST_ERROR_TIMESTAMP: 2020-10-17 13:23:03.663994
1 row in set (0.00 sec)

In this example, the LAST_ERROR_MESSAGE field contains the reason
why the IO thread failed to connect: the user account on the source server
uses the caching_sha2_password authentication plug-in, which
requires a secure connection. To fix this error, you need to stop the
replication, then run CHANGE REPLICATION SOURCE with either the
SOURCE_SSL=1 parameter or the GET_SOURCE_PUBLIC_KEY=1
parameter. In the latter case, traffic between the replica and source server
will stay insecure, and only password exchange communication will be
secured. See Recipe 3.14 for details.

Troubleshooting a SQL thread
To find out why an applier thread had stopped, check the
Replica_SQL_Running, Last_SQL_Errno, and
Last_SQL_Error fields:

mysql> SHOW REPLICA STATUS\G
*************************** 1. row ***************************
...
 Replica_SQL_Running: No
...
 Last_SQL_Errno: 1007
 Last_SQL_Error: Error 'Can't create database
'cookbook'; ↩
 database exists' on query. ↩
 Default database: 'cookbook'. ↩
 Query: 'create database cookbook'

In the preceding listing, the error message shows that the CREATE
DATABASE command failed, because the database already exists on the
replica.
The same information can be found in the
replication_applier_status_by_worker table in the
Performance Schema:

mysql> SELECT SERVICE_STATE, LAST_ERROR_NUMBER,
 -> LAST_ERROR_MESSAGE, LAST_ERROR_TIMESTAMP
 -> FROM
performance_schema.replication_applier_status_by_worker\G
*************************** 1. row ***************************
 SERVICE_STATE: OFF
 LAST_ERROR_NUMBER: 1007
 LAST_ERROR_MESSAGE: Error 'Can't create database 'cookbook'; ↩
 database exists' on query. ↩
 Default database: 'cookbook'.↩
 Query: 'create database cookbook'
LAST_ERROR_TIMESTAMP: 2020-10-17 13:58:12.115821
1 row in set (0.01 sec)

There are a few ways to resolve this issue. First, you can simply drop the
database on the replica and restart the SQL thread:

mysql> DROP DATABASE cookbook;
Query OK, 0 rows affected (0.04 sec)

mysql> START REPLICA SQL_THREAD;
Query OK, 0 rows affected (0.01 sec)

Disable the binary log if it’s enabled on the replica.

If you want to keep the database on the replica—for example, if it’s
supposed to have extra tables that don’t exist on the source server—you can
skip the replicated event.
If you use position-based replication, use the
sql_replica_skip_counter (sql_slave_skip_counter)
variable:

mysql> SET GLOBAL sql_replica_skip_counter=1;
Query OK, 0 rows affected (0.00 sec)

mysql> START REPLICA SQL_THREAD;
Query OK, 0 rows affected (0.01 sec)

In this example, we skipped one event from the binary log, then restarted
replication.
For GTID-based replication, the setting sql_replica_skip_counter
wouldn’t work, because it doesn’t include GTID information. Instead, you
need to generate an empty transaction with the GTID of the transaction the
replica could not execute. To find out which GTID failed, check the
Retrieved_Gtid_Set and Executed_Gtid_Set fields of the
SHOW REPLICA STATUS:

mysql> SHOW REPLICA STATUS\G
*************************** 1. row ***************************
...
 Retrieved_Gtid_Set: de7e85f9-1060-11eb-8b8f-
98af65266957:1-5
 Executed_Gtid_Set: de7e85f9-1060-11eb-8b8f-
98af65266957:1-4,
de8d356e-1060-11eb-a568-98af65266957:1-3
...

In this example, Retrieved_Gtid_Set contains transactions
de7e85f9-1060-11eb-8b8f-98af65266957:1-5, while
Executed_Gtid_Set contains only transactions de7e85f9-1060-
11eb-8b8f-98af65266957:1-4. It’s clear that transaction
de7e85f9-1060-11eb-8b8f-98af65266957:5 was not executed.
Transactions with UUID de8d356e-1060-11eb-a568-

98af65266957 are local and are not executed by the replication applier
thread.
You can also find a failing transaction by querying the
APPLYING_TRANSACTION field of the
replication_applier_status_by_worker table:

mysql> select LAST_APPLIED_TRANSACTION, APPLYING_TRANSACTION
 -> from
performance_schema.replication_applier_status_by_worker\G
*************************** 1. row ***************************
LAST_APPLIED_TRANSACTION: de7e85f9-1060-11eb-8b8f-98af65266957:4
 APPLYING_TRANSACTION: de7e85f9-1060-11eb-8b8f-98af65266957:5
1 row in set (0.00 sec)

Once you’ve found the failing transaction, inject the empty transaction with
the same GTID and restart the SQL thread:

mysql> -- set explicit GTID
mysql> SET gtid_next='de7e85f9-1060-11eb-8b8f-98af65266957:5';
Query OK, 0 rows affected (0.00 sec)

mysql> -- inject empty transaction
mysql> BEGIN;COMMIT;
Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

mysql> -- revert GTID generation back to automatic
mysql> SET gtid_next='automatic';
Query OK, 0 rows affected (0.00 sec)

mysql> -- restart SQL thread
mysql> START REPLICA SQL_THREAD;
Query OK, 0 rows affected (0.01 sec)

WARNING
While skipping a binary log event or transaction helps to restart replication at the moment, it may
cause bigger issues and lead to data inconsistency between the source and replica and, as a result,
future errors. Always analyze why an error happened in the first place, and try to fix the reason,
not simply skip the event.

While SHOW REPLICA STATUS and the
replication_applier_status_by_worker table both store error
messages, if you use a multithreaded replica, the table can offer better
information about what happened. For example, the following example
error message doesn’t provide a full explanation of the reason for the
failure:

mysql> SHOW REPLICA STATUS\G
*************************** 1. row ***************************
...
 Last_SQL_Errno: 1146
 Last_SQL_Error: Coordinator stopped because there
were error(s) ↩
 in the worker(s). The most recent
failure being: ↩
 Worker 8 failed executing
transaction ↩
 'de7e85f9-1060-11eb-8b8f-
98af65266957:7' at ↩
 master log binlog.000001,
end_log_pos 1818. ↩
 See error log and/or
performance_schema.↩

replication_applier_status_by_worker table ↩
 for more details about this
failure or others, if any.
...

It reports that worker 8 failed but does not tell why. Querying on
replication_applier_status_by_worker returns this
information:

mysql> select SERVICE_STATE, LAST_ERROR_NUMBER,
LAST_ERROR_MESSAGE, LAST_ERROR_TIMESTAMP
 -> from
performance_schema.replication_applier_status_by_worker where
worker_id=8\G
*************************** 1. row ***************************
 SERVICE_STATE: OFF
 LAST_ERROR_NUMBER: 1146
 LAST_ERROR_MESSAGE: Worker 8 failed executing transaction ↩
 'de7e85f9-1060-11eb-8b8f-98af65266957:7' at
master log↩

 binlog.000001, end_log_pos 1818; Error
executing row event: ↩
 'Table 'cookbook.limbs' doesn't exist'
LAST_ERROR_TIMESTAMP: 2020-10-17 14:28:01.144521
1 row in set (0.00 sec)

Now it’s clear that a specific table doesn’t exist. You can analyze why this
is the case and correct the error.

Troubleshooting Group Replication
SHOW REPLICA STATUS is not available for Group Replication.
Therefore, you need to use the Performance Schema to troubleshoot issues
with it. The Performance Schema has two special tables for Group
Replication: replication_group_members, showing details of all
members, and replication_group_member_stats, displaying
statistics for them. However, these tables do not have information about IO
and SQL thread errors. These details are available in the following
replication_connection_status table as well as in Table 3-3.

Let’s have a closer look at the Group Replication troubleshooting options.
A quick way to identify if something is wrong with Group Replication is a
replication_group_members table:

mysql> SELECT * FROM
performance_schema.replication_group_members\G
*************************** 1. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: de5b65cb-16ae-11eb-826c-98af65266957
 MEMBER_HOST: Delly-7390
 MEMBER_PORT: 33361
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: PRIMARY
MEMBER_VERSION: 8.0.21
*************************** 2. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: e9514d63-16ae-11eb-8f6e-98af65266957
 MEMBER_HOST: Delly-7390
 MEMBER_PORT: 33362
 MEMBER_STATE: RECOVERING
 MEMBER_ROLE: SECONDARY
MEMBER_VERSION: 8.0.21
*************************** 3. row ***************************

 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: f1e717ab-16ae-11eb-bfd2-98af65266957
 MEMBER_HOST: Delly-7390
 MEMBER_PORT: 33363
 MEMBER_STATE: RECOVERING
 MEMBER_ROLE: SECONDARY
MEMBER_VERSION: 8.0.21
3 rows in set (0.00 sec)

In the preceding listing, only the PRIMARY member is in
MEMBER_STATE: ONLINE, meaning it is healthy. Both SECONDARY
members are in RECOVERING state and are having trouble joining the
group.
A failing member will stay in the RECOVERING state for some time while
Group Replication tries to recover itself. If the error cannot be
automatically recovered, the failing member will leave the group and stay
in the ERROR state:

mysql> SELECT * FROM
performance_schema.replication_group_members\G
*************************** 1. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: e9514d63-16ae-11eb-8f6e-98af65266957
 MEMBER_HOST: Delly-7390
 MEMBER_PORT: 33362
 MEMBER_STATE: ERROR
 MEMBER_ROLE:
MEMBER_VERSION: 8.0.21
1 row in set (0.00 sec)

Both listings were taken on the same secondary member of the group, but
after it left the group, it reports only itself as a Group Replication member
and does not display information about other members.
To determine the reason for the failure, you need to examine the
replication_connection_status and
replication_applier_status_by_worker tables.

In our example, member e9514d63-16ae-11eb-8f6e-
98af65266957 stopped with a SQL error. You’ll find error details in the
replication_applier_status_by_worker table:

mysql> SELECT CHANNEL_NAME, LAST_ERROR_NUMBER,
 -> LAST_ERROR_MESSAGE, LAST_ERROR_TIMESTAMP,
 -> APPLYING_TRANSACTION
 -> FROM
performance_schema.replication_applier_status_by_worker\G
*************************** 1. row ***************************
 CHANNEL_NAME: group_replication_recovery
 LAST_ERROR_NUMBER: 3635
 LAST_ERROR_MESSAGE: The table in transaction de5b65cb-16ae-
11eb-826c-98af65266957:15 ↩
 does not comply with the requirements by an
external plugin.
LAST_ERROR_TIMESTAMP: 2020-10-25 20:31:27.718638
APPLYING_TRANSACTION: de5b65cb-16ae-11eb-826c-98af65266957:15
*************************** 2. row ***************************
 CHANNEL_NAME: group_replication_applier
 LAST_ERROR_NUMBER: 0
 LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00.000000
APPLYING_TRANSACTION:
2 rows in set (0.00 sec)

The error message says that the definition of the table in the de5b65cb-
16ae-11eb-826c-98af65266957:15 transaction is not compatible
with the Group Replication plug-in. To find out why, check “Group
Replication Requirements and Limitations”, identify the table used in the
transaction, and fix the error.
The error message in the
replication_applier_status_by_worker table does not give
any indication which table was used in the transaction. But the error log file
may. Open the error log file, search for the LAST_ERROR_TIMESTAMP
and LAST_ERROR_NUMBER to identify the error, and check if the previous
or next rows have more information:

2020-10-25T17:31:27.718600Z 71 [ERROR] [MY-011542] [Repl] Plugin
group_replication↩
reported: 'Table al_winner does not have any PRIMARY KEY. This is
not compatible↩
with Group Replication.'
2020-10-25T17:31:27.718644Z 71 [ERROR] [MY-010584] [Repl] Slave
SQL for channel↩
'group_replication_recovery': The table in transaction↩
de5b65cb-16ae-11eb-826c-98af65266957:15 does not comply with the

https://oreil.ly/OOHfI

requirements↩
by an external plugin. Error_code: MY-003635

In this example, the error message on the previous row contains the table
name al_winner, and the reason why it isn’t compatible with Group
Replication is that the table doesn’t have a primary key.
To fix the error, you need to fix the table definition on the PRIMARY and
failing SECONDARY node.

First, log in to the PRIMARY node, and add a surrogate primary key:

mysql> set sql_log_bin=0;
Query OK, 0 rows affected (0.00 sec)

mysql> alter table al_winner add id int not null auto_increment
primary key;
Query OK, 0 rows affected (0.09 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> set sql_log_bin=1;
Query OK, 0 rows affected (0.01 sec)

You need to disable binary logging, because otherwise this change will be
replicated to the secondary members, and replication will stop with the
duplicate column name error.
Then, run the same command on the secondary members to fix the table
definition and restart Group Replication:

mysql> set global super_read_only=0;
Query OK, 0 rows affected (0.00 sec)

mysql> set sql_log_bin=0;
Query OK, 0 rows affected (0.00 sec)

mysql> alter table al_winner add id int not null auto_increment
primary key;
Query OK, 0 rows affected (0.09 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> set sql_log_bin=1;
Query OK, 0 rows affected (0.01 sec)

mysql> stop group_replication;

Query OK, 0 rows affected (1.02 sec)

mysql> start group_replication;
Query OK, 0 rows affected (3.22 sec)

You need to disable super_read_only first, which is set by the Group
Replication plug-in if the nodes are running in single-primary mode.
Once the error is fixed, the node joins the group and reports its state as
ONLINE:

mysql> SELECT * FROM
performance_schema.replication_group_members\G
*************************** 1. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: d8a706aa-16ee-11eb-ba5a-98af65266957
 MEMBER_HOST: Delly-7390
 MEMBER_PORT: 33361
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: PRIMARY
MEMBER_VERSION: 8.0.21
*************************** 2. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: e14043d7-16ee-11eb-b77a-98af65266957
 MEMBER_HOST: Delly-7390
 MEMBER_PORT: 33362
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: SECONDARY
MEMBER_VERSION: 8.0.21
2 rows in set (0.00 sec)

OPTION --VERBOSE

You can find what the failing transaction is doing by running the mysqlbinlog command
with the verbose option:

$ mysqlbinlog data1/binlog.000001
> --include-gtids=de5b65cb-16ae-11eb-826c-98af65266957:15 --
verbose
...
SET @@SESSION.GTID_NEXT= 'de5b65cb-16ae-11eb-826c-
98af65266957:15'/*!*/;
at 4015
#201025 13:44:34 server id 1 end_log_pos 4094 CRC32
0xad05e64e Query ↩
thread_id=10 exec_time=0 error_code=0
SET TIMESTAMP=1603622674/*!*/;
...
INSERT INTO `cookbook`.`al_winner`
SET
@1='Mulder, Mark' /* STRING(120) meta=65144 nullable=1
is_null=0 */
@2=21 /* INT meta=0 nullable=1 is_null=0 */
INSERT INTO `cookbook`.`al_winner`
SET
@1='Clemens, Roger' /* STRING(120) meta=65144 nullable=1
is_null=0 */
@2=20 /* INT meta=0 nullable=1 is_null=0 */
INSERT INTO `cookbook`.`al_winner`
...
INSERT INTO `cookbook`.`al_winner`
SET
@1='Sele, Aaron' /* STRING(120) meta=65144 nullable=1
is_null=0 */
@2=15 /* INT meta=0 nullable=1 is_null=0 */
at 4469
#201025 13:44:34 server id 1 end_log_pos 4500 CRC32
0xddd32d63 Xid = 74
COMMIT/*!*/;
SET @@SESSION.GTID_NEXT= 'AUTOMATIC' /* added by mysqlbinlog
/ /!*/;
DELIMITER ;
End of log file
/*!50003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/;
/*!50530 SET @@SESSION.PSEUDO_SLAVE_MODE=0*/;

The verbose option required to decode row events.

We fixed the error on one node, but the third node didn’t join the group.
After examining the content of the
performance_schema.replication_connection_status
table, we discovered that the replication connection options were not set up
correctly:

mysql> SELECT CHANNEL_NAME, LAST_ERROR_NUMBER,
LAST_ERROR_MESSAGE, LAST_ERROR_TIMESTAMP
 -> FROM performance_schema.replication_connection_status\G
*************************** 1. row ***************************
 CHANNEL_NAME: group_replication_applier
 LAST_ERROR_NUMBER: 0
 LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00.000000
*************************** 2. row ***************************
 CHANNEL_NAME: group_replication_recovery
 LAST_ERROR_NUMBER: 13117
 LAST_ERROR_MESSAGE: Fatal error: Invalid (empty) username when
attempting ↩
 to connect to the master server. Connection
attempt terminated.
LAST_ERROR_TIMESTAMP: 2020-10-25 21:31:31.413876
2 rows in set (0.00 sec)

To fix this, we need to run the correct CHANGE REPLICATION SOURCE
command:

mysql> STOP GROUP_REPLICATION;
Query OK, 0 rows affected (1.01 sec)

mysql> CHANGE REPLICATION SOURCE TO SOURCE_USER='repl',
SOURCE_PASSWORD='replrepl'
 -> FOR CHANNEL 'group_replication_recovery';
Query OK, 0 rows affected, 2 warnings (0.03 sec)

mysql> START GROUP_REPLICATION;
Query OK, 0 rows affected (2.40 sec)

Once fixed, the node will fail with the same SQL error as the previous one
and has to be fixed in the way we previously described. Finally, after the
SQL error is recovered, the node will join the cluster and will be reported as
ONLINE:

mysql> SELECT * FROM
performance_schema.replication_group_members\G
*************************** 1. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: d8a706aa-16ee-11eb-ba5a-98af65266957
 MEMBER_HOST: Delly-7390
 MEMBER_PORT: 33361
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: PRIMARY
MEMBER_VERSION: 8.0.21
*************************** 2. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: e14043d7-16ee-11eb-b77a-98af65266957
 MEMBER_HOST: Delly-7390
 MEMBER_PORT: 33362
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: SECONDARY
MEMBER_VERSION: 8.0.21
*************************** 3. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: ea775284-16ee-11eb-8762-98af65266957
 MEMBER_HOST: Delly-7390
 MEMBER_PORT: 33363
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: SECONDARY
MEMBER_VERSION: 8.0.21
3 rows in set (0.00 sec)

To check the performance of the Group Replication query
performance_schema.replication_group_member_stats
table, run the following:

mysql> SELECT * FROM
performance_schema.replication_group_member_stats\G
*************************** 1. row ***************************
 CHANNEL_NAME:
group_replication_applier
 VIEW_ID: 16036502905383892:9
 MEMBER_ID: d8a706aa-16ee-11eb-
ba5a-98af65266957
 COUNT_TRANSACTIONS_IN_QUEUE: 0
 COUNT_TRANSACTIONS_CHECKED: 10154
 COUNT_CONFLICTS_DETECTED: 0
 COUNT_TRANSACTIONS_ROWS_VALIDATING: 9247
 TRANSACTIONS_COMMITTED_ALL_MEMBERS: d8a706aa-16ee-11eb-
ba5a-98af65266957:1-18,
dc527338-13d1-11eb-abf7-98af65266957:1-1588
 LAST_CONFLICT_FREE_TRANSACTION: dc527338-13d1-11eb-

abf7-98af65266957:10160
COUNT_TRANSACTIONS_REMOTE_IN_APPLIER_QUEUE: 0
 COUNT_TRANSACTIONS_REMOTE_APPLIED: 5
 COUNT_TRANSACTIONS_LOCAL_PROPOSED: 10154
 COUNT_TRANSACTIONS_LOCAL_ROLLBACK: 0
*************************** 2. row ***************************
 CHANNEL_NAME:
group_replication_applier
 VIEW_ID: 16036502905383892:9
 MEMBER_ID: e14043d7-16ee-11eb-
b77a-98af65266957
 COUNT_TRANSACTIONS_IN_QUEUE: 0
 COUNT_TRANSACTIONS_CHECKED: 10037
 COUNT_CONFLICTS_DETECTED: 0
 COUNT_TRANSACTIONS_ROWS_VALIDATING: 9218
 TRANSACTIONS_COMMITTED_ALL_MEMBERS: d8a706aa-16ee-11eb-
ba5a-98af65266957:1-18,
dc527338-13d1-11eb-abf7-98af65266957:1-1588
 LAST_CONFLICT_FREE_TRANSACTION: dc527338-13d1-11eb-
abf7-98af65266957:8030
COUNT_TRANSACTIONS_REMOTE_IN_APPLIER_QUEUE: 5859
 COUNT_TRANSACTIONS_REMOTE_APPLIED: 4180
 COUNT_TRANSACTIONS_LOCAL_PROPOSED: 0
 COUNT_TRANSACTIONS_LOCAL_ROLLBACK: 0
*************************** 3. row ***************************
 CHANNEL_NAME:
group_replication_applier
 VIEW_ID: 16036502905383892:9
 MEMBER_ID: ea775284-16ee-11eb-
8762-98af65266957
 COUNT_TRANSACTIONS_IN_QUEUE: 0
 COUNT_TRANSACTIONS_CHECKED: 10037
 COUNT_CONFLICTS_DETECTED: 0
 COUNT_TRANSACTIONS_ROWS_VALIDATING: 9218
 TRANSACTIONS_COMMITTED_ALL_MEMBERS: d8a706aa-16ee-11eb-
ba5a-98af65266957:1-18,
dc527338-13d1-11eb-abf7-98af65266957:1-37
 LAST_CONFLICT_FREE_TRANSACTION: dc527338-13d1-11eb-
abf7-98af65266957:6581
COUNT_TRANSACTIONS_REMOTE_IN_APPLIER_QUEUE: 5828
 COUNT_TRANSACTIONS_REMOTE_APPLIED: 4209
 COUNT_TRANSACTIONS_LOCAL_PROPOSED: 0
 COUNT_TRANSACTIONS_LOCAL_ROLLBACK: 0
3 rows in set (0.00 sec)

Important fields are
COUNT_TRANSACTIONS_REMOTE_IN_APPLIER_QUEUE, which
shows how many transactions are waiting in the queue to be applied on the

secondary node, and TRANSACTIONS_COMMITTED_ALL_MEMBERS,
which shows that transactions were applied on all members. For more
details, consult the User Reference Manual.

3.16 Using Processlist to Understand
Replication Performance

Problem
The replica is behind the source server, and lag is increasing. You want to
understand what is going on.

Solution
Examine the status of the SQL threads using replication tables in the
Performance Schema as well as regular MySQL performance
instrumentation.

Discussion
The replica may fall behind the source if SQL threads are applying updates
slower than the source server is. This may happen because updates on the
source are running concurrently, while on the replica, fewer threads are
used to process the same workload. This difference can even happen on
replicas with the same or higher number of CPU cores than the source,
either because you set up fewer replica_parallel_workers than
active threads on the source server or because they’re not fully used due to
safety measures that prevent the replica from applying updates in the wrong
order.
To understand how many parallel workers are active, you can query the
replication_applier_status_by_worker table like this:

mysql> SELECT WORKER_ID, LAST_APPLIED_TRANSACTION,
APPLYING_TRANSACTION
 -> FROM

https://oreil.ly/3Gllb

performance_schema.replication_applier_status_by_worker;
+-----------+---------------------------------+------------------
---------------+
| WORKER_ID | LAST_APPLIED_TRANSACTION |
APPLYING_TRANSACTION |
+-----------+---------------------------------+------------------
---------------+
| 1 | de7e85f9-...-98af65266957:26075 |
de7e85f9-...-98af65266957:26077 |
| 2 | de7e85f9-...-98af65266957:26076 |
de7e85f9-...-98af65266957:26078 |
| 3 | de7e85f9-...-98af65266957:26068 |
de7e85f9-...-98af65266957:26079 |
| 4 | de7e85f9-...-98af65266957:26069 |
|
| 5 | de7e85f9-...-98af65266957:26070 |
|
| 6 | de7e85f9-...-98af65266957:26071 |
|
| 7 | de7e85f9-...-98af65266957:25931 |
|
| 8 | de7e85f9-...-98af65266957:21638 |
|
+-----------+---------------------------------+------------------
---------------+
8 rows in set (0.01 sec)

In the preceding listing, you may notice that only three threads are currently
applying a transaction, while others are idle. This is not stable information,
and you need to run the same query several times to find out if this is a
tendency.
The threads table in the Performance Schema contains a list of all
threads currently running on the MySQL server, including background
ones. It has a name field, whose value is
thread/sql/replica_worker (thread/sql/slave_worker)
in the case of the replication SQL thread. You can query it and find more
details about what each of the SQL thread workers is doing:

mysql> SELECT THREAD_ID AS TID, PROCESSLIST_ID AS PID,
 -> PROCESSLIST_DB, PROCESSLIST_STATE
 -> FROM performance_schema.threads WHERE NAME =
'thread/sql/replica_worker';
+-----+-----+----------------+-----------------------------------
-----+

| TID | PID | PROCESSLIST_DB | PROCESSLIST_STATE
|
+-----+-----+----------------+-----------------------------------
-----+
| 54 | 13 | NULL | waiting for handler commit
|
| 55 | 14 | sbtest | Applying batch of row changes
(update) |
| 56 | 15 | sbtest | Applying batch of row changes
(delete) |
| 57 | 16 | NULL | Waiting for an event from
Coordinator |
| 58 | 17 | NULL | Waiting for an event from
Coordinator |
| 59 | 18 | NULL | Waiting for an event from
Coordinator |
| 60 | 19 | NULL | Waiting for an event from
Coordinator |
| 61 | 20 | NULL | Waiting for an event from
Coordinator |
+-----+-----+----------------+-----------------------------------
-----+
8 rows in set (0.00 sec)

In the preceding listing, thread 54 is waiting for a transaction commit,
threads 55 and 56 are applying a batch of row changes, and other threads
are waiting for an event from the coordinator.
Since the source server applies changes in high numbers of threads, we may
notice that the replication lag is increasing:

mysql> \P grep Seconds_Behind_Source
PAGER set to 'grep Seconds_Behind_Source'
mysql> SHOW REPLICA STATUS\G SELECT SLEEP(60); SHOW REPLICA
STATUS\G
 Seconds_Behind_Source: 232
1 row in set (0.00 sec)

1 row in set (1 min 0.00 sec)

 Seconds_Behind_Source: 238
1 row in set (0.00 sec)

One of the resolutions for an issue like this is to set the
binlog_transaction_dependency_tracking option on the
source server to WRITESET_SESSION or WRITESET. These options are

discussed in Recipe 3.8 and allow higher parallelization on the replica. Note
that changes won’t take effect immediately, because the replica will have to
apply binary log events, recorded with the default
binlog_transaction_dependency_tracking value
COMMIT_ORDER.

Still, after a while, you may notice that all SQL thread workers have
become active and the replica lag has started to decrease:

mysql> SELECT WORKER_ID, LAST_APPLIED_TRANSACTION,
APPLYING_TRANSACTION
 -> FROM
performance_schema.replication_applier_status_by_worker;
+-----------+----------------------------------+-----------------
------------------+
| WORKER_ID | LAST_APPLIED_TRANSACTION |
APPLYING_TRANSACTION |
+-----------+----------------------------------+-----------------
------------------+
| 1 | de7e85f9-...-98af65266957:170966 |
de7e85f9-...-98af65266957:170976 |
| 2 | de7e85f9-...-98af65266957:170970 |
de7e85f9-...-98af65266957:170973 |
| 3 | de7e85f9-...-98af65266957:170968 |
de7e85f9-...-98af65266957:170975 |
| 4 | de7e85f9-...-98af65266957:170960 |
de7e85f9-...-98af65266957:170967 |
| 5 | de7e85f9-...-98af65266957:170964 |
de7e85f9-...-98af65266957:170972 |
| 6 | de7e85f9-...-98af65266957:170962 |
de7e85f9-...-98af65266957:170969 |
| 7 | de7e85f9-...-98af65266957:170971 |
de7e85f9-...-98af65266957:170977 |
| 8 | de7e85f9-...-98af65266957:170965 |
de7e85f9-...-98af65266957:170974 |
+-----------+----------------------------------+-----------------
------------------+
8 rows in set (0.00 sec)

mysql> SELECT THREAD_ID, PROCESSLIST_ID, PROCESSLIST_DB,
PROCESSLIST_STATE
 -> FROM performance_schema.threads WHERE NAME =
'thread/sql/replica_worker';
+-----------+----------------+----------------+------------------
----------------------+
| thread_id | PROCESSLIST_ID | PROCESSLIST_DB | PROCESSLIST_STATE
|

+-----------+----------------+----------------+------------------
----------------------+
| 54 | 13 | sbtest | Applying batch of
row changes (update) |
| 55 | 14 | NULL | waiting for
handler commit |
| 56 | 15 | sbtest | Applying batch of
row changes (delete) |
| 57 | 16 | sbtest | Applying batch of
row changes (delete) |
| 58 | 17 | sbtest | Applying batch of
row changes (update) |
| 59 | 18 | sbtest | Applying batch of
row changes (delete) |
| 60 | 19 | sbtest | Applying batch of
row changes (update) |
| 61 | 20 | sbtest | Applying batch of
row changes (write) |
+-----------+----------------+----------------+------------------
----------------------+
8 rows in set (0.00 sec)

mysql> \P grep Seconds_Behind_Source
PAGER set to 'grep Seconds_Behind_Source'
mysql> SHOW REPLICATION SOURCE STATUS\G SELECT SLEEP(60); SHOW
REPLICA STATUS\G
 Seconds_Behind_Source: 285
1 row in set (0.00 sec)

1 row in set (1 min 0.00 sec)

 Seconds_Behind_Source: 275
1 row in set (0.00 sec)

Another common reason for the replication lag is a local command,
affecting tables, updated by the replication. You may notice that this is the
case by querying table
replication_applier_status_by_worker and comparing the
value of the field
APPLYING_TRANSACTION_START_APPLY_TIMESTAMP with the
current time:

mysql> SELECT WORKER_ID, APPLYING_TRANSACTION, TIMEDIFF(NOW(),
 -> APPLYING_TRANSACTION_START_APPLY_TIMESTAMP) AS exec_time
 -> FROM
performance_schema.replication_applier_status_by_worker;

+-----------+---+------
-----------+
| WORKER_ID | APPLYING_TRANSACTION |
exec_time |
+-----------+---+------
-----------+
| 1 | de7e85f9-1060-11eb-8b8f-98af65266957:226091 |
00:05:14.367275 |
| 2 | de7e85f9-1060-11eb-8b8f-98af65266957:226087 |
00:05:14.768701 |
| 3 | de7e85f9-1060-11eb-8b8f-98af65266957:226090 |
00:05:14.501099 |
| 4 | de7e85f9-1060-11eb-8b8f-98af65266957:226097 |
00:05:14.232062 |
| 5 | de7e85f9-1060-11eb-8b8f-98af65266957:226086 |
00:05:14.773958 |
| 6 | de7e85f9-1060-11eb-8b8f-98af65266957:226083 |
00:05:14.782274 |
| 7 | de7e85f9-1060-11eb-8b8f-98af65266957:226080 |
00:05:14.843808 |
| 8 | de7e85f9-1060-11eb-8b8f-98af65266957:226094 |
00:05:14.327028 |
+-----------+---+------
-----------+
8 rows in set (0.00 sec)

In the preceding listing, the transaction execution time is similar for all
threads–around five minutes. That is ridiculously long!
To find out why transactions are executing for such a long time, query the
threads table in the Performance Schema:

mysql> SELECT THREAD_ID, PROCESSLIST_ID, PROCESSLIST_DB,
PROCESSLIST_STATE
 -> FROM performance_schema.threads WHERE NAME =
'thread/sql/replica_worker';
+-----------+----------------+----------------+------------------
------------+
| thread_id | PROCESSLIST_ID | PROCESSLIST_DB | PROCESSLIST_STATE
|
+-----------+----------------+----------------+------------------
------------+
| 54 | 13 | NULL | Waiting for
global read lock |
| 55 | 14 | NULL | Waiting for
global read lock |
| 56 | 15 | NULL | Waiting for
global read lock |

| 57 | 16 | NULL | Waiting for
global read lock |
| 58 | 17 | NULL | Waiting for
global read lock |
| 59 | 18 | NULL | Waiting for
global read lock |
| 60 | 19 | NULL | Waiting for
global read lock |
| 61 | 20 | NULL | Waiting for
global read lock |
+-----------+----------------+----------------+------------------
------------+
8 rows in set (0.00 sec)

It’s clear that the replication SQL threads aren’t doing any useful job and
are just waiting for a global read lock.
To find out which thread is holding a global read lock, try querying the
threads table in the Performance Schema, but this time filter out replica
threads:

mysql> SELECT THREAD_ID, PROCESSLIST_ID, PROCESSLIST_DB,
 -> PROCESSLIST_STATE, PROCESSLIST_INFO
 -> FROM performance_schema.threads
 -> WHERE NAME != 'thread/sql/replica_worker' AND
PROCESSLIST_ID IS NOT NULL\G
*************************** 1. row ***************************
 thread_id: 46
 PROCESSLIST_ID: 7
 PROCESSLIST_DB: NULL
PROCESSLIST_STATE: Waiting on empty queue
 PROCESSLIST_INFO: NULL
*************************** 2. row ***************************
 thread_id: 50
 PROCESSLIST_ID: 9
 PROCESSLIST_DB: NULL
PROCESSLIST_STATE: Suspending
 PROCESSLIST_INFO: NULL
*************************** 3. row ***************************
 thread_id: 52
 PROCESSLIST_ID: 11
 PROCESSLIST_DB: NULL
PROCESSLIST_STATE: Waiting for master to send event
 PROCESSLIST_INFO: NULL
*************************** 4. row ***************************
 thread_id: 53
 PROCESSLIST_ID: 12
 PROCESSLIST_DB: NULL

PROCESSLIST_STATE: Waiting for slave workers to process their
queues
 PROCESSLIST_INFO: NULL
*************************** 5. row ***************************
 thread_id: 64
 PROCESSLIST_ID: 23
 PROCESSLIST_DB: performance_schema
PROCESSLIST_STATE: executing
 PROCESSLIST_INFO: SELECT THREAD_ID, PROCESSLIST_ID,
PROCESSLIST_DB, PROCESSLIST_STATE, ↩
 PROCESSLIST_INFO FROM
performance_schema.threads WHERE ↩
 NAME != 'thread/sql/slave_worker' AND
PROCESSLIST_ID IS NOT NULL
*************************** 6. row ***************************
 thread_id: 65
 PROCESSLIST_ID: 24
 PROCESSLIST_DB: NULL
PROCESSLIST_STATE: NULL
 PROCESSLIST_INFO: flush tables with read lock
6 rows in set (0.00 sec)

In our example, the offending thread is the thread executed FLUSH
TABLES WITH READ LOCK. This is a common safety lock, performed
by backup programs. Since we know the reason for the replica stall, we can
either wait until this job finishes or kill the thread. Once done, the replica
will continue executing updates.

See Also
Troubleshooting performance is a long topic, and further detail is outside
the scope of this book. For additional information about troubleshooting,
see MySQL Troubleshooting (O’Reilly).

3.17 Setting Up Automated Replication

Problem
You want to set up replication but do not want to configure it manually.

https://oreil.ly/BW9TL

Solution
Use MySQL Admin API, available in MySQL Shell (Chapter 2).

Discussion
MySQL Shell provides MySQL Admin API, which allows you to automate
standard replication administrative tasks, such as creating a ReplicaSet of a
source server with one or more replicas. Or, you can create an InnoDB
Cluster, using Group Replication.

InnoDB ReplicaSet
If you want to automate replication setup, use the MySQL Admin API
inside MySQL Shell and InnoDB ReplicaSet. InnoDB ReplicaSet allows
you to create a single-primary replication topology with as many secondary
read-only servers as you wish. You can later promote one of the secondary
servers to primary. Multiple-primary setups, replication filters, and
automatic failovers are not supported.
First, you need to prepare the servers. Ensure that the following conditions
are met:

MySQL is version 8.0 or newer
The GTID gtid_mode and enforce_gtid_consistency
options are enabled
The binary log format is ROW

The default storage engine is InnoDB: set the option
default_storage_engine=InnoDB

Parallel-replication related options are set to the following values:

binlog_transaction_dependency_tracking=WRITESET
replica_preserve_commit_order=ON
replica_parallel_type=LOGICAL_CLOCK

WARNING
If you’re using Ubuntu and want to set up ReplicaSet on the local machine, edit the
/etc/hosts file and either remove loopback address 127.0.1.1 or replace it with
127.0.0.1. Loopback addresses other than 127.0.0.1 are not supported by MySQL Shell.

Once the servers are prepared for replication, you can start configuring
them with MySQL Shell:

 MySQL JS > \c root@127.0.0.1:13000
Creating a session to 'root@127.0.0.1:13000'
Fetching schema names for autocompletion... Press ^C to stop.
Your MySQL connection id is 12
Server version: 8.0.28 MySQL Community Server - GPL
No default schema selected; type \use <schema> to set one.
 MySQL 127.0.0.1:13000 ssl JS >
dba.configureReplicaSetInstance(
 -> 'root@127.0.0.1:13000',
{clusterAdmin: "'repl'@'%'"})
 ->
Please provide the password for 'root@127.0.0.1:13000':
Save password for 'root@127.0.0.1:13000'? [Y]es/[N]o/Ne[v]er
(default No):
Configuring local MySQL instance listening at port 13000 for use
in an InnoDB ReplicaSet...

This instance reports its own address as Delly-7390:13000
Clients and other cluster members will communicate with it
through↩
this address by default. If this is not correct, ↩
the report_host MySQL system variable should be changed.
Password for new account: ********
Confirm password: ********

applierWorkerThreads will be set to the default value of 4.

The instance 'Delly-7390:13000' is valid to be used in an InnoDB
ReplicaSet.
Cluster admin user 'repl'@'%' created.
The instance 'Delly-7390:13000' is already ready to be used in an
InnoDB ReplicaSet.

Successfully enabled parallel appliers.

The dba.configureReplicaSetInstance command takes two
parameters: URI to connect to the server and configuration options. The
clusterAdmin option instructs you to create a replication user. Then you
can provide a password when prompted.
Repeat the configuration step for all servers in the ReplicaSet. Specify the
same replication username and password.
Once all instances are configured, create a ReplicaSet:

 MySQL 127.0.0.1:13000 ssl JS > var rs =
dba.createReplicaSet("cookbook")
 A new replicaset with instance 'Delly-7390:13000' will be
created.

* Checking MySQL instance at Delly-7390:13000

This instance reports its own address as Delly-7390:13000
Delly-7390:13000: Instance configuration is suitable.

* Updating metadata...

ReplicaSet object successfully created for Delly-7390:13000.
Use rs.addInstance() to add more asynchronously replicated
instances to this ↩
replicaset and rs.status() to check its status.

The dba.createReplicaSet command creates a named ReplicaSet
and returns a ReplicaSet object. Save it into a variable to perform further
management.
Internally, it creates a mysql_innodb_cluster_metadata database
with tables, describing ReplicaSet setup in the instance MySQL Shell
connected to. At the same time, this first instance is set up as a PRIMARY
ReplicaSet member. You can check it by running the rs.status()
command:

 MySQL 127.0.0.1:13000 ssl JS > rs.status()
{
 "replicaSet": {
 "name": "cookbook",
 "primary": "Delly-7390:13000",
 "status": "AVAILABLE",

 "statusText": "All instances available.",
 "topology": {
 "Delly-7390:13000": {
 "address": "Delly-7390:13000",
 "instanceRole": "PRIMARY",
 "mode": "R/W",
 "status": "ONLINE"
 }
 },
 "type": "ASYNC"
 }
}

Once the PRIMARY instance is set up, you can add as many secondary
instances as desired:

 MySQL 127.0.0.1:13000 ssl JS >
rs.addInstance('root@127.0.0.1:13002')
Adding instance to the replicaset...

* Performing validation checks

This instance reports its own address as Delly-7390:13002
Delly-7390:13002: Instance configuration is suitable.

* Checking async replication topology...

* Checking transaction state of the instance...

NOTE: The target instance 'Delly-7390:13002' has not been pre-
provisioned ↩
(GTID set is empty). The Shell is unable to decide whether
replication can ↩
completely recover its state.
The safest and most convenient way to provision a new instance is
through ↩
automatic clone provisioning, which will completely overwrite the
state of ↩
'Delly-7390:13002' with a physical snapshot from an existing
replicaset member. ↩
To use this method by default, set the 'recoveryMethod' option to
'clone'.

WARNING: It should be safe to rely on replication to
incrementally recover ↩
the state of the new instance if you are sure all updates ever
executed in ↩
the replicaset were done with GTIDs enabled, there are no purged

transactions, ↩
and the new instance contains the same GTID set as the replicaset
or a subset ↩
of it. To use this method by default, set the 'recoveryMethod'
option to 'incremental'.

Please select a recovery method [C]lone/[I]ncremental
recovery/[A]bort (default Clone):
* Updating topology
Waiting for clone process of the new member to complete. Press ^C
to abort the operation.
* Waiting for clone to finish...
NOTE: Delly-7390:13002 is being cloned from delly-7390:13000
** Stage DROP DATA: Completed
** Clone Transfer
 FILE COPY
100%
Completed
 PAGE COPY
100%
Completed
 REDO COPY
100%
Completed

NOTE: Delly-7390:13002 is shutting down...

* Waiting for server restart... ready
* Delly-7390:13002 has restarted, waiting for clone to finish...
** Stage RESTART: Completed
* Clone process has finished: 60.00 MB transferred in about 1
second (~60.00 MB/s)

** Configuring Delly-7390:13002 to replicate from Delly-
7390:13000
** Waiting for new instance to synchronize with PRIMARY...

The instance 'Delly-7390:13002' was added to the replicaset and
is replicating
from Delly-7390:13000.

Each secondary instance performs an initial data copy from the PRIMARY
member. It can copy data using either the clone plug-in or through
incremental recovery from the binary logs. For the server that already has
data, the clone method is preferable. But you may need to manually
restart the server to finish the installation. If you’ve chosen incremental

recovery, ensure that no binary log containing data is purged. Otherwise,
replication setup will fail.
Once all secondary members are added, ReplicaSet is ready and can be used
for writes and reads. You can check its status by running the
rs.status() command. It supports the extended option, controlling
verbosity of the output. Still, it doesn’t show all the information about
replication health. If you want to have all the details, use the SHOW
REPLICA STATUS command or query the Performance Schema.

If you want to change which server is a PRIMARY, use the
rs.setPrimaryInstance command. Thus,
rs.setPrimaryInstance("127.0.0.1:13002") degrades the
server to secondary when listening on port 1300, and promotes the server to
PRIMARY when listening on port 13002.
If you disconnected from a server participating in the ReplicaSet or
destroyed a ReplicaSet object, reconnect to one of the ReplicaSet
members and run the rs=dba.getReplicaSet() command to re-
create the ReplicaSet object.

WARNING
If you want to manage ReplicaSet with MySQL Shell, do not modify the replication setup directly
by running the CHANGE REPLICATION SOURCE command. All management should happen
via the Admin API in MySQL Shell.

InnoDB Cluster
To automate Group Replication, create a MySQL InnoDB Cluster. InnoDB
Cluster is a complete high-availability solution that allows you to easily
configure and administer a group of at least three MySQL Servers.
Before setting up an InnoDB Cluster, prepare the servers. Each of the
servers in the group should meet the following conditions:

Have a unique server ID

https://oreil.ly/LBvSF

Have GTID enabled
Have the disabled_storage_engines option set to
"MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"

Have the log_replica_updates option enabled

Have a user account with administrative privileges
Parallel-replication related options:

binlog_transaction_dependency_tracking=WRITESET
replica_preserve_commit_order=ON
replica_parallel_type=LOGICAL_CLOCK
transaction_write_set_extraction=XXHASH64

You can set other options (Recipe 3.12) required for Group Replication, but
they can also be configured by the MySQL Shell.
Once you have set up and started the MySQL instances, connect MySQL
Shell to the one you want to make PRIMARY and configure them. You
need to use an account (in our case, root) with administrative privileges to
start the configuration process:

 MySQL 127.0.0.1:33367 ssl JS >
dba.configureInstance('root@127.0.0.1:33367',
 -> {clusterAdmin: "grepl",
 -> clusterAdminPassword:
"greplgrepl"})
 ->
Please provide the password for 'root@127.0.0.1:33367':
Configuring local MySQL instance listening at port 33367 for use
in an InnoDB cluster...

This instance reports its own address as Delly-7390:33367
Clients and other cluster members will communicate with it
through this address by default.
If this is not correct, the report_host MySQL system variable
should be changed.
Assuming full account name 'grepl'@'%' for grepl

The instance 'Delly-7390:33367' is valid to be used in an InnoDB
cluster.

Cluster admin user 'grepl'@'%' created.

The instance 'Delly-7390:33367' is already ready to be used in an
InnoDB cluster.

Repeat the configuration for other instances in the cluster.

WARNING
If an instance is manually configured for Group Replication, MySQL Shell wouldn’t be able to
update its options and wouldn’t ensure that the Group Replication configuration persists after
restart. Always run dba.configureInstance before setting up an InnoDB Cluster.

After the instances are configured, create a cluster:

 MySQL 127.0.0.1:33367 ssl JS > var cluster =
dba.createCluster('cookbook',
 -> {localAddress: ":34367"})
 ->
A new InnoDB cluster will be created on instance
'127.0.0.1:33367'.

Validating instance configuration at 127.0.0.1:33367...

This instance reports its own address as Delly-7390:33367

Instance configuration is suitable.
Creating InnoDB cluster 'cookbook' on 'Delly-7390:33367'...

Adding Seed Instance...
Cluster successfully created. Use Cluster.addInstance() to add
MySQL instances.
At least 3 instances are needed for the cluster to be able to
withstand up to
one server failure.

Then add instances to it:
cluster.addInstance('root@127.0.0.1:33368',
{localAddress: ":34368"}). When MySQL Shell asks you to
select a recovery method, choose “Clone.” Then, depending on whether
your server supports the RESTART command, either wait until it’s back
online or start the node manually. If it’s successful, you’ll see a message
similar to this:

State recovery already finished for 'Delly-7390:33368'

The instance '127.0.0.1:33368' was successfully added to the
cluster.

Add other instances to the cluster.

TIP
MySQL Shell constructs a local address that Group nodes use to communicate with one another
by using the report_host system variable for the host address and the formula (current
port of the instance) * 10 + 1 for the port number. If the auto-generated value
exceeds 65535, the instance cannot be added to the cluster. Therefore, if you use nonstandard
ports, specify the custom value for the localAddress option.

After instances are added, InnoDB Cluster is ready to use. To examine its
status, use the cluster.status() command, which supports the
extended key, controlling verbosity of the output. The default is 0: only
basic information is printed. With option 2 and 3, you can examine which
transactions are received and applied on each member. The command
cluster.describe() gives a short overview of the cluster topology:

 MySQL 127.0.0.1:33367 ssl JS > cluster.describe()
{
 "clusterName": "cookbook",
 "defaultReplicaSet": {
 "name": "default",
 "topology": [
 {
 "address": "Delly-7390:33367",
 "label": "Delly-7390:33367",
 "role": "HA"
 },
 {
 "address": "Delly-7390:33368",
 "label": "Delly-7390:33368",
 "role": "HA"
 },
 {
 "address": "Delly-7390:33369",
 "label": "Delly-7390:33369",
 "role": "HA"

 }
],
 "topologyMode": "Single-Primary"
 }
}

If you destroyed the cluster object, for example, by closing the session,
reconnect to one of the cluster members and re-create it by running the
cluster = dba.getCluster() command.

NOTE
Both InnoDB ReplicaSet and InnoDB Cluster support the software router MySQL Router, which
you can use for load balancing. We skipped this part because it’s outside the scope of the book.
For information on how to set up the MySQL Router together with InnoDB ReplicaSet and
InnoDB Cluster, consult the User Reference Manual.

See Also
For additional information about replication automation, see the MySQL
Shell Reference Manual.

https://oreil.ly/sbU3m
https://oreil.ly/aP1DS

Chapter 4. Writing MySQL-
Based Programs

4.0 Introduction
This chapter discusses how to use MySQL from within the context of a
general-purpose programming language. It covers basic application
programming interface (API) operations that are fundamental to and form
the basis for the programming recipes developed in later chapters. These
operations include connecting to the MySQL server, executing statements,
and retrieving the results.
MySQL-based client programs can be written using many languages. This
book covers the languages and interfaces shown in Table 4-1 (for
information on obtaining the interface software, see the Preface).

Table 4-1.
Languages and

interfaces covered
in this book

Language Interface
Perl Perl DBI

Ruby Mysql2 gem

PHP PDO

Python DB-API

Go Go sql

Java JDBC

MySQL client APIs provide the following capabilities, each covered in a
section of this chapter:

Connecting to the MySQL server, selecting a database, and disconnecting
from the server

Every program that uses MySQL must first establish a connection to the
server. Most programs also select a default database, and well-behaved
MySQL programs close the connection to the server when they’re done
with it.

Checking for errors
Any database operation can fail. If you know how to find out when that
occurs and why, you can take appropriate action, such as terminating the
program or informing the user of the problem.

Executing SQL statements and retrieving results
The point of connecting to a database server is to execute SQL
statements. Each API provides at least one way to do this, as well as
methods for processing statement results.

Handling special characters and NULL values in statements
Data values can be embedded directly in statement strings. However,
some characters such as quotes and backslashes have special meaning,
and their use requires certain precautions. The same is true for NULL
values. If you handle these improperly, your programs will generate
SQL statements that are erroneous or yield unexpected results. If you
incorporate data from external sources into queries, your program might
become subject to SQL injection attacks. Most APIs enable you to
avoid these problems by using placeholders, which refer to data values
symbolically in a statement to be executed and supply those values
separately. The API inserts data into the statement string after properly
encoding any special characters or NULL values. Placeholders are also
known as parameter markers.

Identifying NULL values in result sets
NULL values are special not only when you construct statements but
also in the results returned from them. Each API provides a convention

for recognizing and dealing with them.
No matter which programming language you use, it’s necessary to know
how to perform each of the fundamental database API operations just
described, so this chapter shows each operation in all five languages. Seeing
how each API handles a given operation should help you see the
correspondences between APIs more easily and better understand the
recipes shown in the following chapters, even if they’re written in a
language you don’t use much. (Later chapters usually implement recipes
using only one or two languages.)
It may seem overwhelming to see each recipe in several languages if your
interest is in only one particular API. If so, we advise you to read just the
introductory recipe part that provides the general background, then go
directly to the section for the language in which you’re interested. Skip the
other languages; should you develop an interest in them later, come back
and read about them then.
This chapter also discusses the following topics, which are not directly part
of the MySQL APIs but help you use them more easily:

Writing library files
As you write program after program, you find that you carry out certain
operations repeatedly. Library files enable encapsulating code for those
operations so they can be performed easily from multiple scripts
without repeating the code in each one. This reduces code duplication
and makes your programs more portable. This chapter shows how to
write a library file for each API that includes a routine for connecting to
the server—one operation that every program that uses MySQL must
perform. Later chapters develop additional library routines for other
operations.

Additional techniques for obtaining connection parameters
An early section on establishing connections to the MySQL server relies
on connection parameters hardwired into the code. However, there are
other (and better) ways to obtain parameters, ranging from storing them
in a separate file to enabling the user to specify them at runtime.

To avoid manually typing in the example programs, get a copy of the
recipes source distribution (see the Preface). Then, when an example
says something like “Create a file named xyz that contains the following
information,” you can use the corresponding file from the recipes
distribution. Most scripts for this chapter are located under the api
directory; library files are located in the lib directory.
The primary table used for examples in this chapter is named profile. It
first appears in Recipe 4.4, which you should know in case you skip around
in the chapter and wonder where it came from. See also the section at the
very end of the chapter about resetting the profile table to a known state
for use in other chapters.

NOTE
The programs discussed here can be run from the command line. For instructions on invoking
programs for each language covered here, read cmdline.pdf in the recipes distribution.

Assumptions
To use the material in this chapter most effectively, make sure to satisfy
these requirements:

Install MySQL programming support for any languages that you plan to
use (see the Preface).
You should already have set up a MySQL user account for accessing the
server and a database for executing SQL statements. As described in
Recipe 1.1, the examples in this book use a MySQL account that has a
username and password of cbuser and cbpass, and we’ll connect to
a MySQL server running on the local host to access a database named
cookbook. To create the account or the database, see the instructions in
that recipe.
The discussion here shows how to use each API language to perform
database operations but assumes a basic understanding of the language

itself. If a recipe uses programming constructs with which you’re
unfamiliar, consult a general reference for the language of interest.
Proper execution of some of the programs might require that you set
certain environment variables. General syntax for doing so is covered in
cmdline.pdf in the recipes distribution (see the Preface). For details
about environment variables that apply specifically to library file
locations, see Recipe 4.3.

MySQL Client API Architecture
Each MySQL programming interface covered in this book uses a two-level
architecture:

The upper level provides database-independent methods that implement
database access in a portable way that’s the same whether you use
MySQL, PostgreSQL, Oracle, or whatever.
The lower level consists of a set of drivers, each of which implements
the details for a single database system.

This two-level architecture enables application programs to use an abstract
interface not tied to details specific to any particular database server. This
enhances portability of your programs: to use a different database system,
just select a different lower-level driver. However, perfect portability is
elusive:

The interface methods provided by the upper level of the architecture are
consistent regardless of the driver you use, but it’s still possible to write
SQL statements that use constructs supported only by a particular server.
For example, MySQL has SHOW statements that provide information
about database and table structure, but using SHOW with a non-MySQL
server likely will produce an error.
Lower-level drivers often extend the abstract interface to make it more
convenient to access database-specific features. For example, the
MySQL driver for Perl DBI makes the most recent AUTO_INCREMENT
value available as a database handle attribute accessible as $dbh->

{mysql_insertid}. Such features make a program easier to write
but less portable. To use the program with another database system will
require some rewriting.

Despite these factors that compromise portability to some extent, the
general portability characteristics of the two-level architecture provide
significant benefits for MySQL developers.
Another characteristic common to the APIs used in this book is that they are
object oriented. Whether you write in Perl, Ruby, PHP, Python, Java, or Go,
the operation that connects to the MySQL server returns an object that
enables you to process statements in an object-oriented manner. For
example, when you connect to the database server, you get a database
connection object with which to further interact with the server. The
interfaces also provide objects for statements, result sets, metadata, and so
forth.
Now let’s see how to use these programming interfaces to perform the most
fundamental MySQL operations: connecting to and disconnecting from the
server.

4.1 Connecting, Selecting a Database, and
Disconnecting

Problem
You need to establish a connection to the database server and shut down the
connection when you’re done.

Solution
Each API provides routines for connecting and disconnecting. The
connection routines require that you provide parameters specifying the host
on which the MySQL server is running and the MySQL account to use. You
can also select a default database.

Discussion
This section shows how to perform some fundamental operations common
to most MySQL programs:

Establishing a connection to the MySQL server
Every program that uses MySQL does this, no matter which API you
use. The details on specifying connection parameters vary between
APIs, and some APIs provide more flexibility than others. However,
there are many common parameters, such as the host on which the
server is running, and the username and password of the MySQL
account to use for accessing the server.

Selecting a database
Most MySQL programs select a default database.

Disconnecting from the server
Each API provides a way to close an open connection. It’s best to do so
as soon as you’re done using the server. If your program holds the
connection open longer than necessary, the server cannot free up
resources allocated to servicing the connection. It’s also preferable to
close the connection explicitly. If a program simply terminates, the
MySQL server eventually notices, but an explicit close on the user end
enables the server to perform an immediate orderly close on its end.

This section includes example programs that show how to use each API to
connect to the server, select the cookbook database, and disconnect. The
discussion for each API also indicates how to connect without selecting any
default database. This might be the case if you plan to execute a statement
that doesn’t require a default database, such as SHOW VARIABLES or
SELECT VERSION(). Or perhaps you’re writing a program that enables
the user to specify the database after the connection has been made.

TIP
The scripts shown here use localhost as the hostname. If they produce a connection error
indicating that a socket file cannot be found, try changing localhost to 127.0.0.1, the
TCP/IP address of the local host. This tip applies throughout the book.

Perl
To write MySQL scripts in Perl, the DBI module must be installed, as well
as the MySQL-specific driver module, DBD::mysql. To obtain these
modules if they’re not already installed, see the Preface.
The following Perl script, connect.pl, connects to the MySQL server, selects
cookbook as the default database, and disconnects:

#!/usr/bin/perl
connect.pl: connect to the MySQL server

use strict;
use warnings;
use DBI;

my $dsn = "DBI:mysql:host=localhost;database=cookbook";
my $dbh = DBI->connect ($dsn, "cbuser", "cbpass")
 or die "Cannot connect to server\n";
print "Connected\n";
$dbh->disconnect ();
print "Disconnected\n";

To try connect.pl, locate it under the api directory of the recipes
distribution and run it from the command line. The program should print
two lines indicating that it connected and disconnected successfully:

$ perl connect.pl
Connected
Disconnected

In the rest of the section, we will walk through the code and explain how it
works.

TIP
If you get an Access Denied error when you connect to MySQL 8.0, ensure that the version
of DBD::MySQL is linked with the MySQL 8.0 client library, or use the authentication plug-in
mysql_native_password instead of the default caching_sha2_password plug-in. We
discuss authentication plug-ins in Recipe 24.2.

For background on running Perl programs, read cmdline.pdf in the
recipes distribution (see the Preface).
The use strict line turns on strict variable checking and causes Perl to
complain about any variables that are used without having been declared
first. This precaution helps find errors that might otherwise go undetected.
The use warnings line turns on warning mode so that Perl produces
warnings for any questionable constructs. Our example script has none, but
it’s a good idea to get in the habit of enabling warnings to catch problems
that occur during the script development process. use warnings is
similar to specifying the Perl -w command-line option but provides more
control over which warnings to display. (For more information, execute a
perldoc warnings command.)

The use DBI statement tells Perl to load the DBI module. It’s unnecessary
to load the MySQL driver module (DBD::mysql) explicitly. DBI does that
itself when the script connects to the database server.
The next two lines establish the connection to MySQL by setting up a data
source name (DSN) and calling the DBI connect() method. The
arguments to connect() are the DSN, the MySQL username and
password, and any connection attributes you want to specify. The DSN is
required. The other arguments are optional, although usually it’s necessary
to supply a username and password.
The DSN specifies which database driver to use and other options that
indicate where to connect. For MySQL programs, the DSN has the format
DBI:mysql:options. The second colon in the DSN is required even if
you specify no following options.

Use the DSN components as follows:
The first component is always DBI. It’s not case sensitive.

The second component tells DBI which database driver to use, and it is
case sensitive. For MySQL, the name must be mysql.

The third component, if present, is a semicolon-separated list of
name=value pairs that specify additional connection options, in any
order. For our purposes, the two most relevant options are host and
database, to specify the hostname where the MySQL server is
running and the default database.

Based on that information, the DSN for connecting to the cookbook
database on the local host localhost looks like this:

DBI:mysql:host=localhost;database=cookbook

If you omit the host option, its default value is localhost. These two
DSNs are equivalent:

DBI:mysql:host=localhost;database=cookbook
DBI:mysql:database=cookbook

To select no default database, omit the database option.

The second and third arguments of the connect() call are your MySQL
username and password. Following the password, you can also provide a
fourth argument to specify attributes that control DBI’s behavior when
errors occur. With no attributes, DBI by default prints error messages when
errors occur but does not terminate your script. That’s why connect.pl
checks whether connect() returns undef, which indicates failure:

my $dbh = DBI->connect ($dsn, "cbuser", "cbpass")
 or die "Cannot connect to server\n";

Other error-handling strategies are possible. For example, to tell DBI to
terminate the script if an error occurs in any DBI call, disable the
PrintError attribute and enable RaiseError instead:

my $dbh = DBI->connect ($dsn, "cbuser", "cbpass",
 {PrintError => 0, RaiseError => 1});

Then you need not check for errors yourself. The trade-off is that you also
lose the ability to decide how your program recovers from errors. Recipe
4.2 discusses error handling further.
Another common attribute is AutoCommit, which sets the connection’s
auto-commit mode for transactions. MySQL enables this by default for new
connections, but we’ll set it from this point on to make the initial
connection state explicit:

my $dbh = DBI->connect ($dsn, "cbuser", "cbpass",
 {PrintError => 0, RaiseError => 1,
AutoCommit => 1});

As shown, the fourth argument to connect() is a reference to a hash of
attribute name/value pairs. An alternative way of writing this code follows:

my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit =>
1};
my $dbh = DBI->connect ($dsn, "cbuser", "cbpass", $conn_attrs);

Use whichever style you prefer. Scripts in this book use the $conn_attr
hashref to make connect() calls simpler to read.

Assuming that connect() succeeds, it returns a database handle that
contains information about the state of the connection. (In DBI parlance,
references to objects are called handles.) Later we’ll see other handles, such
as statement handles, which are associated with particular statements. Perl
DBI scripts in this book conventionally use $dbh and $sth to signify
database and statement handles.
To specify the path to a socket file for localhost connections on Unix,
provide a mysql_socket option in the DSN:

my $dsn = "DBI:mysql:host=localhost;database=cookbook"
 . ";mysql_socket=/var/tmp/mysql.sock";

To specify the port number for non-localhost (TCP/IP) connections, provide
a port option:

my $dsn = "DBI:mysql:host=127.0.0.1;database=cookbook;port=3307";

Ruby
To write MySQL scripts in Ruby, the Mysql2 gem must be installed. To
obtain this gem if it is not already installed, see the Preface.
The following Ruby script, connect.rb, connects to the MySQL server,
selects cookbook as the default database, and disconnects:

#!/usr/bin/ruby -w
connect.rb: connect to the MySQL server

require "mysql2"

begin
 client = Mysql2::Client.new(:host => "localhost",
 :username => "cbuser",
 :password => "cbpass",
 :database => "cookbook")
 puts "Connected"
rescue => e
 puts "Cannot connect to server"
 puts e.backtrace
 exit(1)
ensure
 client.close()
 puts "Disconnected"
end

To try connect.rb, locate it under the api directory of the recipes
distribution and run it from the command line. The program should print
two lines indicating that it connected and disconnected successfully:

$ ruby connect.rb
Connected
Disconnected

For background on running Ruby programs, read cmdline.pdf in the
recipes distribution (see the Preface).

The -w option turns on warning mode so that Ruby produces warnings for
any questionable constructs. Our example script has no such constructs, but
it’s a good idea to get in the habit of using -w to catch problems that occur
during the script development process.
The require statement tells Ruby to load the Mysql2 module.

To establish the connection, create a Mysql2::Client object. Pass
connection parameters as named arguments for the method new.

To select no default database, omit the database option.

Assuming that the Mysql2::Client object is successfully created, it
will act as a database handle that contains information about the state of the
connection. Ruby scripts in this book conventionally use client to
signify a database handle object.
If the new() method fails, it raises an exception. To handle exceptions, put
the statements that might fail inside a begin block, and use a rescue
clause that contains the error-handling code. Exceptions that occur at the
top level of a script (that is, outside of any begin block) are caught by the
default exception handler, which prints a stack trace and exits. Recipe 4.2
discusses error handling further.
To specify the path to a socket file for localhost connections on Unix,
provide a socket option for the method new:

client = Mysql2::Client.new(:host => "localhost",
 :socket => "/var/tmp/mysql.sock",
 :username => "cbuser",
 :password => "cbpass",
 :database => "cookbook")

To specify the port number for non-localhost (TCP/IP) connections, provide
a port option:

client = Mysql2::Client.new(:host => "127.0.0.1",
 :port => 3307,
 :username => "cbuser",
 :password => "cbpass",
 :database => "cookbook")

PHP
To write PHP scripts that use MySQL, your PHP interpreter must have
MySQL support compiled in. If your scripts are unable to connect to your
MySQL server, check the instructions included with your PHP distribution
to see how to enable MySQL support.
PHP actually has multiple extensions that enable the use of MySQL, such
as mysql, the original (and now deprecated) MySQL extension; mysqli,
the “MySQL improved” extension; and, more recently, the MySQL driver
for the PDO (PHP Data Objects) interface. PHP scripts in this book use
PDO. To obtain PHP and PDO if they’re not already installed, see the
Preface.
PHP scripts usually are written for use with a web server. I assume that if
you use PHP that way, you can copy PHP scripts into your server’s
document tree, and request them from your browser, and they will execute.
For example, if you run Apache as the web server on the host localhost and
you install a PHP script named myscript.php at the top level of the
Apache document tree, you should be able to access the script by requesting
this URL:

http://localhost/myscript.php

This book uses the .php extension (suffix) for PHP script filenames, so your
web server must be configured to recognize the .php extension. Otherwise,
when you request a PHP script from your browser, the server simply sends
the literal text of the script and that’s what appears in your browser window.
You don’t want this to happen, particularly if the script contains the
username and password for connecting to MySQL.
PHP scripts often are written as a mixture of HTML and PHP code, with the
PHP code embedded between the special <?php and ?> tags. Here is an
example:

<html>
<head><title>A simple page</title></head>
<body>

<p>
<?php
 print ("I am PHP code, hear me roar!");
?>
</p>
</body>
</html>

For brevity in examples consisting entirely of PHP code, typically I’ll omit
the enclosing <?php and ?> tags. If you see no tags in a PHP example,
assume that <?php and ?> surround the entire block of code that is shown.
Examples that switch between HTML and PHP code do include the tags, to
make it clear what is PHP code and what is not.
PHP can be configured to recognize “short” tags as well, written as <? and
?>. This book does not assume that you have short tags enabled and does
not use them.
The following PHP script, connect.php, connects to the MySQL server,
selects cookbook as the default database, and disconnects:

<?php
connect.php: connect to the MySQL server

try
{
 $dsn = "mysql:host=localhost;dbname=cookbook";
 $dbh = new PDO ($dsn, "cbuser", "cbpass");
 print ("Connected\n");
}
catch (PDOException $e)
{
 die ("Cannot connect to server\n");
}
$dbh = NULL;
print ("Disconnected\n");
?>

To try connect.php, locate it under the api directory of the recipes
distribution, copy it to your web server’s document tree, and request it using
your browser. Alternatively, if you have a standalone version of the PHP
interpreter for use from the command line, execute the script directly:

$ php connect.php
Connected
Disconnected

For background on running PHP programs, read cmdline.pdf in the
recipes distribution (see the Preface).
$dsn is the data source name (DSN) that indicates how to connect to the
database server. It has this general syntax:

driver:name=value;name=value ...

The driver value is the PDO driver type. For MySQL, this is mysql.

Following the driver name, semicolon-separated name=value pairs
specify connection parameters, in any order. For our purposes, the two most
relevant options are host and dbname, to specify the hostname where the
MySQL server is running and the default database. To select no default
database, omit the dbname option.

To establish the connection, invoke the new PDO() class constructor,
passing to it the appropriate arguments. The DSN is required. The other
arguments are optional, although usually it’s necessary to supply a
username and password. If the connection attempt succeeds, new PDO()
returns a database-handle object that is used to access other MySQL-related
methods. PHP scripts in this book conventionally use $dbh to signify a
database handle.
If the connection attempt fails, PDO raises an exception. To handle this, put
the connection attempt within a try block and use a catch block that
contains the error-handling code, or just let the exception terminate your
script. Recipe 4.2 discusses error handling further.
To disconnect, set the database handle to NULL. There is no explicit
disconnect call.
To specify the path to a socket file for localhost connections on Unix,
provide a unix_socket option in the DSN:

$dsn = "mysql:host=localhost;dbname=cookbook"
 . ";unix_socket=/var/tmp/mysql.sock";

To specify the port number for non-localhost (TCP/IP) connections, provide
a port option:

$dsn = "mysql:host=127.0.0.1;database=cookbook;port=3307";

Python
To write MySQL programs in Python, a module must be installed that
provides MySQL connectivity for the Python DB API, also known as
Python Database API Specification v2.0 (PEP 249). This book uses
MySQL Connector/Python. To obtain it if it’s not already installed, see the
Preface.
To use the DB API, import the database driver module that you want to use
(which is mysql.connector for MySQL programs that use
Connector/Python). Then create a database connection object by calling the
driver’s connect() method. This object provides access to other DB API
methods, such as the close() method that serves the connection to the
database server.
The following Python script, connect.py, connects to the MySQL server,
selects cookbook as the default database, and disconnects:

#!/usr/bin/python3
connect.py: connect to the MySQL server

import mysql.connector

try:
 conn = mysql.connector.connect(database="cookbook",
 host="localhost",
 user="cbuser",
 password="cbpass")
 print("Connected")
except:
 print("Cannot connect to server")
else:
 conn.close()
 print("Disconnected")

To try connect.py, locate it under the api directory of the recipes
distribution and run it from the command line. The program should print
two lines indicating that it connected and disconnected successfully:

$ python3 connect.py
Connected
Disconnected

For background on running Python programs, read cmdline.pdf in the
recipes distribution (see the Preface).
The import line tells Python to load the mysql.connector module.
Then the script attempts to establish a connection to the MySQL server by
calling connect() to obtain a connection object. Python scripts in this
book conventionally use conn to signify connection objects.

If the connect() method fails, Connector/Python raises an exception. To
handle exceptions, put the statements that might fail inside a try statement
and use an except clause that contains the error-handling code.
Exceptions that occur at the top level of a script (that is, outside of any try
statement) are caught by the default exception handler, which prints a stack
trace and exits. Recipe 4.2 discusses error handling further.
The else clause contains statements that execute if the try clause
produces no exception. It’s used here to close the successfully opened
connection.
Because the connect() call uses named arguments, their order does not
matter. If you omit the host argument from the connect() call, its
default value is 127.0.0.1. To select no default database, omit the
database argument or pass a database value of "" (the empty string)
or None.

Another way to connect is to specify the parameters using a Python
dictionary and pass the dictionary to connect():

conn_params = {
 "database": "cookbook",
 "host": "localhost",

 "user": "cbuser",
 "password": "cbpass",
}
conn = mysql.connector.connect(**conn_params)
print("Connected")

This book generally uses that style from now on.
To specify the path to a socket file for local host connections on Unix, omit
the host parameter and provide a unix_socket parameter:

conn_params = {
 "database": "cookbook",
 "unix_socket": "/var/tmp/mysql.sock",
 "user": "cbuser",
 "password": "cbpass",
}
conn = mysql.connector.connect(**conn_params)
print("Connected")

To specify the port number for TCP/IP connections, include the host
parameter and provide an integer-valued port parameter:

conn_params = {
 "database": "cookbook",
 "host": "127.0.0.1",
 "port": 3307,
 "user": "cbuser",
 "password": "cbpass",
}
conn = mysql.connector.connect(**conn_params)

Go
To write MySQL programs in Go, a Go SQL Driver must be installed. This
book uses Go-MySQL-Driver. To obtain it if it’s not already installed,
install Git, then issue the following command:

$ go get -u github.com/go-sql-driver/mysql

To use the Go SQL interface, import the database/sql package and
your driver package. Then create a database connection object by calling

https://github.com/go-sql-driver/mysql

the sql.Open() function. This object provides access to other
database/sql package functions, such as the db.Close() that closes
the connection to the database server. We also use a defer statement to
call the db.Close() to make sure the function call is performed later in
the program execution. You will see this usage throughout this chapter.

TIP
The Go database/sql package and the Go-MySQL-Driver support context cancellation. This
means that you can cancel database operations, such as running a query, if you cancel the context.
To use this feature, you need to call context-aware functions of the sql interface. For brevity, we
didn’t use Context in our examples in this chapter. We include an example using Context
when we discuss transaction handling in Recipe 20.9.

The following Go script, connect.go, connects to the MySQL server, selects
cookbook as the default database, and disconnects:

// connect.go: connect to MySQL server
package main

import (
 "database/sql"
 "fmt"
 "log"

 _ "github.com/go-sql-driver/mysql"
)

func main() {

 db, err := sql.Open("mysql",
"cbuser:cbpass@tcp(127.0.0.1:3306)/cookbook")

 if err != nil {
 log.Fatal(err)
 }
 defer db.Close()

 err = db.Ping()

 if err != nil {
 log.Fatal(err)

 }

 fmt.Println("Connected!")
}

To try connect.go, locate it under the api/01_connect directory of the
recipes distribution and run it from the command line. The program
should print a single line indicating that it connected:

$ go run connect.go
Connected!

The import line tells Go to load the go-sql-driver/mysql package.
Then the script validates connection parameters and obtains a connection
object by calling sql.Open(). No MySQL connection established yet!

If the sql.Open() method fails, go-sql-driver/mysql returns an
error. To handle the error, store it into a variable (in our example err) and
use an if block that contains the error-handling code. Recipe 4.2 discusses
error handling further.
The db.Ping() call establishes the database connection. Only then can
we say that we connected to the MySQL server successfully.
To specify the path to a socket file for local host connections on Unix, omit
the tcp parameter in the DSN and provide a unix parameter:

// connect_socket.go : Connect MySQL server using socket
package main

import (
 "database/sql"
 "fmt"
 "log"

 _ "github.com/go-sql-driver/mysql"
)

func main() {
 db, err :=
sql.Open("mysql","cbuser:cbpass@unix(/tmp/mysql.sock)/cookbook")
 defer db.Close()

 if err != nil {
 log.Fatal(err)
 }

 var user string
 err = db.QueryRow("SELECT USER()").Scan(&user)

 if err != nil {
 log.Fatal(err)
 }

 fmt.Println("Connected User:", user, "via MySQL socket")
}

Run this program:

$ go run connect_socket.go
Connected User: cbuser@localhost via MySQL socket

To specify the port number for TCP/IP connections, include the tcp
parameter into the DSN and provide an integer-valued port port number:

// connect_tcpport.go : Connect MySQL server using tcp port
number
package main

import (
 "database/sql"
 "fmt"
 "log"

 _ "github.com/go-sql-driver/mysql"
)

func main() {
 db, err := sql.Open("mysql",
 "cbuser:cbpass@tcp(127.0.0.1:3306)/cookbook?
charset=utf8mb4")

 if err != nil {
 log.Fatal(err)
 }

 var user string
 err2 := db.QueryRow("SELECT USER()").Scan(&user)

 if err2 != nil {
 log.Fatal(err2)
 }

 fmt.Println("Connected User:", user, "via MySQL TCP/IP
localhost on port 3306")
}

Run this program:

$ go run connect_tcpport.go
Connected User: cbuser@localhost via MySQL TCP/IP localhost on
port 3306

Go accepts a DSN (Data Source Name) in this form:

[username[:password]@][protocol[(address)]]/dbname[?
param1=value1&..¶mN=valueN]

Where protocol could be either tcp or unix.

A DSN in its fullest form is as follows:

username:password@protocol(address)/dbname?param=value

Java
Database programs in Java use the JDBC interface, together with a driver
for the particular database engine you want to access. That is, the JDBC
architecture provides a generic interface used in conjunction with a
database-specific driver.
Java programming requires a Java Development Kit (JDK), and you must
set your JAVA_HOME environment variable to the location where your JDK
is installed. To write MySQL-based Java programs, you’ll also need a
MySQL-specific JDBC driver. Programs in this book use MySQL
Connector/J. To obtain it if it’s not already installed, see the Preface. For
information about obtaining a JDK and setting JAVA_HOME, read
cmdline.pdf in the recipes distribution (see the Preface).

The following Java program, Connect.java, connects to the MySQL server,
selects cookbook as the default database, and disconnects:

// Connect.java: connect to the MySQL server

import java.sql.*;

public class Connect {

 public static void main (String[] args) {
 Connection conn = null;
 String url = "jdbc:mysql://localhost/cookbook";
 String userName = "cbuser";
 String password = "cbpass";

 try {
 conn = DriverManager.getConnection (url, userName,
password);
 System.out.println("Connected");
 } catch (Exception e) {
 System.err.println("Cannot connect to server");
 System.exit (1);
 }

 if (conn != null) {
 try {
 conn.close();
 System.out.println("Disconnected");
 } catch (Exception e) { /* ignore close errors */ }
 }
 }
}

To try Connect.java, locate it under the api directory of the recipes
distribution, compile it, and execute it. The class statement indicates the
program’s name, which in this case is Connect. The name of the file
containing the program must match this name and include a .java extension,
so the filename for the program is Connect.java. Compile the program
using javac:

$ javac Connect.java

If you prefer a different Java compiler, substitute its name for javac.

The Java compiler generates compiled byte code to produce a class file
named Connect.class. Use the java program to run the class file (specified
without the .class extension). The program should print two lines indicating
that it connected and disconnected successfully:

$ java Connect
Connected
Disconnected

You might need to set your CLASSPATH environment variable before the
example program will compile and run. The value of CLASSPATH should
include at least your current directory (.) and the path to the Connector/J
JDBC driver. For background on running Java programs or setting
CLASSPATH, read cmdline.pdf in the recipes distribution (see the
Preface).

TIP
Starting from Java 11, you can skip the javac call for a single-file program and run it as:

$ java Connect.java
Connected
Disconnected

The import java.sql.* statement references the classes and interfaces
that provide access to the data types used to manage different aspects of
your interaction with the database server. These are required for all JDBC
programs.
To connect to the server, call DriverManager.getConnection() to
initiate the connection and obtain a Connection object that maintains
information about the state of the connection. Java programs in this book
conventionally use conn to signify connection objects.

DriverManager.getConnection() takes three arguments: a URL
that describes where to connect and the database to use, the MySQL
username, and the password. The URL string has this format:

jdbc:driver://host_name/db_name

This format follows the Java convention that the URL for connecting to a
network resource begins with a protocol designator. For JDBC programs,
the protocol is jdbc, and you’ll also need a subprotocol designator that
specifies the driver name (mysql, for MySQL programs). Many parts of
the connection URL are optional, but the leading protocol and subprotocol
designators are not. If you omit host_name, the default host value is
localhost. To select no default database, omit the database name.
However, you should not omit any of the slashes in any case. For example,
to connect to the local host without selecting a default database, the URL is
the following:

jdbc:mysql:///

In JDBC, you don’t test method calls for return values that indicate an error.
Instead, provide handlers to be called when exceptions are thrown. Recipe
4.2 discusses error handling further.
Some JDBC drivers (Connector/J among them) permit you to specify the
username and password as parameters at the end of the URL. In this case,
omit the second and third arguments of the getConnection() call.
Using that URL style, write the code that establishes the connection in the
example program like this:

// connect using username and password included in URL
Connection conn = null;
String url = "jdbc:mysql://localhost/cookbook?
user=cbuser&password=cbpass";

try
{
 conn = DriverManager.getConnection (url);

 System.out.println ("Connected");
}

The character that separates the user and password parameters should
be &, not ;.

Connector/J does not natively support Unix domain socket file connections,
so even connections for which the hostname is localhost are made via
TCP/IP. To specify an explicit port number, add :port_num to the
hostname in the connection URL:

String url = "jdbc:mysql://127.0.0.1:3307/cookbook";

However, you can use third-party libraries that provide support for
connections via a socket. See “Connecting Using Unix Domain Sockets” in
the Reference Manual for details.

4.2 Checking for Errors

Problem
Something went wrong with your program, and you don’t know what.

Solution
Everyone has problems getting programs to work correctly. But if you don’t
anticipate problems by checking for errors, the job becomes much more
difficult. Add some error-checking code so your programs can help you
figure out what went wrong.

Discussion
After working through Recipe 4.1, you know how to connect to the MySQL
server. It’s also a good idea to know how to check for errors and how to
retrieve specific error information from the API, so we cover that next.
You’re probably anxious to do more interesting things (such as executing

https://oreil.ly/grJEd

statements and getting back the results), but error checking is fundamentally
important. Programs sometimes fail, especially during development, and if
you can’t determine why failures occur, you’re flying blind. Plan for failure
by checking for errors so that you can take appropriate action.
When an error occurs, MySQL provides three values:

A MySQL-specific error number
A MySQL-specific descriptive text error message
A five-character SQLSTATE error code defined according to the ANSI
and ODBC standards

This recipe shows how to access this information. The example programs
are deliberately designed to fail so that the error-handling code executes.
That’s why they attempt to connect using a username and password of
baduser and badpass.

TIP
A general debugging aid not specific to any API is to use the available logs. Check the MySQL
server’s general query log to see what statements the server is receiving. (This requires that log to
be enabled; see Recipe 22.3.) The general query log might show that your program is not
constructing the SQL statement string you expect. Similarly, if you run a script under a web server
and it fails, check the web server’s error log.

Perl
The DBI module provides two attributes that control what happens when
DBI method invocations fail:

PrintError, if enabled, causes DBI to print an error message using
warn().

RaiseError, if enabled, causes DBI to print an error message using
die(). This terminates your script.

By default, PrintError is enabled and RaiseError is disabled, so a
script continues executing after printing a message if an error occurs. Either

or both attributes can be specified in the connect() call. Setting an
attribute to 1 or 0 enables or disables it, respectively. To specify either or
both attributes, pass them in a hash reference as the fourth argument to the
connect() call.

The following code sets only the AutoCommit attribute and uses the
default settings for the error-handling attributes. If the connect() call
fails, a warning message results, but the script continues to execute:

my $conn_attrs = {AutoCommit => 1};
my $dbh = DBI->connect ($dsn, "baduser", "badpass", $conn_attrs);

Because you really can’t do much if the connection attempt fails, it’s often
prudent to exit instead after DBI prints a message:

my $conn_attrs = {AutoCommit => 1};
my $dbh = DBI->connect ($dsn, "baduser", "badpass", $conn_attrs)
 or exit;

To print your own error messages, leave RaiseError disabled and
disable PrintError as well. Then test the results of DBI method calls
yourself. When a method fails, the $DBI::err, $DBI::errstr, and
$DBI::state variables contain the MySQL error number, a descriptive
error string, and the SQLSTATE value, respectively:

my $conn_attrs = {PrintError => 0, AutoCommit => 1};
my $dbh = DBI->connect ($dsn, "baduser", "badpass", $conn_attrs)
 or die "Connection error: "
 . "$DBI::errstr ($DBI::err/$DBI::state)\n";

If no error occurs, $DBI::err is 0, or undef; $DBI::errstr is the
empty string, or undef; and $DBI::state is empty, or 00000.

When you check for errors, access these variables immediately after
invoking the DBI method that sets them. If you invoke another method
before using them, DBI resets their values.
If you print your own messages, the default settings (PrintError
enabled, RaiseError disabled) are not so useful. DBI prints a message

automatically, then your script prints its own message. This is redundant, as
well as confusing to the person using the script.
If you enable RaiseError, you can call DBI methods without checking
for return values that indicate errors. If a method fails, DBI prints an error
and terminates your script. If the method returns, you can assume it
succeeded. This is the easiest approach for script writers: let DBI do all the
error checking! However, if both PrintError and RaiseError are
enabled, DBI may call warn() and die() in succession, resulting in
error messages being printed twice. To avoid this problem, disable
PrintError whenever you enable RaiseError:

my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit =>
1};
my $dbh = DBI->connect ($dsn, "baduser", "badpass", $conn_attrs);

This book generally uses that approach. If you don’t want the all-or-nothing
behavior of enabling RaiseError for automatic error checking versus
having to do all your own checking, adopt a mixed approach. Individual
handles have PrintError and RaiseError attributes that can be
enabled or disabled selectively. For example, you can enable RaiseError
globally by turning it on when you call connect(), and then disable it
selectively on a per-handle basis.
Suppose that a script reads the username and password from the command-
line arguments and then loops while the user enters statements to be
executed. In this case, you’d probably want DBI to die and print the error
message automatically if the connection fails (you cannot proceed to the
statement-execution loop in that case). After connecting, however, you
wouldn’t want the script to exit just because the user enters a syntactically
invalid statement. Instead, print an error message and loop to get the next
statement. The following code shows how to do this. The do() method
used in the example executes a statement and returns undef to indicate an
error:

my $user_name = shift (@ARGV);
my $password = shift (@ARGV);

my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit =>
1};
my $dbh = DBI->connect ($dsn, $user_name, $password,
$conn_attrs);
$dbh->{RaiseError} = 0; # disable automatic termination on error
print "Enter statements to execute, one per line; terminate with
Control-D\n";
while (<>) # read and execute queries
{
 $dbh->do ($_) or warn "Statement failed: $DBI::errstr
($DBI::err)\n";
}

If RaiseError is enabled, you can execute code within an eval block to
trap errors without terminating your program. If an error occurs, eval
returns a message in the $@ variable:

eval
{
 # statements that might fail go here...
};
if ($@)
{
 print "An error occurred: $@\n";
}

This eval technique is commonly used to perform transactions (see Recipe
20.4).
Using RaiseError in combination with eval differs from using
RaiseError alone:

Errors terminate only the eval block, not the entire script.

Any error terminates the eval block, whereas RaiseError applies
only to DBI-related errors.

When you use eval with RaiseError enabled, disable PrintError.
Otherwise, in some versions of DBI, an error may simply cause warn() to
be called without terminating the eval block as you expect.

In addition to using the error-handling attributes PrintError and
RaiseError, lots of information about your script’s execution is

available using DBI’s tracing mechanism. Invoke the trace() method
with an argument indicating the trace level. Levels 1 to 9 enable tracing
with increasingly more verbose output, and level 0 disables tracing:

DBI->trace (1); # enable tracing, minimal output
DBI->trace (3); # elevate trace level
DBI->trace (0); # disable tracing

Individual database and statement handles also have trace() methods, so
you can localize tracing to a single handle if you want.
Trace output normally goes to your terminal (or, in the case of a web script,
to the web server’s error log). To write trace output to a specific file,
provide a second argument that indicates the filename:

DBI->trace (1, "/tmp/trace.out");

If the trace file already exists, its contents are not cleared first; trace output
is appended to the end. Beware of turning on a file trace while developing a
script but forgetting to disable the trace when you put the script into
production. You’ll eventually find to your chagrin that the trace file has
become quite large. Or worse, a filesystem will fill up, and you’ll have no
idea why!

Ruby
Ruby signals errors by raising exceptions, and Ruby programs handle errors
by catching exceptions in a rescue clause of a begin block. Ruby
Mysql2 methods raise exceptions when they fail and provide error
information by means of a Mysql2::Error object. To get the MySQL
error number, error message, and SQLSTATE value, access the errno,
message, and sql_state methods of this object. The following
example shows how to trap exceptions and access error information in a
Ruby script:

begin
 client = Mysql2::Client.new(:host => "localhost",
 :username => "baduser",

 :password => "badpass",
 :database => "cookbook")
 puts "Connected"
rescue Mysql2::Error => e
 puts "Cannot connect to server"
 puts "Error code: #{e.errno}"
 puts "Error message: #{e.message}"
 puts "Error SQLSTATE: #{e.sql_state}"
 exit(1)
ensure
 client.close()s
end

PHP
The new PDO() constructor raises an exception if it fails, but other PDO
methods by default indicate success or failure by their return value. To
cause all PDO methods to raise exceptions for errors, use the database
handle resulting from a successful connection attempt to set the error-
handling mode. This enables uniform handling of all PDO errors without
checking the result of every call. The following example shows how to set
the error mode if the connection attempt succeeds and how to handle
exceptions if it fails:

try
{
 $dsn = "mysql:host=localhost;dbname=cookbook";
 $dbh = new PDO ($dsn, "baduser", "badpass");
 $dbh->setAttribute (PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 print ("Connected\n");
}
catch (PDOException $e)
{
 print ("Cannot connect to server\n");
 print ("Error code: " . $e->getCode () . "\n");
 print ("Error message: " . $e->getMessage () . "\n");
}

When PDO raises an exception, the resulting PDOException object
provides error information. The getCode() method returns the
SQLSTATE value. The getMessage() method returns a string
containing the SQLSTATE value, MySQL error number, and error message.

Database and statement handles also provide information when an error
occurs. For either type of handle, errorCode() returns the SQLSTATE
value, and errorInfo() returns a three-element array containing the
SQLSTATE value and a driver-specific error code and message. For
MySQL, the latter two values are the error number and message string. The
following example demonstrates how to get information from the exception
object and the database handle:

try
{
 $dbh->query ("SELECT"); # malformed query
}
catch (PDOException $e)
{
 print ("Cannot execute query\n");
 print ("Error information using exception object:\n");
 print ("SQLSTATE value: " . $e->getCode () . "\n");
 print ("Error message: " . $e->getMessage () . "\n");

 print ("Error information using database handle:\n");
 print ("Error code: " . $dbh->errorCode () . "\n");
 $errorInfo = $dbh->errorInfo ();
 print ("SQLSTATE value: " . $errorInfo[0] . "\n");
 print ("Error number: " . $errorInfo[1] . "\n");
 print ("Error message: " . $errorInfo[2] . "\n");
}

Python
Python signals errors by raising exceptions, and Python programs handle
errors by catching exceptions in the except clause of a try statement. To
obtain MySQL-specific error information, name an exception class, and
provide a variable to receive the information. Here’s an example:

conn_params = {
 "database": "cookbook",
 "host": "localhost",
 "user": "baduser",
 "password": "badpass"
}

try:
 conn = mysql.connector.connect(**conn_params)
 print("Connected")

except mysql.connector.Error as e:
 print("Cannot connect to server")
 print("Error code: %s" % e.errno)
 print("Error message: %s" % e.msg)
 print("Error SQLSTATE: %s" % e.sqlstate)

If an exception occurs, the errno, msg, and sqlstate members of the
exception object contain the error number, error message, and SQLSTATE
values, respectively. Note that access to the Error class is through the
driver module name.

Go
Go does not support exceptions. Instead, its multivalue returns make it easy
to pass an error when needed. To handle errors in Go, store the returned
value of the type Error into a variable (we use the variable name err
here) and handle it accordingly. To handle errors, Go offers a defer
statement and Panic() and Recover() built-in functions, shown in
Table 4-2.

Table 4-2. Error handling in Go

Functi
on or
statem
ent

Meaning

defer Defers statement execution until the calling function returns.

Panic
()

The normal execution of the calling function stops, all deferred functions are
executed, then the function returns a call to panic up the stack. The process
continues. Finally, the program crashes.

Recov
er()

Allows you to regain control in the panicking goroutine, so the program won’t crash
and will continue executing. This works only in the deferred functions. If called in
the function that is not deferred, it does nothing and returns nil.

// mysql_error.go : MySQL error handling
package main

import (
 "database/sql"
 "log"
 "fmt"

 _ "github.com/go-sql-driver/mysql"
)

var actor string

func main() {

 db, err := sql.Open("mysql",
"cbuser:cbpass!@tcp(127.0.0.1:3306)/cookbook")
 defer db.Close()

 if err != nil {
 log.Fatal(err)
 }

 err = db.QueryRow("SELECT actor FROM actors where
actor='Dwayne Johnson'").↩
 Scan(&actor)
 if err != nil {
 if err == sql.ErrNoRows {
 fmt.Print("There were no rows, but otherwise
no error occurred")
 } else {
 fmt.Println(err.Error())
 }
 }
 fmt.Println(actor)
}

If an error occurs, the function returns an object of the type error. Its
Error() function returns a MySQL error code and message for the errors,
raised by the Go-MySQL-Driver.

There is an exceptional case for the QueryRow() function with the
subsequent Scan() call. By default, Scan() returns nil if there is no
error and error if there is an error. However, if the query ran successfully
but returned no rows, this function returns sql.ErrNoRows.

Java
Java programs handle errors by catching exceptions. To do the minimum
amount of work, print a stack trace to inform the user where the problem
lies:

try
{
 /* ... some database operation ... */
}
catch (Exception e)
{
 e.printStackTrace ();
}

The stack trace shows the location of the problem but not necessarily what
the problem was. Also, it may not be meaningful except to you, the
program’s developer. To be more specific, print the error message and code
associated with an exception:

All Exception objects support the getMessage() method. JDBC
methods may throw exceptions using SQLException objects; these
are like Exception objects but also support getErrorCode() and
getSQLState() methods. getErrorCode() and
getMessage() return the MySQL-specific error number and message
string, and getSQLState() returns a string containing the
SQLSTATE value.
Some methods generate SQLWarning objects to provide information
about nonfatal warnings. SQLWarning is a subclass of
SQLException, but warnings are accumulated in a list rather than
thrown immediately. They don’t interrupt your program, and you can
print them at your leisure.

The following example program, Error.java, demonstrates how to access
error messages by printing all the error information available to it. It
attempts to connect to the MySQL server and prints exception information
if the attempt fails. Then it executes a statement and prints exception and
warning information if the statement fails:

// Error.java: demonstrate MySQL error handling

import java.sql.*;

public class Error {
 public static void main(String[] args) {
 Connection conn = null;

 String url = "jdbc:mysql://localhost/cookbook";
 String userName = "baduser";
 String password = "badpass";

 try {
 conn = DriverManager.getConnection(url, userName,
password);
 System.out.println("Connected");
 tryQuery(conn); // issue a query
 } catch (Exception e) {
 System.err.println("Cannot connect to server");
 System.err.println(e);
 if (e instanceof SQLException) // JDBC-specific exception?
 {
 // e must be cast from Exception to SQLException to
 // access the SQLException-specific methods
 printException((SQLException) e);
 }
 } finally {
 if (conn != null) {
 try {
 conn.close ();
 System.out.println("Disconnected");
 } catch (SQLException e) {
 printException (e);
 }
 }
 }
 }

 public static void tryQuery(Connection conn) {
 try {
 // issue a simple query
 Statement s = conn.createStatement();
 s.execute("USE cookbook");
 s.close();

 // print any accumulated warnings
 SQLWarning w = conn.getWarnings();
 while (w != null) {
 System.err.println("SQLWarning: " + w.getMessage());
 System.err.println("SQLState: " + w.getSQLState());
 System.err.println("Vendor code: " + w.getErrorCode());
 w = w.getNextWarning();
 }
 } catch (SQLException e) {
 printException(e);
 }
 }

 public static void printException(SQLException e) {
 // print general message, plus any database-specific message
 System.err.println("SQLException: " + e.getMessage ());
 System.err.println("SQLState: " + e.getSQLState ());
 System.err.println("Vendor code: " + e.getErrorCode ());
 }
}

4.3 Writing Library Files

Problem
You notice that you’re repeating code to perform common operations in
multiple programs.

Solution
Write routines to perform those operations, put them in a library file, and
arrange for your programs to access the library. This enables you to write
the code only once. You might need to set an environment variable so that
your scripts can find the library.

Discussion
This section describes how to put code for common operations in library
files. Encapsulation (or modularization) isn’t really a “recipe” so much as a
programming technique. Its principal benefit is that you need not repeat
code in each program you write. Instead, simply call a routine that’s in the
library. For example, by putting the code for connecting to the cookbook
database into a library routine, you need not write out all the parameters
associated with making that connection. Simply invoke the routine from
your program, and you’re connected.
Connection establishment isn’t the only operation you can encapsulate, of
course. Later sections in this book develop other utility functions to be
placed in library files. All such files, including those shown in this section,
are located under the lib directory of the recipes distribution. As you

write your own programs, be on the lookout for operations that you perform
often and that are good candidates for inclusion in a library. Use the
techniques in this section to write your own library files.
Library files have other benefits besides making it easier to write programs,
such as promoting portability. If you write connection parameters directly
into each program that connects to the MySQL server, you must change all
those programs if you move them to another machine that uses different
parameters. If instead you write your programs to connect to the database
by calling a library routine, it’s necessary only to modify the affected
library routine, not all the programs that use it.
Code encapsulation can also improve security. If you make a private library
file readable only to yourself, only scripts run by you can execute routines
in the file. Or suppose that you have some scripts located in your web
server’s document tree. A properly configured server executes the scripts
and sends their output to remote clients. But if the server becomes
misconfigured somehow, the result can be that it sends your scripts to
clients as plain text, thus displaying your MySQL username and password.
If you place the code for establishing a connection to the MySQL server in
a library file located outside the document tree, those parameters won’t be
exposed to clients.

WARNING
Be aware that if you install a library file to be readable by your web server, you don’t have much
security if other developers use the same server. Any of those developers can write a web script to
read and display your library file because, by default, the script runs with the permissions of the
web server and thus will have access to the library.

The recipes that follow demonstrate how to write, for each API, a library
file that contains a routine for connecting to the cookbook database on the
MySQL server. The calling program can use the error-checking techniques
discussed in Recipe 4.2 to determine whether a connection attempt fails.
The connection routine for each language returns a database handle or

connection object when it succeeds or raises an exception if the connection
cannot be established.
Libraries are of no utility in themselves, so the following discussion
illustrates each one’s use by a short “test harness” program. To use any of
these harness programs as the basis for creating new programs, make a copy
of the file and add your own code between the connect and disconnect calls.
Library-file writing involves not only the question of what to put in the file
but also subsidiary issues such as where to install the file so it is accessible
by your programs, and (on multiuser systems such as Unix) how to set its
access privileges so its contents aren’t exposed to people who shouldn’t see
it.

Choosing a library-file installation location
If you install a library file in a directory that a language processor searches
by default, programs written in that language need do nothing special to
access the library. However, if you install a library file in a directory that
the language processor does not search by default, you must tell your scripts
how to find it. There are two common ways to do this:

Most languages provide a statement that can be used within a script to
add directories to the language processor search path. This requires that
you modify each script that needs the library.
You can set an environment or configuration variable that changes the
language processor search path. With this approach, each user who
executes scripts that require the library must set the appropriate variable.
Alternatively, if the language processor has a configuration file, you
might be able to set a parameter in the file that affects scripts globally
for all users.

We’ll use the second approach. For our API languages, Table 4-3 shows the
relevant variables. In each case, the variable value is a directory or list of
directories.

Table 4-3. Default library paths

https://oreil.ly/7MInB

Language Variable name Variable typeLanguage Variable name Variable type
Perl PERL5LIB Environment variable

Ruby RUBYLIB Environment variable

PHP include_path Configuration variable

Python PYTHONPATH Environment variable

Go GOPATH Environment variable

Java CLASSPATH Environment variable

For general information on setting environment variables, read
cmdline.pdf in the recipes distribution (see the Preface). You can use
those instructions to set environment variables to the values in the following
discussion.
Suppose that you want to install library files in a directory that language
processors do not search by default. For purposes of illustration, let’s use
/usr/local/lib/mcb on Unix and C:\lib\mcb on Windows. (To put the files
somewhere else, adjust the pathnames in the variable settings accordingly.
For example, you might want to use a different directory, or you might want
to put libraries for each language in separate directories.)
Under Unix, if you put Perl library files in the /usr/local/lib/mcb directory,
set the PERL5LIB environment variable appropriately. For a shell in the
Bourne shell family (sh, bash, ksh), set the variable like this in the
appropriate startup file:

export PERL5LIB=/usr/local/lib/mcb

NOTE
For the original Bourne shell, sh, you may need to split this into two commands:

PERL5LIB=/usr/local/lib/mcb
export PERL5LIB

For a shell in the C shell family (csh, tcsh), set PERL5LIB like this in
your .login file:

setenv PERL5LIB /usr/local/lib/mcb

Under Windows, if you put Perl library files in C:\lib\mcb, set PERL5LIB
as follows:

PERL5LIB=C:\lib\mcb

In each case, the variable value tells Perl to look in the specified directory
for library files, in addition to any other directories it searches by default. If
you set PERL5LIB to name multiple directories, the separator character
between directory pathnames is a colon (:) in Unix or a semicolon (;) in
Windows.
Specify the other environment variables (RUBYLIB, PYTHONPATH, and
CLASSPATH) using the same syntax.

NOTE
Setting these environment variables as just discussed should suffice for scripts that you run from
the command line. For scripts intended to be executed by a web server, you likely must configure
the server as well so that it can find the library files.

For PHP, the search path is defined by the value of the include_path
variable in the php.ini PHP initialization file. On Unix, the file’s pathname
is likely /usr/lib/php.ini or /usr/local/lib/php.ini. Under Windows, the file is
likely found in the Windows directory or under the main PHP installation
directory. To determine the location, run this command:

$ php --ini

Define the value of include_path in php.ini with a line like this:

include_path = "value"

Specify value using the same syntax as for environment variables that
name directories. That is, it’s a list of directory names, with the names
separated by colons in Unix or semicolons in Windows. In Unix, if you
want PHP to look for included files in the current directory and in
/usr/local/lib/mcb, set include_path like this:

include_path = ".:/usr/local/lib/mcb"

In Windows, to search the current directory and C:\lib\mcb, set
include_path like this:

include_path = ".;C:\lib\mcb"

If PHP is running as an Apache module, restart Apache to make php.ini
changes take effect.

Setting library-file access privileges
If you use a multiple-user system such as Unix, you must make decisions
about library-file ownership and access mode:

If a library file is private and contains code to be used only by you, place
the file under your own account and make it accessible only to you.
Assuming that a library file named mylib is already owned by you, you
can make it private like this:

$ chmod 600 mylib

If the library file is to be used only by your web server, install it in a
server library directory and make it owned by and accessible only to the
server user ID. You may need to be root to do this. For example, if the
web server runs as wwwusr, the following commands make the file
private to that user:

chown wwwusr mylib
chmod 600 mylib

If the library file is public, you can place it in a location that your
programming language searches automatically when it looks for
libraries. (Most language processors search for libraries in some default
set of directories, although this set can be influenced by setting
environment variables as described previously.) You may need to be
root to install files in one of these directories. Then you can make the
file world readable:

chmod 444 mylib

Now let’s construct a library for each API. Each section here demonstrates
how to write the library file itself and discusses how to use the library from
within programs.

Perl
In Perl, library files are called modules and typically have an extension of
.pm (“Perl module”). It’s conventional for the basename of a module file to
be the same as the identifier on the package line in the file. The following
file, Cookbook.pm, implements a module named Cookbook:

package Cookbook;
Cookbook.pm: library file with utility method for connecting to
MySQL
using the Perl DBI module

use strict;
use warnings;
use DBI;

my $db_name = "cookbook";
my $host_name = "localhost";
my $user_name = "cbuser";
my $password = "cbpass";
my $port_num = undef;
my $socket_file = undef;

Establish a connection to the cookbook database, returning a
database

handle. Raise an exception if the connection cannot be
established.

sub connect
{
my $dsn = "DBI:mysql:host=$host_name";
my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit =>
1};

 $dsn .= ";database=$db_name" if defined ($db_name);
 $dsn .= ";mysql_socket=$socket_file" if defined ($socket_file);
 $dsn .= ";port=$port_num" if defined ($port_num);

 return DBI->connect ($dsn, $user_name, $password, $conn_attrs);
}

1; # return true

The module encapsulates the code for establishing a connection to the
MySQL server into a connect() method, and the package identifier
establishes a Cookbook namespace for the module. To invoke the
connect() method, use the module name:

$dbh = Cookbook::connect ();

The final line of the module file is a statement that trivially evaluates to
true. (If the module doesn’t return a true value, Perl assumes that something
is wrong with it and exits.)
Perl locates library files by searching the list of directories named in its
@INC array. To check the default value of this variable on your system,
invoke Perl as follows at the command line:

$ perl -V

The last part of the output from the command shows the directories listed in
@INC. If you install a library file in one of those directories, your scripts
will find it automatically. If you install the module somewhere else, tell
your scripts where to find it by setting the PERL5LIB environment
variable, as discussed in the introductory part of this recipe.

After installing the Cookbook.pm module, try it from a test harness script,
harness.pl:

#!/usr/bin/perl
harness.pl: test harness for Cookbook.pm library

use strict;
use warnings;
use Cookbook;

my $dbh;
eval
{
 $dbh = Cookbook::connect ();
 print "Connected\n";
};
die "$@" if $@;
$dbh->disconnect ();
print "Disconnected\n";

harness.pl has no use DBI statement. It’s unnecessary because the
Cookbook module itself imports DBI; any script that uses Cookbook
also gains access to DBI.
If you don’t catch connection errors explicitly with eval, you can write the
script body more simply:

my $dbh = Cookbook::connect ();
print "Connected\n";
$dbh->disconnect ();
print "Disconnected\n";

In this case, Perl catches any connection exception and terminates the script
after printing the error message generated by the connect() method.

Ruby
The following Ruby library file, Cookbook.rb, defines a Cookbook class
that implements a connect class method:

Cookbook.rb: library file with utility method for connecting to
MySQL
using the Ruby Mysql2 module

require "mysql2"

Establish a connection to the cookbook database, returning a
database
handle. Raise an exception if the connection cannot be
established.

class Cookbook
 @@host_name = "localhost"
 @@db_name = "cookbook"
 @@user_name = "cbuser"
 @@password = "cbpass"

 # Class method for connecting to server to access the
 # cookbook database; returns a database handle object.

 def Cookbook.connect
 return Mysql2::Client.new(:host => @@host_name,
 :database => @@db_name,
 :username => @@user_name,
 :password => @@password)
 end
end

The connect method is defined in the library as Cookbook.connect
because Ruby class methods are defined as
class_name.method_name.

Ruby locates library files by searching the list of directories named in its
$LOAD_PATH variable (also known as $:), which is an array. To check the
default value of this variable on your system, use interactive Ruby to
execute this statement:

$ irb
>> puts $LOAD_PATH

If you install a library file in one of those directories, your scripts will find
it automatically. If you install the file somewhere else, tell your scripts
where to find it by setting the RUBYLIB environment variable, as discussed
in the introductory part of this recipe.
After installing the Cookbook.rb library file, try it from a test harness script,
harness.rb:

#!/usr/bin/ruby -w
harness.rb: test harness for Cookbook.rb library

require "Cookbook"

begin
 client = Cookbook.connect
 print "Connected\n"
rescue Mysql2::Error => e
 puts "Cannot connect to server"
 puts "Error code: #{e.errno}"
 puts "Error message: #{e.message}"
 exit(1)
ensure
 client.close()
 print "Disconnected\n"
end

harness.rb has no require statement for the Mysql2 module. It’s
unnecessary because the Cookbook module itself imports Mysql2; any
script that imports Cookbook also gains access to Mysql2.

If you want a script to die if an error occurs without checking for an
exception yourself, write the script body like this:

client = Cookbook.connect
print "Connected\n"
client.close
print "Disconnected\n"

PHP
PHP library files are written like regular PHP scripts. A Cookbook.php file
that implements a Cookbook class with a connect() method looks like
this:

<?php
Cookbook.php: library file with utility method for connecting
to MySQL
using the PDO module

class Cookbook
{
 public static $host_name = "localhost";
 public static $db_name = "cookbook";

 public static $user_name = "cbuser";
 public static $password = "cbpass";

 # Establish a connection to the cookbook database, returning a
database
 # handle. Raise an exception if the connection cannot be
established.
 # In addition, cause exceptions to be raised for errors.

 public static function connect ()
 {
 $dsn = "mysql:host=" . self::$host_name . ";dbname=" .
self::$db_name;
 $dbh = new PDO ($dsn, self::$user_name, self::$password);
 $dbh->setAttribute (PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 return ($dbh);
 }

} # end Cookbook
?>

The connect() routine within the class is declared using the static
keyword to make it a class method rather than an instance method. This
designates it as directly callable without instantiating an object through
which to invoke it.
The new PDO() constructor raises an exception if the connection attempt
fails. Following a successful attempt, connect() sets the error-handling
mode so that other PDO calls raise exceptions for failure as well. This way,
individual calls need not be tested for an error return value.
Although most PHP examples throughout this book don’t show the <?php
and ?> tags, we’ve shown them as part of Cookbook.php here to emphasize
that library files must enclose all PHP code within those tags. The PHP
interpreter makes no assumptions about the contents of a library file when it
begins parsing it because you might include a file that contains nothing but
HTML. Therefore, you must use <?php and ?> to specify explicitly which
parts of the library file should be considered as PHP code rather than as
HTML, just as you do in the main script.
PHP looks for libraries by searching the directories named in the
include_path variable in the PHP initialization file, as described in the

introductory part of this recipe.

NOTE
PHP scripts often are placed in the document tree of your web server, and clients can request them
directly. For PHP library files, we recommend that you place them somewhere outside the
document tree, especially if (like Cookbook.php) they contain a username and password.

After installing Cookbook.php in one of the include_path directories,
try it from a test harness script, harness.php:

<?php
harness.php: test harness for Cookbook.php library

require_once "Cookbook.php";

try
{
 $dbh = Cookbook::connect ();
 print ("Connected\n");
}
catch (PDOException $e)
{
 print ("Cannot connect to server\n");
 print ("Error code: " . $e->getCode () . "\n");
 print ("Error message: " . $e->getMessage () . "\n");
 exit (1);
}
$dbh = NULL;
print ("Disconnected\n");
?>

The require_once statement accesses the Cookbook.php file that is
required to use the Cookbook class. require_once is one of several
PHP file-inclusion statements:

require and include instruct PHP to read the named file. They are
similar, but require terminates the script if the file cannot be found;
include produces only a warning.

require_once and include_once are like require and
include except that if the file has already been read, its contents are
not processed again. This is useful for avoiding multiple-declaration
problems that can easily occur when library files include other library
files.

Python
Python libraries are written as modules and referenced from scripts using
import statements. To create a method for connecting to MySQL, write a
module file, cookbook.py (Python module names should be lowercase):

cookbook.py: library file with utility method for connecting to
MySQL
using the Connector/Python module

import mysql.connector

conn_params = {
 "database": "cookbook",
 "host": "localhost",
 "user": "cbuser",
 "password": "cbpass",
}

Establish a connection to the cookbook database, returning a
connection
object. Raise an exception if the connection cannot be
established.

def connect():
 return mysql.connector.connect(**conn_params)

The filename basename determines the module name, so the module is
called cookbook. Module methods are accessed through the module
name; thus, import the cookbook module and invoke its connect()
method like this:

import cookbook

conn = cookbook.connect();

The Python interpreter searches for modules in directories named in the
sys.path variable. To check the default value of sys.path on your
system, run Python interactively and enter a few commands:

$ python
>>> import sys
>>> sys.path

If you install cookbook.py in one of the directories named by sys.path,
your scripts will find it with no special handling. If you install cookbook.py
somewhere else, you must set the PYTHONPATH environment variable, as
discussed in the introductory part of this recipe.
After installing the cookbook.py library file, try it from a test harness script,
harness.py:

#!/usr/bin/python
harness.py: test harness for cookbook.py library

import mysql.connector
import cookbook

try:
 conn = cookbook.connect()
 print("Connected")
except mysql.connector.Error as e:
 print("Cannot connect to server")
 print("Error code: %s" % e.errno)
 print("Error message: %s" % e.msg)
else:
 conn.close()
 print("Disconnected")

The cookbook.py file imports the mysql.connector module, but a
script that imports cookbook does not thereby gain access to
mysql.connector. If the script needs Connector/Python-specific
information (such as mysql.connector.Error), the script itself must
import mysql.connector.

If you want a script to die if an error occurs without checking for an
exception yourself, write the script body like this:

conn = cookbook.connect()
print("Connected")
conn.close()
print("Disconnected")

Go
Go programs are organized into packages that are a collection of the source
files, located in the same directory. Packages, in their turn, are organized
into modules that are collections of Go packages that are released together.
Modules belong to a Go repository. A typical Go repository contains only
one module, but you may have several modules in the same repository.
The Go interpreter searches for packages in directories named in the
$GOPATH/src/{domain}/{project} variable. However, when
using modules, Go no longer uses GOPATH. You do not need to change this
variable no matter where your module is installed. We’ll use modules for
our examples.
To create a method for connecting to MySQL, write a package file,
cookbook.go:

package cookbook

import (
 "database/sql"
 _"github.com/go-sql-driver/mysql"
)

func Connect() (*sql.DB, error) {
 db, err :=
sql.Open("mysql","cbuser:cbpass@tcp(127.0.0.1:3306)/cookbook")

 if err != nil {
 panic(err.Error())
 }

 err = db.Ping()

 return db, err
}

The filename basename does not determine the package name: Go searches
through all files in the import path until it finds the one with the required
package declaration. Package methods are accessed via the package name.
To test the package, you can specify a relative path to the directory where
the package file is located:

import "../../lib"

This is a very easy way to quickly test your libraries, but such commands,
like go install, won’t work for packages imported this way. As a
result, your program will be rebuilt from scratch each time you access it.
A better way to work with packages is to publish them as parts of modules.
To do this, run the following in the directory where you store
cookbook.go:

go mod init cookbook

This will create a file, go.mod, that will have your module name and
version of Go. You can name the module as you wish.
You can publish your module on the internet and access it from the local
program as you would do with any other module. However, during
development, it would be useful to have the module only locally. In this
case, you need to make few adjustments in the program directory that will
use it.
First, create a program that will call the package, harness.go:

package main

import (
 "fmt"
 "github.com/svetasmirnova/mysqlcookbook/recipes/lib"
)

func main() {
 db, err := cookbook.Connect()

 if err != nil {

 fmt.Println("Cannot connect to server")
 fmt.Printf("Error message: %s\n", err.Error())
 } else {
 fmt.Println("Connected")
 }
 defer db.Close()
}

Then, in the directory, after the package is installed, initialize the module:

go mod init harness

Once the module is initialized and go.mod is created, edit it with the
following:

go mod edit -replace ↩
github.com/svetasmirnova/mysqlcookbook/recipes/lib=↩
/home/sveta/src/mysqlcookbook/recipes/lib

Replace the URL and the local path with the ones that are valid in your
environment.
This command will tell Go to replace the remote module path with the local
directory.
Once done, you can test your connection:

$ go run harness.go
Connected

Java
Java library files are similar to Java programs in most ways:

The class line in the source file indicates a class name.

The file should have the same name as the class (with a .java extension).
Compile the .java file to produce a .class file.

Java library files also differ from Java programs in some ways:
Unlike regular program files, Java library files have no main()
function.

A library file should begin with a package identifier that specifies the
position of the class within the Java namespace.

A common convention for Java package identifiers is to use the domain of
the code author as a prefix; this helps make identifiers unique and avoids
conflict with classes written by other authors. Domain names proceed right
to left, from more general to more specific within the domain namespace,
whereas the Java class namespace proceeds left to right, from general to
specific. Thus, to use a domain as the prefix for a package name within the
Java class namespace, it’s necessary to reverse it. For example, Paul’s
domain is kitebird.com, so if he writes a library file and places it under mcb
within his domain’s namespace, the library begins with a package
statement like this:

package com.kitebird.mcb;

Java packages developed for this book are placed within the
com.kitebird.mcb namespace to ensure their uniqueness in the
package namespace.
The following library file, Cookbook.java, defines a Cookbook class that
implements a connect() method for connecting to the cookbook
database. connect() returns a Connection object if it succeeds and
throws an exception otherwise. To help the caller deal with failures, the
Cookbook class also defines getErrorMessage() and
printErrorMessage() utility methods that return the error message as
a string and print it to System.err, respectively:

// Cookbook.java: library file with utility methods for
connecting to MySQL
// using MySQL Connector/J and for handling exceptions

package com.kitebird.mcb;

import java.sql.*;

public class Cookbook {
 // Establish a connection to the cookbook database, returning
 // a connection object. Throw an exception if the connection

 // cannot be established.

 public static Connection connect() throws Exception {
 String url = "jdbc:mysql://localhost/cookbook";
 String user = "cbuser";
 String password = "cbpass";

 return (DriverManager.getConnection(url, user, password));
 }

 // Return an error message as a string

 public static String getErrorMessage(Exception e) {
 StringBuffer s = new StringBuffer ();
 if (e instanceof SQLException) { // JDBC-specific exception?
 // print general message, plus any database-specific
message
 s.append("Error message: " + e.getMessage () + "\n");
 s.append("Error code: " + ((SQLException) e).getErrorCode()
+ "\n");
 } else {
 s.append (e + "\n");
 }
 return (s.toString());
 }

 // Get the error message and print it to System.err

 public static void printErrorMessage(Exception e) {
 System.err.println(Cookbook.getErrorMessage(e));
 }
}

The routines within the class are declared using the static keyword,
which makes them class methods rather than instance methods. That is done
here because the class is used directly rather than creating an object from it
and invoking the methods through the object.
To use the Cookbook.java file, compile it to produce Cookbook.class, then
install the class file in a directory that corresponds to the package identifier.
This means that Cookbook.class should be installed in a directory named
com/kitebird/mcb (Unix) or com\kitebird\mcb (Windows) that is located
under some directory named in your CLASSPATH setting. For example, if
CLASSPATH includes /usr/local/lib/mcb under Unix, you can install
Cookbook.class in the /usr/local/lib/mcb/com/kitebird/mcb directory. (For

more information about the CLASSPATH variable, see the Java discussion
in Recipe 4.1.)
To use the Cookbook class from within a Java program, import it and
invoke the Cookbook.connect() method. The following test harness
program, Harness.java, shows how to do this:

// Harness.java: test harness for Cookbook library class

import java.sql.*;
import com.kitebird.mcb.Cookbook;

public class Harness {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = Cookbook.connect ();
 System.out.println("Connected");
 } catch (Exception e) {
 Cookbook.printErrorMessage (e);
 System.exit (1);
 } finally {
 if (conn != null) {
 try {
 conn.close();
 System.out.println("Disconnected");
 } catch (Exception e) {
 String err = Cookbook.getErrorMessage(e);
 System.out.println(err);
 }
 }
 }
 }
}

Harness.java also shows how to use the error message utility methods from
the Cookbook class when a MySQL-related exception occurs:

printErrorMessage() takes the exception object and uses it to
print an error message to System.err.

getErrorMessage() returns the error message as a string. You can
display the message yourself, write it to a logfile, or whatever.

4.4 Executing Statements and Retrieving
Results

Problem
You want a program to send a SQL statement to the MySQL server and
retrieve its result.

Solution
Some statements return only a status code; others return a result set (a set of
rows). Some APIs provide different methods for executing each type of
statement. If so, use the appropriate method for the statement to be
executed.

Discussion
You can execute two general categories of SQL statements. Some retrieve
information from the database; others change that information or the
database itself. Statements in the two categories are handled differently. In
addition, some APIs provide multiple routines for executing statements,
complicating matters further. Before we get to examples demonstrating how
to execute statements from within each API, we’ll describe the database
table the examples use, and then further discuss the two statement
categories and outline a general strategy for processing statements in each
category.
In Chapter 1, we created a table named limbs to try some sample
statements. In this chapter, we’ll use a different table named profile. It’s
based on the idea of a “buddy list,” that is, the set of people we like to keep
in touch with while we’re online. The table definition looks like this:

CREATE TABLE profile
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 name VARCHAR(20) NOT NULL,
 birth DATE,

 color ENUM('blue','red','green','brown','black','white'),
 foods
SET('lutefisk','burrito','curry','eggroll','fadge','pizza'),
 cats INT,
 PRIMARY KEY (id)
);

The profile table indicates the things that are important to us about each
buddy: name, age, favorite color, favorite foods, and number of cats.
Additionally, the table uses several different data types for its columns, and
these come in handy to illustrate how to solve problems that pertain to
specific data types.
The table also includes an id column containing unique values so that we
can distinguish one row from another, even if two buddies have the same
name. id and name are declared as NOT NULL because they’re each
required to have a value. The other columns are implicitly permitted to be
NULL (and that is also their default value) because we might not know the
value to assign them for any given individual. That is, NULL signifies
“unknown.”
Notice that although we want to keep track of age, there is no age column
in the table. Instead, there is a birth column of DATE type. Ages change,
so if we store age values, we’d have to keep updating them. Storing birth
dates is better: they don’t change and can be used to calculate age any time
(see Recipe 8.14). color is an ENUM column; color values can be any one
of the listed values. foods is a SET, which permits the value to be any
combination of the individual set members. That way we can record
multiple favorite foods for any buddy.
To create the table, use the profile.sql script in the tables directory of the
recipes distribution. Change location into that directory, then run this
command:

$ mysql cookbook < profile.sql

The script also loads sample data into the table. You can experiment with
the table, then restore it if you change its contents by running the script

again. (See Recipe 4.9 on the importance of restoring the profile table
after modifying it.)
The contents of the profile table as loaded by the profile.sql script look
like this:

mysql> SELECT * FROM profile;
+----+---------+------------+-------+-----------------------+----
--+
| id | name | birth | color | foods |
cats |
+----+---------+------------+-------+-----------------------+----
--+
| 1 | Sybil | 1970-04-13 | black | lutefisk,fadge,pizza |
0 |
| 2 | Nancy | 1969-09-30 | white | burrito,curry,eggroll |
3 |
| 3 | Ralph | 1973-11-02 | red | eggroll,pizza |
4 |
| 4 | Lothair | 1963-07-04 | blue | burrito,curry |
5 |
| 5 | Henry | 1965-02-14 | red | curry,fadge |
1 |
| 6 | Aaron | 1968-09-17 | green | lutefisk,fadge |
1 |
| 7 | Joanna | 1952-08-20 | green | lutefisk,fadge |
0 |
| 8 | Stephen | 1960-05-01 | white | burrito,pizza |
0 |
+----+---------+------------+-------+-----------------------+----
--+

Although most of the columns in the profile table permit NULL values,
none of the rows in the sample dataset actually contain NULL yet. (We want
to defer the complications of NULL value processing to Recipes 4.5 and
4.7.)

SQL statement categories
SQL statements can be grouped into two broad categories, depending on
whether they return a result set (a set of rows):

INSERT, DELETE, or UPDATE

Statements that return no result set, such as INSERT, DELETE, or
UPDATE. As a general rule, statements of this type generally change the
database in some way. There are some exceptions, such as USE
db_name, which changes the default (current) database for your
session without making any changes to the database itself. The example
data-modifying statement used in this section is an UPDATE:

UPDATE profile SET cats = cats+1 WHERE name = 'Sybil';

We’ll cover how to execute this statement and determine the number of
rows that it affects.

SELECT, SHOW, EXPLAIN, or DESCRIBE
Statements that return a result set, such as SELECT, SHOW, EXPLAIN,
or DESCRIBE. We refer to such statements generically as SELECT
statements, but you should understand that category to include any
statement that returns rows. The example row-retrieval statement used
in this section is a SELECT:

SELECT id, name, cats FROM profile;

We’ll cover how to execute this statement, fetch the rows in the result
set, and determine the number of rows and columns in the result set. (To
get information such as the column names or data types, access the
result set metadata. That’s Recipe 12.2.)

The first step in processing a SQL statement is to send it to the MySQL
server for execution. Some APIs (those for Perl and Java, for example)
recognize a distinction between the two categories of statements and
provide separate calls for executing them. Other APIs (such as the one for
Python or Ruby) use a single call for all statements. However, one thing all
APIs have in common is that no special character indicates the end of the
statement. No terminator is necessary because the end of the statement
string terminates it. This differs from executing statements in the mysql
program, where you terminate statements using a semicolon (;) or \g. (It

also differs from how this book usually includes semicolons in examples to
make it clear where statements end.)
When you send a statement to the server, be prepared to handle errors if it
did not execute successfully. If a statement fails and you proceed on the
basis that it succeeded, your program won’t work. For the most part, this
section does not show error-checking code, but that is for brevity.
Production code should always include error handling. The sample scripts
in the recipes distribution from which the examples are taken do include
error handling, based on the techniques illustrated in Recipe 4.2.
If a statement does execute without error, your next step depends on the
statement type. If it’s one that returns no result set, there’s nothing else to
do, unless you want to check how many rows were affected. If the
statement does return a result set, fetch its rows, then close the result set. In
a context where you don’t know whether a statement returns a result set,
Recipe 12.2 discusses how to tell.

Perl
The Perl DBI module provides two basic approaches to SQL statement
execution, depending on whether you expect to get back a result set. For a
statement such as INSERT or UPDATE that returns no result set, use the
database handle do() method. It executes the statement and returns the
number of rows affected by it, or undef if an error occurs. If Sybil gets a
new cat, the following statement increments her cats count by one:

my $count = $dbh->do ("UPDATE profile SET cats = cats+1
 WHERE name = 'Sybil'");
if ($count) # print row count if no error occurred
{
 $count += 0;
 print "Number of rows updated: $count\n";
}

If the statement executes successfully but affects no rows, do() returns a
special value, "0E0" (the value zero in scientific notation, expressed as a
string). "0E0" can be used for testing the execution status of a statement

because it is true in Boolean contexts (unlike undef). For successful
statements, it can also be used when counting how many rows were affected
because it is treated as the number zero in numeric contexts. Of course, if
you print that value as is, you’ll print "0E0", which might look odd to
people who use your program. The preceding example makes sure that
doesn’t happen by adding zero to the value to coerce it to numeric form so
that it displays as 0. Alternatively, use printf with a %d format specifier
to cause an implicit numeric conversion:

if ($count) # print row count if no error occurred
{
 printf "Number of rows updated: %d\n", $count;
}

If RaiseError is enabled, your script terminates automatically for DBI-
related errors, so you need not check $count to find out whether do()
failed and consequently can simplify the code:

my $count = $dbh->do ("UPDATE profile SET cats = cats+1
 WHERE name = 'Sybil'");
printf "Number of rows updated: %d\n", $count;

To process a statement such as SELECT that does return a result set, use a
different approach that involves these steps:

1. Specify the statement to be executed by calling prepare() using
the database handle. prepare() returns a statement handle to use
with all subsequent operations on the statement. (If an error occurs,
the script terminates if RaiseError is enabled; otherwise,
prepare() returns undef.)

2. Call execute() to execute the statement and generate the result set.

3. Loop to fetch the rows returned by the statement. DBI provides
several methods for this; we cover them shortly.

4. If you don’t fetch the entire result set, release resources associated
with it by calling finish().

The following example illustrates these steps, using
fetchrow_array() as the row-fetching method and assuming that
RaiseError is enabled so that errors terminate the script:

my $sth = $dbh->prepare ("SELECT id, name, cats FROM profile");
$sth->execute ();
my $count = 0;
while (my @val = $sth->fetchrow_array ())
{
 print "id: $val[0], name: $val[1], cats: $val[2]\n";
 ++$count;
}
$sth->finish ();
print "Number of rows returned: $count\n";

The row array size indicates the number of columns in the result set.
The row-fetching loop just shown is followed by a call to finish(),
which closes the result set and tells the server to free any resources
associated with it. If you fetch every row in the set, DBI notices when you
reach the end and releases the resources for you. Thus, the example could
omit the finish() call without ill effect.

As the example illustrates, to determine how many rows a result set
contains, count them while fetching them. Do not use the DBI rows()
method for this purpose. The DBI documentation discourages this practice
because rows() is not necessarily reliable for SELECT statements—due
to differences in behavior among database engines and drivers.
DBI has several methods that fetch a row at a time. The one used in the
preceding example, fetchrow_array(), returns an array containing the
next row, or an empty list when there are no more rows. Array elements are
present in the order named in the SELECT statement. Access them as
$val[0], $val[1], and so forth.

The fetchrow_array() method is most useful for statements that
explicitly name the columns to select. (With SELECT *, there are no
guarantees about the positions of columns within the array.)

fetchrow_arrayref() is like fetchrow_array(), except that it
returns a reference to the array, or undef when there are no more rows. As
with fetchrow_array(), array elements are present in the order named
in the statement. Access them as $ref->[0], $ref->[1], and so forth:

while (my $ref = $sth->fetchrow_arrayref ())
{
 print "id: $ref->[0], name: $ref->[1], cats: $ref->[2]\n";
}

fetchrow_hashref() returns a reference to a hash structure, or
undef when there are no more rows:

while (my $ref = $sth->fetchrow_hashref ())
{
 print "id: $ref->{id}, name: $ref->{name}, cats: $ref->
{cats}\n";
}

To access the elements of the hash, use the names of the columns selected
by the statement ($ref->{id}, $ref->{name}, and so forth).
fetchrow_hashref() is particularly useful for SELECT * statements
because you can access elements of rows without knowing anything about
the order in which columns are returned. You need know only their names.
On the other hand, it’s more expensive to set up a hash than an array, so
fetchrow_hashref() is slower than fetchrow_array() or
fetchrow_arrayref(). It’s also possible to “lose” row elements if
they have the same name because column names must be unique. Same-
name columns are not uncommon for joins between tables. For solutions to
this problem, see Recipe 16.11.
In addition to the statement execution methods just described, DBI provides
several high-level retrieval methods that execute a statement and return the
result set in a single operation. All are database-handle methods that create
and dispose of the statement handle internally before returning the result
set. The methods differ in the form in which they return the result. Some

return the entire result set, others return a single row or column of the set, as
summarized in Table 4-4.

Table 4-4. Perl methods to retrieve results

Method Return value
selectrow_array() First row of result

 set as an array

selectrow_arrayref() First row of result set
 as a reference to an array

selectrow_hashref() First row of result
 set as a reference to a hash

selectcol_arrayref() First column of result
 set as a reference to an array

selectall_arrayref() Entire result set as a
 reference to an array of array
 references

selectall_hashref() Entire result set as a reference to a hash of hash
 references

Most of these methods return a reference. The exception is
selectrow_array(), which selects the first row of the result set and
returns an array or a scalar, depending on how you call it. In array context,
selectrow_array() returns the entire row as an array (or the empty
list if no row was selected). This is useful for statements from which you
expect to obtain only a single row. The return value can be used to
determine the result set size. The column count is the number of elements in
the array, and the row count is 1 or 0:

my @val = $dbh->selectrow_array ("SELECT name, birth, foods FROM
profile
 WHERE id = 3");
my $ncols = @val;
my $nrows = $ncols ? 1 : 0;

selectrow_arrayref() and selectrow_hashref() select the
first row of the result set and return a reference to it, or undef if no row
was selected. To access the column values, treat the reference the same way

you treat the return value from fetchrow_arrayref() or
fetchrow_hashref(). The reference also provides the row and
column counts:

my $ref = $dbh->selectrow_arrayref ($stmt);
my $ncols = defined ($ref) ? @{$ref} : 0;
my $nrows = $ncols ? 1 : 0;

my $ref = $dbh->selectrow_hashref ($stmt);
my $ncols = defined ($ref) ? keys (%{$ref}) : 0;
my $nrows = $ncols ? 1 : 0;

selectcol_arrayref() returns a reference to a single-column array
representing the first column of the result set. Assuming a non-undef
return value, access elements of the array as $ref->[i] for the value
from row i. The number of rows is the number of elements in the array, and
the column count is 1 or 0:

my $ref = $dbh->selectcol_arrayref ($stmt);
my $nrows = defined ($ref) ? @{$ref} : 0;
my $ncols = $nrows ? 1 : 0;

selectall_arrayref() returns a reference to an array containing an
element for each row of the result. Each element is a reference to an array.
To access row i of the result set, use $ref->[i] to get a reference to the
row. Then treat the row reference the same way, as a return value from
fetchrow_arrayref(), to access individual column values in the row.
The result set row and column counts are available as follows:

my $ref = $dbh->selectall_arrayref ($stmt);
my $nrows = defined ($ref) ? @{$ref} : 0;
my $ncols = $nrows ? @{$ref->[0]} : 0;

selectall_hashref() returns a reference to a hash, each element of
which is a hash reference to a row of the result. To call it, specify an
argument that indicates which column to use for hash keys. For example, if
you retrieve rows from the profile table, the primary key is the id
column:

my $ref = $dbh->selectall_hashref ("SELECT * FROM profile",
"id");

Access rows using the keys of the hash. For a row that has a key column
value of 12, the hash reference for the row is $ref->{12}. That row
value is keyed on column names, which you can use to access individual
column elements (for example, $ref->{12}->{name}). The result set
row and column counts are available as follows:

my @keys = defined ($ref) ? keys (%{$ref}) : ();
my $nrows = scalar (@keys);
my $ncols = $nrows ? keys (%{$ref->{$keys[0]}}) : 0;

The selectall_XXX() methods are useful when you need to process a
result set more than once because Perl DBI provides no way to “rewind” a
result set. By assigning the entire result set to a variable, you can iterate
through its elements multiple times.
Take care when using the high-level methods if you have RaiseError
disabled. In that case, a method’s return value may not enable you to
distinguish an error from an empty result set. For example, if you call
selectrow_array() in scalar context to retrieve a single value, an
undef return value is ambiguous because it may indicate any of three
things: an error, an empty result set, or a result set consisting of a single
NULL value. To test for an error, check the value of $DBI::errstr,
$DBI::err, or $DBI::state.

Ruby
The Ruby Mysql2 API uses the same calls for SQL statements that do not
return a result set and those that do. To process a statement in Ruby, use the
query method. If the statement fails with an error, query raises an
exception. Otherwise, the affected_rows method returns the number of
rows changed for the last statement that modifies data:

client.query("UPDATE profile SET cats = cats+1 WHERE name =
'Sybil'")
puts "Number of rows updated: #{client.affected_rows}"

For statements such as SELECT that return a result set, the query method
returns the result set as an instance of the Mysql2::Result class. The
affected_rows method will return the number of rows in the result set
for such statements. You can also obtain the number of rows in the result set
by using the count method of the Mysql2::Result object:

result = client.query("SELECT id, name, cats FROM profile")
puts "Number of rows returned: #{client.affected_rows}"
puts "Number of rows returned: #{result.count}"
result.each do |row|
 printf "id: %s, name: %s, cats: %s\n", row["id"], row["name"],
row["cats"]
end

result.fields contains the names of the columns in the result set.

PHP
PDO has two connection-object methods to execute SQL statements:
exec() for statements that do not return a result set and query() for
those that do. If you have PDO exceptions enabled, both methods raise an
exception if statement execution fails. (Another approach couples the
prepare() and execute() methods; see Recipe 4.5.)

To execute statements such as INSERT or UPDATE that don’t return rows,
use exec(). It returns a count to indicate how many rows were changed:

$count = $dbh->exec ("UPDATE profile SET cats = cats+1 WHERE name
= 'Sybil'");
printf ("Number of rows updated: %d\n", $count);

For statements such as SELECT that return a result set, the query()
method returns a statement handle. Generally, you use this object to call a
row-fetching method in a loop, and count the rows if you need to know how
many there are:

$sth = $dbh->query ("SELECT id, name, cats FROM profile");
$count = 0;
while ($row = $sth->fetch (PDO::FETCH_NUM))
{

 printf ("id: %s, name: %s, cats: %s\n", $row[0], $row[1],
$row[2]);
 $count++;
}
printf ("Number of rows returned: %d\n", $count);

To determine the number of columns in the result set, call the statement
handle columnCount() method.

The example demonstrates the statement handle fetch() method, which
returns the next row of the result set or FALSE when there are no more.
fetch() takes an optional argument that indicates what type of value it
should return. As shown, with an argument of PDO::FETCH_NUM,
fetch() returns an array with elements accessed using numeric
subscripts, beginning with 0. The array size indicates the number of result
set columns.
With a PDO::FETCH_ASSOC argument, fetch() returns an associative
array containing values accessed by column name ($row["id"],
$row["name"], $row["cats"]).

With a PDO::FETCH_OBJ argument, fetch() returns an object having
members accessed using the column names ($row->id, $row->name,
$row->cats).

fetch() uses the default fetch mode if you invoke it with no argument.
Unless you’ve changed the mode, it’s PDO::FETCH_BOTH, which is a
combination of PDO::FETCH_NUM and PDO::FETCH_ASSOC. To set
the default fetch mode for all statements executed within a connection, use
the setAttribute database-handle method:

$dbh->setAttribute (PDO::ATTR_DEFAULT_FETCH_MODE,
PDO::FETCH_ASSOC);

To set the mode for a given statement, call its setFetchMode() method
after executing the statement and before fetching the results:

$sth->setFetchMode (PDO::FETCH_OBJ);

It’s also possible to use a statement handle as an iterator. The handle uses
the current default fetch mode:

$sth->setFetchMode (PDO::FETCH_NUM);
foreach ($sth as $row)
 printf ("id: %s, name: %s, cats: %s\n", $row[0], $row[1],
$row[2]);

The fetchAll() method fetches and returns the entire result set as an
array of rows. It permits an optional fetch-mode argument:

$rows = $sth->fetchAll (PDO::FETCH_NUM);
foreach ($rows as $row)
 printf ("id: %s, name: %s, cats: %s\n", $row[0], $row[1],
$row[2]);

In this case, the row count is the number of elements in $rows.

Python
The Python DB API uses the same calls for SQL statements that do not
return a result set and those that do. To process a statement in Python, use
your database connection object to get a cursor object. Then use the
cursor’s execute() method to send the statement to the server. If the
statement fails with an error, execute() raises an exception. Otherwise,
if there is no result set, statement execution is complete, and the cursor’s
rowcount attribute indicates how many rows were changed:

cursor = conn.cursor()
cursor.execute("UPDATE profile SET cats = cats+1 WHERE name =
'Sybil'")
print("Number of rows updated: %d" % cursor.rowcount)
conn.commit()
cursor.close()

NOTE
The Python DB API specification indicates that database connections should begin with auto-
commit mode disabled, so Connector/Python disables auto-commit when it connects to the
MySQL server. If you use transactional tables, modifications to them are rolled back when you
close the connection unless you commit the changes first, which is why the preceding example
invokes the commit() method. For more information on auto-commit mode, see Chapter 20,
particularly Recipe 20.7.

If the statement returns a result set, fetch its rows, then close the cursor. The
fetchone() method returns the next row as a sequence, or None when
there are no more rows:

cursor = conn.cursor()
cursor.execute("SELECT id, name, cats FROM profile")
while True:
 row = cursor.fetchone()
 if row is None:
 break
 print("id: %s, name: %s, cats: %s" % (row[0], row[1], row[2]))
print("Number of rows returned: %d" % cursor.rowcount)
cursor.close()

As you can see from the preceding example, the rowcount attribute is
useful for SELECT statements, too; it indicates the number of rows in the
result set.
len(row) tells you the number of columns in the result set.

Alternatively, use the cursor itself as an iterator that returns each row in
turn:

cursor = conn.cursor()
cursor.execute("SELECT id, name, cats FROM profile")
for (id, name, cats) in cursor:
 print("id: %s, name: %s, cats: %s" % (id, name, cats))
print("Number of rows returned: %d" % cursor.rowcount)
cursor.close()

The fetchall() method returns the entire result set as a list of tuples.
Iterate through the list to access the rows:

cursor = conn.cursor()
cursor.execute("SELECT id, name, cats FROM profile")
rows = cursor.fetchall()
for row in rows:
 print("id: %s, name: %s, cats: %s" % (row[0], row[1], row[2]))
print("Number of rows returned: %d" % cursor.rowcount)
cursor.close()

The DB API provides no way to rewind a result set, so fetchall() can
be convenient when you must iterate through the rows of the result set more
than once or access individual values directly. For example, if rows holds
the result set, you can access the value of the third column in the second
row as rows[1][2] (indexes begin at 0, not 1).

Go
The Go sql interface has two connection-object functions to execute SQL
statements: Exec() for statements that do not return a result set and
Query() for the statements that do. Both return error if the statement
fails.
To run a statement that doesn’t return any row, such as INSERT, UPDATE,
or DELETE, use the Exec() function. Its return values can have a
Result type or an error type. The interface Result has a
RowsAffected() function that indicates how many rows were changed:

sql := "UPDATE profile SET cats = cats+1 WHERE name = 'Sybil'"
res, err := db.Exec(sql)

if err != nil {
 panic(err.Error())
}

affectedRows, err := res.RowsAffected()

if err != nil {
 log.Fatal(err)
}

fmt.Printf("The statement affected %d rows\n", affectedRows)

For the statements that return a result set, typically SELECT, use the
Query() function. This function returns the cursor to the object of the
Rows type that holds the result of the query. Call the Next() function to
iterate through the result and store returned values in the variables using the
Scan() function. If Next() returns false, this means there is no result:

res, err := db.Query("SELECT id, name, cats FROM profile")

defer res.Close()

if err != nil {
 log.Fatal(err)
}

for res.Next() {

 var profile Profile
 err := res.Scan(&profile.id, &profile.name,
&profile.cats)

 if err != nil {
 log.Fatal(err)
 }

 fmt.Printf("%+v\n", profile)
}

If Next() is called and returns false, the Rows are closed
automatically. Otherwise, you need to close them using the Close()
function.
For the queries that expect to return at most one row, there is a special
function, QueryRow(), that returns a Row object that can be scanned
immediately. QueryRow() never returns an error until Scan() is called.
If the query returns no row, Scan() returns ErrNoRows:

row := db.QueryRow("SELECT id, name, cats FROM profile where
id=3")

var profile Profile
err = row.Scan(&profile.id, &profile.name, &profile.cats)

if err == sql.ErrNoRows {

 fmt.Println("No row matched!")
} else if err != nil {
 log.Fatal(err)
} else {
 fmt.Printf("%v\n", profile)
}

Java
The JDBC interface provides specific object types for the various phases of
SQL statement processing. Statements are executed in JDBC using Java
objects of one type. The results, if any, are returned as objects of another
type.
To execute a statement, first get a Statement object by calling the
createStatement() method of your Connection object:

Statement s = conn.createStatement ();

Then use the Statement object to send the statement to the server. JDBC
provides several methods for doing this. Choose the one that’s appropriate
for the type of statement: executeUpdate() for statements that don’t
return a result set, executeQuery() for statements that do, and
execute() when you don’t know. Each method raises an exception if the
statement fails.
The executeUpdate() method sends a statement that generates no
result set to the server and returns a count indicating the number of affected
rows. When you’re done with the statement object, close it:

Statement s = conn.createStatement ();
int count = s.executeUpdate(
 "UPDATE profile SET cats = cats+1 WHERE name =
'Sybil'");
s.close(); // close statement
System.out.println("Number of rows updated: " + count);

For statements that return a result set, use executeQuery(). Then get a
result set object, and use it to retrieve the row values. When you’re done,
close the result set and statement objects:

Statement s = conn.createStatement ();
s.executeQuery("SELECT id, name, cats FROM profile");
ResultSet rs = s.getResultSet();
int count = 0;
while (rs.next ()) { // loop through rows of result set\
 int id = rs.getInt(1); // extract columns 1, 2, and 3
 String name = rs.getString(2);
 int cats = rs.getInt(3);
 System.out.println("id: " + id
 + ", name: " + name
 + ", cats: " + cats);
 ++count;
}
rs.close (); // close result set
s.close (); // close statement
System.out.println ("Number of rows returned: " + count);

The ResultSet object returned by the getResultSet() method of
your Statement object has its own methods, such as next(), to fetch
rows and various getXXX() methods that access columns of the current
row. Initially, the result set is positioned just before the first row of the set.
Call next() to fetch each row in succession until it returns false. To
determine the number of rows in a result set, count them yourself, as shown
in the preceding example.

TIP
For queries that return a single result set, it isn’t necessary to call getResultSet. The
preceding code could be written as follows:

ResultSet rs = s.executeQuery("SELECT id, name, cats FROM
profile");

A separate call is needed when your query can return multiple result sets, for example, if you call
a stored routine.

To access column values, use the getInt(), getString(),
getFloat(), or getDate() methods. To obtain the column value as a
generic object, use getObject(). The argument to a getXXX() call can
indicate either column position (beginning at 1, not 0) or column name. The

previous example shows how to retrieve the id, name, and cats columns
by position. To access columns by name instead, write the row-fetching
loop as follows:

while (rs.next ()) { // loop through rows of result set
 int id = rs.getInt("id");
 String name = rs.getString("name");
 int cats = rs.getInt("cats");
 System.out.println("id: " + id
 + ", name: " + name
 + ", cats: " + cats);
 ++count;
}

To retrieve a given column value, use any getXXX() call that makes sense
for the data type. For example, getString() retrieves any column value
as a string:

String id = rs.getString("id");
String name = rs.getString("name");
String cats = rs.getString("cats");
System.out.println("id: " + id
 + ", name: " + name
 + ", cats: " + cats);

Or use getObject() to retrieve values as generic objects and convert the
values as necessary. The following example uses toString() to convert
object values to printable form:

Object id = rs.getObject("id");
Object name = rs.getObject("name");
Object cats = rs.getObject("cats");
System.out.println("id: " + id.toString()
 + ", name: " + name.toString()
 + ", cats: " + cats.toString());

To determine the number of columns in the result set, access its metadata:

ResultSet rs = s.getResultSet();
ResultSetMetaData md = rs.getMetaData(); // get result set
metadata

int ncols = md.getColumnCount(); // get column count from
metadata

The third JDBC statement-execution method, execute(), works for
either type of statement. It’s particularly useful when you receive a
statement string from an external source and don’t know whether it
generates a result set or returns multiple result sets. The return value from
execute() indicates the statement type so that you can process it
appropriately: if execute() returns true, there is a result set, otherwise
not. Typically, you’d use it something like this, where stmtStr represents
an arbitrary SQL statement:

Statement s = conn.createStatement();
if (s.execute(stmtStr)) {
 // there is a result set
 ResultSet rs = s.getResultSe();

 // ... process result set here ...

 rs.close(); // close result set
} else {
 // there is no result set, just print the row count
 System.out.println("Number of rows affected: " +
s.getUpdateCount ());
}
s.close(); // close statement

4.5 Handling Special Characters and NULL
Values in Statements

Problem
You need to construct SQL statements that refer to data values containing
special characters such as quotes or backslashes, or special values such as
NULL. Or you are constructing statements using data obtained from external
sources and want to prevent SQL injection attacks.

Solution

Use your API’s placeholder mechanism or quoting function to make data
safe for insertion.

Discussion
Up to this point in the chapter, our statements have used “safe” data values
that require no special treatment. For example, we can easily construct the
following SQL statements from within a program by writing the data values
literally in the statement strings:

SELECT * FROM profile WHERE age > 40 AND color = 'green';

INSERT INTO profile (name,color) VALUES('Gary','blue');

However, some data values are not so easily handled and cause problems if
you are not careful. Statements might use values that contain special
characters such as quotes, backslashes, binary data, or values that are NULL.
The following discussion describes the difficulties these values cause and
the proper techniques for handling them.
Suppose that you want to execute this INSERT statement:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES('Alison','1973-01-12','blue','eggroll',4);

There’s nothing unusual about that. But if you change the name column
value to something like De'Mont that contains a single quote, the
statement becomes syntactically invalid:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De'Mont','1973-01-12','blue','eggroll',4);

The problem is the single quote inside a single-quoted string. To make the
statement legal by escaping the quote, precede it with either a single quote
or a backslash:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De''Mont','1973-01-12','blue','eggroll',4);

INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De\'Mont','1973-01-12','blue','eggroll',4);

Alternatively, quote the name value itself within double quotes rather than
within single quotes (assuming that the ANSI_QUOTES SQL mode is not
enabled):

INSERT INTO profile (name,birth,color,foods,cats)
VALUES("De'Mont",'1973-01-12','blue','eggroll',4);

If you are writing a statement literally in your program, you can escape or
quote the name value by hand because you know what the value is. But if
the name is stored in a variable, you don’t necessarily know what the
variable’s value is. Worse yet, a single quote isn’t the only character you
must be prepared to deal with; double quotes and backslashes cause
problems, too. And if the database stores binary data such as images or
sound clips, a value might contain anything—not only quotes or
backslashes but other characters such as nulls (zero-valued bytes). The need
to handle special characters properly is particularly acute in a web
environment where statements are constructed using form input (for
example, if you search for rows that match search terms entered by the
remote user). You must be able to handle any kind of input in a general way
because you can’t predict in advance what kind of information a user will
supply. It’s not uncommon for malicious users to enter garbage values
containing problematic characters in a deliberate attempt to compromise the
security of your server and even execute fatal commands, such as DROP
TABLE. That is a standard technique for exploiting insecure scripts, called
SQL injection.
The SQL NULL value is not a special character, but it too requires special
treatment. In SQL, NULL indicates “no value.” This can have several
meanings depending on context, such as “unknown,” “missing,” “out of
range,” and so forth. Our statements thus far have not used NULL values, to
avoid dealing with the complications they introduce, but now it’s time to
address these issues. For example, if you don’t know De’Mont’s favorite

https://oreil.ly/5cGOT

color, you can set the color column to NULL—but not by writing the
statement like this:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De''Mont','1973-01-12','NULL','eggroll',4);

Instead, the NULL value must have no enclosing quotes:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De''Mont','1973-01-12',NULL,'eggroll',4);

Were you writing the statement literally in your program, you’d simply
write the word NULL. But if the color value comes from a variable, the
proper action is not so obvious. You must know whether the variable’s
value represents NULL to determine whether to enclose it within quotes
when you construct the statement.
You have two means at your disposal for dealing with special characters
such as quotes and backslashes and with special values such as NULL:

Use placeholders in the statement string to refer to data values
symbolically, then bind the data values to the placeholders when you
execute the statement. This is the preferred method because the API
itself does all or most of the work for you of providing quotes around
values as necessary, quoting or escaping special characters within the
data value, and possibly interpreting a special value to map onto NULL
without enclosing quotes.
Use a quoting function (if your API provides one) for converting data
values to a safe form that is suitable for use in statement strings.

This section shows how to use these techniques to handle special characters
and NULL values for each API. One of the examples demonstrated here
shows how to insert a profile table row that contains De'Mont for the
name value and NULL for the color value. However, the principles
shown here have general utility and handle any special characters, including
those found in binary data. Also, the principles are not limited to INSERT
statements. They work for other kinds of statements as well, such as

SELECT. One of the other examples shown here demonstrates how to
execute a SELECT statement using placeholders.

Processing of special characters and NULL values comes up in other
contexts covered elsewhere:

The placeholder and quoting techniques described here are only for data
values and not for identifiers such as database or table names. For a
discussion of identifier quoting, refer to Recipe 4.6.
Comparisons of NULL values require different operators than non-NULL
values. Recipe 5.6 discusses how to construct SQL statements that
perform NULL comparisons from within programs.

This section covers the issue of getting special characters into your
database. A related issue is the inverse operation of transforming special
characters in values returned from your database for display in various
contexts. For example, if you generate HTML pages that include values
taken from your database, you must perform output encoding to convert
< and > characters in those values to the HTML entities < and
> to make sure they display properly.

Using placeholders
Placeholders enable you to avoid writing data values literally in SQL
statements. Using this approach, you write statements using placeholders—
special markers that indicate where the values go. Two common parameter
markers are ? and %s. Depending on the marker, rewrite the INSERT
statement to use placeholders like this:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES(?,?,?,?,?);

INSERT INTO profile (name,birth,color,foods,cats)
VALUES(%s,%s,%s,%s,%s);

Then pass the statement string to the database server and supply the data
values separately. The API binds the values to the placeholders to replace
them, resulting in a statement that contains the data values.

One benefit of placeholders is that parameter-binding operations
automatically handle escaping of characters such as quotes and backslashes.
This is especially useful for inserting binary data such as images into your
database or using data values with unknown content such as input submitted
by a remote user through a form in a web page. Also, there is usually some
special value that you bind to a placeholder to indicate that you want a SQL
NULL value in the resulting statement.

A second benefit of placeholders is that you can “prepare” a statement in
advance, then reuse it by binding different values to it each time it’s
executed. Prepared statements thus encourage statement reuse. Statements
become more generic because they contain placeholders rather than specific
data values. If you perform an operation over and over, you may be able to
reuse a prepared statement and simply bind different data values to it each
time you execute it. Some database systems (MySQL not among them)
have the capability of performing some preparsing or even execution
planning prior to executing a prepared statement. For a statement that is
executed multiple times later, this reduces overhead because anything that
can be done prior to execution need be done only once, not once per
execution. For example, if a program executes a particular type of SELECT
statement several times while it runs, such a database system can construct
a plan for the statement and then reuse it each time, rather than rebuild the
plan over and over. MySQL doesn’t build query plans in advance, so you
get no performance boost from using prepared statements. However, if you
port a program to a database that does reuse query plans and you’ve written
your program to use prepared statements, you can get this advantage of
prepared statements automatically. You need not convert from nonprepared
statements to enjoy that benefit.
A third (admittedly subjective) benefit is that code that uses placeholder-
based statements can be easier to read. As you work through this section,
compare the statements used here with those from Recipe 4.4 that didn’t use
placeholders to see which you prefer.

Using a quoting function

Some APIs provide a quoting function that takes a data value as its
argument and returns a properly quoted and escaped value suitable for safe
insertion into a SQL statement. This is less common than using
placeholders, but it can be useful for constructing statements that you don’t
intend to execute immediately. However, you must have a connection open
to the database server while you use such a quoting function because the
API cannot select the proper quoting rules until the database driver is
known. (The rules differ among database systems.)

NOTE
As we’ll indicate later, some APIs quote as strings all non-NULL values, even numbers, when
binding them to parameter markers. This can be an issue in contexts that require numbers, as
described further in Recipe 5.11.

GENERATING A LIST OF PLACEHOLDERS
You cannot bind an array of data values to a single placeholder. Each value must be bound to a
separate placeholder. To use placeholders for a list of data values that may vary in number,
construct a list of placeholder characters. In Perl, the following statement creates a string
consisting of n placeholder characters separated by commas:

$str = join (",", ("?") x n);

The x repetition operator, when applied to a list, produces n copies of the list, so the join()
call joins these lists to produce a single string containing n comma-separated instances of the ?
character. This is handy for binding an array of data values to a list of placeholders in a
statement string because the size of the array is the number of placeholders needed:

$str = join (",", ("?") x @values);

In Ruby, use the * operator to similar effect:

str = (["?"] * values.size).join(",")

A less cryptic method is to use a loop approach, here illustrated in Python:

str = ""
if len(values) > 0:
 str = "?"
for i in range(1, len(values)):
 str += ",?"

Perl
To use placeholders with Perl DBI, put a ? in your SQL statement string at
each data value location. Then bind the values to the statement by passing
them to do() or execute(), or by calling a DBI method specifically
intended for placeholder substitution. Use undef to bind a NULL value to a
placeholder.
With do(), add the profile row for De’Mont by passing the statement
string and the data values in the same call:

my $count = $dbh->do ("INSERT INTO profile
(name,birth,color,foods,cats)
 VALUES(?,?,?,?,?)",
 undef,
 "De'Mont", "1973-01-12", undef, "eggroll",
4);

The arguments following the statement string are undef, then one data
value for each placeholder. The undef argument is a historical artifact but
must be present.
Alternatively, pass the statement string to prepare() to get a statement
handle, then use that handle to pass the data values to execute():

my $sth = $dbh->prepare ("INSERT INTO profile
(name,birth,color,foods,cats)
 VALUES(?,?,?,?,?)");
my $count = $sth->execute ("De'Mont", "1973-01-12", undef,
"eggroll", 4);

In either case, DBI generates this statement:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De\'Mont','1973-01-12',NULL,'eggroll','4');

The Perl DBI placeholder mechanism provides quotes around data values
when they are bound to the statement string, so don’t put quotes around the
? characters in the string.

Note that the placeholder mechanism adds quotes around numeric values.
DBI relies on the MySQL server to perform type conversion as necessary to
convert strings to numbers. If you bind undef to a placeholder, DBI puts a
NULL into the statement and correctly refrains from adding enclosing
quotes.
To execute the same statement over and over again, use prepare() once,
then call execute() with the appropriate data values each time you run
it.
You can use these methods for other types of statements as well. For
example, the following SELECT statement uses a placeholder to look for

rows that have a cats value larger than 2:

my $sth = $dbh->prepare ("SELECT * FROM profile WHERE cats > ?");
$sth->execute (2);
while (my $ref = $sth->fetchrow_hashref ())
{
 print "id: $ref->{id}, name: $ref->{name}, cats: $ref->
{cats}\n";
}

High-level retrieval methods such as selectrow_array() and
selectall_arrayref() can be used with placeholders, too. Like the
do() method, the arguments are the statement string, undef, and the data
values to bind to the placeholders. Here’s an example:

my $ref = $dbh->selectall_arrayref (
 "SELECT name, birth, foods FROM profile WHERE id > ? AND color
= ?",
 undef, 3, "green"
);

The Perl DBI quote() database-handle method is an alternative to using
placeholders. Here’s how to use quote() to create a statement string that
inserts a new row in the profile table. Write the %s format specifiers
without enclosing quotes because quote() provides them automatically
as necessary. Non-undef values are inserted with quotes, and undef
values are inserted as NULL without quotes:

my $stmt = sprintf ("INSERT INTO profile
(name,birth,color,foods,cats)
 VALUES(%s,%s,%s,%s,%s)",
 $dbh->quote ("De'Mont"),
 $dbh->quote ("1973-01-12"),
 $dbh->quote (undef),
 $dbh->quote ("eggroll"),
 $dbh->quote (4));
my $count = $dbh->do ($stmt);

The statement string generated by this code is the same as when you use
placeholders.

Ruby
Ruby DBI uses ? as the placeholder character in SQL statements and nil
as the value for binding a SQL NULL value to a placeholder.

To use the ?, pass the statement string to prepare to get a statement
handle, then use that handle to invoke execute with the data values:

sth = client.prepare("INSERT INTO profile
(name,birth,color,foods,cats)
 VALUES(?,?,?,?,?)")
sth.execute("De'Mont", "1973-01-12", nil, "eggroll", 4)

Mysql2 includes properly escaped quotes and a properly unquoted NULL
value in the resulting statement:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De\'Mont','1973-01-12',NULL,'eggroll',4);

The Ruby Mysql2 placeholder mechanism provides quotes around data
values as necessary when they are bound to the statement string, so don’t
put quotes around the ? characters in the string.

PHP
To use placeholders with the PDO extension, pass a statement string to
prepare() to get a statement object. The string can contain ? characters
as placeholder markers. Use this object to invoke execute(), passing to
it the array of data values to bind to the placeholders. Use the PHP NULL
value to bind a SQL NULL value to a placeholder. The code to add the
profile table row for De’Mont looks like this:

$sth = $dbh->prepare ("INSERT INTO profile
(name,birth,color,foods,cats)
 VALUES(?,?,?,?,?)");
$sth->execute (array ("De'Mont","1973-01-12",NULL,"eggroll",4));

The resulting statement includes a properly escaped quote and a properly
unquoted NULL value:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De\'Mont','1973-01-12',NULL,'eggroll','4');

The PDO placeholder mechanism provides quotes around data values when
they are bound to the statement string, so don’t put quotes around the ?
characters in the string. (Note that even the numeric value 4 is quoted; PDO
relies on MySQL to perform type conversion as necessary when the
statement executes.)

Python
The Connector/Python module implements placeholders using %s format
specifiers in the SQL statement string. (To place a literal % character into
the statement, use %% in the statement string.) To use placeholders, invoke
the execute() method with two arguments: a statement string containing
format specifiers and a sequence containing the values to bind to the
statement string. Use None to bind a NULL value to a placeholder. The
code to add the profile table row for De’Mont looks like this:

cursor = conn.cursor()
cursor.execute('''
 INSERT INTO profile (name,birth,color,foods,cats)
 VALUES(%s,%s,%s,%s,%s)
 ''', ("De'Mont", "1973-01-12", None, "eggroll",
4))
cursor.close()
conn.commit()

The statement sent to the server by the preceding execute() call looks
like this:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De\'Mont','1973-01-12',NULL,'eggroll',4);

The Connector/Python placeholder mechanism provides quotes around data
values as necessary when they are bound to the statement string, so don’t
put quotes around the %s format specifiers in the string.

If you have only a single value, val, to bind to a placeholder, write it as a
sequence using the syntax (val,):

cursor = conn.cursor()
cursor.execute("SELECT id, name, cats FROM profile WHERE cats =
%s", (2,))
for (id, name, cats) in cursor:
 print("id: %s, name: %s, cats: %s" % (id, name, cats))
cursor.close()

Alternatively, write the value as a list using the syntax [val].

Go
The Go sql package uses question marks (?) as placeholder markers. You
can use placeholders with single Exec() or Query() calls, and you can
also prepare the statement in advance and execute it later. The latter method
is good when you need to execute the statement multiple times. The code to
add the profile table row for De’Mont looks like this:

stmt := `INSERT INTO profile (name,birth,color,foods,cats)
 VALUES(?,?,?,?,?)`
_, err = db.Exec(stmt, "De'Mont", "1973-01-12", nil, "eggroll",
4)

The same code with the Prepare() call looks like this:

pstmt, err := db.Prepare(`INSERT INTO profile
(name,birth,color,foods,cats)
 VALUES(?,?,?,?,?)`)
if err != nil {
 log.Fatal(err)
}
defer pstmt.Close()

_, err = pstmt.Exec("De'Mont", "1973-01-12", nil, "eggroll", 4)

Java
JDBC provides support for placeholders if you use prepared statements.
Recall that the process for executing nonprepared statements in JDBC is to
create a Statement object and then pass the statement string to the

executeUpdate(), executeQuery(), or execute() function. To
use a prepared statement instead, create a PreparedStatement object
by passing a statement string containing ? placeholder characters to your
connection object’s prepareStatement() method. Then bind the data
values to the statement using setXXX() methods. Finally, execute the
statement by calling executeUpdate(), executeQuery(), or
execute() with an empty argument list.

Here is an example that uses executeUpdate() to execute an INSERT
statement that adds the profile table row for De’Mont:

PreparedStatement s;
s = conn.prepareStatement(
 "INSERT INTO profile (name,birth,color,foods,cats)"
 + " VALUES(?,?,?,?,?)");
s.setString(1, "De'Mont"); // bind values to placeholders
s.setString(2, "1973-01-12");
s.setNull(3, java.sql.Types.CHAR);
s.setString(4, "eggroll");
s.setInt(5, 4);
s.close(); // close statement

The setXXX() methods that bind data values to statements take two
arguments: a placeholder position (beginning with 1, not 0) and the value to
bind to the placeholder. Choose each value-binding call to match the data
type of the column to which the value is bound: setString() to bind a
string to the name column, setInt() to bind an integer to the cats
column, and so forth. (Actually, we cheated a bit by using setString()
to treat the date value for birth as a string.)

One difference between JDBC and the other APIs is that you don’t bind a
NULL to a placeholder by specifying some special value (such as undef in
Perl or nil in Ruby). Instead, invoke setNull() with a second
argument that indicates the type of the column: java.sql.Types.CHAR
for a string, java.sql.Types.INTEGER for an integer, and so forth.

The setXXX() calls add quotes around data values if necessary, so don’t
put quotes around the ? placeholder characters in the statement string.

To handle a statement that returns a result set, the process is similar, but
execute the prepared statement with executeQuery() rather than
executeUpdate():

PreparedStatement s;
s = conn.prepareStatement("SELECT * FROM profile WHERE cats >
?");
s.setInt(1, 2); // bind 2 to first placeholder
s.executeQuery();
// ... process result set here ...
s.close(); // close statement

4.6 Handling Special Characters in Identifiers

Problem
You need to construct SQL statements that refer to identifiers containing
special characters.

Solution
Quote each identifier so it can be inserted safely into statement strings.

Discussion
Recipe 4.5 discusses how to handle special characters in data values by
using placeholders or quoting methods. Special characters can also be
present in identifiers such as database, table, and column names. For
example, the table name some table contains a space, which is not
permitted by default:

mysql> CREATE TABLE some table (i INT);
ERROR 1064 (42000): You have an error in your SQL syntax near
'table (i INT)'

Special characters are handled differently in identifiers than in data values.
To make an identifier safe for insertion into a SQL statement, quote it by

enclosing it within backticks:

mysql> CREATE TABLE `some table` (i INT);
Query OK, 0 rows affected (0.04 sec)

In MySQL, backticks are always permitted for identifier quoting. The
double-quote character is permitted as well, if the ANSI_QUOTES SQL
mode is enabled. Thus, with ANSI_QUOTES enabled, both of these
statements are equivalent:

CREATE TABLE `some table` (i INT);
CREATE TABLE "some table" (i INT);

If it’s necessary to know which identifier quoting characters are permitted,
execute a SELECT @@sql_mode statement to retrieve the SQL mode for
your session and check whether its value includes ANSI_QUOTES.

If a quoting character appears within the identifier itself, double it when
quoting the identifier. For example, quote abc`def as `abc``def`.

Be aware that although string data values in MySQL normally can be
quoted using either single-quote or double-quote characters ('abc',
"abc"), that is not true when ANSI_QUOTES is enabled. In that case,
MySQL interprets 'abc' as a string and "abc" as an identifier, so you
must use only single quotes for strings.
Within a program, you can use an identifier-quoting routine if your API
provides one, or write one yourself if not. Perl DBI has a
quote_identifier() method that returns a properly quoted identifier.
For an API that has no such method, you can quote an identifier by
enclosing it within backticks and doubling any backticks that occur within
the identifier. Here’s a PHP routine that does so:

function quote_identifier ($ident)
{
 return ('`' . str_replace('`', '``', $ident) . '`');
}

Portability note: if you write your own identifier-quoting routines,
remember that other database management systems (DBMSs) may require
different quoting conventions.
In contexts where identifiers are used as data values, handle them as such. If
you select information from the INFORMATION_SCHEMA metadata
database, it’s common to indicate which rows to return by specifying
database object names in the WHERE clause. For example, this statement
retrieves the column names for the profile table in the cookbook
database:

SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'profile';

The database and table names are used here as data values, not as
identifiers. Were you to construct this statement within a program,
parameterize them using placeholders, not identifier quoting. For example,
in Ruby, do this:

sth = client.prepare("SELECT COLUMN_NAME
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE TABLE_SCHEMA = ? AND TABLE_NAME =
?")
names = sth.execute(db_name, tbl_name)

4.7 Identifying NULL Values in Result Sets

Problem
A query result includes NULL values, but you’re not sure how to identify
them.

Solution
Your API probably has some special value that represents NULL by
convention. You just have to know what it is and how to test for it.

Discussion
Recipe 4.5 describes how to refer to NULL values when you send
statements to the database server. In this section, we’ll deal instead with the
question of how to recognize and process NULL values returned from the
database server. In general, this is a matter of knowing what special value
the API maps NULL values to, or what method to call. Table 4-5 shows
these values.

Table 4-5. Detected NULL values

Language NULL-detection value or method
Perl DBI undef value

Ruby Mysql2 gem nil value

PHP PDO NULL value

Python DB API None value

Go sql interface Go Null type implementation for the nullable data types.

Java JDBC wasNull() method

The following sections show a very simple application of NULL value
detection. The examples retrieve a result set and print all values in it,
mapping NULL values onto the printable string "NULL".

To make sure that the profile table has a row that contains some NULL
values, use mysql to execute the following INSERT statement, then
execute the SELECT statement to verify that the resulting row has the
expected values:

mysql> INSERT INTO profile (name) VALUES('Amabel');
mysql> SELECT * FROM profile WHERE name = 'Amabel';
+----+--------+-------+-------+-------+------+
| id | name | birth | color | foods | cats |
+----+--------+-------+-------+-------+------+
| 9 | Amabel | NULL | NULL | NULL | NULL |
+----+--------+-------+-------+-------+------+

The id column might contain a different number, but the other columns
should appear as shown, with values of NULL.

Perl
Perl DBI represents NULL values using undef. To detect such values, use
the defined() function; it’s particularly important to do so if you enable
warnings with the Perl -w option or by including a use warnings line in
your script. Otherwise, accessing undef values causes Perl to issue Use
of uninitialized value warnings.

To prevent these warnings, test column values that might be undef with
defined() before using them. The following code selects a few columns
from the profile table and prints "NULL" for any undefined values in
each row. This makes NULL values explicit in the output without activating
any warning messages:

my $sth = $dbh->prepare ("SELECT name, birth, foods FROM
profile");
$sth->execute ();
while (my $ref = $sth->fetchrow_hashref ())
{
 printf "name: %s, birth: %s, foods: %s\n",
 defined ($ref->{name}) ? $ref->{name} : "NULL",
 defined ($ref->{birth}) ? $ref->{birth} : "NULL",
 defined ($ref->{foods}) ? $ref->{foods} : "NULL";
}

Unfortunately, testing multiple column values is ponderous and becomes
worse the more columns there are. To avoid this, test and set undefined
values using a loop or map prior to printing them. The following example
uses map:

my $sth = $dbh->prepare ("SELECT name, birth, foods FROM
profile");
$sth->execute ();
while (my $ref = $sth->fetchrow_hashref ())
{
 map { $ref->{$_} = "NULL" unless defined ($ref->{$_}); } keys
(%{$ref});
 printf "name: %s, birth: %s, foods: %s\n",

 $ref->{name}, $ref->{birth}, $ref->{foods};
}

With this technique, the amount of code to perform the tests is constant, not
proportional to the number of columns to be tested. Also, there is no
reference to specific column names, so it can more easily be used in other
programs or as the basis for a utility routine.
If you fetch rows into an array rather than into a hash, use map like this to
convert undef values:

my $sth = $dbh->prepare ("SELECT name, birth, foods FROM
profile");
$sth->execute ();
while (my @val = $sth->fetchrow_array ())
{
 @val = map { defined ($_) ? $_ : "NULL" } @val;
 printf "name: %s, birth: %s, foods: %s\n",
 $val[0], $val[1], $val[2];
}

Ruby
The Ruby Mysql2 module represents NULL values using nil, which can be
identified by applying the nil? method to a value. The following example
uses the nil? method and ternary operator to determine whether to print
result set values as is or as the string "NULL" for NULL values:

result = client.query("SELECT name, birth, foods FROM profile")
result.each do |row|
 printf "name %s, birth: %s, foods: %s\n",
 row["name"].nil? ? "NULL" : row["name"],
 row["birth"].nil? ? "NULL" : row["birth"],
 row["foods"].nil? ? "NULL" : row["foods"]
end

PHP
PHP represents SQL NULL values in result sets as the PHP NULL value. To
determine whether a value from a result set represents a NULL value,
compare it to the PHP NULL value using the === “triple equal” operator:

if ($val === NULL)
{
 # $val is a NULL value
}

In PHP, the triple equal operator means “exactly equal to.” The usual ==,
“equal to,” comparison operator is not suitable here: with ==, PHP
considers the NULL value, the empty string, and 0 all equal.

The following code uses the === operator to identify NULL values in a
result set and print them as the string "NULL":

$sth = $dbh->query ("SELECT name, birth, foods FROM profile");
while ($row = $sth->fetch (PDO::FETCH_NUM))
{
 foreach (array_keys ($row) as $key)
 {
 if ($row[$key] === NULL)
 $row[$key] = "NULL";
 }
 print ("name: $row[0], birth: $row[1], foods: $row[2]\n");
}

An alternative to === for NULL value tests is is_null().

Python
Python DB API programs represent NULL in result sets using None. The
following example shows how to detect NULL values:

cursor = conn.cursor()
cursor.execute("SELECT name, birth, foods FROM profile")

for row in cursor:
 row = list(row) # convert nonmutable tuple to mutable list

 for i, value in enumerate(row):
 if value is None: # is the column value NULL?
 row[i] = "NULL"

 print("name: %s, birth: %s, foods: %s" % (row[0], row[1],
row[2]))

cursor.close()

The inner loop checks for NULL column values by looking for None and
converts them to the string "NULL". The example converts row to a
mutable object (list) prior to the loop because fetchall() returns rows
as sequence values, which are immutable (read only).

Go
The Go sql interface provides special data types to handle values in the
result set that may contain NULL values. They are defined for the standard
Go types. Table 4-6 contains the list of the standard data types and their
nullable equivalents.

Table 4-6. Handling NULL values in Go

Standard Go type Type that can contain NULL values
bool NullBool

float64 NullFloat64

int32 NullInt32

int64 NullInt64

string NullString

time.Time NullTime

To define a variable that can take both NULL and non-NULL values when
passed as an argument to the function Scan(), use the corresponding
nullable type.
All nullable types contain two functions: Valid() that returns true if the
value is not NULL and false if the value is NULL. The second function is
the type name, started from the capital letter, for example, String() for
string values and Time() for time.Time values. This method returns
the actual value when it is not NULL.

The following example shows you how to handle NULL values in Go:

// null-in-result.go : Selecting NULL values in Go
package main

import (
 "database/sql"
 "fmt"
 "log"

 _ "github.com/go-sql-driver/mysql"
)

type Profile struct {
 name string
 birth sql.NullString
 foods sql.NullString
}

func main() {

 db, err := sql.Open("mysql",
"cbuser:cbpass@tcp(127.0.0.1:3306)/cookbook")

 if err != nil {
 log.Fatal(err)
 }
 defer db.Close()

 sql := "SELECT name, birth, foods FROM profile"
 res, err := db.Query(sql)

 if err != nil {
 log.Fatal(err)
 }
 defer res.Close()

 for res.Next() {
 var profile Profile
 err = res.Scan(&profile.name, &profile.birth,
&profile.foods)
 if err != nil {
 log.Fatal(err)
 }

 if (profile.birth.Valid && profile.foods.Valid) {
 fmt.Printf("name: %s, birth: %s, foods: %s\n",
 profile.name, profile.birth.String,
profile.foods.String)
 } else if profile.birth.Valid {
 fmt.Printf("name: %s, birth: %s, foods: NULL\n",
 profile.name, profile.birth.String)
 } else if profile.foods.Valid {
 fmt.Printf("name: %s, birth: NULL, foods: %s\n",
 profile.name, profile.foods.String)

 } else {
 fmt.Printf("name: %s, birth: NULL, foods: NULL\n",
 profile.name)
 }
 }
}

WARNING
We used the NullString type for the birth column for simplicity. If you want to use the
NullTime type, you need to add the parseTime=true parameter to your connection string.

TIP
Alternatively, you can use MySQL’s COALESCE() function to convert the NULL value to a string
during the query execution:

sql := `SELECT name,
 COALESCE(birth, '') as birthday
 FROM profile WHERE id = 9`
res, err := db.Query(sql)
defer res.Close()

Java
For JDBC programs, if it’s possible for a column in a result set to contain
NULL values, it’s best to check for them explicitly. The way to do this is to
fetch the value and then invoke wasNull(), which returns true if the
column is NULL and false otherwise, for example:

Object obj = rs.getObject (index);
if (rs.wasNull ())
{ /* the value's a NULL */ }

The preceding example uses getObject(), but the principle holds for
other getXXX() calls as well.

Here’s an example that prints each row of a result set as a comma-separated
list of values, with "NULL" printed for each NULL value:

Statement s = conn.createStatement();
s.executeQuery("SELECT name, birth, foods FROM profile");
ResultSet rs = s.getResultSet();
ResultSetMetaData md = rs.getMetaData();
int ncols = md.getColumnCount();
while (rs.next ()) { // loop through rows of result set
 for (int i = 0; i < ncols; i++) { // loop through columns
 String val = rs.getString(i+1);
 if (i > 0)
 System.out.print(", ");
 if (rs.wasNull())
 System.out.print("NULL");
 else
 System.out.print(val);
 }
 System.out.println();
}
rs.close(); // close result set
s.close(); // close statement

4.8 Obtaining Connection Parameters

Problem
You need to obtain connection parameters for a script so that it can connect
to a MySQL server.

Solution
There are several ways to do this. Take your pick from the alternatives
described here.

Discussion
Any program that connects to MySQL specifies connection parameters such
as the username, password, and hostname. The recipes shown so far have
put connection parameters directly into the code that attempts to establish

the connection, but that is not the only way for your programs to obtain the
parameters. This discussion briefly surveys some of the available
techniques:

Hardwire the parameters into the program
The parameters can be given either in the main source file or in a library
file used by the program. This technique is convenient because users
need not enter the values themselves, but it’s also inflexible. To change
parameters, you must modify your program. It is also insecure, because
everyone who accesses the library would be able to read your database
credentials.

Ask for the parameters interactively
In a command-line environment, you can ask the user a series of
questions. In a web or GUI environment, you might do this by
presenting a form or dialog. Either way, this becomes tedious for people
who use the application frequently, due to the need to enter the
parameters each time.

Get the parameters from the command line
You can use this method either for commands run interactively or from
within a script. Like the method of obtaining parameters interactively,
you must supply parameters for each command invocation. (A factor
that mitigates this burden is that many shells enable you to easily recall
commands from your history list for re-execution.) This method could
be insecure if you provide your credentials this way.

Get the parameters from the execution environment
The most common way to do this is to set the appropriate environment
variables in one of your shell’s startup files (such as .profile for sh,
bash, or ksh; or .login for csh or tcsh). Programs that you run
during your login session then can get parameter values by examining
their environment.

Get the parameters from a separate file

With this method, store information such as the username and password
in a file that programs can read before connecting to the MySQL server.
Reading parameters from a file that’s separate from your program gives
you the benefit of not having to enter them each time you use the
program, without hardwiring the values into it. Also, storing the values
in a file enables you to centralize parameters for use by multiple
programs, and for security purposes, you can set the file access mode to
keep other users from reading the file.
The MySQL client library itself supports an option file mechanism,
although not all APIs provide access to it. For those that don’t,
workarounds may exist. (As an example, Java supports the use of
properties files and supplies utility routines for reading them.)

Use a combination of methods
It’s often useful to combine methods, to give users the flexibility of
providing parameters different ways. For example, MySQL clients such
as mysql and mysqladmin look for option files in several locations
and read any that are present. They then check the command-line
arguments for further parameters. This enables users to specify
connection parameters in an option file or on the command line.

These methods of obtaining connection parameters do involve security
issues:

Any method that stores connection parameters in a file may compromise
your system’s security unless the file is protected against access by
unauthorized users. This is true whether parameters are stored in a
source file, an option file, or a script that invokes a command and
specifies the parameters on the command line. (Web scripts that can be
read only by the web server don’t qualify as secure if other users have
administrative access to the server.)
Parameters specified on the command line or in environment variables
are not particularly secure. While a program is executing, its command-
line arguments and environment may be visible to other users who run
process status commands such as ps -e. In particular, storing the

password in an environment variable perhaps is best limited to those
situations in which you’re the only user on the machine or you trust all
other users.

The rest of this section discusses how to process command-line arguments
to get connection parameters and how to read parameters from option files.

Getting parameters from the command line
The convention used by standard clients such as mysql and mysqladmin
for command-line arguments is to permit parameters to be specified using
either a short option or a long option. For example, the username cbuser
can be specified either as -u cbuser (or -ucbuser) or --
user=cbuser. In addition, for either of the password options (-p or --
password), the password value may be omitted after the option name to
cause the program to prompt for the password interactively.
The standard flags for these command options are -h or --host, -u or -
-user, and -p or --password. You could write your own code to
iterate through the argument list, but it’s much easier to use existing option-
processing modules written for that purpose. Under the api directory of the
recipes distribution, you’ll find example programs that show how to
process command arguments to obtain the hostname, username, and
password for Perl, Ruby, Python, and Java. An accompanying PDF file
explains how each one works.

NOTE
Insofar as possible, the programs mimic option-handling behavior of the standard MySQL clients.
An exception is that option-processing libraries may not permit making the password value
optional, and they provide no way of prompting the user for a password interactively if a
password option is specified without a password value. Consequently, the programs are written so
that if you use -p or --password, you must provide the password value following the option.

Getting parameters from option files

If your API supports it, you can specify connection parameters in a MySQL
option file and let the API read the parameters from the file for you. For
APIs that do not support option files directly, you may be able to arrange to
read other types of files in which parameters are stored or to write your own
functions that read option files.
Recipe 1.4 describes the format of MySQL option files. We assume that
you’ve read the discussion there and concentrate here on how to use option
files from within programs. You can find files containing the code discussed
here under the api directory of the recipes distribution.

Under Unix, user-specific options are specified by convention in ~/.my.cnf
(that is, in the .my.cnf file in your home directory). However, the MySQL
option-file mechanism can look in several different files if they exist,
although no option file is required to exist. (For the list of standard
locations in which MySQL programs look for them, see Recipe 1.4.) If
multiple option files exist and a given parameter is specified in several of
them, the last value found takes precedence.
Programs you write do not use MySQL option files unless you tell them to:

Perl DBI and Ruby Mysql2 gem provide direct API support for reading
option files; simply indicate that you want to use them at the time that
you connect to the server. It’s possible to specify that only a particular
file should be read, or that the standard search order should be used to
look for multiple option files.
PHP PDO, Connector/Python, Java, and Go do not support option files.
(The PDO MySQL driver does but not if you use mysqlnd as the
underlying library.) As a workaround for PHP, we’ll write a simple
option-file parsing function. For Java, we’ll adopt a different approach
that uses properties files. For Go, we will utilize the INI parsing library.

Although the conventional name under Unix for the user-specific option file
is .my.cnf in the current user’s home directory, there’s no rule that your own
programs must use this particular file. You can name an option file anything
you like and put it wherever you want. For example, you might set up a file
named mcb.cnf and install it in the /usr/local/lib/mcb directory for use by

scripts that access the cookbook database. Under some circumstances,
you might even want to create multiple option files. Then, from within any
given script, select the file that’s appropriate for the access privileges the
script needs. For example, you might have one option file, mcb.cnf, that
lists parameters for a full-access MySQL account, and another file, mcb-
readonly.cnf, that lists connection parameters for an account that needs only
read-only access to MySQL. Another possibility is to list multiple groups
within the same option file and have your scripts select options from the
appropriate group.

Perl
Perl DBI scripts can use option files. To take advantage of this, place the
appropriate option specifiers in the third component of the Data Source
Name (DSN) string:

To specify an option group, use
mysql_read_default_group=groupname. This tells MySQL to
search the standard option files for options in the named group and in the
[client] group. Write the groupname value without the
surrounding square brackets. (If a group in an option file begins with a
[my_prog] line, specify the groupname value as my_prog.) To
search the standard files but look only in the [client] group,
groupname should be client.

To name a specific option file, use
mysql_read_default_file=filename in the DSN. When you
do this, MySQL looks only in that file and only for options in the
[client] group.

If you specify both an option file and an option group, MySQL reads
only the named file but looks for options both in the named group and in
the [client] group.

The following example tells MySQL to use the standard option-file search
order to look for options in both the [cookbook] and [client]
groups:

my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit =>
1};
basic DSN
my $dsn = "DBI:mysql:database=cookbook";
look in standard option files; use [cookbook] and [client]
groups
$dsn .= ";mysql_read_default_group=cookbook";
my $dbh = DBI->connect ($dsn, undef, undef, $conn_attrs);

The next example explicitly names the option file located in $ENV{HOME},
the home directory of the user running the script. Thus, MySQL looks only
in that file and uses options from the [client] group:

my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit =>
1};
basic DSN
my $dsn = "DBI:mysql:database=cookbook";
look in user-specific option file owned by the current user
$dsn .= ";mysql_read_default_file=$ENV{HOME}/.my.cnf";
my $dbh = DBI->connect ($dsn, undef, undef, $conn_attrs);

If you pass an empty value (undef or the empty string) for the username
or password arguments of the connect() call, connect() uses
whatever values are found in the option file or files. A nonempty username
or password in the connect() call overrides any option-file value.
Similarly, a host named in the DSN overrides any option-file value. Use this
behavior to enable DBI scripts to obtain connection parameters both from
option files as well as from the command line as follows:

1. Create $host_name, $user_name, and $password variables,
each with a value of undef. Then parse the command-line arguments
to set the variables to non-undef values if the corresponding options
are present on the command line. (The cmdline.pl Perl script
under the api directory of the recipes distribution demonstrates
how to do this.)

2. After parsing the command arguments, construct the DSN string, and
call connect(). Use mysql_read_default_group and
mysql_read_default_file in the DSN to specify how you
want option files to be used, and, if $host_name is not undef, add

host=$host_name to the DSN. In addition, pass $user_name
and $password as the username and password arguments to
connect(). These will be undef by default; if they were set from
the command-line arguments, they will have non-undef values that
override any option-file values.

If a script follows this procedure, parameters given by the user on the
command line are passed to connect() and take precedence over the
contents of option files.

Ruby
Ruby Mysql2 scripts can read option files, specified by the
default_file connection parameter. If you want to specify the default
group, use the default_group option.

This example uses the standard option-file search order to look for options
in both the [cookbook] and [client] groups:

client = Mysql2::Client.new(:default_group => "cookbook",
:database => "cookbook")

The following example uses the .my.cnf file in the current user’s home
directory to obtain parameters from the [client] group:

client = Mysql2::Client.new(:default_file => "#
{ENV['HOME']}/.my.cnf",↩
:database => "cookbook")

PHP
As mentioned earlier, the PDO MySQL driver does not necessarily support
using MySQL option files (it does not if you use mysqlnd as the
underlying library). To work around that limitation, use a function that
reads an option file, such as the read_mysql_option_file()
function shown in the following listing. It takes as arguments the name of
an option file and an option group name or an array containing group
names. (Group names should be written without square brackets.) It then

reads any options present in the file for the named group or groups. If no
option group argument is given, the function looks by default in the
[client] group. The return value is an array of option name/value pairs,
or FALSE if an error occurs. It is not an error for the file not to exist. (Note
that quoted option values and trailing #-style comments following option
values are legal in MySQL option files, but this function does not handle
those constructs.):

function read_mysql_option_file ($filename, $group_list =
"client")
{
 if (is_string ($group_list)) # convert string to
array
 $group_list = array ($group_list);
 if (!is_array ($group_list)) # hmm ... garbage
argument?
 return (FALSE);
 $opt = array (); # option name/value
array
 if (!@($fp = fopen ($filename, "r"))) # if file does not
exist,
 return ($opt); # return an empty list
 $in_named_group = 0; # set nonzero while processing a named
group
 while ($s = fgets ($fp, 1024))
 {
 $s = trim ($s);
 if (preg_match ("/^[#;]/", $s)) # skip comments
 continue;
 if (preg_match ("/^\[([^]]+)]/", $s, $arg)) # option group
line
 {
 # check whether we are in one of the desired groups
 $in_named_group = 0;
 foreach ($group_list as $group_name)
 {
 if ($arg[1] == $group_name)
 {
 $in_named_group = 1; # we are in a desired group
 break;
 }
 }
 continue;
 }
 if (!$in_named_group) # we are not in a desired
 continue; # group, skip the line

 if (preg_match ("/^([^ \t=]+)[\t]*=[\t]*(.*)/", $s, $arg))
 $opt[$arg[1]] = $arg[2]; # name=value
 else if (preg_match ("/^([^ \t]+)/", $s, $arg))
 $opt[$arg[1]] = ""; # name only
 # else line is malformed
 }
 return ($opt);
}

Here are two examples showing how to use
read_mysql_option_file(). The first reads a user’s option file to
get the [client] group parameters and uses them to connect to the
server. The second reads the system-wide option file, /etc/my.cnf, and prints
the server startup parameters that are found there (that is, the parameters in
the [mysqld] and [server] groups):

$opt = read_mysql_option_file ("/home/paul/.my.cnf");
$dsn = "mysql:dbname=cookbook";
if (isset ($opt["host"]))
 $dsn .= ";host=" . $opt["host"];
$user = $opt["user"];
$password = $opt["password"];
try
{
 $dbh = new PDO ($dsn, $user, $password);
 print ("Connected\n");
 $dbh = NULL;
 print ("Disconnected\n");
}
catch (PDOException $e)
{
 print ("Cannot connect to server\n");
}

$opt = read_mysql_option_file ("/etc/my.cnf", array ("mysqld",
"server"));
foreach ($opt as $name => $value)
 print ("$name => $value\n");

PHP does have a parse_ini_file() function that is intended for
parsing .ini files. These have a syntax that is similar to MySQL option files,
so you might find this function of use. However, there are some differences
to watch out for. Suppose that you have a file written like this:

[client]
user=paul

[client]
host=127.0.0.1

[mysql]
no-auto-rehash

Standard MySQL option parsing considers both the user and host values
part of the [client] group, whereas parse_ini_file() returns only
the contents of the final [client] stanza; the user option is lost. Also,
parse_ini_file() ignores options that are given without a value, so
the no-auto-rehash option is lost.

Go
The Go-MySQL-Driver doesn’t support option files. However, the INI
parsing library supports reading properties files that contain lines in the
name=value format. Here is a sample properties file:

this file lists parameters for connecting to the MySQL server
[client]
user=cbuser
password=cbpass
host=localhost

The MyCnf() function shows one way to read a properties file named
~/.my.cnf to obtain connection parameters:

import (
 "fmt"
 "os"
 "gopkg.in/ini.v1"
)

// Configuration Parser
func MyCnf(client string) (string, error) {
 cfg, err := ini.LoadSources(ini.LoadOptions{AllowBooleanKeys:
true}, ↩
 os.Getenv("HOME")+"/.my.cnf")
 if err != nil {
 return "", err
 }

 for _, s := range cfg.Sections() {
 if client != "" && s.Name() != client {
 continue
 }
 host := s.Key("host").String()
 port := s.Key("port").String()
 dbname := s.Key("dbname").String()
 user := s.Key("user").String()
 password := s.Key("password").String()
 return fmt.Sprintf("%s:%s@tcp(%s:%s)/%s", user, password,
host, port, dbname),↩
 nil
 }
 return "", fmt.Errorf("No matching entry found in ~/.my.cnf")
}

The function MyCnf() defined in the cookbook.go, developed elsewhere
in the chapter (see Recipe 4.3). It is used in the file mycnf.go, which you
will find in the directory api/06_conn_params in the recipes
distribution:

// mycnf.go : Reads ~/.my.cnf file for DSN construct
package main

import (
 "fmt"
 "github.com/svetasmirnova/mysqlcookbook/recipes/lib"
)

func main() {
 fmt.Println("Calling db.MyCnf()")
 var dsn string

 dsn, err := cookbook.MyCnf("client")
 if err != nil {
 fmt.Printf("error: %v\n", err)
 } else {
 fmt.Printf("DSN is: %s\n", dsn)
 }
}

The MyCnf() function accepts the section name as a parameter. If you
want to replace the [client] section with any other name, change
MyCnf() to MyCnf("other"), where other is the name of the
section.

Java
The JDBC MySQL Connector/J driver doesn’t support option files.
However, the Java class library supports reading properties files that contain
lines in the name=value format. This is similar but not identical to the
MySQL option-file format (for example, properties files do not permit
[groupname] lines). Here is a simple properties file:

this file lists parameters for connecting to the MySQL server
user=cbuser
password=cbpass
host=localhost

The following program, ReadPropsFile.java, shows one way to read a
properties file named Cookbook.properties to obtain connection parameters.
The file must be in some directory named in your CLASSPATH variable, or
you must specify it using a full pathname (the example shown here assumes
that the file is in a CLASSPATH directory):

import java.sql.*;
import java.util.*; // need this for properties file support

public class ReadPropsFile {
 public static void main(String[] args) {
 Connection conn = null;
 String url = null;
 String propsFile = "Cookbook.properties";
 Properties props = new Properties();

 try {

props.load(ReadPropsFile.class.getResourceAsStream(propsFile));
 } catch (Exception e) {
 System.err.println("Cannot read properties file");
 System.exit (1);
 }
 try {
 // construct connection URL, encoding username
 // and password as parameters at the end
 url = "jdbc:mysql://"
 + props.getProperty("host")
 + "/cookbook"
 + "?user=" + props.getProperty("user")
 + "&password=" + props.getProperty("password");

 conn = DriverManager.getConnection(url);
 System.out.println("Connected");
 } catch (Exception e) {
 System.err.println("Cannot connect to server");
 } finally {
 try {
 if (conn != null) {
 conn.close();
 System.out.println("Disconnected");
 }
 } catch (SQLException e) { /* ignore close errors */ }
 }
 }
}

To have getProperty() return a particular default value when the
named property is not found, pass that value as a second argument. For
example, to use 127.0.0.1 as the default host value, call
getProperty() like this:

String hostName = props.getProperty("host", "127.0.0.1");

The Cookbook.java library file developed elsewhere in the chapter (see
Recipe 4.3) includes an extra library call in the version of the file that you’ll
find in the lib directory of the recipes distribution: a
propsConnect() routine that is based on the concepts discussed here.
To use it, set up the contents of the properties file, Cookbook.properties,
and copy the file to the same location where you installed Cookbook.class.
You can then establish a connection within a program by importing the
Cookbook class and calling Cookbook.propsConnect() rather than
by calling Cookbook.connect().

4.9 Resetting the profile Table

Problem
While working on the examples in this chapter, you changed the original
content of the profile table and now want it back, so you can use it

while working with other recipes.

Solution
Reload the table using the mysql client.

Discussion
It’s a good idea to reset the profile table used in this chapter to a known
state. Change location into the tables directory of the recipes
distribution, and run these commands:

$ mysql cookbook < profile.sql
$ mysql cookbook < profile2.sql

Several statements in later chapters use the profile table; by
reinitializing it, you’ll get the same results displayed in those chapters when
you run the statements shown there.
This chapter discussed the basic operations provided by each of our APIs
for handling various aspects of interaction with the MySQL server. These
operations enable you to write programs that execute any kind of statement
and retrieve the results. Up to this point, we’ve used simple statements
because the focus is on the APIs rather than on SQL. The next chapter
focuses on SQL instead, to show how to ask the database server more
complex questions.

Chapter 5. Selecting Data from
Tables

5.0 Introduction
This chapter focuses on using the SELECT statement to retrieve
information from your database. You will find the chapter helpful if your
SQL background is limited or if you find out about the MySQL-specific
extensions to SELECT syntax.

There are many ways to write SELECT statements; we’ll look at only a few.
Consult the MySQL User Reference Manual or a general MySQL text for
more information about SELECT syntax and the functions and operators
available to extract and manipulate data.
Many examples in this chapter use a table named mail that contains rows
that track mail message traffic between users on a set of hosts. The
following shows how that table was created:

CREATE TABLE mail
(
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 t DATETIME, # when message was sent
 srcuser VARCHAR(8), # sender (source user and host)
 srchost VARCHAR(20),
 dstuser VARCHAR(8), # recipient (destination user and host)
 dsthost VARCHAR(20),
 size BIGINT, # message size in bytes
 INDEX (t)
);

The mail table contents look like this:

mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size FROM
mail;
+---------------------+---------+---------+---------+---------+--
-------+

https://oreil.ly/cgYiU

| t | srcuser | srchost | dstuser | dsthost |
size |
+---------------------+---------+---------+---------+---------+--
-------+
| 2014-05-11 10:15:08 | barb | saturn | tricia | mars |
58274 |
| 2014-05-12 12:48:13 | tricia | mars | gene | venus |
194925 |
| 2014-05-12 15:02:49 | phil | mars | phil | saturn |
1048 |
| 2014-05-12 18:59:18 | barb | saturn | tricia | venus |
271 |
| 2014-05-14 09:31:37 | gene | venus | barb | mars |
2291 |
| 2014-05-14 11:52:17 | phil | mars | tricia | saturn |
5781 |
| 2014-05-14 14:42:21 | barb | venus | barb | venus |
98151 |
| 2014-05-14 17:03:01 | tricia | saturn | phil | venus |
2394482 |
| 2014-05-15 07:17:48 | gene | mars | gene | saturn |
3824 |
| 2014-05-15 08:50:57 | phil | venus | phil | venus |
978 |
| 2014-05-15 10:25:52 | gene | mars | tricia | saturn |
998532 |
| 2014-05-15 17:35:31 | gene | saturn | gene | mars |
3856 |
| 2014-05-16 09:00:28 | gene | venus | barb | mars |
613 |
| 2014-05-16 23:04:19 | phil | venus | barb | venus |
10294 |
| 2014-05-19 12:49:23 | phil | mars | tricia | saturn |
873 |
| 2014-05-19 22:21:51 | gene | saturn | gene | venus |
23992 |
+---------------------+---------+---------+---------+---------+--
-------+

To create and load the mail table, change location into the tables directory
of the recipes distribution and run this command:

$ mysql cookbook < mail.sql

This chapter also uses other tables from time to time. Some were used in
previous chapters, whereas others are new. To create any of them, do so the

same way as for the mail table, using the appropriate script in the tables
directory. In addition, many of the other scripts and programs used in this
chapter are located in the select directory. The files in that directory enable
you to try the examples more easily.
Many of the statements shown here can be executed from within the
mysql program, which is discussed in Chapter 1. A few examples involve
issuing statements from within the context of a programming language. See
Chapter 4 for information on programming techniques.

5.1 Specifying Which Columns and Rows to
Select

Problem
You want to display specific columns and rows from a table.

Solution
To indicate which columns to display, name them in the output column list.
To indicate which rows to display, use a WHERE clause that specifies
conditions that rows must satisfy.

Discussion
The simplest way to display columns from a table is to use SELECT *
FROM tbl_name. The * specifier is a shortcut that means “all columns”:

mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size FROM
mail;
+---------------------+---------+---------+---------+---------+--
-------+
| t | srcuser | srchost | dstuser | dsthost |
size |
+---------------------+---------+---------+---------+---------+--
-------+
| 2014-05-11 10:15:08 | barb | saturn | tricia | mars |
58274 |

| 2014-05-12 12:48:13 | tricia | mars | gene | venus |
194925 |
| 2014-05-12 15:02:49 | phil | mars | phil | saturn |
1048 |
| 2014-05-12 18:59:18 | barb | saturn | tricia | venus |
271 |
…

Using * is easy, but you cannot select only certain columns or control the
column display order. Naming columns explicitly enables you to select only
the ones of interest, in any order. This query omits the recipient columns
and displays the sender before the date and size:

mysql> SELECT srcuser, srchost, t, size FROM mail;
+---------+---------+---------------------+---------+
| srcuser | srchost | t | size |
+---------+---------+---------------------+---------+
barb	saturn	2014-05-11 10:15:08	58274
tricia	mars	2014-05-12 12:48:13	194925
phil	mars	2014-05-12 15:02:49	1048
barb	saturn	2014-05-12 18:59:18	271
…

Unless you qualify or restrict a SELECT query in some way, it retrieves
every row in your table. To be more precise, provide a WHERE clause that
specifies one or more conditions that rows must satisfy.
Conditions can test for equality, inequality, or relative ordering. For some
types of data, such as strings, you can use pattern matches. The following
statements select columns from rows in the mail table containing
srchost values that are exactly equal to the 'venus' string or that
begin with the letter 's':

mysql> SELECT t, srcuser, srchost FROM mail WHERE srchost =
'venus';
+---------------------+---------+---------+
| t | srcuser | srchost |
+---------------------+---------+---------+
2014-05-14 09:31:37	gene	venus
2014-05-14 14:42:21	barb	venus
2014-05-15 08:50:57	phil	venus
2014-05-16 09:00:28	gene	venus
2014-05-16 23:04:19	phil	venus

+---------------------+---------+---------+
mysql> SELECT t, srcuser, srchost FROM mail WHERE srchost LIKE
's%';
+---------------------+---------+---------+
| t | srcuser | srchost |
+---------------------+---------+---------+
2014-05-11 10:15:08	barb	saturn
2014-05-12 18:59:18	barb	saturn
2014-05-14 17:03:01	tricia	saturn
2014-05-15 17:35:31	gene	saturn
2014-05-19 22:21:51	gene	saturn
+---------------------+---------+---------+

The LIKE operator in the previous query performs a pattern match, where
% acts as a wildcard that matches any string. Recipe 7.10 discusses pattern
matching further.
A WHERE clause can test multiple conditions, and different conditions can
test different columns. The following statement finds messages sent by
barb to tricia:

mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size FROM
mail
 -> WHERE srcuser = 'barb' AND dstuser = 'tricia';
+---------------------+---------+---------+---------+---------+--
-----+
| t | srcuser | srchost | dstuser | dsthost |
size |
+---------------------+---------+---------+---------+---------+--
-----+
| 2014-05-11 10:15:08 | barb | saturn | tricia | mars |
58274 |
| 2014-05-12 18:59:18 | barb | saturn | tricia | venus |
271 |
+---------------------+---------+---------+---------+---------+--
-----+

Output columns can be calculated by evaluating expressions. This query
combines the srcuser and srchost columns using CONCAT() to
produce composite values in email address format:

mysql> SELECT t, CONCAT(srcuser,'@',srchost), size FROM mail;
+---------------------+-----------------------------+---------+
| t | CONCAT(srcuser,'@',srchost) | size |

+---------------------+-----------------------------+---------+
2014-05-11 10:15:08	barb@saturn	58274
2014-05-12 12:48:13	tricia@mars	194925
2014-05-12 15:02:49	phil@mars	1048
2014-05-12 18:59:18	barb@saturn	271
…

You’ll notice that the email address column label is the expression that
calculates it. To provide a better label, use a column alias (see Recipe 5.2).
As of MySQL 8.0.19, you can use the TABLE statement to select all
columns from the table. TABLE supports ORDER BY (see Recipe 5.3) and
LIMIT (see Recipe 5.11) clauses but does not allow any other filtering of
columns or rows:

mysql> TABLE mail ORDER BY size DESC LIMIT 3;
+----+---------------------+---------+---------+---------+-------
--+---------+
| id | t | srcuser | srchost | dstuser |
dsthost | size |
+----+---------------------+---------+---------+---------+-------
--+---------+
| 8 | 2014-05-14 17:03:01 | tricia | saturn | phil | venus
| 2394482 |
| 11 | 2014-05-15 10:25:52 | gene | mars | tricia | saturn
| 998532 |
| 2 | 2014-05-12 12:48:13 | tricia | mars | gene | venus
| 194925 |
+----+---------------------+---------+---------+---------+-------
--+---------+
3 rows in set (0.00 sec)

5.2 Naming Query Result Columns

Problem
The column names in a query result are unsuitable, ugly, or difficult to work
with, so you want to name them yourself.

Solution
Use aliases to choose your own column names.

Discussion
When you retrieve a result set, MySQL gives every output column a name.
(That’s how the mysql program gets the names you see displayed in the
initial row of column headers in the result set output.) By default, MySQL
assigns the column names specified in the CREATE TABLE or ALTER
TABLE statement to output columns, but if these defaults are not suitable,
you can use column aliases to specify your own names.
This recipe explains aliases and shows how to use them to assign column
names in statements. If you’re writing a program that must determine the
names, see Recipe 12.2 for information about accessing column metadata.
If an output column comes directly from a table, MySQL uses the table
column name for the output column name. The following statement selects
four table columns, the names of which become the corresponding output
column names:

mysql> SELECT t, srcuser, srchost, size FROM mail;
+---------------------+---------+---------+---------+
| t | srcuser | srchost | size |
+---------------------+---------+---------+---------+
2014-05-11 10:15:08	barb	saturn	58274
2014-05-12 12:48:13	tricia	mars	194925
2014-05-12 15:02:49	phil	mars	1048
2014-05-12 18:59:18	barb	saturn	271
…

If you generate a column by evaluating an expression, the expression itself
is the column name. This can produce long and unwieldy names in result
sets, as illustrated by the following statement that uses one expression to
reformat the dates in the t column and another to combine srcuser and
srchost into email address format:

mysql> SELECT
 -> DATE_FORMAT(t,'%M %e, %Y'), CONCAT(srcuser,'@',srchost),
size
 -> FROM mail;
+----------------------------+-----------------------------+-----
----+
| DATE_FORMAT(t,'%M %e, %Y') | CONCAT(srcuser,'@',srchost) | size

|
+----------------------------+-----------------------------+-----
----+
| May 11, 2014 | barb@saturn |
58274 |
| May 12, 2014 | tricia@mars |
194925 |
| May 12, 2014 | phil@mars |
1048 |
| May 12, 2014 | barb@saturn |
271 |
…

To choose your own output column name, use an AS name clause to
specify a column alias (the keyword AS is optional). The following
statement retrieves the same result as the previous one but renames the first
column to date_sent and the second to sender:

mysql> SELECT
 -> DATE_FORMAT(t,'%M %e, %Y') AS date_sent,
 -> CONCAT(srcuser,'@',srchost) AS sender,
 -> size FROM mail;
+--------------+---------------+---------+
| date_sent | sender | size |
+--------------+---------------+---------+
May 11, 2014	barb@saturn	58274
May 12, 2014	tricia@mars	194925
May 12, 2014	phil@mars	1048
May 12, 2014	barb@saturn	271
…

The aliases make the column names more concise, easier to read, and more
meaningful. Aliases are subject to a few restrictions. For example, they
must be quoted if they are SQL keywords, entirely numeric, or contain
spaces or other special characters (an alias can consist of several words if
you want to use a descriptive phrase). The following statement retrieves the
same data values as the preceding one but uses phrases to name the output
columns:

mysql> SELECT
 -> DATE_FORMAT(t,'%M %e, %Y') AS 'Date of message',
 -> CONCAT(srcuser,'@',srchost) AS 'Message sender',
 -> size AS 'Number of bytes' FROM mail;

+-----------------+----------------+-----------------+
| Date of message | Message sender | Number of bytes |
+-----------------+----------------+-----------------+
May 11, 2014	barb@saturn	58274
May 12, 2014	tricia@mars	194925
May 12, 2014	phil@mars	1048
May 12, 2014	barb@saturn	271
…

If MySQL complains about a single-word alias, the word probably is
reserved. Quoting the alias should make it legal:

mysql> SELECT 1 AS INTEGER;
You have an error in your SQL syntax near 'INTEGER'
mysql> SELECT 1 AS 'INTEGER';
+---------+
| INTEGER |
+---------+
| 1 |
+---------+

Column aliases are also useful for programming purposes. If you write a
program that fetches rows into an array and accesses them by numeric
column indexes, the presence or absence of column aliases makes no
difference because aliases don’t change the positions of columns within the
result set. However, aliases make a big difference if you access output
columns by name because aliases change those names. Exploit this fact to
give your program easier names to work with. For example, if your query
displays reformatted message time values from the mail table using the
expression DATE_FORMAT(t,'%M %e, %Y'), that expression is also
the name you must use when referring to the output column. In a Perl
hashref, for example, you’d access it as $ref->
{"DATE_FORMAT(t,'%M %e, %Y')"}. That’s inconvenient. Use AS
date_sent to give the column an alias and you can refer to it more easily
as $ref->{date_sent}. Here’s an example that shows how a Perl DBI
script might process such values. It retrieves rows into a hash and refers to
column values by name:

$sth = $dbh->prepare ("SELECT srcuser,
 DATE_FORMAT(t,'%M %e, %Y') AS date_sent

 FROM mail");
$sth->execute ();
while (my $ref = $sth->fetchrow_hashref ())
{
 printf "user: %s, date sent: %s\n", $ref->{srcuser}, $ref->
{date_sent};
}

In Java, you’d do something like this, where the argument to
getString() names the column to access:

Statement s = conn.createStatement ();
s.executeQuery ("SELECT srcuser,"
 + " DATE_FORMAT(t,'%M %e, %Y') AS date_sent"
 + " FROM mail");
ResultSet rs = s.getResultSet ();
while (rs.next ()) // loop through rows of result set
{
 String name = rs.getString ("srcuser");
 String dateSent = rs.getString ("date_sent");
 System.out.println ("user: " + name + ", date sent: " +
dateSent);
}
rs.close ();
s.close ();

Recipe 4.4 shows for each of our programming languages how to fetch
rows into data structures that permit access to column values by name. The
select directory of the recipes distribution has examples that show how
to do this for the mail table.

You cannot refer to column aliases in a WHERE clause. Thus, the following
statement is illegal:

mysql> SELECT t, srcuser, dstuser, size/1024 AS kilobytes
 -> FROM mail WHERE kilobytes > 500;
ERROR 1054 (42S22): Unknown column 'kilobytes' in 'where clause'

The error occurs because an alias names an output column, whereas a
WHERE clause operates on input columns to determine which rows to select
for output. To make the statement legal, replace the alias in the WHERE
clause with the same column or expression that the alias represents:

mysql> SELECT t, srcuser, dstuser, size/1024 AS kilobytes
 -> FROM mail WHERE size/1024 > 500;
+---------------------+---------+---------+-----------+
| t | srcuser | dstuser | kilobytes |
+---------------------+---------+---------+-----------+
| 2014-05-14 17:03:01 | tricia | phil | 2338.3613 |
| 2014-05-15 10:25:52 | gene | tricia | 975.1289 |
+---------------------+---------+---------+-----------+

5.3 Sorting Query Results

Problem
You want to control how your query results are sorted.

Solution
Use an ORDER BY clause to tell it how to sort result rows.

Discussion
When you select rows, the MySQL server is free to return them in any order
unless you instruct it otherwise by saying how to sort the result. There are
lots of ways to use sorting techniques, as Chapter 9 explores in detail.
Briefly, to sort a result set, add an ORDER BY clause that names the column
or columns to use for sorting. This statement names multiple columns in the
ORDER BY clause to sort rows by host and by user within each host:

mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size
 -> FROM mail WHERE dstuser = 'tricia'
 -> ORDER BY srchost, srcuser;
+---------------------+---------+---------+---------+---------+--
------+
| t | srcuser | srchost | dstuser | dsthost |
size |
+---------------------+---------+---------+---------+---------+--
------+
| 2014-05-15 10:25:52 | gene | mars | tricia | saturn |
998532 |
| 2014-05-14 11:52:17 | phil | mars | tricia | saturn |
5781 |

| 2014-05-19 12:49:23 | phil | mars | tricia | saturn |
873 |
| 2014-05-11 10:15:08 | barb | saturn | tricia | mars |
58274 |
| 2014-05-12 18:59:18 | barb | saturn | tricia | venus |
271 |
+---------------------+---------+---------+---------+---------+--
------+

MySQL sorts rows in the ascending order by default. To sort a column in
reverse (descending) order, add the keyword DESC after its name in the
ORDER BY clause:

mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size
 -> FROM mail WHERE size > 50000 ORDER BY size DESC;
+---------------------+---------+---------+---------+---------+--
-------+
| t | srcuser | srchost | dstuser | dsthost |
size |
+---------------------+---------+---------+---------+---------+--
-------+
| 2014-05-14 17:03:01 | tricia | saturn | phil | venus |
2394482 |
| 2014-05-15 10:25:52 | gene | mars | tricia | saturn |
998532 |
| 2014-05-12 12:48:13 | tricia | mars | gene | venus |
194925 |
| 2014-05-14 14:42:21 | barb | venus | barb | venus |
98151 |
| 2014-05-11 10:15:08 | barb | saturn | tricia | mars |
58274 |
+---------------------+---------+---------+---------+---------+--
-------+

5.4 Removing Duplicate Rows

Problem
Output from a query contains duplicate rows. You want to eliminate them.

Solution
Use DISTINCT.

Discussion
Some queries produce results containing duplicate rows. For example, to
see who sent mail, query the mail table like this:

mysql> SELECT srcuser FROM mail;
+---------+
| srcuser |
+---------+
| barb |
| tricia |
| phil |
| barb |
| gene |
| phil |
| barb |
| tricia |
| gene |
| phil |
| gene |
| gene |
| gene |
| phil |
| phil |
| gene |
+---------+

That result is heavily redundant. To remove the duplicate rows and produce
a set of unique values, add DISTINCT to the query:

mysql> SELECT DISTINCT srcuser FROM mail;
+---------+
| srcuser |
+---------+
| barb |
| tricia |
| phil |
| gene |
+---------+

To count the number of unique values in a column, use
COUNT(DISTINCT):

mysql> SELECT COUNT(DISTINCT srcuser) FROM mail;
+-------------------------+

| COUNT(DISTINCT srcuser) |
+-------------------------+
| 4 |
+-------------------------+

DISTINCT works with multiple-column output, too. The following query
shows which dates are represented in the mail table:

mysql> SELECT DISTINCT YEAR(t), MONTH(t), DAYOFMONTH(t) FROM
mail;
+---------+----------+---------------+
| YEAR(t) | MONTH(t) | DAYOFMONTH(t) |
+---------+----------+---------------+
2014	5	11
2014	5	12
2014	5	14
2014	5	15
2014	5	16
2014	5	19
+---------+----------+---------------+

See Also
Chapter 10 revisits DISTINCT and COUNT(DISTINCT). Chapter 18
discusses duplicate removal in more detail.

5.5 Working with NULL Values

Problem
You’re trying to compare column values to NULL, but it isn’t working.

Solution
Use the proper comparison operators: IS NULL, IS NOT NULL, or <=>.

Discussion
Conditions that involve NULL are special because NULL means “unknown
value.” Consequently, comparisons such as value = NULL or value <>

NULL always produce a result of NULL (not true or false) because it’s
impossible to tell whether they are true or false. Even NULL = NULL
produces NULL because you can’t determine whether one unknown value is
the same as another.
To look for values that are or are not NULL, use the IS NULL or IS NOT
NULL operator. Suppose that a table named expt contains experimental
results for subjects who are to be given four tests each and that represents
tests not yet administered using NULL:

+---------+------+-------+
| subject | test | score |
+---------+------+-------+
Jane	A	47
Jane	B	50
Jane	C	NULL
Jane	D	NULL
Marvin	A	52
Marvin	B	45
Marvin	C	53
Marvin	D	NULL
+---------+------+-------+

You can see that = and <> fail to identify NULL values:

mysql> SELECT * FROM expt WHERE score = NULL;
Empty set (0.00 sec)
mysql> SELECT * FROM expt WHERE score <> NULL;
Empty set (0.00 sec)

Write the statements like this instead:

mysql> SELECT * FROM expt WHERE score IS NULL;
+---------+------+-------+
| subject | test | score |
+---------+------+-------+
Jane	C	NULL
Jane	D	NULL
Marvin	D	NULL
+---------+------+-------+		
mysql> SELECT * FROM expt WHERE score IS NOT NULL;		
+---------+------+-------+		
subject	test	score

+---------+------+-------+
Jane	A	47
Jane	B	50
Marvin	A	52
Marvin	B	45
Marvin	C	53
+---------+------+-------+		
mysql> SELECT * FROM expt WHERE score <=> NULL;		
+---------+------+-------+		
subject	test	score
+---------+------+-------+		
Jane	C	NULL
Jane	D	NULL
Marvin	D	NULL
+---------+------+-------+

The MySQL-specific <=> null-safe comparison operator, unlike the =
operator, is true even for two NULL values:

mysql> SELECT NULL = NULL, NULL <=> NULL;
+-------------+---------------+
| NULL = NULL | NULL <=> NULL |
+-------------+---------------+
| NULL | 1 |
+-------------+---------------+

Sometimes it’s useful to map NULL values onto some other value that has
more meaning in the context of your application. For example, use IF() to
map NULL onto the string Unknown:

mysql> SELECT subject, test, IF(score IS NULL,'Unknown', score)
AS 'score'
 -> FROM expt;
+---------+------+---------+
| subject | test | score |
+---------+------+---------+
Jane	A	47
Jane	B	50
Jane	C	Unknown
Jane	D	Unknown
Marvin	A	52
Marvin	B	45
Marvin	C	53
Marvin	D	Unknown
+---------+------+---------+

This IF()-based mapping technique works for any kind of value, but it’s
especially useful with NULL values because NULL tends to be given a
variety of meanings: unknown, missing, not yet determined, out of range,
and so forth. Choose the label that makes the most sense in a given context.
The preceding query can be written more concisely using IFNULL(),
which tests its first argument and returns it if it’s not NULL, or returns its
second argument otherwise:

SELECT subject, test, IFNULL(score,'Unknown') AS 'score'
FROM expt;

In other words, these two tests are equivalent:

IF(expr1 IS NOT NULL,expr1,expr2)
IFNULL(expr1,expr2)

From a readability standpoint, IF() often is easier to understand than
IFNULL(). From a computational perspective, IFNULL() is more
efficient because expr1 need not be evaluated twice, as happens with
IF().

One more way to map NULL values is to use the COALESCE function,
which returns the first not-null element from the list of parameters:

SELECT subject, test, COALESCE(score,'Unknown') AS 'score' FROM
expt;

See Also
NULL values also behave differently when used by sorting and summary
operations. See Recipes 9.11 and 10.9.

5.6 Writing Comparisons Involving NULL in
Programs

Problem
You’re writing a program that looks for rows containing a specific value,
but it fails when the value is NULL.

Solution
Choose the proper comparison operator according to whether the
comparison value is or is not NULL.

Discussion
Recipe 5.5 discusses the need to use different comparison operators for
NULL values than for non-NULL values in SQL statements. This issue leads
to a subtle danger when constructing statement strings within programs. If a
value stored in a variable might represent a NULL value, you must account
for that when you use the value in comparisons. For example, in Python,
None represents a NULL value, so to construct a statement that finds rows
in the expt table matching some arbitrary value in a score variable, you
cannot do this:

cursor.execute("SELECT * FROM expt WHERE score = %s", (score,))

The statement fails when score is None because the resulting statement
becomes the following:

SELECT * FROM expt WHERE score = NULL;

A comparison of score = NULL is never true, so that statement returns no
rows. To take into account the possibility that score could be None,
construct the statement using the appropriate comparison operator like this:

operator = "IS" if score is None else "="
cursor.execute("SELECT * FROM expt WHERE score {}
%s".format(operator), (score,))

This results in statements as follows for score values of None (NULL) or
43 (not NULL):

SELECT * FROM expt WHERE score IS NULL
SELECT * FROM expt WHERE score = 43;

For inequality tests, set operator like this instead:

operator = "IS NOT" if score is None else "<>"

5.7 Using Views to Simplify Table Access

Problem
You want to refer to values calculated from expressions without writing the
expressions each time you retrieve them.

Solution
Use a view defined such that its columns perform the desired calculations.

Discussion
Suppose that you retrieve several values from the mail table, using
expressions to calculate most of them:

mysql> SELECT
 -> DATE_FORMAT(t,'%M %e, %Y') AS date_sent,
 -> CONCAT(srcuser,'@',srchost) AS sender,
 -> CONCAT(dstuser,'@',dsthost) AS recipient,
 -> size FROM mail;
+--------------+---------------+---------------+---------+
| date_sent | sender | recipient | size |
+--------------+---------------+---------------+---------+
May 11, 2014	barb@saturn	tricia@mars	58274
May 12, 2014	tricia@mars	gene@venus	194925
May 12, 2014	phil@mars	phil@saturn	1048
May 12, 2014	barb@saturn	tricia@venus	271
…

If you must issue such a statement often, it’s inconvenient to keep writing
the expressions. To make the statement results easier to access, use a view,
which is a virtual table that contains no data. Instead, it’s defined as the
SELECT statement that retrieves the data of interest. The following view,
mail_view, is equivalent to the SELECT statement just shown:

mysql> CREATE VIEW mail_view AS
 -> SELECT
 -> DATE_FORMAT(t,'%M %e, %Y') AS date_sent,
 -> CONCAT(srcuser,'@',srchost) AS sender,
 -> CONCAT(dstuser,'@',dsthost) AS recipient,
 -> size FROM mail;

To access the view contents, refer to it like any other table. You can select
some or all of its columns, add a WHERE clause to restrict which rows to
retrieve, use ORDER BY to sort the rows, and so forth, for example:

mysql> SELECT date_sent, sender, size FROM mail_view
 -> WHERE size > 100000 ORDER BY size;
+--------------+---------------+---------+
| date_sent | sender | size |
+--------------+---------------+---------+
May 12, 2014	tricia@mars	194925
May 15, 2014	gene@mars	998532
May 14, 2014	tricia@saturn	2394482
+--------------+---------------+---------+

Stored programs provide another way to encapsulate calculations (see
Recipe 11.2).

5.8 Selecting Data from Multiple Tables

Problem
The answer to a question requires data from more than one table, so you
need to select data from multiple tables.

Solution

Use a join or a subquery.

Discussion
The queries shown so far select data from a single table, but sometimes you
must retrieve information from multiple tables. Two types of statements that
accomplish this are joins and subqueries. A join matches rows in one table
with rows in another and enables you to retrieve output rows that contain
columns from either or both tables. A subquery is one query nested within
another, to perform a comparison between values selected by the inner
query against values selected by the outer query.
This recipe shows a couple of brief examples to illustrate the basic ideas.
Other examples appear elsewhere: subqueries are used in various examples
throughout the book (for example, Recipes 5.10 and 10.6). Chapter 16
discusses joins in detail, including some that select from more than two
tables.
The following examples use the profile table introduced in Chapter 4.
Recall that it lists the people on your buddy list:

mysql> SELECT * FROM profile;
+----+---------+------------+-------+-----------------------+----
--+
| id | name | birth | color | foods |
cats |
+----+---------+------------+-------+-----------------------+----
--+
| 1 | Sybil | 1970-04-13 | black | lutefisk,fadge,pizza |
0 |
| 2 | Nancy | 1969-09-30 | white | burrito,curry,eggroll |
3 |
| 3 | Ralph | 1973-11-02 | red | eggroll,pizza |
4 |
| 4 | Lothair | 1963-07-04 | blue | burrito,curry |
5 |
| 5 | Henry | 1965-02-14 | red | curry,fadge |
1 |
| 6 | Aaron | 1968-09-17 | green | lutefisk,fadge |
1 |
| 7 | Joanna | 1952-08-20 | green | lutefisk,fadge |
0 |
| 8 | Stephen | 1960-05-01 | white | burrito,pizza |

0 |
+----+---------+------------+-------+-----------------------+----
--+

Let’s extend the use of the profile table to include another table named
profile_contact. This second table indicates how to contact people
listed in the profile table via various social media services and is
defined like this:

CREATE TABLE profile_contact
(
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 profile_id INT UNSIGNED NOT NULL, # ID from profile table
 service VARCHAR(20) NOT NULL, # social media service name
 contact_name VARCHAR(25) NOT NULL, # name to use for
contacting person
 INDEX (profile_id)
);

The table associates each row with the proper profile row via the
profile_id column. The service and contact_name columns
name the media service and the name to use for contacting the given person
via that service. For the examples, assume that the table contains these
rows:

mysql> SELECT profile_id, service, contact_name
 -> FROM profile_contact ORDER BY profile_id, service;
+------------+----------+--------------+
| profile_id | service | contact_name |
+------------+----------+--------------+
1	Facebook	user1-fbid
1	Twitter	user1-twtrid
2	Facebook	user2-msnid
2	LinkedIn	user2-lnkdid
2	Twitter	user2-fbrid
4	LinkedIn	user4-lnkdid
+------------+----------+--------------+

A question that requires information from both tables is “For each person in
the profile table, show me which services I can use to get in touch and
the contact name for each service.” To answer this question, use a join.

Select from both tables and match rows by comparing the id column from
the profile table with the profile_id column from the
profile_contact table:

mysql> SELECT profile.id, name, service, contact_name
 -> FROM profile INNER JOIN profile_contact ON profile.id =
profile_id;
+----+---------+----------+--------------+
| id | name | service | contact_name |
+----+---------+----------+--------------+
1	Sybil	Twitter	user1-twtrid
1	Sybil	Facebook	user1-fbid
2	Nancy	Twitter	user2-fbrid
2	Nancy	Facebook	user2-msnid
2	Nancy	LinkedIn	user2-lnkdid
4	Lothair	LinkedIn	user4-lnkdid
+----+---------+----------+--------------+

The FROM clause indicates the tables from which to select data, and the ON
clause tells MySQL which columns to use to find matches between the
tables. In the result, rows include the id and name columns from the
profile table, and the service and contact_name columns from
the profile_contact table.

Here’s another question that requires both tables to answer: “List all the
profile_contact records for Nancy.” To pull the proper rows from the
profile_contact table, you need Nancy’s ID, which is stored in the
profile table. To write the query without looking up Nancy’s ID
yourself, use a subquery that, given her name, looks it up for you:

mysql> SELECT profile_id, service, contact_name FROM
profile_contact
 -> WHERE profile_id = (SELECT id FROM profile WHERE name =
'Nancy');
+------------+----------+--------------+
| profile_id | service | contact_name |
+------------+----------+--------------+
2	Twitter	user2-fbrid
2	Facebook	user2-msnid
2	LinkedIn	user2-lnkdid
+------------+----------+--------------+

Here the subquery appears as a nested SELECT statement enclosed within
parentheses.

5.9 Selecting Rows from the Beginning, End,
or Middle of Query Results

Problem
You want only certain rows from a result set, such as the first one, the last
five, or rows 21 through 40.

Solution
Use a LIMIT clause, perhaps in conjunction with an ORDER BY clause.

Discussion
MySQL supports a LIMIT clause that tells the server to return only part of
a result set. LIMIT is a MySQL-specific extension to SQL that is extremely
valuable when your result set contains more rows than you want to see at a
time. It enables you to retrieve an arbitrary section of a result set. Typical
LIMIT uses include the following kinds of problems:

Answering questions about first or last, largest or smallest, newest or
oldest, least or most expensive, and so forth.
Splitting a result set into sections so that you can process it one piece at
a time. This technique is common in web applications for displaying a
large search result across several pages. Showing the result in sections
enables the display of smaller, easier-to-understand pages.

The following examples use the profile table shown in Recipe 5.8. To
see the first n rows of a SELECT result, add LIMIT n to the end of the
statement:

mysql> SELECT * FROM profile LIMIT 1;
+----+-------+------------+-------+----------------------+------+
| id | name | birth | color | foods | cats |
+----+-------+------------+-------+----------------------+------+
| 1 | Sybil | 1970-04-13 | black | lutefisk,fadge,pizza | 0 |
+----+-------+------------+-------+----------------------+------+
mysql> SELECT * FROM profile LIMIT 3;
+----+-------+------------+-------+-----------------------+------
+
| id | name | birth | color | foods | cats
|
+----+-------+------------+-------+-----------------------+------
+
| 1 | Sybil | 1970-04-13 | black | lutefisk,fadge,pizza | 0
|
| 2 | Nancy | 1969-09-30 | white | burrito,curry,eggroll | 3
|
| 3 | Ralph | 1973-11-02 | red | eggroll,pizza | 4
|
+----+-------+------------+-------+-----------------------+------
+

LIMIT n means “return at most n rows.” If you specify LIMIT 10, and
the result set has only four rows, the server returns four rows.
The rows in the preceding query results are returned in no particular order,
so they may not be very meaningful. A more common technique uses
ORDER BY to sort the result set and LIMIT to find smallest and largest
values. For example, to find the row with the minimum (earliest) birth date,
sort by the birth column, then add LIMIT 1 to retrieve the first row:

mysql> SELECT * FROM profile ORDER BY birth LIMIT 1;
+----+--------+------------+-------+----------------+------+
| id | name | birth | color | foods | cats |
+----+--------+------------+-------+----------------+------+
| 7 | Joanna | 1952-08-20 | green | lutefisk,fadge | 0 |
+----+--------+------------+-------+----------------+------+

This works because MySQL processes the ORDER BY clause to sort the
rows, then applies LIMIT.

To obtain rows from the end of a result set, sort them in the opposite order.
The statement that finds the row with the most recent birth date is similar to
the previous one, except that the sort order is descending:

mysql> SELECT * FROM profile ORDER BY birth DESC LIMIT 1;
+----+-------+------------+-------+---------------+------+
| id | name | birth | color | foods | cats |
+----+-------+------------+-------+---------------+------+
| 3 | Ralph | 1973-11-02 | red | eggroll,pizza | 4 |
+----+-------+------------+-------+---------------+------+

To find the earliest or latest birthday within the calendar year, sort by the
month and day of the birth values:

mysql> SELECT name, DATE_FORMAT(birth,'%m-%d') AS birthday
 -> FROM profile ORDER BY birthday LIMIT 1;
+-------+----------+
| name | birthday |
+-------+----------+
| Henry | 02-14 |
+-------+----------+

You can obtain the same information by running these statements without
LIMIT and ignoring everything but the first row. The advantage of LIMIT
is that the server returns only the first row, and the extra rows don’t cross
the network at all. This is much more efficient than retrieving an entire
result set, only to discard all but one row.
To pull rows from the middle of a result set, use the two-argument form of
LIMIT, which enables you to pick an arbitrary section of rows. The
arguments indicate how many rows to skip and how many to return. This
means that you can use LIMIT to do such things as skip two rows and
return the next one, thus answering questions such as “What is the third-
smallest or third-largest value?” These are questions that MIN() or MAX()
are not suited for but are easy with LIMIT:

mysql> SELECT * FROM profile ORDER BY birth LIMIT 2,1;
+----+---------+------------+-------+---------------+------+
| id | name | birth | color | foods | cats |
+----+---------+------------+-------+---------------+------+
| 4 | Lothair | 1963-07-04 | blue | burrito,curry | 5 |
+----+---------+------------+-------+---------------+------+
mysql> SELECT * FROM profile ORDER BY birth DESC LIMIT 2,1;
+----+-------+------------+-------+-----------------------+------
+
| id | name | birth | color | foods | cats

|
+----+-------+------------+-------+-----------------------+------
+
| 2 | Nancy | 1969-09-30 | white | burrito,curry,eggroll | 3
|
+----+-------+------------+-------+-----------------------+------
+

The two-argument form of LIMIT also makes it possible to partition a
result set into smaller sections. For example, to retrieve 20 rows at a time
from a result, issue a SELECT statement repeatedly, but vary its LIMIT
clause like so:

SELECT ... FROM ... ORDER BY ... LIMIT 0, 20;
SELECT ... FROM ... ORDER BY ... LIMIT 20, 20;
SELECT ... FROM ... ORDER BY ... LIMIT 40, 20;
…

WARNING
This way of using a LIMIT clause can cause performance degradations for large datasets, because
it requires reading minimum OFFSET plus LIMIT rows. This means that to get the result for the
LIMIT 0, 20 statement, MySQL will have to read 20 rows from the table; to get result the of
LIMIT 20, 20, it will need to read 40 rows; and so on.

To determine the number of rows in a result set so that you can determine
the number of sections, issue a COUNT() statement first. For example, to
display profile table rows in name order, three at a time, you can find
out how many there are with the following statement:

mysql> SELECT COUNT(*) FROM profile;
+----------+
| COUNT(*) |
+----------+
| 8 |
+----------+

That tells you that there are three sets of rows (the last with fewer than three
rows), which you can retrieve as follows:

SELECT * FROM profile ORDER BY name LIMIT 0, 3;
SELECT * FROM profile ORDER BY name LIMIT 3, 3;
SELECT * FROM profile ORDER BY name LIMIT 6, 3;

See Also
LIMIT is useful in combination with RAND() to make random selections
from a set of items. See Recipe 17.8.
You can use LIMIT to restrict the effect of a DELETE or UPDATE
statement to a subset of the rows that would otherwise be deleted or
updated, respectively. For more information about using LIMIT for
duplicate row removal, see Recipe 18.5.

5.10 What to Do When LIMIT and the Final
Result Require a Different Sort Order

Problem
LIMIT usually works best in conjunction with an ORDER BY clause that
sorts rows. But sometimes that sort order differs from what you want for the
final result.

Solution
Use LIMIT in a subquery to retrieve the desired rows, then use the outer
query to sort them.

Discussion
If you want the last four rows of a result set, you can obtain them easily by
sorting the set in reverse order and using LIMIT 4. The following
statement returns the names and birth dates for the four people in the
profile table who were born most recently:

mysql> SELECT name, birth FROM profile ORDER BY birth DESC LIMIT
4;
+-------+------------+
| name | birth |
+-------+------------+
Ralph	1973-11-02
Sybil	1970-04-13
Nancy	1969-09-30
Aaron	1968-09-17
+-------+------------+

But that requires sorting the birth values in descending order to place
them at the head of the result set. What if you want the output rows to
appear in ascending order instead? Use the SELECT as a subquery of an
outer statement that re-sorts the rows in the desired final order:

mysql> SELECT * FROM
 -> (SELECT name, birth FROM profile ORDER BY birth DESC LIMIT
4) AS t
 -> ORDER BY birth;
+-------+------------+
| name | birth |
+-------+------------+
Aaron	1968-09-17
Nancy	1969-09-30
Sybil	1970-04-13
Ralph	1973-11-02
+-------+------------+

AS t is used here because any table referred to in the FROM clause must
have a name, even a “derived” table produced from a subquery.

5.11 Calculating LIMIT Values from
Expressions

Problem
You want to use expressions to specify the arguments for LIMIT.

Solution

LIMIT arguments must be literal integers—unless you issue the statement
in a context that permits the statement string to be constructed dynamically.
In that case, you can evaluate the expressions yourself and insert the
resulting values into the statement string.

Discussion
Arguments to LIMIT must be literal integers, not expressions. Statements
such as the following are illegal:

SELECT * FROM profile LIMIT 5+5;
SELECT * FROM profile LIMIT @skip_count, @show_count;

The same “no expressions permitted” principle applies if you use an
expression to calculate a LIMIT value in a program that constructs a
statement string. You must evaluate the expression first, and then place the
resulting value in the statement. For example, if you produce a statement
string in Perl or PHP as follows, an error will result when you attempt to
execute the statement:

$str = "SELECT * FROM profile LIMIT $x + $y";

To avoid the problem, evaluate the expression first:

$z = $x + $y;
$str = "SELECT * FROM profile LIMIT $z";

Or do this (don’t omit the parentheses or the expression won’t evaluate
properly):

$str = "SELECT * FROM profile LIMIT " . ($x + $y);

To construct a two-argument LIMIT clause, evaluate both expressions
before placing them into the statement string.

5.12 Combining Two or More SELECT
Results

Problem
You want to combine rows retrieved by two or more SELECT statements
into one result set.

Solution
Use the UNION clause.

Discussion
The mail table stores user names and hosts of the email senders and
recipients. But what if we want to know all the user and host combinations
possible?
A naive approach would be to choose either sender or receiver pairs. But if
we perform even a very basic test by comparing the number of unique user-
host combinations, we’ll find out that it is different for each direction:

mysql> SELECT COUNT(distinct srcuser, srchost) FROM mail;
+----------------------------------+
| count(distinct srcuser, srchost) |
+----------------------------------+
| 9 |
+----------------------------------+
1 row in set (0.01 sec)

mysql> select count(distinct dstuser, dsthost) from mail;
+----------------------------------+
| count(distinct dstuser, dsthost) |
+----------------------------------+
| 10 |
+----------------------------------+
1 row in set (0.00 sec)

We also don’t know if our table stores emails from users who only send
them and for users who receive but never send.

To get the full list, we need to select pairs for both the sender and receiver,
then remove duplicates. The SQL UNION DISTINCT clause and its short
form, UNION, does exactly that. It combines results of two or more
SELECT queries that select the same number of columns of the same type.

By default, UNION uses the column names of the first SELECT for the full
result set header, but we can also use aliases, as discussed in Recipe 5.2:

mysql> SELECT DISTINCT srcuser AS user, srchost AS host FROM mail
 -> UNION
 -> SELECT DISTINCT dstuser AS user, dsthost AS host FROM
mail;

+--------+--------+
| user | host |
+--------+--------+
barb	saturn
tricia	mars
phil	mars
gene	venus
barb	venus
tricia	saturn
gene	mars
phil	venus
gene	saturn
phil	saturn
tricia	venus
barb	mars
+--------+--------+
12 rows in set (0.00 sec)

You can sort an individual query, participating in UNION, as well as the
whole result. If you do not want to remove duplicates from the result, use
the UNION ALL clause.

To demonstrate this, let’s create a query that will find four users who sent
the highest number of emails and four users who received the highest
number of emails, then sort the result of the union by the user name:

mysql> (SELECT CONCAT(srcuser, '@', srchost) AS user, COUNT(*) AS
emails
 -> FROM mail GROUP BY srcuser, srchost ORDER BY emails DESC
LIMIT 4)

 -> UNION ALL
 -> (SELECT CONCAT(dstuser, '@', dsthost) AS user, COUNT(*) AS
emails
 -> FROM mail GROUP BY dstuser, dsthost ORDER BY emails DESC
LIMIT 4)
 -> ORDER BY user;
+---------------+--------+
| user | emails |
+---------------+--------+
barb@mars	2
barb@saturn	2
barb@venus	2
gene@saturn	2
gene@venus	2
gene@venus	2
phil@mars	3
tricia@saturn	3
+---------------+--------+
8 rows in set (0.00 sec)

Concatenate the user and host into the email address of the user.

Order the first SELECT result by the number of emails in descending
order, and limit the number of retrieved rows.

Order the result of the second SELECT.

Order the result of UNION by the user email address.

We used the UNION ALL clause instead of UNION [DISTINCT];
therefore, we have two entries for gene@venus in the result. This user
is in the top list of those who send emails and also of those who receive
emails.

5.13 Selecting Results of Subqueries

Problem
You want to retrieve not only table columns but also results of queries that
use these columns.

Solution
Use a subquery in the column list.

Discussion
Suppose that you want to know not only how many emails were sent by a
particular user but also how many emails they received. You cannot do this
without accessing the mail table two times: one to count how many emails
were sent and one to count how many emails were received.
One solution for this issue is to use subqueries in the column list:

mysql> SELECT CONCAT(srcuser, '@', srchost) AS user, COUNT(*) AS
mails_sent,
 -> (SELECT COUNT(*) FROM mail d WHERE d.dstuser=m.srcuser AND
d.dsthost=m.srchost)
 -> AS mails_received
 -> FROM mail m
 -> GROUP BY srcuser, srchost
 -> ORDER BY mails_sent DESC;
+---------------+------------+----------------+
| user | mails_sent | mails_received |
+---------------+------------+----------------+
phil@mars	3	0
barb@saturn	2	0
gene@venus	2	2
gene@mars	2	1
phil@venus	2	2
gene@saturn	2	1
tricia@mars	1	1
barb@venus	1	2
tricia@saturn	1	3
+---------------+------------+----------------+
9 rows in set (0.00 sec)

First, we retrieved a user name and a host of the sender and a count of
the number of emails that they sent.

To find the number of emails this user received, we’re using a subquery
to the same mail table. In the WHERE clause, we select only those rows
where the receiver has the same credentials as the sender in the main
query.

A subquery in the column list must have its own alias.

To display statistics per user, we use the GROUP BY clause, so the
result is grouped by each user name and host. We discuss the GROUP
BY clause in detail in Chapter 10.

Chapter 6. Table Management

6.0 Introduction
This chapter covers topics that relate to creating and populating tables,
including the following:

Cloning a table
Copying from one table to another
Using temporary tables
Generating unique table names
Determining what storage engine a table uses or converting it from one
storage engine to another

Many of the examples in this chapter use a table named mail containing
rows that track mail message traffic between users on a set of hosts (see
Recipe 5.0). To create and load this table, change location into the tables
directory of the recipes distribution and run this command:

$ mysql cookbook < mail.sql

6.1 Cloning a Table

Problem
You want to create a table that has exactly the same structure as an existing
table.

Solution
Use CREATE TABLE…LIKE to clone the table structure. To also copy
some or all of the rows from the original table to the new one, use INSERT

INTO…SELECT.

Discussion
To create a new table that is just like an existing table, use this statement:

CREATE TABLE new_table LIKE original_table;

The structure of the new table is the same as that of the original table, with
a few exceptions: CREATE TABLE…LIKE does not copy foreign key
definitions, and it doesn’t copy any DATA DIRECTORY or INDEX
DIRECTORY table options that the table might use.

The new table is empty. If you also want the contents to be the same as the
original table, copy the rows using an INSERT INTO…SELECT statement:

INSERT INTO new_table SELECT * FROM original_table;

To copy only part of the table, add an appropriate WHERE clause that
identifies which rows to copy. For example, these statements create a copy
of the mail table named mail2, populated only with the rows for mail
sent by barb:

CREATE TABLE mail2 LIKE mail;
INSERT INTO mail2 SELECT * FROM mail WHERE srcuser = 'barb';

WARNING
Selecting everything from the large table could be slow and is not recommended on the production
servers. We discuss how to copy huge tables in Recipes 6.7 and 6.8.

See Also
For additional information about INSERT…SELECT, see Recipe 6.2.

6.2 Saving a Query Result in a Table

Problem
You want to save the result from a SELECT statement to a table rather than
display it.

Solution
If the table exists, retrieve rows into it using INSERT INTO…SELECT. If
the table does not exist, create it on the fly using CREATE TABLE…
SELECT.

Discussion
The MySQL server normally returns the result of a SELECT statement to
the client that executed the statement. For example, when you execute a
statement from within the mysql program, the server returns the result to
mysql, which in turn displays it on the screen. It’s possible to save the
results of a SELECT statement in a table instead, which is useful in several
ways:

You can easily create a complete or partial copy of a table. If you’re
developing an algorithm for your application that modifies a table, it’s
safer to work with a copy of a table so that you need not worry about the
consequences of mistakes. If the original table is large, creating a partial
copy can speed the development process because queries running against
it take less time.
For a data-loading operation based on information that might be
malformed, load new rows into a test temporary table, perform some
preliminary checks, and correct the rows as necessary. When you’re
satisfied that the new rows are okay, copy them from the temporary table
to your main table.
Some applications maintain a large repository table and a smaller
working table into which rows are inserted on a regular basis, copying

the working table rows to the repository periodically and clearing the
working table.
To perform summary operations on a large table more efficiently, avoid
running expensive summary operations repeatedly on it. Instead, select
summary information once into a second table and use that for further
analysis.

This recipe shows how to retrieve a result set into a table. The table names
src_tbl and dst_tbl in the examples refer to the source table from
which rows are selected and the destination table into which they are stored,
respectively.
If the destination table already exists, use INSERT…SELECT to copy the
result set into it. For example, if dst_tbl contains an integer column i
and a string column s, the following statement copies rows from src_tbl
into dst_tbl, assigning column val to i and column name to s:

INSERT INTO dst_tbl (i, s) SELECT val, name FROM src_tbl;

The number of columns to be inserted must match the number of selected
columns, with the correspondence between columns based on position
rather than name. To copy all columns, you can shorten the statement to this
form:

INSERT INTO dst_tbl SELECT * FROM src_tbl;

To copy only certain rows, add a WHERE clause that selects those rows:

INSERT INTO dst_tbl SELECT * FROM src_tbl
WHERE val > 100 AND name LIKE 'A%';

The SELECT statement can produce values from expressions, too. For
example, the following statement counts the number of times each name
occurs in src_tbl and stores both the counts and the names in dst_tbl:

INSERT INTO dst_tbl (i, s) SELECT COUNT(*), name
FROM src_tbl GROUP BY name;

If the destination table does not exist, create it first with a CREATE TABLE
statement, then copy rows into it with INSERT…SELECT. Alternatively,
use CREATE TABLE…SELECT to create the destination table directly from
the result of the SELECT. For example, to create dst_tbl and copy the
entire contents of src_tbl into it, do this:

CREATE TABLE dst_tbl SELECT * FROM src_tbl;

WARNING

INSERT INTO...SELECT...

does not copy indexes from the source table. If you use this syntax, and the destination table
should have indexes, create them after the statement completes. We discuss indexes in Recipe
21.1.

MySQL creates the columns in dst_tbl based on the name, number, and
type of the columns in src_tbl. To copy only certain rows, add an
appropriate WHERE clause. To create an empty table, use a WHERE clause
that selects no rows:

CREATE TABLE dst_tbl SELECT * FROM src_tbl WHERE FALSE;

To copy only some of the columns, name the ones you want in the SELECT
part of the statement. For example, if src_tbl contains columns a, b, c,
and d, copy just b and d like this:

CREATE TABLE dst_tbl SELECT b, d FROM src_tbl;

To create columns in an order different from that in which they appear in
the source table, name them in the desired order. If the source table contains
columns a, b, and c that should appear in the destination table in the order
c, a, b, do this:

CREATE TABLE dst_tbl SELECT c, a, b FROM src_tbl;

To create columns in the destination table in addition to those selected from
the source table, provide appropriate column definitions in the CREATE
TABLE part of the statement. The following statement creates id as an
AUTO_INCREMENT column in dst_tbl and adds columns a, b, and c
from src_tbl:

CREATE TABLE dst_tbl
(
 id INT NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (id)
)
SELECT a, b, c FROM src_tbl;

The resulting table contains four columns in the order id, a, b, c. Defined
columns are assigned their default values. This means that id, being an
AUTO_INCREMENT column, is assigned successive sequence numbers
starting from 1 (see Recipe 15.1).
If you derive a column’s values from an expression, its default name is the
expression itself, which can be difficult to work with later. In this case, it’s
prudent to give the column a better name by providing an alias (see Recipe
5.2). Suppose that src_tbl contains invoice information that lists items in
each invoice. The following statement generates a summary that lists each
invoice named in the table and the total cost of its items, using an alias for
the expression:

CREATE TABLE dst_tbl
SELECT inv_no, SUM(unit_cost*quantity) AS total_cost
FROM src_tbl GROUP BY inv_no;

CREATE TABLE…SELECT is extremely convenient but has some
limitations that arise from the fact that the information available from a
result set is not as extensive as what you can specify in a CREATE TABLE
statement. For example, MySQL has no idea whether a result set column
should be indexed or what its default value is. If it’s important to include
this information in the destination table, use the following techniques:

To make the destination table an exact copy of the source table, use the
cloning technique described in Recipe 6.1.
To include indexes in the destination table, specify them explicitly. For
example, if src_tbl has a PRIMARY KEY on the id column, and a
multiple-column index on state and city, specify them for
dst_tbl as well:

CREATE TABLE dst_tbl (PRIMARY KEY (id), INDEX(state,city))
SELECT * FROM src_tbl;

Column attributes such as AUTO_INCREMENT and a column’s default
value are not copied to the destination table. To preserve these attributes,
create the table, then use ALTER TABLE to apply the appropriate
modifications to the column definition. For example, if src_tbl has an
id column that is not only a PRIMARY KEY but also an
AUTO_INCREMENT column, copy the table and modify the copy:

CREATE TABLE dst_tbl (PRIMARY KEY (id)) SELECT * FROM src_tbl;
ALTER TABLE dst_tbl MODIFY id INT UNSIGNED NOT NULL
AUTO_INCREMENT;

6.3 Creating Temporary Tables

Problem
You need a table only for a short time, after which you want it to disappear
automatically.

Solution
Create a table using the TEMPORARY keyword, and let MySQL take care of
removing it.

Discussion

Some operations require a table that exists only temporarily and that should
disappear when it’s no longer needed. You can, of course, execute a DROP
TABLE statement explicitly to remove a table when you’re done with it.
Another option is to use CREATE TEMPORARY TABLE. This statement is
like CREATE TABLE but creates a transient table that disappears when your
session with the server ends, if you haven’t already removed it yourself.
This is extremely useful behavior because MySQL drops the table for you
automatically; you need not remember to do it. TEMPORARY can be used
with the usual table-creation methods:

Create the table from explicit column definitions:

CREATE TEMPORARY TABLE tbl_name (...column definitions...);

Create the table from an existing table:

CREATE TEMPORARY TABLE new_table LIKE original_table;

Create the table on the fly from a result set:

CREATE TEMPORARY TABLE tbl_name SELECT...;

Temporary tables are session-specific, so multiple clients can each create a
temporary table having the same name without interfering with each other.
This makes it easier to write applications that use transient tables because
you need not ensure that the tables have unique names for each client. (For
further discussion of table-naming issues, see Recipe 6.4.)
A temporary table can have the same name as a permanent table. In this
case, the temporary table “hides” the permanent table for the duration of its
existence, which can be useful for making a copy of a table that you can
modify without affecting the original by mistake. The DELETE statement in
the following example removes rows from a temporary mail table, leaving
the original permanent table unaffected:

mysql> CREATE TEMPORARY TABLE mail SELECT * FROM mail;
mysql> SELECT COUNT(*) FROM mail;

+----------+
| COUNT(*) |
+----------+
| 16 |
+----------+
mysql> DELETE FROM mail;
mysql> SELECT COUNT(*) FROM mail;
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+
mysql> DROP TEMPORARY TABLE mail;
mysql> SELECT COUNT(*) FROM mail;
+----------+
| COUNT(*) |
+----------+
| 16 |
+----------+

Although temporary tables created with CREATE TEMPORARY TABLE
have the benefits just discussed, keep the following caveats in mind:

To reuse a temporary table within a given session, you must still drop it
explicitly before re-creating it. Attempting to create a second temporary
table with the same name results in an error.
If you modify a temporary table that “hides” a permanent table with the
same name, be sure to test for errors resulting from dropped connections
if you use a programming interface that has reconnect capability
enabled. If a client program automatically reconnects after detecting a
dropped connection, modifications affect the permanent table after the
reconnect, not the temporary table.
Some APIs support persistent connections or connection pools. These
prevent temporary tables from being dropped as you expect when your
script ends because the connection remains open for reuse by other
scripts. Your script has no control over when the connection closes. This
means it can be prudent to execute the following statement prior to
creating a temporary table, just in case it’s still in existence from a
previous execution of the script:

DROP TEMPORARY TABLE IF EXISTS tbl_name;

The TEMPORARY keyword is useful here if the temporary table has
already been dropped, to avoid dropping any permanent table that has
the same name.

6.4 Generating Unique Table Names

Problem
You need to create a table with a name guaranteed not to exist.

Solution
Generate a value that is unique to your client program and incorporate it
into the table name.

Discussion
MySQL is a multiple-client database server, so if a given script that creates
a transient table might be invoked by several clients simultaneously, take
care that multiple invocations of the script do not fight over the same table
name. If the script creates tables using CREATE TEMPORARY TABLE,
there is no problem because different clients can create temporary tables
having the same name without clashing.
If you cannot or do not want to use a TEMPORARY table, make sure that
each invocation of the script creates a uniquely named table and drops the
table when it is no longer needed. To accomplish this, incorporate into the
name some value guaranteed to be unique per invocation. A timestamp
won’t work if it’s possible for two instances of a script to be invoked within
the timestamp resolution. A random number may be better, but random
numbers only reduce the possibility of name clashes, not eliminate it.
Values, generated by the UUID function, are a better source for unique
values. The UUID function returns a Universal Unique Identifier (UUID)

generated according to RFC 4122, “A Universally Unique IDentifier
(UUID) URN Namespace and designed to produce a 128-bit string that is
unique in space and time. While the value generated by this function is not
necessarily unique, it’s enough to generate a unique temporary table name.
It’s possible to incorporate a UUID into a table name within SQL by using
prepared statements. The following example illustrates this, referring to the
table name in the CREATE TABLE statement and a precautionary DROP
TABLE statement:

SET @tbl_name = CONCAT('tmp_tbl_', UUID());
SET @stmt = CONCAT('CREATE TABLE `', @tbl_name, '` (i INT)');
PREPARE stmt FROM @stmt;
EXECUTE stmt;
DEALLOCATE PREPARE stmt;

6.5 Checking or Changing a Table Storage
Engine

Problem
You want to check which storage engine a table uses so that you can
determine what engine capabilities are applicable. Or you need to change a
table’s storage engine because you realize that the capabilities of another
engine are more suitable for the way you use the table.

Solution
To determine a table’s storage engine, you can use any of several
statements. To change the table’s engine, use ALTER TABLE with an
ENGINE clause.

Discussion
MySQL supports multiple storage engines, which have differing
characteristics. For example, the InnoDB engine supports transactions,

https://oreil.ly/rVRJ5

whereas Memory does not. If you need to know whether a table supports
transactions, check which storage engine it uses. If the table’s engine does
not support transactions, you can convert the table to use a transaction-
capable engine.
To determine the current engine for a table, check
INFORMATION_SCHEMA or use the SHOW TABLE STATUS or SHOW
CREATE TABLE statement. For the mail table, obtain engine information
as follows:

mysql> SELECT ENGINE FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'mail';
+--------+
| ENGINE |
+--------+
| InnoDB |
+--------+

mysql> SHOW TABLE STATUS LIKE 'mail'\G
*************************** 1. row ***************************
 Name: mail
 Engine: InnoDB
…

mysql> SHOW CREATE TABLE mail\G
*************************** 1. row ***************************
 Table: mail
Create Table: CREATE TABLE `mail` (
... column definitions ...
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci

To change the storage engine for a table, use ALTER TABLE with an
ENGINE specifier. For example, to convert the mail table to use the
Memory storage engine, use this statement:

ALTER TABLE mail ENGINE = Memory;

Be aware that converting a large table to a different storage engine might
take a long time and be expensive in terms of CPU and I/O activity.

To determine which storage engines your MySQL server supports, check
the output from the SHOW ENGINES statement or query the
INFORMATION_SCHEMA ENGINES table.

6.6 Copying a Table Using mysqldump

Problem
You want to copy a table or tables, either among the databases managed by
a MySQL server or from one server to another.

Solution
Use the mysqldump program.

Discussion
The mysqldump program makes a backup file that can be reloaded to re-
create the original table or tables:

$ mysqldump cookbook mail > mail.sql

The output file mail.sql consists of a CREATE TABLE statement to create
the mail table and a set of INSERT statements to insert its rows. You can
reload the file to re-create the table should the original be lost:

$ mysql cookbook < mail.sql

This method also makes it easy to deal with any triggers the table has. By
default, mysqldump writes the triggers to the dump file, so reloading the
file copies the triggers along with the table with no special handling.
By default, mysqldump includes the DROP TABLE IF EXISTS
statement before CREATE TABLE. If you do not want to drop the table

when loading the dump and prefer the operation to fail instead, run
mysqldump with the --skip-add-drop-table option.

In addition to restoring tables, mysqldump can be used to make copies of
them by reloading the output into a different database. (If the destination
database does not exist, create it first.) The following examples show some
useful table-copying commands.

Copying tables within a single MySQL server
Copy a single table to a different database:

$ mysqldump cookbook mail > mail.sql
$ mysql other_db < mail.sql

To dump multiple tables, name them all following the database name
argument.
Copy all tables in a database to a different database:

$ mysqldump cookbook > cookbook.sql
$ mysql other_db < cookbook.sql

When you name no tables after the database name, mysqldump dumps
them all. To also include stored routines and events, add the --
routines and --events options to the mysqldump command.
(There is also a --triggers option, but it’s unneeded because, as
mentioned previously, mysqldump dumps triggers with their associated
tables by default.)
Copy a table, using a different name for the copy:

1. Dump the table:

$ mysqldump cookbook mail > mail.sql

2. Reload the table into a different database that does not contain a
table with that name:

$ mysql other_db < mail.sql

3. Rename the table:

$ mysql other_db
mysql> RENAME mail TO mail2;

Or, to move the table into another database at the same time,
qualify the new name with the database name:

$ mysql other_db
mysql> RENAME mail TO cookbook.mail2;

To perform a table-copying operation without an intermediary file, use a
pipe to connect the mysqldump and mysql commands:

$ mysqldump cookbook mail | mysql other_db
$ mysqldump cookbook | mysql other_db

TIP
You may consider using the newer mysqlpump tool that works similarly to mysqldump but
supports smarter filters and parallel processing. We discuss mysqlpump in Recipe 13.13.

Copying tables between MySQL servers
The preceding commands use mysqldump to copy tables among the
databases managed by a single MySQL server. Output from mysqldump
can also be used to copy tables from one server to another. Suppose that you
want to copy the mail table from the cookbook database on the local
host to the other_db database on the host other-host.example.com. One
way to do this is to dump the output into a file:

$ mysqldump cookbook mail > mail.sql

Then copy mail.sql to other-host.example.com, and run the following
command there to load the table into that MySQL server’s other_db
database:

$ mysql other_db < mail.sql

To accomplish this without an intermediary file, use a pipe to send the
output of mysqldump directly over the network to the remote MySQL
server. If you can connect to both servers from your local host, use this
command:

$ mysqldump cookbook mail | mysql -h other-host.example.com
other_db

The mysqldump half of the command connects to the local server and
writes the dump output to the pipe. The mysql half of the command
connects to the remote MySQL server on other-host.example.com. It reads
the pipe for input and sends each statement to the other-host.example.com
server.
If you cannot connect directly to the remote server using mysql from your
local host, send the dump output into a pipe that uses ssh to invoke mysql
remotely on other-host.example.com:

$ mysqldump cookbook mail | ssh other-host.example.com mysql
other_db

ssh connects to other-host.example.com and launches mysql there. It then
reads the mysqldump output from the pipe and passes it to the remote
mysql process. ssh can be useful to send a dump over the network to a
machine that has the MySQL port blocked by a firewall but that permits
connections on the SSH port.
Regarding which table or tables to copy, similar principles apply as for local
copies. To copy multiple tables over the network, name them all following
the database argument of the mysqldump command. To copy an entire
database, don’t specify any table names after the database name;

mysqldump dumps all its tables. To copy all databases that reside on your
MySQL instance, specify the --all-databases option.

6.7 Copying an InnoDB Table Using
Transportable Tablespaces

Problem
You want to copy an InnoDB table, but the table is too big, and dumping
data from it in human-readable format takes long a time. Reload is not fast
either.

Solution
Use transportable tablespaces.

Discussion
Tools like mysqldump and mysqlpump are good when you work with
comparatively small tables or you want to examine the resulting SQL dump
yourself before applying it to the target server. However, copying a table
that occupies few gigabytes on the disk this way will take a lot of time. It
will also create additional load on the server. To make things worse,
protection mechanisms will affect other connections that use the same table.
To resolve this issue, binary backup and restore methods exist. These
methods work on the binary table files without doing any additional data
manipulations; therefore, performance is the same as if you run the cp
command on Linux or copy on Windows.

As of version 8.0, MySQL stores table definitions in the data dictionary,
while data is stored in the separate files. The format and name of these files
depend on the storage engine. In the case of InnoDB, they are individual,
general and system tablespaces. Individual tablespace files store data for
each table individually and can be used for the method we describe in this

section. If your tables are stored in the system or in general tablespaces, you
first need to convert them to use the individual tablespace format:

ALTER TABLE tbl_name TABLESPACE = innodb_file_per_table;

To find out if your table resides in the system or in general tablespaces,
query the INNODB_TABLES table in the Information Schema:

mysql> SELECT NAME, SPACE_TYPE FROM
INFORMATION_SCHEMA.INNODB_TABLES
 -> WHERE NAME LIKE 'test/%';
+--+------------+
| NAME | SPACE_TYPE |
+--+------------+
test/residing_in_system_tablespace	System
test/residing_in_individual_tablespace	Single
test/residing_in_general_tablespace	General
+--+------------+

Once you are ready to copy the tablespace, log in into the mysql client and
execute:

FLUSH TABLES limbs FOR EXPORT;

This command will prepare the tablespace file for being copied and
additionally create a configuration file with a .cfg extension that will
contain the table metadata.
Keep the MySQL client open and in the other terminal window, copy the
tablespace and configuration files into the desired location:

cp /var/lib/mysql/cookbook/limbs.{cfg,ibd} .

Once the copy finishes, unlock the table:

UNLOCK TABLES;

Now you can import the tablespace into a remote server or into a different
database on the same local server.

The first step is to create a table with exactly the same definition as the
original one. You can find the table definition by running the SHOW
CREATE TABLE command:

source> SHOW CREATE TABLE limbs\G
*************************** 1. row ***************************
 Table: limbs
Create Table: CREATE TABLE `limbs` (
 `thing` varchar(20) DEFAULT NULL,
 `legs` int DEFAULT NULL,
 `arms` int DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

Once you’ve obtained it, connect to the destination database and create a
table:

destination> USE cookbook_copy;
Database changed
destination> CREATE TABLE `limbs` (
 -> `thing` varchar(20) DEFAULT NULL,
 -> `legs` int DEFAULT NULL,
 -> `arms` int DEFAULT NULL
 ->) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci;
Query OK, 0 rows affected (0.03 sec)

After a new empty table is created, discard its tablespace:

ALTER TABLE limbs DISCARD TABLESPACE;

WARNING
DISCARD TABLESPACE removes tablespace files. Be very careful with this command. If you
make a typo and discard a tablespace for the wrong table, it can’t be restored.

After tablespace is discarded, copy the table files into the new database
directory:

$ sudo cp limbs.{cfg,ibd} /var/lib/mysql/cookbook_copy
$ sudo chown mysql:mysql /var/lib/mysql/cookbook_copy/limbs.
{cfg,ibd}

Then import the tablespace.

ALTER TABLE limbs IMPORT TABLESPACE;

See Also
For additional information about exchanging tablespace files between
MySQL databases and servers, see “Importing InnoDB Tables”.

6.8 Copying a MyISAM Table Using an sdi
File

Problem
You want to copy a large MyISAM table on MySQL 8.0.

Solution
Use the IMPORT TABLE command.

Discussion
Tables that use the MyISAM storage engine support the importation of the
raw table files with the help of the IMPORT TABLE statement. To export
MyISAM tables without the risk of corrupting data during migration, open
a MySQL connection first and flush the table files to the disk with a read
lock:

FLUSH TABLES limbs_myisam WITH READ LOCK;

Then copy the table data, index, and metadata files into the backup location:

https://oreil.ly/Jt38Q

$ sudo cp /var/lib/mysql/cookbook/limbs_myisam.{MYD,MYI} .
$ sudo bash -c 'cp /var/lib/mysql/cookbook/limbs_myisam_*.sdi . '

Unlock the original table:
The table’s metadata file with the .sdi extension has a random sequence
of digits in its name, therefore use sudo to copy it to allow the shell
process to expand the file glob pattern.
To copy a MyISAM table into the desired destination, put the table’s
metadata file with .sdi extension into the directory, specified by the --
secure-file-priv option, or into any directory, readable by the target
MySQL server if such an option is not set. Then copy the index and datafile
into the target database directory:

$ sudo cp limbs_myisam.{MYD,MYI} /var/lib/mysql/cookbook_copy/
$ sudo chown mysql:mysql
/var/lib/mysql/cookbook_copy/limbs_myisam.{MYD,MYI}

Then connect to the database and import the table:

IMPORT TABLE FROM '/tmp/limbs_myisam_11560.sdi';

If you are copying the table into a database with a different name, you need
to edit the sdi file manually and replace the value of the schema_ref
with the target database name.

Chapter 7. Working with Strings

7.0 Introduction
Like most types of data, string values can be compared for equality or
inequality or relative ordering. However, strings have additional properties
to consider:

A string can be binary or nonbinary. Binary strings are used for raw data
such as images, music files, or encrypted values. Nonbinary strings are
used for character data such as text and are associated with a character
set and collation (sort order).
A character set determines which characters are legal in a string. You
can choose collations according to whether you need comparisons to be
case sensitive or case insensitive, or to use the rules of a particular
language.
Data types for binary strings are BINARY, VARBINARY, and BLOB.
Data types for nonbinary strings are CHAR, VARCHAR, and TEXT, each
of which permits CHARACTER SET and COLLATE attributes.

You can convert a binary string to a nonbinary string and vice versa, or
convert a nonbinary string from one character set or collation to another.
You can use a string in its entirety or extract substrings from it. Strings
can be combined with other strings.
You can apply pattern-matching operations to strings.
Full-text searching is available for efficient queries on large collections
of text.

This chapter discusses how to use those properties so that you can store,
retrieve, and manipulate strings according to any requirements your
applications have.

Scripts to create the tables used in this chapter are located in the tables
directory of the recipes distribution.

7.1 String Properties
One string property is whether it is binary or nonbinary:

A binary string is a sequence of bytes. It can contain any type of
information, such as images, MP3 files, or compressed or encrypted
data. A binary string is not associated with a character set, even if you
store a value such as abc that looks like ordinary text. Binary strings are
compared byte by byte using numeric byte values.
A nonbinary string is a sequence of characters. It stores text that has a
particular character set and collation. The character set defines which
characters can be stored in the string. The collation defines the character
ordering, which affects comparison and sorting operations.

To see which character sets are available for nonbinary strings, use this
statement:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+-
-------+
| Charset | Description | Default collation |
Maxlen |
+----------+-----------------------------+---------------------+-
-------+
| big5 | Big5 Traditional Chinese | big5_chinese_ci |
2 |
…
| koi8r | KOI8-R Relcom Russian | koi8r_general_ci |
1 |
| latin1 | cp1252 West European | latin1_swedish_ci |
1 |
| latin2 | ISO 8859-2 Central European | latin2_general_ci |
1 |
…
| utf8 | UTF-8 Unicode | utf8_general_ci |
3 |
| utf8mb4 | UTF-8 Unicode | utf8mb4_0900_ai_ci |
4 |
…

The default character set in MySQL 8.0 is utf8mb4 with collation of
utf8mb4_0900_ai_ci. If you must store characters from several
languages in a single column, consider using one of the Unicode character
sets (such as utf8mb4 or utf16) because they can represent characters
from multiple languages.
Some character sets contain only single-byte characters, whereas others
permit multibyte characters. Some multibyte character sets contain
characters of varying lengths. For others, all characters have a fixed length.
For example, Unicode data can be stored using the utf8mb4 character set,
in which characters take from one to four bytes, or the utf16 character set,
in which all characters take two bytes.

NOTE
In MySQL, to use the full set of Unicode characters, including supplemental characters that lie
outside the Basic Multilingual Plane (BMP), use utf8mb4, in which characters take from one to
four bytes. Other Unicode character sets that include supplemental characters are utf16,
utf16le, and utf32.

To determine whether a given string contains multibyte characters, use the
LENGTH() and CHAR_LENGTH() functions, which return the length of a
string in bytes and characters, respectively. If LENGTH() is greater than
CHAR_LENGTH() for a given string, multibyte characters are present:

The utf8 Unicode character set has multibyte characters, but a given
utf8 string might contain only single-byte characters, as in the
following example:

mysql> SET @s = CONVERT('abc' USING utf8mb4);
mysql> SELECT LENGTH(@s), CHAR_LENGTH(@s);
+------------+-----------------+
| LENGTH(@s) | CHAR_LENGTH(@s) |
+------------+-----------------+
| 3 | 3 |
+------------+-----------------+

For the utf16 Unicode character set, all characters are encoded using
two bytes, even if they are single-byte characters in another character
set, such as latin1. Thus, every utf16 string contains multibyte
characters:

mysql> SET @s = CONVERT('abc' USING utf16);
mysql> SELECT LENGTH(@s), CHAR_LENGTH(@s);
+------------+-----------------+
| LENGTH(@s) | CHAR_LENGTH(@s) |
+------------+-----------------+
| 6 | 3 |
+------------+-----------------+

Another property of nonbinary strings is collation, which determines the
sort order of characters in the character set. Use SHOW COLLATION to see
all available collations; add a LIKE clause to see the collations for a
particular character set:

mysql> SHOW COLLATION LIKE 'utf8mb4%';
+-------------------------+---------+-----+---------+----------+-
--------+---------------+
| Collation | Charset | Id | Default | Compiled |
Sortlen | Pad_attribute |
+-------------------------+---------+-----+---------+----------+-
--------+---------------+
| utf8mb4_0900_ai_ci | utf8mb4 | 255 | Yes | Yes |
0 | NO PAD |
| utf8mb4_0900_as_ci | utf8mb4 | 305 | | Yes |
0 | NO PAD |
..
| utf8mb4_es_0900_ai_ci | utf8mb4 | 263 | | Yes |
0 | NO PAD |
| utf8mb4_es_0900_as_cs | utf8mb4 | 286 | | Yes |
0 | NO PAD |
| utf8mb4_es_trad_0900... | utf8mb4 | 270 | | Yes |
0 | NO PAD |
| utf8mb4_es_trad_0900... | utf8mb4 | 293 | | Yes |
0 | NO PAD |
..
| utf8mb4_tr_0900_ai_ci | utf8mb4 | 265 | | Yes |
0 | NO PAD |
| utf8mb4_tr_0900_as_cs | utf8mb4 | 288 | | Yes |
0 | NO PAD |
| utf8mb4_turkish_ci | utf8mb4 | 233 | | Yes |
8 | PAD SPACE |

| utf8mb4_unicode_520_ci | utf8mb4 | 246 | | Yes |
8 | PAD SPACE |

In contexts where no collation is specified explicitly, strings in a given
character set use the collation with Yes in the Default column. As
shown, the default collation for utf8mb4 is utf8mb4_0900_ai_ci.
(Default collations are also displayed by SHOW CHARACTER SET.)

A collation can be case sensitive (a and A are different), case insensitive (a
and A are the same), or binary (two characters are the same or different
based on whether their numeric values are equal). A collation name ending
in _ci, _cs, or _bin is case insensitive, case sensitive, or binary,
respectively.
Binary strings and binary collations both use numeric values. The
difference is that binary string comparisons are always based on single-byte
units, whereas a binary collation compares nonbinary strings using
character numeric values; depending on the character set, some of these
might be multibyte values.
The following example illustrates how collation affects sort order. Suppose
that a table contains a utf8mb4 string column and has the following rows:

mysql> CREATE TABLE t (c CHAR(3) CHARACTER SET utf8mb4);
mysql> INSERT INTO t (c) VALUES('AAA'),('bbb'),('aaa'),('BBB');
mysql> SELECT c FROM t;
+------+
| c |
+------+
| AAA |
| bbb |
| aaa |
| BBB |
+------+

By applying the COLLATE operator to the column, you can choose which
collation to use for sorting and thus affect the order of the result:

A case-insensitive collation sorts a and A together, placing them before
b and B. However, for a given letter, it does not necessarily order one
lettercase before another, as shown by the following result:

mysql> SELECT c FROM t ORDER BY c COLLATE utf8mb4_turkish_ci;
+------+
| c |
+------+
| AAA |
| aaa |
| bbb |
| BBB |
+------+

A case-sensitive collation puts A and a before B and b and sorts
lowercase before uppercase:

mysql> SELECT c FROM t ORDER BY c COLLATE
utf8mb4_tr_0900_as_cs;
+------+
| c |
+------+
| aaa |
| AAA |
| bbb |
| BBB |
+------+

A binary collation sorts characters using their numeric values. Assuming
that uppercase letters have numeric values less than those of lowercase
letters, a binary collation results in the following ordering:

mysql> SELECT c FROM t ORDER BY c COLLATE utf8mb4_bin;
+------+
| c |
+------+
| AAA |
| BBB |
| aaa |
| bbb |
+------+

Note that because characters in different lettercases have different
numeric values, a binary collation produces a case-sensitive ordering.
However, the order differs from that for the case-sensitive collation.

If you require that comparison and sorting operations use the sorting rules
of a particular language, choose a language-specific collation. For example,

if you store strings using the utf8mb4 character set, the default collation
(utf8mb4_0900_ai_ci) treats ch and ll as two-character strings. To
use the traditional Spanish ordering that treats ch and ll as single
characters that follow c and l, respectively, specify the
utf8mb4_spanish2_ci collation. The two collations produce different
results, as shown here:

mysql> CREATE TABLE t (c CHAR(2) CHARACTER SET utf8mb4);
mysql> INSERT INTO t (c) VALUES('cg'),('ch'),('ci'),('lk'),
('ll'),('lm');
mysql> SELECT c FROM t ORDER BY c COLLATE utf8mb4_general_ci;
+------+
| c |
+------+
| cg |
| ch |
| ci |
| lk |
| ll |
| lm |
+------+
mysql> SELECT c FROM t ORDER BY c COLLATE utf8mb4_spanish2_ci;
+------+
| c |
+------+
| cg |
| ci |
| ch |
| lk |
| lm |
| ll |
+------+

Ideally, set the collation in the column definition in case you are not using
the default collation by running the following:

mysql> CREATE TABLE t (c CHAR(2) CHARACTER SET utf8mb4 COLLATE
utf8mb4_spanish2_ci);

This will make sure to avoid possible query performance degradation
during sort operations by using wrong collation.

7.2 Choosing a String Data Type

Problem
You want to store string data but aren’t sure which data type is the most
appropriate.

Solution
Choose the data type according to the characteristics of the information to
be stored and how you need to use it. Consider questions such as these:

Are the strings binary or nonbinary?
Does case sensitivity matter?
What is the maximum string length?
Do you want to store fixed- or variable-length values?
Do you need to retain trailing spaces?
Is there a fixed set of permitted values?

Discussion
MySQL provides several binary and nonbinary string data types. These
types come in pairs, as shown in the following table. The maximum length
is in bytes, whether the type is binary or nonbinary. For nonbinary types,
the maximum number of characters is less for strings that contain multibyte
characters, as we show in Table 7-1.

Table 7-1. Maximum number of characters per
data type

Binary data type Nonbinary data type Maximum length
BINARY CHAR 255

VARBINARY VARCHAR 65,535

TINYBLOB TINYTEXT 255

Binary data type Nonbinary data type Maximum length
BLOB TEXT 65,535

MEDIUMBLOB MEDIUMTEXT 16,777,215

LONGBLOB LONGTEXT 4,294,967,295

For the BINARY and CHAR data types, MySQL stores column values using
a fixed width. For example, values stored in a BINARY(10) or
CHAR(10) column always take 10 bytes or 10 characters, respectively.
Shorter values are padded to the required length as necessary when stored.
For BINARY, the pad value is 0x00 (the zero-valued byte, also known as
ASCII NUL). CHAR values are padded with spaces for storage, and trailing
spaces are stripped upon retrieval.
For VARBINARY, VARCHAR, and the BLOB and TEXT types, MySQL
stores values using only as much storage as required, up to the maximum
column length. No padding is added or stripped when values are stored or
retrieved.
To preserve trailing pad values that are present in the original strings that
are stored, use a data type for which no stripping occurs. For example, if
you store character (nonbinary) strings that might end with spaces and want
to preserve them, use VARCHAR or one of the TEXT data types. The
following statements illustrate the difference in trailing-space handling for
CHAR and VARCHAR columns:

mysql> DROP TABLE IF EXISTS t;
mysql> CREATE TABLE t (c1 CHAR(10), c2 VARCHAR(10));
mysql> INSERT INTO t (c1,c2) VALUES('abc ','abc ');
mysql> SELECT c1, c2, CHAR_LENGTH(c1), CHAR_LENGTH(c2) FROM t;
+------+------------+-----------------+-----------------+
| c1 | c2 | CHAR_LENGTH(c1) | CHAR_LENGTH(c2) |
+------+------------+-----------------+-----------------+
| abc | abc | 3 | 10 |
+------+------------+-----------------+-----------------+

This shows that if you store a string that contains trailing spaces into a
CHAR column, they’re removed when you retrieve the value.

A table can include a mix of binary and nonbinary string columns, and its
nonbinary columns can use different character sets and collations. When
you declare a nonbinary string column, use the CHARACTER SET and
COLLATE attributes if you require a particular character set and collation.
For example, if you need to store utf8mb4 (Unicode) and sjis
(Japanese) strings, you might define a table with two columns like this:

CREATE TABLE mytbl
(
 utf8str VARCHAR(100) CHARACTER SET utf8mb4 COLLATE
utf8mb4_danish_ci,
 sjisstr VARCHAR(100) CHARACTER SET sjis COLLATE
sjis_japanese_ci
);

The CHARACTER SET and COLLATE clauses are each optional in a
column definition:

If you specify CHARACTER SET and omit COLLATE, the default
collation for the character set is used.
If you specify COLLATE and omit CHARACTER SET, the character set
implied by the collation name (the first part of the name) is used. For
example, utf8mb4_danish_ci and sjis_japanese_ci imply
utf8mb4 and sjis, respectively. This means that the CHARACTER
SET attributes could have been omitted from the preceding CREATE
TABLE statement.

If you omit both CHARACTER SET and COLLATE, the column is
assigned the table default character set and collation. A table definition
can include those attributes following the closing parenthesis at the end
of the CREATE TABLE statement. If present, they apply to columns that
have no explicit character set or collation of their own. If omitted, the
table defaults are taken from the database defaults. You can specify the
database defaults when you create the database with the CREATE
DATABASE statement. The server defaults apply to the database if they
are omitted.

The server default character set and collation for MySQL 8.0 are utf8mb4
and utf8mb4_0900_ai_ci, so strings by default use the utf8mb4
character set and are not case sensitive. To change this, set the
character_set_server and collation_server system variables
at server startup (see Recipe 22.1).
MySQL also supports ENUM and SET string types, which are used for
columns that have a fixed set of permitted values. The CHARACTER SET
and COLLATE attributes apply to these data types as well.

7.3 Setting the Client Connection Character
Set

Problem
You’re executing SQL statements or producing query results that don’t use
the default character set.

Solution
Use SET NAMES or an equivalent method to set your connection to the
proper character set.

Discussion
When you send information back and forth between your application and
the server, you may need to tell MySQL the appropriate character set. For
example, the default character set is latin1, but that may not always be
the proper character set to use for connections to the server. If you have
Greek data, displaying it using latin1 will result in gibberish on your
screen. If you use Unicode strings in the utf8mb4 character set, latin1
might not be sufficient to represent all the characters that you might need.
To deal with this problem, configure your connection to use the appropriate
character set. You have several ways to do this:

Issue a SET NAMES statement after you connect:

mysql> SET NAMES 'utf8mb4';

SET NAMES permits the connection collation to be specified as well:

mysql> SET NAMES 'utf8mb4' COLLATE 'utf8mb4_0900_ai_ci';

If your client program supports the --default-character-set
option, you can use it to specify the character set at program invocation
time. mysql is one such program. Put the option in an option file so that
it takes effect each time you connect to the server:

[mysql]
default-character-set=utf8mb4

If you set the environment for your working environment using the
LANG or LC_ALL environment variable on Unix, or the code page
setting on Windows, MySQL client programs automatically detect which
character set to use. For example, setting LC_ALL to en_US.UTF-8
causes programs such as mysql to use utf8.

Some programming interfaces provide their own method of setting the
character set. For example, MySQL Connector/J for Java clients detects
the character set used on the server side automatically when you
connect, but you can specify a different set explicitly using the
characterEncoding property in the connection URL. The property
value should be the Java-style character-set name. To select utf8mb4,
you might use a connection URL like this:

jdbc:mysql://localhost/cookbook?characterEncoding=UTF-8

This is preferable to SET NAMES because Connector/J performs
character-set conversion on behalf of the application but is unaware of
which character set applies if you use SET NAMES. Similar principles
apply to programs written for other APIs. For PHP Data Objects (PDO),

use a charset option in your data source name (DSN) string (this
works in PHP 5.3.6 or later):

$dsn = "mysql:host=localhost;dbname=cookbook;charset=utf8mb4";

For Connector/Python, specify a charset connection parameter:

conn_params = {
 "database": "cookbook",
 "host": "localhost",
 "user": "cbuser",
 "password": "cbpass",
 "charset": "utf8mb4",
}

For Go, specify a charset connection parameter:

db, err := sql.Open("mysql",
 "cbuser:cbpass@tcp(127.0.0.1:3306)/cookbook?
charset=utf8mb4")

Some APIs may also provide a parameter to specify the collation.

NOTE
Some character sets cannot be used as the connection character set: utf16, utf16le, and
utf32.

You should also ensure that the character set used by your display device
matches what you use for MySQL. Otherwise, even with MySQL handling
the data properly, it might display as garbage. Suppose that you use the
mysql program in a terminal window and that you configure MySQL to
use utf8mb4 and store utf8mb4-encoded Turkish data. If you set your
terminal window to use euc-tr encoding, that is also Turkish but its
encoding for Turkish characters differs from utf8mb4, so the data will not
display as you expect. (If you use autodetection, this should not be an
issue.)

In the following example, Turkish characters inserted in a table will show
up garbled in a connection made with a different character set:

mysql> DROP TABLE IF EXISTS t;
mysql> CREATE TABLE t (c CHAR(3) CHARACTER SET utf8mb4);
mysql> INSERT INTO t (c) VALUES('iii'),('şşş'),('ööö'),('ççç');

From another connection, using the Latin1 client character set will result
in the following:

mysql> \s

mysql Ver 8.0.27 for Linux on x86_64 (MySQL Community Server -
GPL)
...
Server characterset: utf8mb4
Db characterset: utf8mb4
Client characterset: latin1
Conn. characterset: latin1
...
SELECT c from t;
+------+
| c |
+------+
| iii |
| ??? |
| ��� |
| ��� |
+------+

To verify that you’re connected with the correct character set to the MySQL
command-line interface, issue the following to show the status:

mysql> \s

mysql Ver 8.0.27 for Linux on x86_64 (MySQL Community Server -
GPL)
...
Server characterset: utf8mb4
Db characterset: utf8mb4
Client characterset: utf8mb4
Conn. characterset: utf8mb4
...
SELECT c from t;
+------+

| c |
+------+
| iii |
| şşş |
| ööö |
| ççç |
+------+

7.4 Writing String Literals

Problem
You need to write literal strings in SQL statements.

Solution
Learn the syntax rules that govern string values.

Discussion
You can write strings several ways:

Enclose the text of the string within single quotes or double quotes:

'my string'
"my string"

When the ANSI_QUOTES SQL mode is enabled, you cannot use double
quotes for quoting strings: the server interprets a double quote as the
quoting character for identifiers such as table or column names and not
for strings (see Recipe 4.6). If you adopt the convention of always
writing quoted strings using single quotes, MySQL interprets them as
strings and not as identifiers regardless of the ANSI_QUOTES setting.

Use hexadecimal notation. Each pair of hex digits produces one byte of
the string. abcd can be written using any of these formats:

0x61626364
X'61626364'

x'61626364'

MySQL treats strings written using hex notation as binary strings. Not
coincidentally, it’s common for applications to use hex strings when
constructing SQL statements that refer to binary values:

INSERT INTO t SET binary_col = 0xdeadbeef;

To specify a character set for interpretation of a literal string, use an
introducer consisting of a character-set name preceded by an underscore:

_utf8mb4 'abcd'
_utf16 'abcd'

An introducer tells the server how to interpret the string that follows it.
For _utf8mb4 'abcd', the server produces a string consisting of four
single-byte characters. For _ucs2 'abcd', the server produces a string
consisting of two two-byte characters because ucs2 is a double-byte
character set.

To ensure that a string is a binary string or that a nonbinary string has a
specific character set or collation, use the instructions for string conversion
given in Recipe 7.5.
A quoted string that includes the same quote character produces a syntax
error if executed by an API or in the mysql batch mode:

mysql -e "SELECT 'I'm asleep'"
ERROR 1064 (42000) at line 1: You have an error in your SQL
syntax; ↩
check the manual that corresponds to your MySQL server version ↩
for the right syntax to use near 'asleep'' at line 1

If executed interactively by the mysql client, it waits for the closing quote:

mysql> SELECT 'I'm asleep';
 '>
 '> '\c
mysql>

You have several ways to deal with this:
Enclose a string containing single quotes within double quotes
(assuming that ANSI_QUOTES is disabled), or enclose a string
containing double quotes within single quotes:

mysql> SELECT "I'm asleep", 'He said, "Boo!"';
+------------+-----------------+
| I'm asleep | He said, "Boo!" |
+------------+-----------------+
| I'm asleep | He said, "Boo!" |
+------------+-----------------+

To include a quote character within a string quoted by the same kind of
quote, double the quote or precede it with a backslash. When MySQL
reads the statement, it strips the extra quote or the backslash:

mysql> SELECT 'I''m asleep', 'I\'m wide awake';
+------------+----------------+
| I'm asleep | I'm wide awake |
+------------+----------------+
| I'm asleep | I'm wide awake |
+------------+----------------+
mysql> SELECT "He said, ""Boo!""", "And I said, \"Yikes!\"";
+-----------------+----------------------+
| He said, "Boo!" | And I said, "Yikes!" |
+-----------------+----------------------+
| He said, "Boo!" | And I said, "Yikes!" |
+-----------------+----------------------+

A backslash turns off any special meaning of the following character,
including itself. To write a literal backslash within a string, double it:

mysql> SELECT 'Install MySQL in C:\\mysql on Windows';
+--------------------------------------+
| Install MySQL in C:\mysql on Windows |
+--------------------------------------+
| Install MySQL in C:\mysql on Windows |
+--------------------------------------+

Backslash causes a temporary escape from normal string processing
rules, so sequences such as \', \", and \\ are called escape sequences.

Others recognized by MySQL are \b (backspace), \n (newline, also
called linefeed), \r (carriage return), \t (tab), and \0 (ASCII NUL).

Write the string as a hex value:

mysql> SELECT 0x49276D2061736C656570;
+------------------------+
| 0x49276D2061736C656570 |
+------------------------+
| I'm asleep |
+------------------------+

WARNING
Starting from version 8.0, mysql client is running with the --binary-as-hex option by
default. If you do not disable this option, you will get binary output as hex values. For example,
for the preceding command, you’ll see the following:

mysql> SELECT 0x49276D2061736C656570;
+--+
| 0x49276D2061736C656570 |
+--+
| 0x49276D2061736C656570 |
+--+
1 row in set (0,00 sec)

To get human-readable output, start the mysql client with the --binary-as-hex=0 option.

See Also
If you execute SQL statements from within a program, you can refer to
strings or binary values symbolically and let your programming interface
take care of quoting: use the placeholder mechanism provided by the
language’s database-access API (see Recipe 4.5). Alternatively, load binary
values such as images from files using the LOAD_FILE() function (see
the MySQL documentation).

https://oreil.ly/ah9zM

7.5 Checking or Changing a String’s
Character Set or Collation

Problem
You want to know the character set or collation of a string or change a
string to some other character set or collation.

Solution
To check a string’s character set or collation, use the CHARSET() or
COLLATION() function. To change its character set, use the CONVERT()
function. To change its collation, use the COLLATE operator.

Discussion
For a table created as follows, you know that values stored in the column c
have a character set of utf8 and a collation of utf8_danish_ci:

CREATE TABLE t (c CHAR(10) CHARACTER SET utf8mb4 COLLATE
utf8mb4_danish_ci);

But sometimes it’s not so clear what character set or collation applies to a
string. Server configuration can affect literal strings and some string
functions, and other string functions return values in a specific character set.
Symptoms that you have the wrong character set or collation are that a
collation-mismatch error occurs for a comparison operation, or a lettercase
conversion doesn’t work properly.
To determine a string’s character set or collation, use the CHARSET() or
COLLATION() function. For example, did you know that the USER()
function returns a Unicode string?

mysql> SELECT USER(), CHARSET(USER()), COLLATION(USER());
+------------------+-----------------+-------------------+
| USER() | CHARSET(USER()) | COLLATION(USER()) |
+------------------+-----------------+-------------------+

| cbuser@localhost | utf8mb3 | utf8_general_ci |
+------------------+-----------------+-------------------+

String values that take their character set and collation from the current
client configuration may change properties if the configuration changes.
This is true for literal strings:

mysql> SET NAMES 'utf8mb4';
mysql> SELECT CHARSET('abc'), COLLATION('abc');
+----------------+--------------------+
| CHARSET('abc') | COLLATION('abc') |
+----------------+--------------------+
| utf8mb4 | utf8mb4_0900_ai_ci|
+----------------+--------------------+
mysql> SET NAMES 'utf8mb4' COLLATE 'utf8mb4_bin';
mysql> SELECT CHARSET('abc'), COLLATION('abc');
+----------------+------------------+
| CHARSET('abc') | COLLATION('abc') |
+----------------+------------------+
| utf8mb4 | utf8mb4_bin |
+----------------+------------------+

For a binary string, the CHARSET() or COLLATION() function returns a
value of binary, which means that the string is compared and sorted
based on numeric byte values, not character collation values.
To convert a string from one character set to another, use the CONVERT()
function:

mysql> SET @s1 = _latin1 'my string', @s2 = CONVERT(@s1 USING
utf8mb4);
mysql> SELECT CHARSET(@s1), CHARSET(@s2);
+--------------+--------------+
| CHARSET(@s1) | CHARSET(@s2) |
+--------------+--------------+
| latin1 | utf8mb4 |
+--------------+--------------+

To change the collation of a string, use the COLLATE operator:

mysql> SET @s1 = _latin1 'my string', @s2 = @s1 COLLATE
latin1_spanish_ci;
mysql> SELECT COLLATION(@s1), COLLATION(@s2);
+-------------------+-------------------+

| COLLATION(@s1) | COLLATION(@s2) |
+-------------------+-------------------+
| latin1_swedish_ci | latin1_spanish_ci |
+-------------------+-------------------+

The new collation must be legal for the character set of the string. For
example, you can use the utf8_general_ci collation with utf8mb3
strings but not with latin1 strings:

mysql> SELECT _latin1 'abc' COLLATE utf8_bin;
ERROR 1253 (42000): COLLATION 'utf8_bin' is not valid for
CHARACTER SET 'latin1'

To convert both the character set and collation of a string, use CONVERT()
to change the character set, and apply the COLLATE operator to the result:

mysql> SET @s1 = _latin1 'my string';
mysql> SET @s2 = CONVERT(@s1 USING utf8mb4) COLLATE
utf8mb4_spanish_ci;
mysql> SELECT CHARSET(@s1), COLLATION(@s1), CHARSET(@s2),
COLLATION(@s2);
+--------------+-------------------+--------------+--------------
---+
| CHARSET(@s1) | COLLATION(@s1) | CHARSET(@s2) |
COLLATION(@s2) |
+--------------+-------------------+--------------+--------------
---+
| latin1 | latin1_swedish_ci | utf8 |
utf8_spanish_ci |
+--------------+-------------------+--------------+--------------
---+

The CONVERT() function can also convert binary strings to nonbinary
strings and vice versa. To produce a binary string, use binary; any other
character-set name produces a nonbinary string:

mysql> SET @s1 = _latin1 'my string';
mysql> SET @s2 = CONVERT(@s1 USING binary);
mysql> SET @s3 = CONVERT(@s2 USING utf8mb4);
mysql> SELECT CHARSET(@s1), CHARSET(@s2), CHARSET(@s3);
+--------------+--------------+--------------+
| CHARSET(@s1) | CHARSET(@s2) | CHARSET(@s3) |
+--------------+--------------+--------------+

| latin1 | binary | utf8mb4 |
+--------------+--------------+--------------+

Alternatively, produce binary strings using the CAST function, which is
equivalent to CONVERT(str USING binary):

mysql> SELECT CHARSET(CAST(_utf8mb4 'my string' AS binary));
+---+
| CHARSET(CAST(_utf8mb4 'my string' AS binary)) |
+---+
| binary |
+---+

See also Recipe 7.3 for more information on character sets.

7.6 Converting the Lettercase of a String

Problem
You want to convert a string to uppercase or lowercase.

Solution
Use the UPPER() or LOWER() function. If they don’t work, you’re
probably trying to convert a binary string. Convert it to a nonbinary string
that has a character set and collation and is subject to case mapping.

Discussion
The UPPER() and LOWER() functions convert the lettercase of a string:

mysql> SELECT thing, UPPER(thing), LOWER(thing) FROM limbs;
+--------------+--------------+--------------+
| thing | UPPER(thing) | LOWER(thing) |
+--------------+--------------+--------------+
human	HUMAN	human
insect	INSECT	insect
squid	SQUID	squid
fish	FISH	fish
centipede	CENTIPEDE	centipede

table	TABLE	table
armchair	ARMCHAIR	armchair
phonograph	PHONOGRAPH	phonograph
tripod	TRIPOD	tripod
Peg Leg Pete	PEG LEG PETE	peg leg pete
space alien	SPACE ALIEN	space alien
+--------------+--------------+--------------+

But some strings are “stubborn” and resist lettercase conversion. To get
human-readable output, start the mysql client with binary-as-hex=0
option:

mysql> CREATE TABLE t (b VARBINARY(10)) SELECT 'aBcD' AS b;
mysql> SELECT b, UPPER(b), LOWER(b) FROM t;
+------+----------+----------+
| b | UPPER(b) | LOWER(b) |
+------+----------+----------+
| aBcD | aBcD | aBcD |
+------+----------+----------+

This problem occurs for strings that have a BINARY or BLOB data type.
These are binary strings that have no character set or collation. Lettercase
does not apply, and UPPER() and LOWER() do nothing.

To map a binary string to a given lettercase, convert it to a nonbinary string,
choosing a character set that has uppercase and lowercase characters. The
case-conversion functions then work as you expect because the collation
provides case mapping:

mysql> SELECT b,
 -> UPPER(CONVERT(b USING utf8mb4)) AS upper,
 -> LOWER(CONVERT(b USING utf8mb4)) AS lower
 -> FROM t;
+------+-------+-------+
| b | upper | lower |
+------+-------+-------+
| aBcD | ABCD | abcd |
+------+-------+-------+

The example uses a table column, but the same principles apply to binary
string literals and string expressions.

If you’re not sure whether a string expression is binary or nonbinary, use
the CHARSET() function to find out; see Recipe 7.5.

To convert the lettercase of only part of a string, break it into pieces,
convert the relevant piece, and put the pieces back together. Suppose that
you want to convert only the initial character of a string to uppercase. The
following expression accomplishes that:

CONCAT(UPPER(LEFT(str,1)),MID(str,2))

But it’s ugly to write an expression like that each time you need it. For
convenience, define a stored function:

mysql> CREATE FUNCTION initial_cap (s VARCHAR(255))
 -> RETURNS VARCHAR(255) DETERMINISTIC
 -> RETURN CONCAT(UPPER(LEFT(s,1)),MID(s,2));

Then you can capitalize initial characters more easily:

mysql> SELECT thing, initial_cap(thing) FROM limbs;
+--------------+--------------------+
| thing | initial_cap(thing) |
+--------------+--------------------+
human	Human
insect	Insect
squid	Squid
fish	Fish
centipede	Centipede
table	Table
armchair	Armchair
phonograph	Phonograph
tripod	Tripod
Peg Leg Pete	Peg Leg Pete
space alien	Space alien
+--------------+--------------------+

For more information about writing stored functions, see Chapter 11.

7.7 Comparing String Values

Problem
You want to know whether strings are equal or unequal or which appears
first in lexical order.

Solution
Use a comparison operator. But remember that strings have properties such
as case sensitivity that you must take into account. A string comparison
might be case sensitive when you don’t want it to be, or vice versa.
As is the case with other data types, you can compare string values for
equality, inequality, or relative ordering:

mysql> SELECT 'cat' = 'cat', 'cat' = 'dog', 'cat' <> 'cat', 'cat'
<> 'dog';
+---------------+---------------+----------------+---------------
-+
| 'cat' = 'cat' | 'cat' = 'dog' | 'cat' <> 'cat' | 'cat' <> 'dog'
|
+---------------+---------------+----------------+---------------
-+
| 1 | 0 | 0 | 1
|
+---------------+---------------+----------------+---------------
-+
mysql> SELECT 'cat' < 'auk', 'cat' < 'dog', 'cat' BETWEEN 'auk'
AND 'eel';
+---------------+---------------+-------------------------------+
| 'cat' < 'auk' | 'cat' < 'dog' | 'cat' BETWEEN 'auk' AND 'eel' |
+---------------+---------------+-------------------------------+
| 0 | 1 | 1 |
+---------------+---------------+-------------------------------+

Discussion
However, comparison and sorting properties of strings are subject to
complications that don’t apply to other types of data. For example,
sometimes you must ensure that a string comparison is case sensitive that
would not otherwise be, or vice versa. This section describes how to do
that.

String comparison properties depend on whether the operands are binary or
nonbinary strings:

A binary string is a sequence of bytes and is compared using numeric
byte values. Lettercase has no meaning. However, because letters in
different cases have different byte values, comparisons of binary strings
effectively are case sensitive. (That is, a and A are unequal.) To compare
binary strings such that lettercase does not matter, convert them to
nonbinary strings that have a case-insensitive collation.
A nonbinary string is a sequence of characters and is compared in
character units. (Depending on the character set, some characters might
have multiple bytes.) The string has a character set that defines the legal
characters and a collation that defines their sort order. The collation also
determines whether to consider characters in different lettercases the
same in comparisons. If the collation is case sensitive, and you want a
case-insensitive collation (or vice versa), convert the strings to use a
collation with the desired case-comparison properties.

By default, strings have a character set of utf8mb4 and a collation of
utf8mb4_0900_ai_ci unless you reconfigure the server (see Recipe
22.1). This results in case-insensitive string comparisons.
The following example shows how two binary strings that compare as
unequal can be handled so that they are equal when compared as case-
insensitive nonbinary strings:

mysql> SET @s1 = CAST('cat' AS BINARY), @s2 = CAST('CAT' AS
BINARY);
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
| 0 |
+-----------+
mysql> SET @s1 = CONVERT(@s1 USING utf8mb4) COLLATE
utf8mb4_0900_ai_ci;
mysql> SET @s2 = CONVERT(@s2 USING utf8mb4) COLLATE
utf8mb4_0900_ai_ci;
mysql> SELECT @s1 = @s2;
+-----------+

| @s1 = @s2 |
+-----------+
| 1 |
+-----------+

In this case, because utf8mb4_0900_ai_ci is the default collation for
utf8mb4, you can omit the COLLATE operator:

mysql> SET @s1 = CONVERT(@s1 USING utf8mb4);
mysql> SET @s2 = CONVERT(@s2 USING utf8mb4);
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
| 1 |
+-----------+

The next example shows how to compare, in case-sensitive fashion, two
strings that are not case sensitive:

mysql> SET @s1 = _latin1 'cat', @s2 = _latin1 'CAT';
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
| 1 |
+-----------+
mysql> SELECT @s1 COLLATE latin1_general_cs = @s2 COLLATE
latin1_general_cs
 -> AS '@s1 = @s2';
+-----------+
| @s1 = @s2 |
+-----------+
| 0 |
+-----------+

If you compare a binary string with a nonbinary string, the comparison
treats both operands as binary strings:

mysql> SELECT _latin1 'cat' = CAST('CAT' AS BINARY);
+---------------------------------------+
| _latin1 'cat' = CAST('CAT' AS BINARY) |
+---------------------------------------+
| 0 |
+---------------------------------------+

Thus, to compare two nonbinary strings as binary strings, cast them as the
BINARY data type to either one when comparing them:

mysql> SET @s1 = _latin1 'cat', @s2 = _latin1 'CAT';
mysql> SELECT @s1 = @s2, CAST(@s1 AS BINARY) = @s2, @s1 =
CAST(@s2 AS BINARY);
+-----------+---------------------------+------------------------
---+
| @s1 = @s2 | CAST(@s1 AS BINARY) = @s2 | @s1 = CAST(@s2 AS
BINARY) |
+-----------+---------------------------+------------------------
---+
| 1 | 0 |
0 |
+-----------+---------------------------+------------------------
---+

If you find that you’ve declared a column using a type not suited to the kind
of comparisons for which you typically use it, use ALTER TABLE to
change the type. Suppose that this table stores news articles:

CREATE TABLE news
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 article BLOB,
 PRIMARY KEY (id)
);

Here the article column is declared as a BLOB. That is a binary string
type, so comparisons of text stored in the column are made without regard
to character set. (In effect, they are case sensitive.) If that’s not what you
want, use ALTER TABLE to convert the column to a nonbinary type that
has a case-insensitive collation:

ALTER TABLE news
 MODIFY article TEXT CHARACTER SET utf8mb4 COLLATE
utf8mb4_0900_ai_ci;

7.8 Converting Between Decimal, Octal, and
Hexadecimal Formats

Problem
You want to convert from one numeric base to another.

Solution
Use the CONV() function and SQL pattern described in this section.

Discussion
It is difficult to operate literals as text strings in some formats such as HEX.
An alternative method is to convert them to binary values. This will
produce a data type with a value of BINARY(16) that is 128 bits long.
Using BIN(), OCT(), and HEX() functions to convert between decimal
numbers to binary, octal, and hexadecimal is already possible. What if we
need to do the reverse? This is where the CONV() function comes in handy.
With the CONV() function, we can convert from one numeric base system
to another.
The syntax to use the CONV() function is as follows:

 CONV(number, from_base, to_base)

A number is a value that we want to convert from one numeric base to
another.
A from_base is the original base value of the numeric base limited to
a value between 2 and 36.
A to_base is the target value of the numeric base. This value can be
between 2 and 36 or -2 and -36:

mysql> SELECT CONV(8, 10, 2) AS DectoBin;
+----------+
| DectoBin |
+----------+
| 1000 |
+----------+

Similar to the BIN() function, we get the same result, although the BIN()
function returns a string:

mysql> SELECT BIN(8);
+--------+
| BIN(8) |
+--------+
| 1000 |
+--------+

Likewise, we can convert values between one another in reverse:

mysql> SELECT CONV('F', 16, 10) AS Hex2Dec;
+---------+
| Hex2Dec |
+---------+
| 15 |
+---------+

7.9 Converting Between ASCII, BIT, and
Hexadecimal Formats

Problem
You want to convert from one string format to another.

Solution
Use the MySQL CHAR(), ASCII(), and BIT_LENGTH() functions and
SQL pattern described in this section.

Discussion
There are many powerful string functions to support MySQL’s string
operations. In different use cases, we may have to convert them to have
different results. Using some of the string functions, such as ASCII(), we
can convert between other formats like BIT and HEX.

The syntax to use the ASCII() function is as follows:

 ASCII(character);

NOTE
The ASCII() function returns only the left-most character’s numeric value of the string. This is
similar to MySQL’s ORD() function.

mysql> SELECT ASCII("LARA");
+---------------+
| ASCII("LARA") |
+---------------+
| 76 |
+---------------+

mysql> SELECT ASCII("L");
+---------------+
| ASCII("L") |
+---------------+
| 76 |
+---------------+

As you can see, the result is the same for both strings. The function takes
only the leftmost character of the string.
In the following example, we will convert a string value to HEX format:

mysql> SELECT DISTINCT CONV(ASCII("LARA"),10,16) as ASCII2HEX;
+-----------+
| ASCII2HEX |
+-----------+
| 4C |
+-----------+

Say we have table name and want to get all unique last_name from this
table in HEX format:

mysql> SELECT DISTINCT CONV(ASCII(last_name),10,16) from name;
+------------------------------+
| CONV(ASCII(last_name),10,16) |

+------------------------------+
| 42 |
| 47 |
| 57 |
+------------------------------+

Bit operations before MySQL 8.0 handled unsigned 64-bit integer values.
After MySQL 8.0, bit operations extended to handle binary string
arguments. This allowed strings that are not integers or binary strings to be
converted. A UUID (Universal Unique Identifier) specified by RFC 4122 is
a 128-bit globally unique value when complete uniqueness is required.
UUIDs also come in handy for security purposes since they don’t reveal any
information about data. A UUID is represented in human-readable format
as utf8mb4 with the string of five hexadecimal numbers. A good
example is converting a UUID value to binary by using the UUID_TO_BIN
function (we are running mysql with the binary-as-hex option):

mysql> SELECT UUID();
+--------------------------------------+
| UUID() |
+--------------------------------------+
| e52e0524-385b-11ec-99b1-054a662275e4 |
+--------------------------------------+

mysql> SELECT UUID_TO_BIN(UUID());
+--+
| UUID_TO_BIN(UUID()) |
+--+
| 0xB8D11A66134E11ECB46CC15B8175C680 |
+--+

Later, we can convert this value to compare the bit count using the
BIT_COUNT() function. This function is mainly used to identify active
bits in a given input:

mysql> select UUID_TO_BIN(UUID()) into @bin_uuid;
mysql> select BIT_COUNT(@bin_uuid);
+----------------------+
| BIT_COUNT(@bin_uuid) |
+----------------------+
| 57 |
+----------------------+

https://oreil.ly/TQA22

The purpose of the BIT_COUNT() function is to identify active bits in a
given decimal value, for example, if we wanted to identify the active bits in
number 18. Binary conversion of 18 is 10010; hence, the active bits are
only two:

mysql> select BIT_COUNT(18);
+---------------+
| BIT_COUNT(18) |
+---------------+
| 2 |
+---------------+

The BIT_COUNT() function can be combined with the BIT_OR()
function to calculate the following problem. The BIT_OR() function
returns the bitwise or all the bits in an expression.
Say we want to find out the number of Sundays in the month of November.
We will create a table called sundays:

mysql> CREATE TABLE sundays (
 year YEAR,
 month INT UNSIGNED ,
 day INT UNSIGNED
);

mysql> INSERT INTO sundays VALUES(2021,11,7),
 (2021,11,14),
 (2021,11,21),
 (2021,11,28);

mysql> SELECT year, month, BIT_COUNT(BIT_OR(1 << day)) AS 'Number
of Sundays'
 -> FROM sundays GROUP BY year,month;

+------+-------+-------------------+
| year | month | Number of Sundays |
+------+-------+-------------------+
| 2021 | 11 | 4 |
+------+-------+-------------------+

This example can be extended to find the number of holidays in a given
calendar year or date range.
Another use case is IPv6 and IPv4 network addresses that are string values
by default. To return the binary value to represent it in numeric format, the
INET_ATON() function can be used. This function converts the dotted-
quad IPv4 address string representation to a numeric value. While use cases
for this function may vary, it is widely used for storing the source and
destination of IP addresses for data. Once the IPv4 address is stored in a
numeric value, it can be indexed and processed faster:

mysql> SELECT INET_ATON('10.0.2.1');
+-----------------------+
| INET_ATON('10.0.2.1') |
+-----------------------+
| 167772673 |
+-----------------------+

mysql> SELECT HEX(INET6_ATON('10.0.2.1'));
+-----------------------------+
| HEX(INET6_ATON('10.0.2.1')) |
+-----------------------------+
| 0A000201 |
+-----------------------------+

7.10 Pattern Matching with SQL Patterns

Problem
You want to perform a pattern match, not a literal comparison.

Solution
Use the LIKE operator and a SQL pattern, described in this section. Or use
a regular-expression pattern match, described in Recipe 7.11.

Discussion

Patterns are strings that contain special characters known as metacharacters
because they stand for something other than themselves. MySQL provides
two kinds of pattern matching. One is based on SQL patterns and the other
on regular expressions. SQL patterns are more standard among different
database systems, but regular expressions are more powerful. The two kinds
of pattern match use different operators and different metacharacters. This
section describes SQL patterns. Recipe 7.11 describes regular expressions.
The example here uses a table named metal that contains the following
rows:

+----------+
| name |
+----------+
| gold |
| iron |
| lead |
| mercury |
| platinum |
| tin |
+----------+

SQL pattern matching uses the LIKE and NOT LIKE operators rather than
= and <> to perform matching against a pattern string. Patterns may contain
two special metacharacters: _ matches any single character, and % matches
any sequence of characters, including the empty string. You can use these
characters to create patterns that match a variety of values:

Strings that begin with a particular substring:

mysql> SELECT name FROM metal WHERE name LIKE 'me%';
+---------+
| name |
+---------+
| mercury |
+---------+

Strings that end with a particular substring:

mysql> SELECT name FROM metal WHERE name LIKE '%d';
+------+

| name |
+------+
| gold |
| lead |
+------+

Strings that contain a particular substring at any position:

mysql> SELECT name FROM metal WHERE name LIKE '%in%';
+----------+
| name |
+----------+
| platinum |
| tin |
+----------+

Strings that contain a substring at a specific position (the pattern matches
only if at occurs at the third position of the name column):

mysql> SELECT name FROM metal where name LIKE '__at%';
+----------+
| name |
+----------+
| platinum |
+----------+

A SQL pattern matches successfully only if it matches the entire
comparison value. Of the following two pattern matches, only the second
succeeds:

'abc' LIKE 'b'
'abc' LIKE '%b%'

To reverse the sense of a pattern match, use NOT LIKE. The following
statement finds strings that contain no i characters:

mysql> SELECT name FROM metal WHERE name NOT LIKE '%i%';
+---------+
| name |
+---------+
| gold |
| lead |

| mercury |
+---------+

SQL patterns do not match NULL values. This is true both for LIKE and for
NOT LIKE:

mysql> SELECT NULL LIKE '%', NULL NOT LIKE '%';
+---------------+-------------------+
| NULL LIKE '%' | NULL NOT LIKE '%' |
+---------------+-------------------+
| NULL | NULL |
+---------------+-------------------+

In some cases, pattern matches are equivalent to substring comparisons. For
example, using patterns to find strings at one end or the other of a string is
like using LEFT() or RIGHT(), as shown in Table 7-2.

Table 7-2. Pattern match versus substring
comparison

Pattern match Substring comparison
str LIKE 'abc%' LEFT(str,3) = 'abc'

str LIKE '%abc' RIGHT(str,3) = 'abc'

If you’re matching against a column that is indexed and you have a choice
of using a pattern or an equivalent LEFT() expression, you’ll likely find
the pattern match to be faster. MySQL can use the index to narrow the
search for a pattern that begins with a literal string. With LEFT(), it
cannot. Also, a LIKE comparison with a % in the beginning can be slow
due to the optimizer checking the entire content of the string.
Case sensitivity of a pattern match is like that of a string comparison. That
is, it depends on whether the operands are binary or nonbinary strings, and
for nonbinary strings, it depends on their collation. See Recipe 7.7 for a
discussion of how these factors apply to comparisons.

USING PATTERNS WITH NONSTRING VALUES
Unlike some other database systems, MySQL permits pattern matches to be applied to nonstring
values such as numbers or dates, which can sometimes be useful. Table 7-3 shows some ways to
test a DATE value d using function calls that extract date parts and using the equivalent pattern
matches. The pairs of expressions are true for dates occurring in the year 1975, in the month of
June, or on the 21st day of the month:

Table 7-3. Pattern matching for temporal data
types

Function value test Pattern match test
YEAR(d) = 1975 d LIKE '1975-%'

MONTH(d) = 6 d LIKE '%-06-%'

DAYOFMONTH(d) = 21 d LIKE '%-21'

7.11 Pattern Matching with Regular
Expressions

Problem
You want to perform a pattern match, not a literal comparison.

Solution
Use the REGEXP operator and a regular expression pattern, described in
this section. Or use a SQL pattern, described in Recipe 7.10.

Discussion
SQL patterns (see Recipe 7.10) are likely to be implemented by other
database systems, so they’re reasonably portable beyond MySQL. On the
other hand, they’re somewhat limited. For example, you can easily write a
SQL pattern, %abc%, to find strings that contain abc, but you cannot write
a single SQL pattern to identify strings that contain any of the characters a,

b, or c. Nor can you match string content based on character types such as
letters or digits.
For such operations, MySQL supports another type of pattern-matching
operation based on regular expressions and the REGEXP operator (or NOT
REGEXP to reverse the sense of the match). REGEXP matching uses the
pattern elements shown in Table 7-4.

Table 7-4. Popular regular expressions
syntax

Pattern What the pattern matches
^ Beginning of string

$ End of string

. Any single character

[...] Any character listed between
 the square brackets

[^...] Any character not listed
 between the square brackets

p1|p2|p3 Alternation; matches any of
 the patterns p1,
 p2, or
 p3

* Zero or more instances of preceding element

+ One or more instances of preceding element

{n} n
 instances of preceding element

{m,n} m
 through n instances of preceding
 element

You may already be familiar with these regular expression pattern
characters; many of them are the same as those used by vi, grep, sed,
and other Unix utilities that support regular expressions. Most of them are
also used in the regular expressions understood by programming languages.
(For a discussion of pattern matching in programs for data validation and
transformation, see Chapter 14.)

Recipe 7.10 shows how to use SQL patterns to match substrings at the
beginning or end of a string or at an arbitrary or specific position within a
string. You can do the same things with regular expressions:

Use the following for strings that begin with a particular substring:

mysql> SELECT name FROM metal WHERE name REGEXP '^me';
+---------+
| name |
+---------+
| mercury |
+---------+

Use the following for strings that end with a particular substring:

mysql> SELECT name FROM metal WHERE name REGEXP 'd$';
+------+
| name |
+------+
| gold |
| lead |
+------+

Use the following for strings that contain a particular substring at any
position:

mysql> SELECT name FROM metal WHERE name REGEXP 'in';
+----------+
| name |
+----------+
| platinum |
| tin |
+----------+

Use the following for strings that contain a particular substring at a
specific position:

mysql> SELECT name FROM metal WHERE name REGEXP '^..at';
+----------+
| name |
+----------+
| platinum |
+----------+

In addition, regular expressions have other capabilities and can perform
matches that SQL patterns cannot. For example, regular expressions can
contain character classes, which match any character in the class:

To write a character class, use square brackets and list the characters you
want the class to match inside the brackets. Thus, the pattern [abc]
matches a, b, or c.

Classes can indicate ranges of characters; use a dash between the
beginning and end of the range. [a-z] matches any letter, [0-9]
matches digits, and [a-z0-9] matches letters or digits.

To negate a character class (“match any character but these”), begin the
list with a ^ character. For example, [^0-9] matches anything but
digits.

MySQL’s regular-expression capabilities also support POSIX character
classes. These match specific character sets, as described in Table 7-5:

Table 7-5. POSIX regular expressions
syntax

POSIX class What the class matches
[:alnum:] Alphabetic and numeric characters

[:alpha:] Alphabetic characters

[:blank:] Whitespace (space or tab characters)

[:cntrl:] Control characters

[:digit:] Digits

[:graph:] Graphic (nonblank) characters

[:lower:] Lowercase alphabetic characters

[:print:] Graphic or space characters

[:punct:] Punctuation characters

[:space:] Space, tab, newline, carriage return

[:upper:] Uppercase alphabetic characters

[:xdigit:] Hexadecimal digits (0-9,
 a-f, A-F)

POSIX classes are intended for use within character classes, so use them
within square brackets. The following expression matches values that
contain any hexadecimal digit character:

mysql> SELECT name, name REGEXP '[[:xdigit:]]' FROM metal;
+----------+----------------------------+
| name | name REGEXP '[[:xdigit:]]' |
+----------+----------------------------+
gold	1
iron	0
lead	1
mercury	1
platinum	1
tin	0
+----------+----------------------------+

Regular expressions can specify alternations using this syntax:

alternative1|alternative2|...

An alternation is similar to a character class in the sense that it matches if
any of the alternatives match. But unlike a character class, the alternatives
are not limited to single characters. They can be multiple-character strings
or even patterns. The following alternation matches strings that begin with a
vowel or end with d:

mysql> SELECT name FROM metal WHERE name REGEXP '^[aeiou]|d$';
+------+
| name |
+------+
| gold |
| iron |
| lead |
+------+

Parentheses can be used to group alternations. For example, to match
strings that consist entirely of digits or entirely of letters, you might try this
pattern, using an alternation:

mysql> SELECT '0m' REGEXP '^[[:digit:]]+|[[:alpha:]]+$';
+---+

| '0m' REGEXP '^[[:digit:]]+|[[:alpha:]]+$' |
+---+
| 1 |
+---+

However, as the query result shows, the pattern doesn’t work. That’s
because the ^ groups with the first alternative, and the $ groups with the
second alternative. So the pattern actually matches strings that begin with
one or more digits, or strings that end with one or more letters. If you group
the alternatives within parentheses, the ^ and $ apply to both of them, and
the pattern acts as you expect:

mysql> SELECT '0m' REGEXP '^([[:digit:]]+|[[:alpha:]]+)$';
+---+
| '0m' REGEXP '^([[:digit:]]+|[[:alpha:]]+)$' |
+---+
| 0 |
+---+

Unlike SQL pattern matches, which are successful only if the pattern
matches the entire comparison value, regular expressions are successful if
the pattern matches anywhere within the value. The following two pattern
matches are equivalent in the sense that each one succeeds only for strings
that contain a b character, but the first is more efficient because the pattern
is simpler:

'abc' REGEXP 'b'
'abc' REGEXP '^.*b.*$'

Regular expressions do not match NULL values. This is true both for
REGEXP and for NOT REGEXP:

mysql> SELECT NULL REGEXP '.*', NULL NOT REGEXP '.*';
+------------------+----------------------+
| NULL REGEXP '.*' | NULL NOT REGEXP '.*' |
+------------------+----------------------+
| NULL | NULL |
+------------------+----------------------+

Because a regular expression matches a string if the pattern is found
anywhere in the string, you must take care not to inadvertently specify a
pattern that matches the empty string. If you do, it matches any non-NULL
value. For example, the pattern a* matches any number of a characters,
even none. If your goal is to match only strings containing nonempty
sequences of a characters, use a+ instead. The + requires one or more
instances of the preceding pattern element for a match.
As with SQL pattern matches performed using LIKE, regular-expression
matches performed with REGEXP sometimes are equivalent to substring
comparisons. As shown in Table 7-6, the ^ and $ metacharacters serve
much the same purpose as LEFT() or RIGHT(), at least if you’re looking
for literal strings.

Table 7-6. Regular expressions versus
substring comparison functions

Pattern match Substring comparison
str REGEXP '^abc' LEFT(str,3) = 'abc'

str REGEXP 'abc$' RIGHT(str,3) = 'abc'

For nonliteral patterns, it’s typically not possible to construct an equivalent
substring comparison. For example, to match strings that begin with any
nonempty sequence of digits, use this pattern match:

str REGEXP '^[0-9]+'

That is something that LEFT() cannot do (and neither can LIKE, for that
matter).
Case sensitivity of a regular-expression match is like that of a string
comparison. That is, it depends on whether the operands are binary or
nonbinary strings, and for nonbinary strings, it depends on their collation.
See Recipe 7.7 for a discussion of how these factors apply to comparisons.

NOTE
Prior to version 8.0.4, regular expressions worked only for single-byte character sets. In MySQL
8.0.4, this limitation was removed, and now you can use regular expressions with multibyte
character sets such as utf8mb4 or sjis.

7.12 Reversing the String Content

Problem
You want to modify a string and find its reverse form.

Solution
Use the REVERSE() function.

Discussion
You can reverse a string or a substring by using the REVERSE() function.
This function converts any string value into its reverse form by character.
It’s also often used in SELECT statements, like many other functions in this
chapter.
The syntax to use the REVERSE() function is as follows:

 REVERSE(expression)

The following examples show the basic functionality of the REVERSE()
function:

mysql> SELECT REVERSE("sports flow");
+------------------------+
| REVERSE("sports flow") |
+------------------------+
| wolf strops |
+------------------------+

mysql> SELECT REVERSE(0123456789);
+---------------------+
| REVERSE(0123456789) |
+---------------------+
| 987654321 |
+---------------------+

mysql> SELECT REVERSE("0123456789");
+-----------------------+
| REVERSE("0123456789") |
+-----------------------+
| 9876543210 |
+-----------------------+

The following example shows that when the expression is a numeric
value, the zero value is omitted by the function:

mysql> SELECT REVERSE(001122334455);
+-----------------------+
| REVERSE(001122334455) |
+-----------------------+
| 5544332211 |
+-----------------------+

While we can reverse any expression, some words return exactly the same
written in reverse, known as a palindrome. For such strings, the REVERSE
function will return a string equal to the original one, for example, as
follows:

mysql> SELECT REVERSE("STEP ON NO PETS");
+----------------------------+
| REVERSE("STEP ON NO PETS") |
+----------------------------+
| STEP ON NO PETS |
+----------------------------+

The broader example uses the top_names table from the recipes
distribution that stores the most commonly used names. Among these
names, we’ll find out the number of palindromic names:

mysql> SELECT COUNT(*) FROM top_names WHERE REVERSE(top_name) =
top_name;
+----------+

| COUNT(*) |
+----------+
| 234 |
+----------+

Just to get a sample from this count, we can have a look at names start with
U.

mysql> SELECT top_name FROM top_names
 -> WHERE REVERSE(top_name) = top_name
 -> AND top_name LIKE "U%";
+----------+
| top_name |
+----------+
| ULU |
| UTU |
+----------+

7.13 Searching for Substrings

Problem
You want to know whether a given string occurs within another string.

Solution
Use LOCATE() or a pattern match.

Discussion
The LOCATE() function takes two arguments representing the substring
that you’re looking for and the string in which to look for it. The return
value is the position at which the substring occurs, or 0 if it’s not present.
An optional third argument may be given to indicate the position within the
string at which to start looking:

mysql> SELECT name, LOCATE('in',name), LOCATE('in',name,3) FROM
metal;
+----------+-------------------+---------------------+
| name | LOCATE('in',name) | LOCATE('in',name,3) |

+----------+-------------------+---------------------+
gold	0	0
iron	0	0
lead	0	0
mercury	0	0
platinum	5	5
tin	2	0
+----------+-------------------+---------------------+

To determine only whether the substring is present if you don’t care about
its position, an alternative is to use LIKE or REGEXP:

mysql> SELECT name, name LIKE '%in%', name REGEXP 'in' FROM
metal;
+----------+------------------+------------------+
| name | name LIKE '%in%' | name REGEXP 'in' |
+----------+------------------+------------------+
gold	0	0
iron	0	0
lead	0	0
mercury	0	0
platinum	1	1
tin	1	1
+----------+------------------+------------------+

LOCATE(), LIKE, and REGEXP use the collation of their arguments to
determine whether the search is case sensitive. Recipes 7.5 and 7.7 discuss
changing the argument comparison properties if you want to change the
search behavior.

7.14 Breaking Apart or Combining Strings

Problem
You want to extract a piece of a string or combine strings to form a larger
string.

Solution
To obtain a piece of a string, use a substring-extraction function. To
combine strings, use CONCAT().

Discussion
You can break apart strings by using the appropriate substring-extraction
functions. For example, LEFT(), MID(), and RIGHT() extract substrings
from the left, middle, or right part of a string:

mysql> SET @date = '2015-07-21';
mysql> SELECT @date, LEFT(@date,4) AS year,
 -> MID(@date,6,2) AS month, RIGHT(@date,2) AS day;
+------------+------+-------+------+
| @date | year | month | day |
+------------+------+-------+------+
| 2015-07-21 | 2015 | 07 | 21 |
+------------+------+-------+------+

For LEFT() and RIGHT(), the second argument indicates how many
characters to return from the left or right end of the string. For MID(), the
second argument is the starting position of the substring you want
(beginning from 1), and the third argument indicates how many characters
to return.
The SUBSTRING() function takes a string and a starting position,
returning everything to the right of the position. MID() acts the same way
if you omit its third argument because MID() is actually a synonym for
SUBSTRING():

mysql> SET @date = '2015-07-21';
mysql> SELECT @date, SUBSTRING(@date,6), MID(@date,6);
+------------+--------------------+--------------+
| @date | SUBSTRING(@date,6) | MID(@date,6) |
+------------+--------------------+--------------+
| 2015-07-21 | 07-21 | 07-21 |
+------------+--------------------+--------------+

Use SUBSTRING_INDEX(str,c,n) to return everything to the right or
left of a given character. It searches into a string, str, for the n-th
occurrence of the character c and returns everything to its left. If n is
negative, the search for c starts from the right and returns everything to the
right of the character:

mysql> SET @email = 'postmaster@example.com';
mysql> SELECT @email,
 -> SUBSTRING_INDEX(@email,'@',1) AS user,
 -> SUBSTRING_INDEX(@email,'@',-1) AS host;
+------------------------+------------+-------------+
| @email | user | host |
+------------------------+------------+-------------+
| postmaster@example.com | postmaster | example.com |
+------------------------+------------+-------------+

If there is no n-th occurrence of the character, SUBSTRING_INDEX()
returns the entire string. SUBSTRING_INDEX() is case sensitive.

You can use substrings for purposes other than display, such as to perform
comparisons. The following statement finds metal names having a first
letter that lies in the last half of the alphabet:

mysql> SELECT name from metal WHERE LEFT(name,1) >= 'n';
+----------+
| name |
+----------+
| platinum |
| tin |
+----------+

To combine rather than pull apart strings, use the CONCAT() function. It
concatenates its arguments and returns the result:

mysql> SELECT CONCAT(name,' ends in "d": ',IF(name LIKE
'%d','YES','NO'))
 -> AS 'ends in "d"?'
 -> FROM metal;
+--------------------------+
| ends in "d"? |
+--------------------------+
| gold ends in "d": YES |
| iron ends in "d": NO |
| lead ends in "d": YES |
| mercury ends in "d": NO |
| platinum ends in "d": NO |
| tin ends in "d": NO |
+--------------------------+

Concatenation can be useful for modifying column values “in place.” For
example, the following UPDATE statement adds a string to the end of each
name value in the metal table:

mysql> UPDATE metal SET name = CONCAT(name,'ide');
mysql> SELECT name FROM metal;
+-------------+
| name |
+-------------+
| goldide |
| ironide |
| leadide |
| mercuryide |
| platinumide |
| tinide |
+-------------+

To undo the operation, strip the last three characters (the
CHAR_LENGTH() function returns the length of a string in characters):

mysql> UPDATE metal SET name = LEFT(name,CHAR_LENGTH(name)-3);
mysql> SELECT name FROM metal;
+----------+
| name |
+----------+
| gold |
| iron |
| lead |
| mercury |
| platinum |

| tin |
+----------+

The concept of modifying a column in place can be applied to ENUM or
SET values as well, which usually can be treated as string values even
though they are stored internally as numbers. For example, to concatenate a
SET element to an existing SET column, use CONCAT() to add the new
value to the existing value, preceded by a comma. But remember to account
for the possibility that the existing value might be NULL. In that case, set
the column value equal to the new element, without the leading comma:

UPDATE tbl_name
SET set_col = IF(set_col IS NULL,val,CONCAT(set_col,',',val));

7.15 Using Full-Text Searches

Problem
You want to search long text columns.

Solution
Use a FULLTEXT index.

Discussion
Pattern matches enable you to look through any number of rows, but as the
amount of text goes up, the match operation can become quite slow. It’s
also a common task to search for the same text in several string columns,
but with pattern matching, that results in unwieldy queries:

SELECT * from tbl_name
WHERE col1 LIKE 'pat%' OR col2 LIKE 'pat%' OR col3 LIKE 'pat%'
...

A useful alternative is full-text searching, which is designed for looking
through large amounts of text and can search multiple columns
simultaneously. To use this capability, add a FULLTEXT index to your
table, and then use the MATCH operator to look for strings in the indexed
column or columns. FULLTEXT indexing can be used with MyISAM tables
or InnoDB tables for nonbinary string data types (CHAR, VARCHAR, or
TEXT).

Full-text searching is best illustrated with a reasonably good-sized body of
text. If you don’t have a sample dataset, you can find several repositories of
freely available electronic text on the internet. For the examples here, the
one we’ve chosen is the sample dump of the Amazon review data (2018),
which is both available for the public to download and to scrape from
Amazon Review Data (2018). Because of its size, this dataset is not
included with the recipes distribution but is available separately as
instructions at the GitHub repository. The Amazon distribution includes a
file named Appliances_5.json that contains the product reviews for each
category. This is a subset of larger datasets. As mostly text-based data are
found on the internet, this data is only available in JSON data format. Some
sample records look like this:

{
 "overall": 2.0,
 "verified": false,
 "reviewTime": "07 6, 2017",
 "reviewerID": "A3LGZ8M29PBNGG",
 "asin": "B000N6302Q",
 "style": {"Color:": " Stainless Steel"},
 "reviewerName": "nerenttt",
 "reviewText": "Luved it for the few months it worked!↩
 great little diamond ice cubes...",
 "unixReviewTime": 1499299200
}

What we’re interested in here is the reviewText field, which has the
large body of text we’re looking to examine.
Each record contains the following fields:

overall

https://oreil.ly/kZD0O

Rating of the product

verified

Purchase verification flag

reviewTime

Date of the review

reviewerID

ID of the reviewer(O or N), for example, A2SUAM1J3GNN3B

asin

ID of the product, for example, 0000013714

style

A discretionary of the product metadata

reviewerName

Name of the reviewer

reviewText

Text of the review

unixReviewTime

Time of the review (Unix time)
To import the records into MySQL, create a table named reviews that
looks like this:

CREATE TABLE `reviews` (
 `id` BIGINT UNSIGNED NOT NULL AUTO_INCREMENT,
 `appliances_review` JSON NOT NULL,
 PRIMARY KEY (`id`)
);

To load JSON data to this table, we could have used MySQL built-in JSON
functions, which is covered in Recipe 13.17. In some cases of large text,

data can include escape characters, such as end of line, /n/n, which breaks
the import. To overcome this, we’ll use simple script to load the data, which
is provided in the GitHub repository called
load_amazon_reviews.py.

After loading the data, we’ll convert the reviewText column as the
generated column and add the FULLTEXT index to enable its use in full-
text searching:

ALTER TABLE `reviews` ADD COLUMN `reviews_virtual` TEXT
GENERATED ALWAYS AS (`appliances_review` ->> '$.reviewText')
STORED NOT NULL;
ALTER TABLE `reviews` ADD FULLTEXT idx_ft_json(reviews_virtual);

The table now has the FULLTEXT index to enable its use in full-text
searching.
After creating the reviews table, load the Appliances_5.json file into it
using this statement:

 python3 load_amazon_reviews.py Appliances_5.json

You’ll notice that the reviews table contains columns for both complete
appliances_review data and reviews_virtual to demonstrate
the FULLTEXT index:

CREATE TABLE `reviews` (
 `id` bigint unsigned NOT NULL AUTO_INCREMENT,
 `appliances_review` json NOT NULL,
 `reviews_virtual` text GENERATED ALWAYS AS

(json_unquote(json_extract(`appliances_review`,_utf8mb4'$.reviewT
ext')))
 STORED NOT NULL,
 PRIMARY KEY (`id`),
 FULLTEXT KEY `idx_ft_json` (`reviews_virtual`)
) ENGINE=InnoDB AUTO_INCREMENT=2278 DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci;

To perform a search using the FULLTEXT index, use MATCH() to name
the indexed column and AGAINST() to specify what text to look for. For
example, you might wonder, “How many times does the word awesome
occur?” To answer that question, search the reviews_virtual column
using this statement:

mysql> SELECT COUNT(*) from reviews WHERE MATCH(reviews_virtual)
AGAINST('awesome');
+----------+
| COUNT(*) |
+----------+
| 3 |
+----------+

To verify that the FULLTEXT index was used, run the following:

mysql> EXPLAIN select reviews_virtual from reviews WHERE
MATCH(reviews_virtual)
 -> AGAINST('awesome') \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: reviews
 partitions: NULL
 type: fulltext
possible_keys: idx_ft_json
 key: idx_ft_json
 key_len: 0
 ref: const
 rows: 1
 filtered: 100.00
 Extra: Using where; Ft_hints: sorted

To find out which products had the keyword “excellent” in reviews,
select the columns you want to see (the example here truncates the
reviews_virtual column and uses \G so the results fit the page):

mysql> SELECT JSON_EXTRACT(appliances_review, "$.reviewerID") as
ReviewerID,
 -> JSON_EXTRACT(appliances_review, "$.asin") as ProductID,
 -> JSON_EXTRACT(appliances_review, "$.overall") as Rating
 -> from reviews WHERE MATCH(reviews_virtual)
AGAINST('excellent') \G

*************************** 1. row ***************************
ReviewerID: "A2CIEGHZ7L1WWR"
ProductID: "B00009W3PA"
 Rating: 5.0
*************************** 2. row ***************************
ReviewerID: "A1T1YSCDW0PD25"
ProductID: "B0013DN4NI"
 Rating: 5.0
*************************** 3. row ***************************
ReviewerID: "A1T1YSCDW0PD25"
ProductID: "B0013DN4NI"
 Rating: 5.0
*************************** 4. row ***************************
ReviewerID: "A26M3TN8QICJ3K"
ProductID: "B004XLDE5A"
 Rating: 5.0
*************************** 5. row ***************************
ReviewerID: "A2CIEGHZ7L1WWR"
ProductID: "B004XLDHSE"
 Rating: 5.0

By default, full-text searches compute a relevance ranking and use it for
sorting. To make sure a search result is sorted the way you want, add an
explicit ORDER BY clause:

SELECT reviews_virtual
FROM reviews WHERE MATCH(reviews_virtual) AGAINST('search
string')
ORDER BY {column}, {column};

To see the relevance ranking, repeat the MATCH()…AGAINST()
expression in the output column list.
To narrow the search further, include additional criteria. To provide
additional fields in the search, we’ll add the following virtual columns from
JSON_EXTRACT:

ALTER TABLE `reviews`
 -> ADD COLUMN `reviews_virtual_vote` VARCHAR(10)
 -> GENERATED ALWAYS AS (`appliances_review` ->> '$.vote')
STORED;

ALTER TABLE `reviews`
 -> ADD COLUMN `reviews_virtual_overall` VARCHAR(10)

 -> GENERATED ALWAYS AS (`appliances_review` ->> '$.overall')
STORED;

ALTER TABLE `reviews`
 -> ADD COLUMN `reviews_virtual_verified` VARCHAR(10)
 -> GENERATED ALWAYS AS (`appliances_review` ->> '$.verified')
STORED;

The following queries perform progressively more specific searches to
determine how often each keyword occurs:

mysql> SELECT count(*) from reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('good');
+----------+
| COUNT(*) |
+----------+
| 855 |
+----------+
mysql> SELECT count(*) from reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('good')
 -> AND reviews_virtual_vote > 5;
+----------+
| COUNT(*) |
+----------+
| 620 |
+----------+
mysql> SELECT COUNT(*) from reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('good')
 -> AND reviews_virtual_overall = 5;
+----------+
| COUNT(*) |
+----------+
| 646 |
+----------+
mysql> SELECT COUNT(*) from reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('good')
 -> AND reviews_virtual_overall = 5 AND
reviews_virtual_verified = "True";
+----------+
| COUNT(*) |
+----------+
| 645 |
+----------+

If you expect to frequently use search criteria that include other non-
FULLTEXT columns, add regular indexes to those columns so that queries

perform better. For example, to index the vote, overall rating, and verified
columns, do this:

mysql> ALTER TABLE reviews ADD INDEX idx_vote
(reviews_virtual_vote),
 -> ADD INDEX idx_overall(reviews_virtual_overall),
 -> ADD INDEX idx_verified(reviews_virtual_verified);

Search strings in full-text queries can include more than one word, and you
might suppose that adding words would make a search more specific. But in
fact that widens it because a full-text search returns rows that contain any of
the words. In effect, the query performs an OR search for any of the words.
The following queries illustrate this; they identify successively larger
numbers of reviews as additional search words are added:

mysql> SELECT COUNT(*) from reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('excellent');
+----------+
| COUNT(*) |
+----------+
| 11 |
+----------+
mysql> SELECT COUNT(*) from reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('excellent product');
+----------+
| COUNT(*) |
+----------+
| 1480 |
+----------+
mysql> SELECT COUNT(*) from reviews
 -> WHERE MATCH(reviews_text) AGAINST('excellent product for
home');
+----------+
| COUNT(*) |
+----------+
| 1486 |
+----------+

To perform a search for which each word in the search string must be
present, see Recipe 7.17.
To use full-text searches that look through multiple columns
simultaneously, name all the columns when you construct the FULLTEXT

index:

ALTER TABLE tbl_name ADD FULLTEXT (col1, col2, col3);

To issue a search query that uses the index, name those same columns in the
MATCH() list:

SELECT...FROM tbl_name
WHERE MATCH(col1, col2, col3) AGAINST('search string');

You need one such FULLTEXT index for each distinct combination of
columns that you want to search.

See Also
For further information on FULLTEXT indexing, see Recipe 21.9.

7.16 Using a Full-Text Search with Short
Words

Problem
Your full-text searches for short words return no rows.

Solution
Change the indexing engine’s minimum-word-length parameter.

Discussion
In a text like the reviews, certain words have special significance, such as
ok and up. You might want to check full-text index server variables first to
make sure minimum length is satisfied by the engine:

mysql> SHOW GLOBAL VARIABLES LIKE 'innodb_ft_%';
+---------------------------------+------------+

| Variable_name | Value |
+---------------------------------+------------+
innodb_ft_aux_table	
innodb_ft_cache_size	8000000
innodb_ft_enable_diag_print	OFF
innodb_ft_enable_stopword	ON
innodb_ft_max_token_size	84
innodb_ft_min_token_size	3
innodb_ft_num_word_optimize	2000
innodb_ft_result_cache_limit	2000000000
innodb_ft_server_stopword_table	
innodb_ft_sort_pll_degree	2
innodb_ft_total_cache_size	640000000
innodb_ft_user_stopword_table	
+---------------------------------+------------+	
mysql> SELECT count(*) FROM reviews WHERE MATCH(reviews_virtual)	
AGAINST('ok');	
+----------+	
count(*)	
+----------+	
0	
+----------+	
SELECT count(*) FROM reviews WHERE MATCH(reviews_virtual)	
AGAINST('up');	
+----------+	
count(*)	
+----------+	
0	
+----------+

One property of the indexing engine is that it ignores words that are “too
common” (that is, words that occur in more than half the rows). This
eliminates words such as the or and from the index, but that’s not what is
going on here. You can verify that by counting the total number of rows and
by using SQL pattern matches to count the number of rows containing each
word (see Recipe 10.1 regarding the use of COUNT() to produce multiple
counts from the same set of values):

mysql> SELECT COUNT(*) AS Total_Reviews,
 -> COUNT(IF(reviews_virtual LIKE '%good%',1,NULL)) AS
Good_Reviews,
 -> COUNT(IF(reviews_virtual LIKE '%great%',1,NULL)) AS
Great_Reviews,
 -> COUNT(IF(reviews_virtual LIKE '%excellent%',1,NULL)) AS
Excellent_Reviews
 -> FROM reviews;

+---------------+--------------+---------------+-----------------
--+
| Total_Reviews | Good_Reviews | Great_Reviews |
Excellent_Reviews |
+---------------+--------------+---------------+-----------------
--+
| 2277 | 855 | 1095 |
11 |
+---------------+--------------+---------------+-----------------
--+

The InnoDB full-text indexing engine doesn’t include words fewer than
three characters long. The minimum word length is a configurable
parameter; to change it, set the ft_min_word_len for MyISAM
innodb_ft_min_token_size for the InnoDB storage engine system
variable. For example, to tell the indexing engine to include words as short
as two characters, add a line to the [mysqld] group of the /etc/my.cnf file
(or whatever option file you use for server settings):

[mysqld]
ft_min_word_len=2 ##MyISAM
innodb_ft_min_token_size=2 ##InnoDB

After making this change, restart the server. Next, rebuild the FULLTEXT
index to take advantage of the changes. From the command line, set the
innodb_optimize_fulltext_only parameter and run the
OPTIMIZE operation:

mysql> SET GLOBAL innodb_optimize_fulltext_only=ON;

mysql> OPTIMIZE TABLE reviews;

For MyISAM, also run the REPAIR TABLE command:

mysql> REPAIR TABLE reviews QUICK;

You should also use REPAIR TABLE to rebuild the indexes for all other
MyISAM tables that have FULLTEXT indexes.

Finally, try the new index to verify that it includes shorter words:

mysql> SELECT count(*) from reviews WHERE MATCH(reviews_virtual)
AGAINST('ok');
+----------+
| count(*) |
+----------+
| 10 |
+----------+
mysql> SELECT count(*) from reviews WHERE MATCH(reviews_virtual)
AGAINST('up');
+----------+
| COUNT(*) |
+----------+
| 1449 |
+----------+

7.17 Requiring or Prohibiting Full-Text
Search Words

Problem
You want to require or prohibit specific words in a full-text search.

Solution
Use a Boolean-mode search.

Discussion
Normally, full-text searches return rows that contain any of the words in the
search string, even if some of them are missing. For example, the following
statement finds rows that contain either of the words good or great:

mysql> SELECT COUNT(*) FROM reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('good great');
+----------+
| COUNT(*) |
+----------+
| 1330 |
+----------+

This behavior is undesirable if you want only rows that contain both words.
One way to do this is to rewrite the statement to look for each word
separately and join the conditions with AND:

mysql> SELECT COUNT(*) FROM reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('good')
 -> AND MATCH(reviews_virtual) AGAINST('great');
+----------+
| COUNT(*) |
+----------+
| 620 |
+----------+

An easier way to require multiple words is with a Boolean-mode search. To
do this, precede each word in the search string with a + character and add
IN BOOLEAN MODE after the string:

mysql> SELECT COUNT(*) FROM reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('+good +great' IN
BOOLEAN MODE);
+----------+
| COUNT(*) |
+----------+
| 620 |
+----------+

Boolean-mode searches also permit you to exclude words by preceding
each one with a - character.

The following queries select reviews rows containing the name “good”
but not “great,” and vice versa:

mysql> SELECT COUNT(*) FROM reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('+good -great' IN
BOOLEAN MODE);
+----------+
| COUNT(*) |
+----------+
| 235 |
+----------+
mysql> SELECT COUNT(*) FROM reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('-good +great' IN
BOOLEAN MODE);
+----------+

| COUNT(*) |
+----------+
| 475 |
+----------+

Another useful special character in Boolean searches is *; when appended
to a search word, it acts as a wildcard operator. The following statement
finds rows containing not only use but also words such as user, useful,
and useless:

mysql> SELECT COUNT(*) FROM reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('use*' IN BOOLEAN
MODE);
+----------+
| COUNT(*) |
+----------+
| 1475 |
+----------+

For the complete list of Boolean full-text operators, see the MySQL
Reference Manual.

7.18 Performing Full-Text Phrase Searches

Problem
You want to perform a full-text search for a phrase, that is, for words that
occur adjacent to each other and in a specific order.

Solution
Use the full-text phrase-search capability.

Discussion
To find rows that contain a particular phrase, a simple full-text search
doesn’t work:

https://oreil.ly/nLE94

mysql> SELECT COUNT(*) FROM reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('great product');
+----------+
| COUNT(*) |
+----------+
| 1725 |
+----------+

The query returns a result but not the one you’re looking for. A full-text
search computes a relevance ranking based on the presence of each word
individually, no matter where it occurs within the reviews_virtual
column, and the ranking is nonzero as long as any of the words are present.
Consequently, that kind of statement tends to find too many rows.
Instead, use full-text Boolean mode, which supports phrase searching.
Enclose the phrase in double quotes within the search string:

mysql> SELECT COUNT(*) FROM reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('"great product"' IN
BOOLEAN MODE);
+----------+
| COUNT(*) |
+----------+
| 216 |
+----------+

A phrase match succeeds if a column contains the same words as in the
phrase, in the order specified.

Chapter 8. Working with Dates
and Times

8.0 Introduction
MySQL has several data types for representing dates and times, and many
functions for operating on them. MySQL stores dates and times in specific
formats, and it’s important to understand them to avoid surprises in results
from manipulating temporal data. This chapter covers the following aspects
of working with date and time values in MySQL:

Choosing a temporal data type
MySQL provides several temporal data types to choose from when you
create tables. Knowing their properties enables you to choose them
appropriately.

Displaying dates and times
MySQL displays temporal values using specific formats by default. You
can produce other formats by using the appropriate functions.

Changing the client time zone
The server interprets TIMESTAMP and DATETIME values in the
client’s current time zone, not its own. Clients in different time zones
should set their zone so that the server can properly interpret
TIMESTAMP values for them.

Determining the current date and time
MySQL provides functions that return the date and time. These are
useful for applications that must know these values or need to calculate
other temporal values in relation to them.

Tracking row modification times

The TIMESTAMP and DATETIME data types have special properties
that enable you to record row-creation and last-modification times
automatically.

Breaking dates and times into component values and creating dates and
times from component values

You can split date and time values when you need only a component,
such as the month part of a date or the hour part of a time. Conversely,
you can combine component values to synthesize dates and times.

Converting between dates or times and basic units
Some temporal calculations such as date arithmetic operations are more
easily performed using the number of days or seconds represented by a
date or time value than by using the value itself. MySQL can perform
conversions between date and time values and more basic units such as
days or seconds.

Date and time arithmetic
You can add or subtract temporal values to produce other temporal
values or calculate intervals between values. Applications include age
determination, relative date computation, and date shifting.

Selecting data based on temporal constraints
The calculations discussed in the preceding sections to produce output
values can also be used in WHERE clauses to specify how to select rows
using temporal conditions.

This chapter covers several MySQL functions for operating on date and
time values, but there are many others. To familiarize yourself with the full
set, consult the MySQL Reference Manual. The variety of functions
available to you means that it’s often possible to perform a given temporal
calculation more than one way. We sometimes illustrate alternative methods
for achieving a given result, and many of the problems addressed in this
chapter can be solved in ways other than those shown here. We invite you

https://oreil.ly/F2eqz

to experiment to find other solutions. You may find a method that’s more
efficient or that you find more intuitive.
Scripts that implement recipes discussed in this chapter are located in the
dates directory of the recipes source distribution. Scripts that create
tables used here are located in the tables directory.

8.1 Choosing a Temporal Data Type

Problem
You need to store temporal data but aren’t sure which is the most
appropriate data type.

Solution
Choose the data type according to the characteristics of the information to
be stored and how you need to use it.

Discussion
To choose a temporal data type, consider questions such as these:

Do you need times only, dates only, or combined date and time values?
What range of values do you require?
Do you want automatic initialization of the column to the current date
and time?

MySQL provides DATE and TIME data types for representing date and time
values separately, and DATETIME and TIMESTAMP types for combined
date-and-time values. These values have the following characteristics:

DATE values have YYYY-MM-DD format, where YY, MM, and DD
represent the year, month, and day parts of the date. The supported range
for DATE values is 1000-01-01 to 9999-12-31.

TIME values have hh:mm:ss format, where hh, mm, and ss are the
hours, minutes, and seconds parts of the time. TIME values can often be
thought of as time-of-day values, but MySQL actually treats them as
elapsed time. Thus, they may be greater than 23:59:59 or even
negative. (The actual range of a TIME column is -838:59:59 to
838:59:59.)

DATETIME and TIMESTAMP are combined date-and-time values in
YYYY-MM-DD hh:mm:ss format.

The DATETIME and TIMESTAMP data types are similar in many
respects, but watch out for these differences:
— DATETIME has a supported range of 1000-01-01 00:00:00 to
9999-12-31 23:59:59, whereas TIMESTAMP values are valid
only from the year 1970 partially through 2038.
— TIMESTAMP and DATETIME have special auto-initialization and
auto-update properties (see Recipe 8.8), but for DATETIME, they are not
available before MySQL 5.6.5.
— When a client inserts a TIMESTAMP value, the server converts it
from the time zone associated with the client session to UTC and stores
the UTC value. When the client retrieves a TIMESTAMP value, the
server performs the reverse operation to convert the UTC value back to
the client session time zone. A client in a time zone different from the
server can configure its session so that this conversion is appropriate for
its own time zone (see Recipe 8.4).
Types that include a time part can have a fractional seconds part for
subsecond resolution (see Recipe 8.2).

Many of the examples in this chapter draw on the following tables, which
contain columns representing time, date, and date-and-time values. (The
time_val table has two columns for use in time interval calculation
examples.):

mysql> SELECT t1, t2 FROM time_val;
+----------+----------+

| t1 | t2 |
+----------+----------+
15:00:00	15:00:00
05:01:30	02:30:20
12:30:20	17:30:45
+----------+----------+	
mysql> SELECT d FROM date_val;	
+------------+	
d	
+------------+	
1864-02-28	
1900-01-15	
1999-12-31	
2000-06-04	
2017-03-16	
+------------+	
mysql> SELECT dt FROM datetime_val;	
+---------------------+	
dt	
+---------------------+	
1970-01-01 00:00:00	
1999-12-31 09:00:00	
2000-06-04 15:45:30	
2017-03-16 12:30:15	
+---------------------+

It is a good idea to create the time_val, date_val, and
datetime_val tables right now before reading further. (Use the
appropriate scripts in the tables directory of the recipes distribution.)

8.2 Using Fractional Seconds Support

Problem
Your application requires subsecond resolution of time values.

Solution
Specify fractional seconds.

Discussion

As of MySQL 5.6.4, fractional seconds are supported for temporal types
that include a time part: DATETIME, TIME, and TIMESTAMP. For
applications that require subsecond resolution of time values, this enables
you to specify fractional seconds with precision down to the microsecond
level.
The default is to have no fractional seconds part, so to include it for
temporal types that support this capability, specify it explicitly in the
column declaration: include (fsp) after the data type name in a column
definition. fsp can be from 0 to 6 to indicate the number of fractional
digits. 0 means “none” (resolution to seconds); 6 means resolution to
microseconds. For example, to create a TIME column with two fractional
digits (resolution to hundredths of a second), use this syntax:

mycol TIME(2)

A precision timing is crucial for specific events such as races. One of the
most popular and time-sensitive events worldwide are the Formula 1 races
as seen in Table 8-1. Time tracking for the fastest motorsport requires
detailed timekeeping and technology. In short, the necessary time to be
tracked is within ten thousandths of a second which is accomplished by
using multiple transponders.

Table 8-1. Formula 1 Rolex Turkish Grand Prix
2021–Race results

Driver Car Time
Valtteri Bottas MERCEDES 1:31:04.103

Max Verstappen RED BULL RACING HONDA 1:45:58.243

Sergio Perez RED BULL RACING HONDA 1:46:10.342

Temporal functions that return current time or date-and-time values also
support fractional seconds. The default without an argument is no fractional
part. Otherwise, the argument specifies the desired resolution. Permitted
values are 0 to 6, the same as when declaring temporal columns:

mysql> SELECT CURTIME(), CURTIME(2), CURTIME(6);
+-----------+-------------+-----------------+
| CURTIME() | CURTIME(2) | CURTIME(6) |
+-----------+-------------+-----------------+
| 18:07:03 | 18:07:03.24 | 18:07:03.244950 |
+-----------+-------------+-----------------+

To better demonstrate, we’ll use the Formula 1 race standings from one of
the latest races held in Turkey (Table 8-1):

CREATE TABLE `formula1` (
 id INT AUTO_INCREMENT PRIMARY KEY,
 position INT UNSIGNED,
 no INT UNSIGNED,
 driver VARCHAR(25),
 car VARCHAR(25),
 laps SMALLINT,
 time TIMESTAMP(3),
 points SMALLINT
);

INSERT INTO formula1 VALUES(0,1,77,"Valtteri
Bottas","MERCEDES",58,"2021-10-08
\ 1:31:04.103",26);
INSERT INTO formula1 VALUES(0,2,33,"Max Verstappen","RED BULL
RACING HONDA",58,
\"2021-10-08 1:45:58.243",18);
INSERT INTO formula1 VALUES(0,3,11,"Sergio Perez","RED BULL
RACING HONDA",58,
\"2021-10-08 1:46:10.342",15);

SELECT POSITION as pos,
 no,
 driver,
 car,
 laps,
 date_format(time,'%H:%i:%s:%f') as time,
 points as pts
 FROM formula1 ORDER BY time;
+------+------+-----------------+-----------------------+------+-
----------------+------+
| pos | no | driver | car | laps |
time | pts |
+------+------+-----------------+-----------------------+------+-
----------------+------+
| 1 | 77 | Valtteri Bottas | MERCEDES | 58 |
01:31:04:103000 | 26 |
| 2 | 33 | Max Verstappen | RED BULL RACING HONDA | 58 |

01:45:58:243000 | 18 |
| 3 | 11 | Sergio Perez | RED BULL RACING HONDA | 58 |
01:46:10:342000 | 15 |
+------+------+-----------------+-----------------------+------+-
----------------+------+

To get a proper listing of the time gaps between driver performance, we will
use a CTE. We’ll discuss CTEs (Common Table Expressions) further in
Recipe 10.18. Here is the solution:

SELECT MIN(time) from formula1 into @fastest;

WITH time_gap AS (
 SELECT
 position,
 car,
 driver,
 time,
 TIMESTAMPDIFF(SECOND, time , @fastest) AS seconds
 FROM formula1
),

DIFFERENCES AS (
 SELECT
 position as pos,
 driver,
 car,
 time,
 seconds,
 MOD(seconds, 60) AS seconds_part,
 MOD(seconds, 3600) AS minutes_part
 FROM time_gap
)

SELECT
 pos,
 driver,
 time,
 CONCAT(
 FLOOR(minutes_part / 60), ' min ',
 SUBSTRING_INDEX(SUBSTRING_INDEX(seconds_part,'-',2),'-',-1),'
secs'
) AS difference
FROM differences;
+------+-----------------+-------------------------+-------------
----+
| pos | driver | time | difference
|

+------+-----------------+-------------------------+-------------
----+
| 1 | Valtteri Bottas | 2021-10-08 01:31:04.103 | 0 min 0 secs
|
| 2 | Max Verstappen | 2021-10-08 01:45:58.243 | -15 min 54
secs |
| 3 | Sergio Perez | 2021-10-08 01:46:10.342 | -16 min 6
secs |
+------+-----------------+-------------------------+-------------
----+

8.3 Changing MySQL’s Date Format

Problem
You want to change the ISO format that MySQL uses for representing date
values.

Solution
You can’t. However, you can rewrite non-ISO input values into ISO format
when storing dates, and you can rewrite ISO values to other formats for
display with the DATE_FORMAT() function.

Discussion
The YYYY-MM-DD format that MySQL uses for DATE values follows the
ISO 8601 standard for representing dates. Because the year, month, and day
parts have a fixed length and appear left to right in date strings, this format
has the useful property that dates sort naturally into the proper temporal
order. Recipes 9.5 and 10.15 discuss ordering and grouping techniques for
date-based values.
ISO format, although common, is not used by all database systems, which
can cause problems if you move data between different systems. Moreover,
people commonly like to represent dates in other formats, such as
MM/DD/YY or DD-MM-YYYY. This too can be a source of trouble, due to

mismatches between human expectations of how dates should look and how
MySQL actually represents them.
A question frequently asked by newcomers to MySQL is “How do I tell
MySQL to store dates in a specific format, such as MM/DD/YYYY?” That’s
the wrong question. Instead, ask, “If I have a date in a specific format, how
can I store it in MySQL’s supported format, and vice versa?” MySQL
always stores dates in ISO format, a fact with implications both for data
entry (input) and for displaying query results (output):

For data-entry purposes, to store values that are not in ISO format, you
normally must rewrite them first. If you don’t want to rewrite them, you
can store them as strings (for example, in a CHAR column). But then you
can’t operate on them as dates.
Chapter 13 covers the topic of date rewriting for data entry, and
Chapter 14 discusses checking dates to verify that they’re valid. In some
cases, if your values are close to ISO format, rewriting may not be
necessary. For example, MySQL interprets the string values 87-1-7
and 1987-1-7 and the numbers 870107 and 19870107 as the date
1987-01-07 when storing them into a DATE column.

For display purposes, you can rewrite dates to non-ISO formats. The
DATE_FORMAT() function provides a lot of flexibility for changing
date values into other formats (see later in this section). You can also use
functions such as YEAR() to extract parts of dates for display (see
Recipe 8.9). For additional discussion, see Recipe 14.17.

One way to rewrite non-ISO values for date entry is to use the
STR_TO_DATE() function, which takes a string representing a temporal
value and a format string that specifies the “syntax” of the value. Within the
formatting string, use special sequences of the form %c, where c specifies
which part of the date to expect. For example, %Y, %M, and %d signify the
four-digit year, the month name, and the two-digit day of the month. To
insert the value May 13, 2007 into a DATE column, do this:

mysql> INSERT INTO t (d) VALUES(STR_TO_DATE('May 13, 2007','%M
%d, %Y'));

mysql> SELECT d FROM t;
+------------+
| d |
+------------+
| 2007-05-13 |
+------------+

For date display, MySQL uses ISO format (YYYY-MM-DD) unless you tell
it otherwise. To display dates or times in other formats, use the
DATE_FORMAT() or TIME_FORMAT() function to rewrite them. If you
require a more specialized format those functions cannot provide, write a
stored function.
The DATE_FORMAT() function takes two arguments: a DATE,
DATETIME, or TIMESTAMP value and a string describing how to display
the value. The format string uses the same kind of specifiers as
STR_TO_DATE(). The following statement shows the values in the
date_val table, both as MySQL displays them by default and as
reformatted with DATE_FORMAT():

mysql> SELECT d, DATE_FORMAT(d,'%M %d, %Y') FROM date_val;
+------------+----------------------------+
| d | DATE_FORMAT(d,'%M %d, %Y') |
+------------+----------------------------+
1864-02-28	February 28, 1864
1900-01-15	January 15, 1900
1999-12-31	December 31, 1999
2000-06-04	June 04, 2000
2017-03-16	March 16, 2017
+------------+----------------------------+

Because DATE_FORMAT() produces long column headings, it’s often
useful to provide an alias (see Recipe 5.2) to make a heading more concise
or meaningful:

mysql> SELECT d, DATE_FORMAT(d,'%M %d, %Y') AS date FROM
date_val;
+------------+-------------------+
| d | date |
+------------+-------------------+
| 1864-02-28 | February 28, 1864 |
| 1900-01-15 | January 15, 1900 |

1999-12-31	December 31, 1999
2000-06-04	June 04, 2000
2017-03-16	March 16, 2017
+------------+-------------------+

The MySQL Reference Manual provides a complete list of format
sequences to use with DATE_FORMAT(), TIME_FORMAT(), and
STR_TO_DATE(). Table 8-2 shows some of them.

Table 8-2. Format sequences to use
with date and time formatting

functions

Sequence Meaning
%Y Four-digit year

%y Two-digit year

%M Complete month name

%b Month name, initial three letters

%m Two-digit month of year (01..12)

%c Month of year (1..12)

%d Two-digit day of month
 (01..31)

%e Day of month (1..31)

%W Weekday name (Sunday..Saturday)

%r 12-hour time with AM or PM suffix

%T 24-hour time

%H Two-digit hour

%i Two-digit minute

%s Two-digit second

%f Six-digit microsecond

%% Literal %

The time-related format sequences shown in the table are useful only when
you pass DATE_FORMAT(), a value that has both date and time parts (a
DATETIME or TIMESTAMP). The following statement displays

https://oreil.ly/2Rwmk

DATETIME values from the datetime_val table using formats that
include the time of day:

mysql> SELECT dt,
 -> DATE_FORMAT(dt,'%c/%e/%y %r') AS format1,
 -> DATE_FORMAT(dt,'%M %e, %Y %T') AS format2
 -> FROM datetime_val;
+---------------------+----------------------+-------------------
---------+
| dt | format1 | format2
|
+---------------------+----------------------+-------------------
---------+
| 1970-01-01 00:00:00 | 1/1/70 12:00:00 AM | January 1, 1970
00:00:00 |
| 1999-12-31 09:00:00 | 12/31/99 09:00:00 AM | December 31, 1999
09:00:00 |
| 2000-06-04 15:45:30 | 6/4/00 03:45:30 PM | June 4, 2000
15:45:30 |
| 2017-03-16 12:30:15 | 3/16/17 12:30:15 PM | March 16, 2017
12:30:15 |
+---------------------+----------------------+-------------------
---------+

TIME_FORMAT() is similar to DATE_FORMAT(). It works with TIME,
DATETIME, or TIMESTAMP values but understands only time-related
specifiers in the format string:

mysql> SELECT dt,
 -> TIME_FORMAT(dt, '%r') AS '12-hour time',
 -> TIME_FORMAT(dt, '%T') AS '24-hour time'
 -> FROM datetime_val;
+---------------------+--------------+--------------+
| dt | 12-hour time | 24-hour time |
+---------------------+--------------+--------------+
1970-01-01 00:00:00	12:00:00 AM	00:00:00
1999-12-31 09:00:00	09:00:00 AM	09:00:00
2000-06-04 15:45:30	03:45:30 PM	15:45:30
2017-03-16 12:30:15	12:30:15 PM	12:30:15
+---------------------+--------------+--------------+

If DATE_FORMAT() or TIME_FORMAT() cannot produce the results that
you want, write a stored function that does. Suppose that you want to
convert 24-hour TIME values to 12-hour format but with a suffix of a.m.

or p.m. rather than AM or PM. The following function accomplishes that
task. It uses TIME_FORMAT() to do most of the work, then strips the
suffix supplied by %r and replaces it with the desired suffix:

CREATE FUNCTION time_ampm (t TIME)
RETURNS VARCHAR(13) # mm:dd:ss {a.m.|p.m.} format
DETERMINISTIC
RETURN CONCAT(LEFT(TIME_FORMAT(t, '%r'), 9),
 IF(TIME_TO_SEC(t) < 12*60*60, 'a.m.', 'p.m.'));

Use the function like this:

mysql> SELECT t1, time_ampm(t1) FROM time_val;
+----------+---------------+
| t1 | time_ampm(t1) |
+----------+---------------+
15:00:00	03:00:00 p.m.
05:01:30	05:01:30 a.m.
12:30:20	12:30:20 p.m.
+----------+---------------+

For more information about writing stored functions, see Chapter 11.

8.4 Setting the Client Time Zone

Problem
You have a client application that connects from a time zone different from
the server. Consequently, when it stores TIMESTAMP values, they don’t
have the correct Coordinated Universal Time (UTC) values.

Solution
The client should set the time_zone system variable after connecting to
the server.

Discussion

Time zone settings have an important effect on TIMESTAMP values:

When the MySQL server starts, it examines its operating environment to
determine its time zone. (To use a different value, start the server with
the --default-time-zone option.)

For each client that connects, the server interprets TIMESTAMP values
with respect to the time zone associated with the client session. When a
client inserts a TIMESTAMP value, the server converts it from the client
time zone to UTC and stores the UTC value. (Internally, the server stores
a TIMESTAMP value as the number of seconds since 1970-01-01
00:00:00 UTC.) When the client retrieves a TIMESTAMP value, the
server performs the reverse operation to convert the UTC value back to
the client time zone.
The default session time zone for each client when it connects is the
server time zone. If all clients are in the same time zone as the server,
nothing special needs be done for proper TIMESTAMP time zone
conversion to occur. But if a client is in a time zone different from the
server and it inserts TIMESTAMP values without making the proper time
zone correction, the UTC values won’t be correct.

Suppose that the server and client C1 are in the same time zone, and client
C1 issues these statements:

mysql> CREATE TABLE t (ts TIMESTAMP);
mysql> INSERT INTO t (ts) VALUES('2021-06-21 12:30:00');
mysql> SELECT ts FROM t;
+---------------------+
| ts |
+---------------------+
| 2021-06-21 12:30:00 |
+---------------------+

Here, client C1 sees the same value that it stored. A different client, C2, will
also see the same value if it retrieves it, but if client C2 is in a different time
zone, that value isn’t correct for its zone. Conversely, if client C2 stores a
value, that value when returned by client C1 won’t be correct for the client
C1 time zone.

To deal with this problem so that TIMESTAMP conversions use the proper
time zone, a client should set its time zone explicitly by setting the session
value of the time_zone system variable. Suppose that the server has a
global time zone of six hours ahead of UTC. Each client initially is assigned
that same value as its session time zone:

mysql> SELECT @@global.time_zone, @@session.time_zone;
+--------------------+---------------------+
| @@global.time_zone | @@session.time_zone |
+--------------------+---------------------+
| SYSTEM | SYSTEM |
+--------------------+---------------------+

When client C2 connects, it sees the same TIMESTAMP value as client C1:

mysql> SELECT ts FROM t;
+---------------------+
| ts |
+---------------------+
| 2021-06-21 12:30:00 |
+---------------------+

But that value is incorrect if client C2 is only four hours ahead of UTC. C2
should set its time zone after connecting so that retrieved TIMESTAMP
values are properly adjusted for its own session:

mysql> SET SESSION time_zone = '+04:00';
mysql> SELECT @@global.time_zone, @@session.time_zone;
+--------------------+---------------------+
| @@global.time_zone | @@session.time_zone |
+--------------------+---------------------+
| SYSTEM | +04:00 |
+--------------------+---------------------+
mysql> SELECT ts FROM t;
+---------------------+
| ts |
+---------------------+
| 2021-06-21 16:30:00 |
+---------------------+

To see the System Timezone, check global variables:

mysql> SHOW GLOBAL VARIABLES LIKE "system_time_zone";
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| system_time_zone | UTC |
+------------------+-------+

The client time zone also affects the values displayed from functions that
return the current date and time (see Recipe 8.7).

See Also
To convert individual date-and-time values from one time zone to another,
use the CONVERT_TZ() function (see Recipe 8.6).

8.5 Setting the Server Time Zone

Problem
You have a localized application to serve customers, but you want to have a
global time zone setting.

Solution
The server should set the time_zone system variable to SYSTEM at the
server. This setting should point to UTC value. Accordingly, the
system_time_zone value should be set to UTC.

Discussion
The MySQL server maintains several time zone settings:

The server system time zone. When MySQL starts, it attempts to
determine the system_time_zone variable. To explicitly set the
system time zone for MySQL, set the TZ environment variable before
starting mysqld. Alternatively, start the mysqld_safe with its --

timezone option. The values for these variables are permissible by
your operating system settings.
The server current time zone is set by the global time_zone value. It’s
generally set to SYSTEM on modern Linux operating systems:

mysql> SHOW GLOBAL VARIABLES LIKE "time_zone";
+---------------+--------+
| Variable_name | Value |
+---------------+--------+
| time_zone | SYSTEM |
+---------------+--------+

You may choose to set the global time zone variable using SET
GLOBAL. This will not change the @@session.time_zone value:

mysql> SET GLOBAL time_zone = "+03:00";
mysql> SELECT @@global.time_zone, @@session.time_zone;
+--------------------+---------------------+
| @@global.time_zone | @@session.time_zone |
+--------------------+---------------------+
| +03:00 | SYSTEM |
+--------------------+---------------------+

The string indicating the time_zone value offset from UTC. Prior to
MySQL 8.0.19, this value had to be in the range -12:59 to +13:00,
inclusive; beginning with MySQL 8.0.19, the permitted range is -13:59
to +14:00, inclusive. Populated time zones are not permitted unless they
are preloaded to MySQL tables; hence, you can’t use names like UTC:

mysql> SET GLOBAL time_zone = "US/Eastern" ;
ERROR 1298 (HY000): Unknown or incorrect time zone:
'US/Eastern'

For instructions on populating the time zone tables, see the MySQL
Reference Manual.
The system_time_zone variable is set when the server inherits a
time zone setting from the machine defaults. Unlike the time_zone
variable, this is not dynamic to set after the server starts. As of MySQL

https://oreil.ly/h7SlG

8.0.26, if the server host time zone changes, such as during daylight
saving time, system_time_zone will reflect the change. If a change
happens during the execution of a query, the previous value will be
cached:

mysql> SHOW GLOBAL VARIABLES LIKE "system_time_zone";
+---------------+------------+
| Variable_name | Value |
+---------------+------------+
| time_zone | US/Eastern |
+---------------+------------+

8.6 Shifting Temporal Values Between Time
Zones

Problem
You have a date-and-time value but need to know what it would be in a
different time zone. For example, you’re having a teleconference with
people in different parts of the world, and they need to know the meeting
time in their local time zones.

Solution
Use the CONVERT_TZ() function.

Discussion
The CONVERT_TZ() function converts temporal values between time
zones. It takes three arguments: a date-and-time value and two time zone
indicators. The function interprets the date-and-time value as a value in the
first time zone and returns the value shifted into the second time zone.
Suppose that we live in Chicago, Illinois, in the United States and that we
have a meeting with people in several other parts of the world. Table 8-3
shows the location of each meeting participant and the time zone name for
each:

Table 8-3. Meeting participants

Location Time zone name
Chicago, Illinois,
 US

US/Central

Istanbul, Turkey Europe/Istanbul

London, United
 Kingdom

Europe/London

Edmonton, Alberta,
 Canada

America/Edmonton

Brisbane, Australia Australia/Brisbane

If the meeting is to take place at 8 a.m. local time for us on November 28,
2021, what time will that be for the other participants? The following
statement uses CONVERT_TZ() to calculate the local times for each time
zone:

mysql> SET @dt = '2021-11-28 08:00:00';
mysql> SELECT @dt AS Chicago,
 -> CONVERT_TZ(@dt,'US/Central','Europe/Istanbul') AS
Istanbul,
 -> CONVERT_TZ(@dt,'US/Central','Europe/London') AS London,
 -> CONVERT_TZ(@dt,'US/Central','America/Edmonton') AS
Edmonton,
 -> CONVERT_TZ(@dt,'US/Central','Australia/Brisbane') AS
Brisbane\G
*************************** 1. row ***************************
 Chicago: 2021-11-28 08:00:00
Istanbul: 2021-11-28 17:00:00
 London: 2021-11-28 14:00:00
Edmonton: 2021-11-28 07:00:00
Brisbane: 2021-11-29 00:00:00

Let’s hope the Brisbane participant doesn’t mind being up after midnight.
The preceding example uses time zone names, so it requires that you have
the time zone tables in the mysql database initialized with support for
named time zones. (See the MySQL Reference Manual for information
about setting up the time zone tables.) If you can’t use named time zones,
specify them in terms of their numeric relationship to UTC. (This can be a

https://oreil.ly/bKUMk

little trickier; you might need to account for daylight saving time.) The
corresponding statement with numeric time zones looks like this:

mysql> SELECT @dt AS Chicago,
 -> CONVERT_TZ(@dt,'-06:00','+03:00') AS Istanbul,
 -> CONVERT_TZ(@dt,'-06:00','+00:00') AS London,
 -> CONVERT_TZ(@dt,'-06:00','-07:00') AS Edmonton,
 -> CONVERT_TZ(@dt,'-06:00','+10:00') AS Brisbane\G
*************************** 1. row ***************************
 Chicago: 2021-11-28 08:00:00
Istanbul: 2021-11-28 17:00:00
 London: 2021-11-28 14:00:00
Edmonton: 2021-11-28 07:00:00
Brisbane: 2021-11-29 00:00:00

8.7 Determining the Current Date or Time

Problem
You want to know what today’s date is and/or what time it is.

Solution
Use the CURDATE(), CURTIME(), or NOW() functions to obtain values
expressed in the client session time zone. Use UTC_DATE(),
UTC_TIME(), or UTC_TIMESTAMP() for values in UTC time.

Discussion
Some applications must know the current date or time, such as those that
write timestamped log records. This kind of information is also useful for
date calculations performed in relation to the current date, such as finding
the first (or last) day of the month or determining the date for Wednesday of
next week.
The CURDATE() and CURTIME() functions return the current date and
time separately, and NOW() returns both as a combined date-and-time
value:

mysql> SELECT CURDATE(), CURTIME(), NOW();
+------------+-----------+---------------------+
| CURDATE() | CURTIME() | NOW() |
+------------+-----------+---------------------+
| 2021-11-28 | 08:42:57 | 2021-11-28 08:42:57 |
+------------+-----------+---------------------+

CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP are
synonyms for CURDATE(), CURTIME(), and NOW(), respectively.

The preceding functions return values in the client session time zone (see
Recipe 8.4). For values in UTC time, use the UTC_DATE(),
UTC_TIME(), or UTC_TIMESTAMP() functions instead.

To determine the current date and time for an arbitrary time zone, pass the
value of the appropriate UTC function to CONVERT_TZ() (see Recipe
8.6).
To obtain subparts of these values, such as the current day of the month or
current hour of the day, use the decomposition techniques discussed in
Recipe 8.9.

8.8 Using TIMESTAMP or DATETIME to Track
Row-Modification Times

Problem
You want to record row-creation time or last-modification time
automatically.

Solution
Use the auto-initialization and auto-update properties of the TIMESTAMP
and DATETIME data types.

Discussion

MySQL supports TIMESTAMP and DATETIME data types that store date-
and-time values. Recipe 8.1 covers the range of values for these types. This
recipe focuses on special column attributes that enable you to track row-
creation and row-update times automatically:

A TIMESTAMP or DATETIME column declared with the DEFAULT
CURRENT_TIMESTAMP attribute initializes automatically for new
rows. Simply omit the column from INSERT statements and MySQL
sets it to the row-creation time.
A TIMESTAMP or DATETIME column declared with the ON UPDATE
CURRENT_TIMESTAMP attribute automatically updates to the current
date and time when you change any other column in the row from its
current value.

These special properties make the TIMESTAMP and DATETIME data types
particularly suited for applications that require recording the times at which
rows are inserted or updated. The following discussion shows how to take
advantage of these properties using TIMESTAMP columns. With some
differences to be noted later, the discussion also applies to DATETIME
columns.

NOTE
The default SQL_MODE does not allow NULL values unless relaxed. Also, NO_ZERO_DATE was
deprecated as of MySQL 8.0 and should be used in conjunction with STRICT MODE.

Our example table looks like this:

DROP TABLE IF EXISTS tsdemo;
CREATE TABLE `tsdemo` (
`val` INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
`ts_both` TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP,
`ts_create` TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
`ts_update` TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP
) ENGINE=InnoDB ;

The TIMESTAMP columns have these properties:

ts_both auto-initializes and auto-updates. This is useful for tracking
the time of any change to a row, for both inserts and updates.
ts_create auto-initializes only. This is useful when you want a
column to be set to the time at which a row is created but remain
constant thereafter.
ts_update auto-updates only. It is set to the column default (or value
you specify explicitly) at row-creation time, and it auto-updates for
changes to the row thereafter. The use cases for this are more limited—
for example, to track row-creation and last-modification times separately
(using ts_update in conjunction with ts_create) rather than
together in a single column like ts_both.

To see how the table works, insert some rows into the table (a few seconds
apart so the timestamps differ), then select its contents:

mysql> INSERT INTO tsdemo (val,ts_both,ts_create,ts_update)
 -> VALUES(0,NULL,NULL,NULL);
mysql> INSERT INTO tsdemo (val) VALUES(5);
mysql> INSERT INTO tsdemo (val,ts_both,ts_create,ts_update)
 -> VALUES(10,NULL,NULL,NULL);
mysql> SELECT val, ts_both, ts_create, ts_update FROM tsdemo;
+-----+---------------------+---------------------+--------------
-------+
| val | ts_both | ts_create | ts_update
|
+-----+---------------------+---------------------+--------------
-------+
| 1 | 2022-03-06 14:34:17 | 2022-03-06 14:34:17 | 2022-03-06
14:34:17 |
| 5 | 2022-03-06 14:35:16 | 2022-03-06 14:35:16 | 2022-03-06
14:35:16 |
| 10 | 2022-03-06 14:35:34 | 2022-03-06 14:35:34 | 2022-03-06
14:35:34 |
+-----+---------------------+---------------------+--------------
-------+

The first two INSERT statements show that you can set the auto-initialize
columns to the current date and time by omitting them from the INSERT
statement entirely. The third insert shows that you can set a TIMESTAMP

column to the current date and time by setting it explicitly to NULL, even
one that does not auto-initialize. This NULL-assignment behavior is not
specific to INSERT statements; it works for UPDATE as well. You can
disable this special handling of NULL assignments, as we’ll cover later in
this recipe.
To see auto-updating in action, issue a statement that changes one row’s
val column and check its effect on the table’s contents. The result shows
that the auto-update columns are updated (in the modified row only):

mysql> UPDATE tsdemo SET val = 11 WHERE val = 10;
mysql> SELECT val, ts_both, ts_create, ts_update FROM tsdemo;
+-----+---------------------+---------------------+--------------
-------+
| val | ts_both | ts_create | ts_update
|
+-----+---------------------+---------------------+--------------
-------+
| 1 | 2022-03-06 14:34:17 | 2022-03-06 14:34:17 | 2022-03-06
14:34:17 |
| 5 | 2022-03-06 14:35:16 | 2022-03-06 14:35:16 | 2022-03-06
14:35:16 |
| 11 | 2022-03-06 14:38:04 | 2022-03-06 14:35:34 | 2022-03-06
14:38:04 |
+-----+---------------------+---------------------+--------------
-------+

If you modify multiple rows, updates occur for the auto-update columns in
each row:

mysql> UPDATE tsdemo SET val = val + 1;
mysql> SELECT val, ts_both, ts_create, ts_update FROM tsdemo;
+-----+---------------------+---------------------+--------------
-------+
| val | ts_both | ts_create | ts_update
|
+-----+---------------------+---------------------+--------------
-------+
| 2 | 2022-03-06 14:38:45 | 2022-03-06 14:34:17 | 2022-03-06
14:38:45 |
| 6 | 2022-03-06 14:38:45 | 2022-03-06 14:35:16 | 2022-03-06
14:38:45 |
| 12 | 2022-03-06 14:38:45 | 2022-03-06 14:35:34 | 2022-03-06
14:38:45 |

+-----+---------------------+---------------------+--------------
-------+

An UPDATE statement that doesn’t actually change any value in a row
doesn’t modify auto-update columns. To see this, set every row’s val
column to its current value, then review the table contents to see that auto-
update columns retain their values:

mysql> UPDATE tsdemo SET val = val;
mysql> SELECT val, ts_both, ts_create, ts_update FROM tsdemo;
+-----+---------------------+---------------------+--------------
-------+
| val | ts_both | ts_create | ts_update
|
+-----+---------------------+---------------------+--------------
-------+
| 2 | 2022-03-06 14:38:45 | 2022-03-06 14:34:17 | 2022-03-06
14:38:45 |
| 6 | 2022-03-06 14:38:45 | 2022-03-06 14:35:16 | 2022-03-06
14:38:45 |
| 12 | 2022-03-06 14:38:45 | 2022-03-06 14:35:34 | 2022-03-06
14:38:45 |
+-----+---------------------+---------------------+--------------
-------+

As stated previously, automatic TIMESTAMP properties also apply to
DATETIME, with some differences:

For the first TIMESTAMP column in a table, if neither of the DEFAULT
or ON UPDATE attributes are specified, the column is implicitly defined
with both. For DATETIME, automatic properties never apply implicitly,
only those specified explicitly.
It is not possible to set NULL to TIMESTAMP anymore. To assign the
current timestamp, set the column to CURRENT_TIMESTAMP or a
synonym such as NOW().

To determine for any given TIMESTAMP column what happens when
NULL is assigned to it, use SHOW CREATE TABLE to see the column
definition. If the definition includes the NULL attribute, assigning NULL
stores NULL. If the definition includes the NOT NULL attribute, you can

specify NULL as the value to be assigned, but you cannot store NULL
because MySQL stores the current date and time instead.

See Also
To simulate TIMESTAMP auto-initialization and auto-update properties for
other temporal types, you can use triggers (see Chapter 11).

8.9 Extracting Parts of Dates or Times

Problem
You want to obtain just a part of a date or a time.

Solution
Invoke a function specifically intended for extracting part of a temporal
value, such as MONTH() or MINUTE(). This is usually the fastest method
for component extraction if you need only a single component of a value.
Alternatively, use a formatting function such as DATE_FORMAT() or
TIME_FORMAT() with a format string that includes a specifier for the part
of the value you want to obtain.

Discussion
The following discussion shows different ways to extract parts of temporal
values.

Decomposing dates or times using component-extraction
functions
MySQL includes many functions for extracting date and time subparts. For
example, DATE() and TIME() extract the date and time components of
temporal values:

mysql> SELECT dt, DATE(dt), TIME(dt) FROM datetime_val;
+---------------------+------------+----------+
| dt | DATE(dt) | TIME(dt) |
+---------------------+------------+----------+
1970-01-01 00:00:00	1970-01-01	00:00:00
1999-12-31 09:00:00	1999-12-31	09:00:00
2000-06-04 15:45:30	2000-06-04	15:45:30
2017-03-16 12:30:15	2017-03-16	12:30:15
+---------------------+------------+----------+

Table 8-4 shows several component-extraction functions; consult the
MySQL Reference Manual for a complete list. The date-related functions
work with DATE, DATETIME, or TIMESTAMP values. The time-related
functions work with TIME, DATETIME, or TIMESTAMP values.

Table 8-4. Component-extraction functions

Function Return value
YEAR() Year of date

MONTH() Month number
 (1..12)

MONTHNAME() Month name (January..December)

DAYOFMONTH() Day of month (1..31)

DAYNAME() Day name (Sunday..Saturday)

DAYOFWEEK() Day of week (1..7 for Sunday..Saturday)

WEEKDAY() Day of week (0..6 for Monday..Sunday)

DAYOFYEAR() Day of year (1..366)

HOUR() Hour of time (0..23)

MINUTE() Minute of time
 (0..59)

SECOND() Second of time (0..59)

MICROSECOND() Microsecond of time (0..59)

EXTRACT() Varies

Here’s an example:

mysql> SELECT dt, YEAR(dt), DAYOFMONTH(dt), HOUR(dt), SECOND(dt)
 -> FROM datetime_val;

https://oreil.ly/4W8oF

+---------------------+----------+----------------+----------+---
---------+
| dt | YEAR(dt) | DAYOFMONTH(dt) | HOUR(dt) |
SECOND(dt) |
+---------------------+----------+----------------+----------+---
---------+
| 1970-01-01 00:00:00 | 1970 | 1 | 0 |
0 |
| 1999-12-31 09:00:00 | 1999 | 31 | 9 |
0 |
| 2000-06-04 15:45:30 | 2000 | 4 | 15 |
30 |
| 2017-03-16 12:30:15 | 2017 | 16 | 12 |
15 |
+---------------------+----------+----------------+----------+---
---------+

mysql> set @date_time="2021-11-24 22:11:12.000201";
 -> SELECT HOUR(@date_time) as Hour, MINUTE(@date_time)
 -> as Minute,SECOND(@date_time) as Second,
MICROSECOND(@date_time) as MicroSecond;
+------+--------+--------+-------------+
| Hour | Minute | Second | MicroSecond |
+------+--------+--------+-------------+
| 22 | 11 | 12 | 201 |
+------+--------+--------+-------------+

Functions such as YEAR() or DAYOFMONTH() extract values that have an
obvious correspondence to a substring of the temporal value to which you
apply them. Other component-extraction functions provide access to values
that have no such correspondence. One is the day-of-year value:

mysql> SELECT d, DAYOFYEAR(d) FROM date_val;
+------------+--------------+
| d | DAYOFYEAR(d) |
+------------+--------------+
1864-02-28	59
1900-01-15	15
1999-12-31	365
2000-06-04	156
2017-03-16	75
+------------+--------------+

Another is the day of the week, which is available by name or number:

DAYNAME() returns the complete day name. There is a
DATE_FORMAT(d, '%a') function for returning the three-character
name abbreviation that you can get easily by passing the full name to
DATE_FORMAT():

mysql> SELECT d, DAYNAME(d), DATE_FORMAT(d, '%a') FROM
date_val;
+------------+------------+----------------------+
| d | DAYNAME(d) | DATE_FORMAT(d, '%a') |
+------------+------------+----------------------+
1864-02-28	Sunday	Sun
1900-01-15	Monday	Mon
1999-12-31	Friday	Fri
2000-06-04	Sunday	Sun
2017-03-16	Thursday	Thu
+------------+------------+----------------------+

To get the day of the week as a number, use DAYOFWEEK() or
WEEKDAY(), but pay attention to the range of values each function
returns. DAYOFWEEK() returns values from 1 to 7, corresponding to
Sunday through Saturday. WEEKDAY() returns values from 0 to 6,
corresponding to Monday through Sunday:

mysql> SELECT d, DAYNAME(d), DAYOFWEEK(d), WEEKDAY(d) FROM
date_val;
+------------+------------+--------------+------------+
| d | DAYNAME(d) | DAYOFWEEK(d) | WEEKDAY(d) |
+------------+------------+--------------+------------+
1864-02-28	Sunday	1	6
1900-01-15	Monday	2	0
1999-12-31	Friday	6	4
2000-06-04	Sunday	1	6
2017-03-16	Thursday	5	3
+------------+------------+--------------+------------+

EXTRACT() is another function for obtaining individual parts of temporal
values:

mysql> SELECT dt, EXTRACT(DAY FROM dt), EXTRACT(HOUR FROM dt)
 -> FROM datetime_val;
+---------------------+----------------------+-------------------
----+

| dt | EXTRACT(DAY FROM dt) | EXTRACT(HOUR FROM
dt) |
+---------------------+----------------------+-------------------
----+
| 1970-01-01 00:00:00 | 1 |
0 |
| 1999-12-31 09:00:00 | 31 |
9 |
| 2000-06-04 15:45:30 | 4 |
15 |
| 2017-03-16 12:30:15 | 16 |
12 |
+---------------------+----------------------+-------------------
----+

The keyword indicating what to extract from the value should be a unit
specifier such as YEAR, MONTH, DAY, HOUR, MINUTE, or SECOND. Unit
specifiers are singular, not plural. (Check the MySQL Reference Manual for
the full list.)

https://oreil.ly/LTX6p

OBTAINING THE CURRENT YEAR, MONTH, DAY, HOUR, MINUTE, OR
SECOND

To obtain the current year, month, day, or day of week, apply the extraction functions shown in
this recipe to CURDATE() or NOW():

mysql> SELECT CURDATE(), YEAR(CURDATE()) AS year,
 -> MONTH(CURDATE()) AS month, MONTHNAME(CURDATE()) AS
monthname,
 -> DAYOFMONTH(CURDATE()) AS day, DAYNAME(CURDATE()) AS
dayname;
+------------+------+-------+-----------+------+-----------+
| CURDATE() | year | month | monthname | day | dayname |
+------------+------+-------+-----------+------+-----------+
| 2021-11-24 | 2021 | 11 | November | 24 | Wednesday |
+------------+------+-------+-----------+------+-----------+

Similarly, to obtain the current hour, minute, or second, pass CURTIME() or NOW() to a time-
component function:

mysql> SELECT NOW(), HOUR(NOW()) AS hour,
 -> MINUTE(NOW()) AS minute, SECOND(NOW()) AS second;
+---------------------+------+--------+--------+
| NOW() | hour | minute | second |
+---------------------+------+--------+--------+
| 2021-11-24 06:55:40 | 6 | 55 | 40 |
+---------------------+------+--------+--------+

Decomposing dates or times using formatting functions
The DATE_FORMAT() and TIME_FORMAT() functions reformat date
and time values. By specifying appropriate format strings, you can extract
individual parts of temporal values:

mysql> SELECT dt,
 -> DATE_FORMAT(dt,'%Y') AS year,
 -> DATE_FORMAT(dt,'%d') AS day,
 -> TIME_FORMAT(dt,'%H') AS hour,
 -> TIME_FORMAT(dt,'%s') AS second
 -> TIME_FORMAT(dt,'%f') AS microsecond
 -> FROM datetime_val;
+---------------------+------+------+------+--------+------------
-+

| dt | year | day | hour | second | microsecond
|
+---------------------+------+------+------+--------+------------
-+
| 1970-01-01 00:00:00 | 1970 | 01 | 00 | 00 | 000000
|
| 1999-12-31 09:00:00 | 1999 | 31 | 09 | 00 | 000000
|
| 2000-06-04 15:45:30 | 2000 | 04 | 15 | 30 | 000000
|
| 2017-03-16 12:30:15 | 2017 | 16 | 12 | 15 | 000000
|
+---------------------+------+------+------+--------+------------
-+

Formatting functions are advantageous when you want to extract more than
one part of a value or display extracted values in a format different from the
default.
For example, to extract the entire date or time from DATETIME values, do
this:

mysql> SELECT dt,
 -> DATE_FORMAT(dt,'%Y-%m-%d') AS 'date part',
 -> TIME_FORMAT(dt,'%T') AS 'time part'
 -> FROM datetime_val;

+---------------------+------------+-----------+
| dt | date part | time part |
+---------------------+------------+-----------+
1970-01-01 00:00:00	1970-01-01	00:00:00
1999-12-31 09:00:00	1999-12-31	09:00:00
2000-06-04 15:45:30	2000-06-04	15:45:30
2017-03-16 12:30:15	2017-03-16	12:30:15
+---------------------+------------+-----------+

To present a date in other than YYYY-MM-DD format or a time without the
seconds part, do this:

mysql> SELECT dt,
 -> DATE_FORMAT(dt,'%M %e, %Y') AS 'descriptive date',
 -> TIME_FORMAT(dt,'%H:%i') AS 'hours/minutes'
 -> FROM datetime_val;
+---------------------+-------------------+---------------+
| dt | descriptive date | hours/minutes |
+---------------------+-------------------+---------------+

1970-01-01 00:00:00	January 1, 1970	00:00
1999-12-31 09:00:00	December 31, 1999	09:00
2000-06-04 15:45:30	June 4, 2000	15:45
2017-03-16 12:30:15	March 16, 2017	12:30
+---------------------+-------------------+---------------+

8.10 Synthesizing Dates or Times from
Component Values

Problem
You want to combine the parts of a date or time to produce a complete date
or time value. Or you want to replace parts of a date to produce another
date.

Solution
You have several options:

Use MAKETIME() to construct a TIME value from hour, minute, and
second parts.
Use DATE_FORMAT() or TIME_FORMAT() to combine parts of the
existing value with parts you want to replace.
Pull out the parts that you need with component-extraction functions and
recombine the parts with CONCAT().

Discussion
The reverse of splitting a date or time value into components is synthesizing
a temporal value from its constituent parts. Techniques for date and time
synthesis include using composition functions, formatting functions, and
string concatenation.
The MAKETIME() function takes component hour, minute, and second
values as arguments and combines them to produce a time:

mysql> SELECT MAKETIME(10,30,58), MAKETIME(-5,0,11);
+--------------------+-------------------+
| MAKETIME(10,30,58) | MAKETIME(-5,0,11) |
+--------------------+-------------------+
| 10:30:58 | -05:00:11 |
+--------------------+-------------------+

Date synthesis is often performed beginning with a given date, then keeping
parts that you want to use and replacing the rest. For example, to produce
the first day of the month in which a date falls, use DATE_FORMAT() to
extract the year and month parts from the date, combining them with a day
part of 01:

mysql> SELECT d, DATE_FORMAT(d,'%Y-%m-01') FROM date_val;
+------------+---------------------------+
| d | DATE_FORMAT(d,'%Y-%m-01') |
+------------+---------------------------+
1864-02-28	1864-02-01
1900-01-15	1900-01-01
1999-12-31	1999-12-01
2000-06-04	2000-06-01
2017-03-16	2017-03-01
+------------+---------------------------+

TIME_FORMAT() can be used similarly. The following example produces
time values that have the seconds part set to 00:

mysql> SELECT t1, TIME_FORMAT(t1,'%H:%i:00') FROM time_val;
+----------+----------------------------+
| t1 | TIME_FORMAT(t1,'%H:%i:00') |
+----------+----------------------------+
15:00:00	15:00:00
05:01:30	05:01:00
12:30:20	12:30:00
+----------+----------------------------+

Another way to construct temporal values is to use date-part extraction
functions in conjunction with CONCAT(). However, this method is often
messier than the DATE_FORMAT() technique just discussed, and it
sometimes yields slightly different results:

mysql> SELECT d, CONCAT(YEAR(d),'-',MONTH(d),'-01') FROM
date_val;
+------------+------------------------------------+
| d | CONCAT(YEAR(d),'-',MONTH(d),'-01') |
+------------+------------------------------------+
1864-02-28	1864-2-01
1900-01-15	1900-1-01
1999-12-31	1999-12-01
2000-06-04	2000-6-01
2017-03-16	2017-3-01
+------------+------------------------------------+

Note that the month values in some of these dates have only a single digit.
To ensure that the month has two digits—as required for ISO format—use
LPAD() to add a leading zero as necessary:

mysql> SELECT d, CONCAT(YEAR(d),'-',LPAD(MONTH(d),2,'0'),'-01')
 -> FROM date_val;
+------------+--+
| d | CONCAT(YEAR(d),'-',LPAD(MONTH(d),2,'0'),'-01') |
+------------+--+
1864-02-28	1864-02-01
1900-01-15	1900-01-01
1999-12-31	1999-12-01
2000-06-04	2000-06-01
2017-03-16	2017-03-01
+------------+--+

Recipe 8.18 shows other ways to solve the problem of producing ISO dates
from not-quite-ISO dates.
TIME values can be produced from hours, minutes, and seconds values
using methods analogous to those for creating DATE values. For example,
to change a TIME value so that its seconds part is 00, extract the hour and
minute parts, and then recombine them with CONCAT():

mysql> SELECT t1,
 ->
CONCAT(LPAD(HOUR(t1),2,'0'),':',LPAD(MINUTE(t1),2,'0'),':00')
 -> AS recombined
 -> FROM time_val;
+----------+------------+
| t1 | recombined |
+----------+------------+

15:00:00	15:00:00
05:01:30	05:01:00
12:30:20	12:30:00
+----------+------------+

To produce a combined date-and-time value from separate date and time
values, simply concatenate them separated by a space:

mysql> SET @d = '2009-06-03', @t = '16:15:08';
mysql> SELECT @d, @t, CONCAT(@d,' ',@t);
+------------+----------+---------------------+
| @d | @t | CONCAT(@d,' ',@t) |
+------------+----------+---------------------+
| 2009-06-03 | 16:15:08 | 2009-06-03 16:15:08 |
+------------+----------+---------------------+

8.11 Converting Between Temporal Values
and Basic Units

Problem
You want to convert a temporal value such as a time or date to basic units
such as seconds or days. This is often useful or necessary for performing
temporal arithmetic operations (see Recipes 8.12 and 8.13).

Solution
The conversion method depends on the type of value to be converted:

To convert between time values and seconds, use the TIME_TO_SEC()
and SEC_TO_TIME() functions.

To convert between date values and days, use the TO_DAYS() and
FROM_DAYS() functions.

To convert between date-and-time values and seconds, use the
UNIX_TIMESTAMP() and FROM_UNIXTIME() functions.

Discussion

The following discussion shows how to convert several types of temporal
values to basic units and vice versa.

Converting between times and seconds
TIME values are specialized representations of a simpler unit (seconds). To
convert from one to the other, use the TIME_TO_SEC() and
SEC_TO_TIME() functions.

TIME_TO_SEC() converts a TIME value to the equivalent number of
seconds, and SEC_TO_TIME() does the opposite. The following
statement demonstrates a simple conversion in both directions:

mysql> SELECT t1,
 -> TIME_TO_SEC(t1) AS 'TIME to seconds',
 -> SEC_TO_TIME(TIME_TO_SEC(t1)) AS 'TIME to seconds to TIME'
 -> FROM time_val;
+----------+-----------------+-------------------------+
| t1 | TIME to seconds | TIME to seconds to TIME |
+----------+-----------------+-------------------------+
15:00:00	54000	15:00:00
05:01:30	18090	05:01:30
12:30:20	45020	12:30:20
+----------+-----------------+-------------------------+

To express time values as minutes, hours, or days, perform the appropriate
divisions:

mysql> SELECT t1,
 -> TIME_TO_SEC(t1) AS 'seconds',
 -> TIME_TO_SEC(t1)/60 AS 'minutes',
 -> TIME_TO_SEC(t1)/(60*60) AS 'hours',
 -> TIME_TO_SEC(t1)/(24*60*60) AS 'days'
 -> FROM time_val;
+----------+---------+----------+---------+--------+
| t1 | seconds | minutes | hours | days |
+----------+---------+----------+---------+--------+
15:00:00	54000	900.0000	15.0000	0.6250
05:01:30	18090	301.5000	5.0250	0.2094
12:30:20	45020	750.3333	12.5056	0.5211
+----------+---------+----------+---------+--------+

Use FLOOR() on the division results if you prefer integer values that have
no fractional part.
If you pass TIME_TO_SEC() a date-and-time value, it extracts the time
part and discards the date. This provides another means of extracting times
from DATETIME (or TIMESTAMP) values, in addition to those already
discussed in Recipe 8.9:

mysql> SELECT dt,
 -> TIME_TO_SEC(dt) AS 'time part in seconds',
 -> SEC_TO_TIME(TIME_TO_SEC(dt)) AS 'time part as TIME'
 -> FROM datetime_val;
+---------------------+----------------------+-------------------
+
| dt | time part in seconds | time part as TIME
|
+---------------------+----------------------+-------------------
+
| 1970-01-01 00:00:00 | 0 | 00:00:00
|
| 1999-12-31 09:00:00 | 32400 | 09:00:00
|
| 2000-06-04 15:45:30 | 56730 | 15:45:30
|
| 2017-03-16 12:30:15 | 45015 | 12:30:15
|
+---------------------+----------------------+-------------------
+

Converting between dates and days
If you have a date but want a value in days, or vice versa, use the
TO_DAYS() and FROM_DAYS() functions. Date-and-time values also can
be converted to days if you can suffer loss of the time part since the year 0.
TO_DAYS() converts a date to the corresponding number of days, and
FROM_DAYS() does the opposite:

mysql> SELECT d,
 -> TO_DAYS(d) AS 'DATE to days',
 -> FROM_DAYS(TO_DAYS(d)) AS 'DATE to days to DATE'
 -> FROM date_val;
+------------+--------------+----------------------+
| d | DATE to days | DATE to days to DATE |
+------------+--------------+----------------------+

1864-02-28	680870	1864-02-28
1900-01-15	693975	1900-01-15
1999-12-31	730484	1999-12-31
2000-06-04	730640	2000-06-04
2017-03-16	736769	2017-03-16
+------------+--------------+----------------------+

When using TO_DAYS(), it’s best to stick to the advice of the MySQL
Reference Manual and avoid DATE values that occur before the beginning
of the Gregorian calendar (1582). Changes in the lengths of calendar years
and months prior to that date make it difficult to speak meaningfully of
what the value of “day 0” might be. This differs from TIME_TO_SEC(),
where the correspondence between a TIME value and the resulting seconds
value is obvious and has a meaningful reference point of 0 seconds.
If you pass TO_DAYS() a date-and-time value, it extracts the date part and
discards the time. This provides another means of extracting dates from
DATETIME (or TIMESTAMP) values, in addition to those already discussed
in Recipe 8.9:

mysql> SELECT dt,
 -> TO_DAYS(dt) AS 'date part in days',
 -> FROM_DAYS(TO_DAYS(dt)) AS 'date part as DATE'
 -> FROM datetime_val;
+---------------------+-------------------+-------------------+
| dt | date part in days | date part as DATE |
+---------------------+-------------------+-------------------+
1970-01-01 00:00:00	719528	1970-01-01
1999-12-31 09:00:00	730484	1999-12-31
2000-06-04 15:45:30	730640	2000-06-04
2017-03-16 12:30:15	736769	2017-03-16
+---------------------+-------------------+-------------------+

Converting between date-and-time values and seconds
For DATETIME or TIMESTAMP values that lie within the range of the
TIMESTAMP data type (from the beginning of 1970 partially through
2038), the UNIX_TIMESTAMP() and FROM_UNIXTIME() functions
convert to and from the number of seconds elapsed since the beginning of
1970. The conversion to seconds offers higher precision for date-and-time
values than a conversion to days, at the cost of a more limited range of

https://oreil.ly/nlUk6

values for which the conversion may be performed (TIME_TO_SEC() is
unsuitable for this because it discards the date):

mysql> SELECT dt,
 -> UNIX_TIMESTAMP(dt) AS seconds,
 -> FROM_UNIXTIME(UNIX_TIMESTAMP(dt)) AS timestamp
 -> FROM datetime_val;
+---------------------+------------+---------------------+
| dt | seconds | timestamp |
+---------------------+------------+---------------------+
1970-01-01 00:00:00	21600	1970-01-01 00:00:00
1999-12-31 09:00:00	946652400	1999-12-31 09:00:00
2000-06-04 15:45:30	960151530	2000-06-04 15:45:30
2017-03-16 12:30:15	1489685415	2017-03-16 12:30:15
+---------------------+------------+---------------------+

There is a relationship between “UNIX” in the function names and the fact
that the applicable range of values begins with 1970: the “Unix epoch”
begins at 1970-01-01 00:00:00 UTC. The epoch is time zero, or the
reference point for measuring time in Unix systems. That being so, you may
find it curious that the preceding example shows a UNIX_TIMESTAMP()
value of 21600 for the first value in the datetime_val table. Why isn’t
it 0? The apparent discrepancy is due to the fact that the MySQL server
interprets the UNIX_TIMESTAMP() argument as a value in the client’s
local time zone and converts it to UTC (see Recipe 8.4). Our server is in the
US Central Time Zone, six hours (21,600 seconds) west of UTC. The
DATETIME interpreted based on the time zone and the numbers would not
change with a timestamp. Change the session time zone to '+00:00' for
UTC time, and run the query again to observe a different result:

mysql> set time_zone = '+00:00';
mysql> SELECT dt,
 -> UNIX_TIMESTAMP(dt) AS seconds,
 -> FROM_UNIXTIME(UNIX_TIMESTAMP(dt)) AS timestamp
 -> FROM datetime_val;
+---------------------+------------+---------------------+
| dt | seconds | timestamp |
+---------------------+------------+---------------------+
1970-01-01 00:00:00	0	1970-01-01 00:00:00
1999-12-31 09:00:00	946630800	1999-12-31 09:00:00
2000-06-04 15:45:30	960133530	2000-06-04 15:45:30

| 2017-03-16 12:30:15 | 1489667415 | 2017-03-16 12:30:15 |
+---------------------+------------+---------------------+

UNIX_TIMESTAMP() can convert DATE values to seconds, too. It treats
such values as having an implicit time-of-day part of 00:00:00:

mysql> SELECT
 -> CURDATE(),
 -> UNIX_TIMESTAMP(CURDATE()),
 -> FROM_UNIXTIME(UNIX_TIMESTAMP(CURDATE()))\G
*************************** 1. row ***************************
 CURDATE(): 2021-11-28
 UNIX_TIMESTAMP(CURDATE()): 1638046800
FROM_UNIXTIME(UNIX_TIMESTAMP(CURDATE())): 2021-11-28 00:00:00

8.12 Calculating Intervals Between Dates or
Times

Problem
You want to know how long it is between two dates or times, that is, the
interval between them.

Solution
To calculate an interval, use one of the temporal-difference functions, or
convert your values to basic units and take the difference. The permitted
functions depend on the types of the values for which you want to know the
interval.

Discussion
The following discussion shows several ways to perform interval
calculations.

Calculating intervals with temporal-difference functions

To calculate an interval in days between two date values, use the
DATEDIFF() function:

mysql> SET @d1 = '2010-01-01', @d2 = '2009-12-01';
mysql> SELECT DATEDIFF(@d1,@d2) AS 'd1 - d2', DATEDIFF(@d2,@d1)
AS 'd2 - d1';
+---------+---------+
| d1 - d2 | d2 - d1 |
+---------+---------+
| 31 | -31 |
+---------+---------+

DATEDIFF() also works with date-and-time values but ignores the time
part. This makes it suitable for producing day intervals for DATE,
DATETIME, or TIMESTAMP values.

To calculate an interval between TIME values as another TIME value, use
the TIMEDIFF() function:

mysql> SET @t1 = '12:00:00', @t2 = '16:30:00';
mysql> SELECT TIMEDIFF(@t1,@t2) AS 't1 - t2', TIMEDIFF(@t2,@t1)
AS 't2 - t1';
+-----------+----------+
| t1 - t2 | t2 - t1 |
+-----------+----------+
| -04:30:00 | 04:30:00 |
+-----------+----------+

TIMEDIFF() also works for date-and-time values. That is, it accepts
either time or date-and-time values, but the types of the arguments must
match.
A time interval expressed as a TIME value can be broken down into
components using the techniques shown in Recipe 8.9. For example, to
express a time interval in terms of its constituent hours, minutes, and
seconds values, calculate time interval subparts using the HOUR(),
MINUTE(), and SECOND() functions. (Don’t forget that if your intervals
may be negative, you must take that into account.) The following SQL
statement shows how to determine the components of the interval between
the t1 and t2 columns of the time_val table:

mysql> SELECT t1, t2,
 -> TIMEDIFF(t2,t1) AS 't2 - t1 as TIME',
 -> IF(TIMEDIFF(t2,t1) >= 0,'+','-') AS sign,
 -> HOUR(TIMEDIFF(t2,t1)) AS hour,
 -> MINUTE(TIMEDIFF(t2,t1)) AS minute,
 -> SECOND(TIMEDIFF(t2,t1)) AS second
 -> FROM time_val;
+----------+----------+-----------------+------+------+--------+-
-------+
| t1 | t2 | t2 - t1 as TIME | sign | hour | minute |
second |
+----------+----------+-----------------+------+------+--------+-
-------+
| 15:00:00 | 15:00:00 | 00:00:00 | + | 0 | 0 |
0 |
| 05:01:30 | 02:30:20 | -02:31:10 | - | 2 | 31 |
10 |
| 12:30:20 | 17:30:45 | 05:00:25 | + | 5 | 0 |
25 |
+----------+----------+-----------------+------+------+--------+-
-------+

If you work with date or date-and-time values, the TIMESTAMPDIFF()
function provides another way to calculate intervals. It enables you to
specify the units in which intervals should be expressed:

TIMESTAMPDIFF(unit,val1,val2)

unit is the interval unit, and val1 and val2 are the values between
which to calculate the interval. With TIMESTAMPDIFF(), you can
express an interval in many different ways:

mysql> SET @dt1 = '1900-01-01 00:00:00', @dt2 = '1910-01-01
00:00:00';
mysql> SELECT
 -> TIMESTAMPDIFF(MINUTE,@dt1,@dt2) AS minutes,
 -> TIMESTAMPDIFF(HOUR,@dt1,@dt2) AS hours,
 -> TIMESTAMPDIFF(DAY,@dt1,@dt2) AS days,
 -> TIMESTAMPDIFF(WEEK,@dt1,@dt2) AS weeks,
 -> TIMESTAMPDIFF(YEAR,@dt1,@dt2) AS years;
+---------+-------+------+-------+-------+
| minutes | hours | days | weeks | years |
+---------+-------+------+-------+-------+
| 5258880 | 87648 | 3652 | 521 | 10 |
+---------+-------+------+-------+-------+

Permitted unit specifiers are MICROSECOND, SECOND, MINUTE, HOUR,
DAY, WEEK, MONTH, QUARTER, or YEAR. Note that each is singular, not
plural.
Be aware of these properties of TIMESTAMPDIFF():

Its value is negative if the first temporal value is greater than the second,
which is opposite the order of the arguments for DATEDIFF() and
TIMEDIFF().

Despite the TIMESTAMP in its name, TIMESTAMPDIFF() arguments
are not limited to the range of the TIMESTAMP data type.

Time interval calculation using basic units
To calculate intervals in seconds between pairs of time values, convert them
to seconds with TIME_TO_SEC() and take the difference. To express the
resulting interval as a TIME value, pass it to SEC_TO_TIME(). The
following statement calculates the intervals between the t1 and t2
columns of the time_val table, expressing each interval both in seconds
and as a TIME value:

mysql> SELECT t1, t2,
 -> TIME_TO_SEC(t2) - TIME_TO_SEC(t1) AS 't2 - t1 (in
seconds)',
 -> SEC_TO_TIME(TIME_TO_SEC(t2) - TIME_TO_SEC(t1)) AS 't2 - t1
(as TIME)'
 -> FROM time_val;
+----------+----------+----------------------+-------------------
+
| t1 | t2 | t2 - t1 (in seconds) | t2 - t1 (as TIME)
|
+----------+----------+----------------------+-------------------
+
| 15:00:00 | 15:00:00 | 0 | 00:00:00
|
| 05:01:30 | 02:30:20 | -9070 | -02:31:10
|
| 12:30:20 | 17:30:45 | 18025 | 05:00:25
|
+----------+----------+----------------------+-------------------
+

Date or date-and-time interval calculation using basic units
When you calculate an interval between dates by converting both dates to a
common unit in relation to a given reference point and take the difference,
the range of your values determines which conversions are available:

DATE, DATETIME, or TIMESTAMP values dating back to 1970-01-
01 00:00:00 UTC—the Unix epoch—can be converted to seconds
elapsed since the epoch. With dates in that range, you can calculate
intervals to an accuracy of one second.
Older dates from the beginning of the Gregorian calendar (1582) on can
be converted to day values and used to compute intervals in days.
Dates that begin earlier than either of these reference points present
more of a problem. In such cases, you may find that your programming
language offers computations that are not available or are difficult to
perform in SQL. If so, consider processing date values directly from
within your API language. For example, the Date::Calc and Date::Manip
modules are available from the Comprehensive Perl Archive Network
(CPAN) for use in Perl scripts.

To calculate an interval in days between date or date-and-time values,
convert them to days with TO_DAYS() and take the difference. For an
interval in weeks, do the same thing and divide the result by seven:

mysql> SET @days = TO_DAYS('1884-01-01') - TO_DAYS('1883-06-05');
mysql> SELECT @days AS days, @days/7 AS weeks;
+------+---------+
| days | weeks |
+------+---------+
| 210 | 30.0000 |
+------+---------+

You cannot convert days to months or years by simple division because
those units vary in length. To yield date intervals expressed in those units,
use TIMESTAMPDIFF(), discussed earlier in this recipe.

For date-and-time values occurring within the TIMESTAMP range from
1970 partially through 2038, you can determine intervals to a resolution in

seconds using the UNIX_TIMESTAMP() function. For intervals in other
units, seconds are easily converted to minutes, hours, days, or weeks, as this
expression shows for dates that lie two weeks apart:

mysql> SET @dt1 = '1984-01-01 09:00:00';
mysql> SET @dt2 = @dt1 + INTERVAL 14 DAY;
mysql> SET @interval = UNIX_TIMESTAMP(@dt2) -
UNIX_TIMESTAMP(@dt1);
mysql> SELECT @interval AS seconds,
 -> @interval / 60 AS minutes,
 -> @interval / (60 * 60) AS hours,
 -> @interval / (24 * 60 * 60) AS days,
 -> @interval / (7 * 24 * 60 * 60) AS weeks;
+---------+------------+----------+---------+--------+
| seconds | minutes | hours | days | weeks |
+---------+------------+----------+---------+--------+
| 1209600 | 20160.0000 | 336.0000 | 14.0000 | 2.0000 |
+---------+------------+----------+---------+--------+

Use FLOOR() on the division results if you prefer integer values that have
no fractional part.
For values that occur outside the TIMESTAMP range, this interval
calculation method is more general (but messier):

1. Take the difference in days between the date parts of the values and
multiply by 24 × 60 × 60 to convert to seconds.

2. Adjust the result by the difference in seconds between the time parts
of the values.

Here’s an example, using two date-and-time values that lie slightly less than
three days apart:

mysql> SET @dt1 = '1800-02-14 07:30:00';
mysql> SET @dt2 = '1800-02-17 06:30:00';
mysql> SET @interval =
 -> ((TO_DAYS(@dt2) - TO_DAYS(@dt1)) * 24*60*60)
 -> + TIME_TO_SEC(@dt2) - TIME_TO_SEC(@dt1);
mysql> SELECT @interval AS seconds, SEC_TO_TIME(@interval) AS
TIME;
+---------+----------+
| seconds | TIME |
+---------+----------+

| 255600 | 71:00:00 |
+---------+----------+

DO YOU WANT AN INTERVAL OR A SPAN?
When you take a difference between dates (or times), consider whether you want an interval or
a span. Taking a difference between dates gives you the interval from one date to the next. To
determine the range spanned by the two dates, you must add a unit. For example, it’s a three-
day interval from 2002-01-01 to 2002-01-04, but together they span a range of four days.
If you don’t get the results you expect from a difference-of-values calculation, consider whether
an “off-by-one” correction is needed.

8.13 Adding Date or Time Values

Problem
You want to add temporal values. For example, you want to add a given
number of seconds to a time or determine what the date will be three weeks
from today.

Solution
To add date or time values, you have several options:

Use one of the temporal-addition functions.
Use the + INTERVAL or - INTERVAL operator.

Convert the values to basic units, and take the sum.
The applicable functions or operators depend on the types of the values.

Discussion
The following discussion shows several ways to add temporal values.

Adding temporal values using temporal-addition functions or
operators

To add a time to a time or date-and-time value, use the ADDTIME()
function:

mysql> SET @t1 = '12:00:00', @t2 = '15:30:00';
mysql> SELECT ADDTIME(@t1,@t2);
+------------------+
| ADDTIME(@t1,@t2) |
+------------------+
| 27:30:00 |
+------------------+
mysql> SET @dt = '1984-03-01 12:00:00', @t = '12:00:00';
mysql> SELECT ADDTIME(@dt,@t);
+----------------------------+
| TIMESTAMP(@d,@t) |
+----------------------------+
| 1984-03-01 15:30:00.000000 |
+----------------------------+

To add a time to a date or date-and-time value, use the TIMESTAMP()
function:

mysql> SET @d = '1984-03-01', @t = '15:30:00';
mysql> SELECT TIMESTAMP(@d,@t);
+---------------------+
| TIMESTAMP(@d,@t) |
+---------------------+
| 1984-03-01 15:30:00 |
+---------------------+
mysql> SET @dt = '1984-03-01 12:00:00', @t = '12:00:00';
mysql> SELECT TIMESTAMP(@dt,@t);
+----------------------------+
| TIMESTAMP(@dt,@t) |
+----------------------------+
| 1984-03-02 00:00:00.000000 |
+----------------------------+

MySQL also provides DATE_ADD() and DATE_SUB() functions for
adding intervals to dates and subtracting intervals from dates. Each function
takes a date (or date-and-time) value d and an interval, expressed using the
following syntax:

DATE_ADD(d,INTERVAL val unit)
DATE_SUB(d,INTERVAL val unit)

The + INTERVAL and - INTERVAL operators are similar:

d + INTERVAL val unit
d - INTERVAL val unit

unit is the interval unit, and val is an expression indicating the number
of units. Some common unit specifiers are SECOND, MINUTE, HOUR, DAY,
MONTH, and YEAR. Note that each is singular, not plural. (Check the
MySQL Reference Manual for the full list.)
Use DATE_ADD() or DATE_SUB() to perform date arithmetic operations
such as these:

Determine the date three days from today:

mysql> SELECT CURDATE(), DATE_ADD(CURDATE(),INTERVAL 3 DAY);
++------------+------------------------------------+
| CURDATE() | DATE_ADD(CURDATE(),INTERVAL 3 DAY) |
+------------+------------------------------------+
| 2021-11-24 | 2021-11-27 |
+------------+------------------------------------+

Find the date a week ago:

mysql> SELECT CURDATE(), DATE_SUB(CURDATE(),INTERVAL 1 WEEK);
+------------+-------------------------------------+
| CURDATE() | DATE_SUB(CURDATE(),INTERVAL 1 WEEK) |
+------------+-------------------------------------+
| 2021-11-24 | 2021-11-17 |
+------------+-------------------------------------+

For questions where you need to know both the date and the time, begin
with a DATETIME or TIMESTAMP value. To answer the question “What
time will it be in 60 hours?” do this:

mysql> SELECT NOW(), DATE_ADD(NOW(),INTERVAL 60 HOUR);
+---------------------+----------------------------------+
| NOW() | DATE_ADD(NOW(),INTERVAL 60 HOUR) |
+---------------------+----------------------------------+
| 2021-11-24 22:44:19 | 2021-11-27 10:44:19 |
+---------------------+----------------------------------+

https://oreil.ly/ubU95

Some interval specifiers have both date and time parts. The following
adds 14.5 hours to the current date and time:

mysql> SELECT NOW(), DATE_ADD(NOW(),INTERVAL '14:30'
HOUR_MINUTE);
+---------------------+---------------------------------------
-------+
| NOW() | DATE_ADD(NOW(),INTERVAL '14:30'
HOUR_MINUTE) |
+---------------------+---------------------------------------
-------+
| 2021-11-24 22:46:37 | 2021-11-25 13:16:37
|
+---------------------+---------------------------------------
-------+

Similarly, adding three days and four hours produces this result:

mysql> SELECT NOW(), DATE_ADD(NOW(),INTERVAL '3 4' DAY_HOUR);
+---------------------+---------------------------------------
--+
| NOW() | DATE_ADD(NOW(),INTERVAL '3 4'
DAY_HOUR) |
+---------------------+---------------------------------------
--+
| 2021-11-24 22:47:15 | 2021-11-28 02:47:15
|
+---------------------+---------------------------------------
--+

DATE_ADD() and DATE_SUB() are interchangeable because one is the
same as the other with the sign of the interval value flipped. These two
expressions are equivalent for any date value d:

DATE_ADD(d,INTERVAL -3 MONTH)
DATE_SUB(d,INTERVAL 3 MONTH)

You can also use the + INTERVAL or - INTERVAL operator to perform
date interval addition or subtraction:

mysql> SELECT CURDATE(), CURDATE() + INTERVAL 1 YEAR;
+------------+-----------------------------+
| CURDATE() | CURDATE() + INTERVAL 1 YEAR |

+------------+-----------------------------+
| 2021-11-24 | 2022-11-24 |
+------------+-----------------------------+
mysql> SELECT NOW(), NOW() - INTERVAL '1 12' DAY_HOUR;
+---------------------+----------------------------------+
| NOW() | NOW() - INTERVAL '1 12' DAY_HOUR |
+---------------------+----------------------------------+
| 2021-11-24 22:48:31 | 2021-11-23 10:48:31 |
+---------------------+----------------------------------+

TIMESTAMPADD() is an alternative function for adding intervals to date
or date-and-time values. Its arguments are similar to those for
DATE_ADD(), and the following equivalence holds:

TIMESTAMPADD(unit,interval,d) = DATE_ADD(d,INTERVAL interval
unit)

Adding temporal values using basic units
Another way to add intervals to date or date-and-time values is to perform
temporal “shifting” via functions that convert to and from basic units. For
background information about the applicable functions, see Recipe 8.11.

Adding time values using basic units
Adding times with basic units is similar to calculating intervals between
times, except that you compute a sum rather than a difference. To add an
interval value in seconds to a TIME value, convert the TIME to seconds so
that both values are represented in the same units, then add the values and
convert the result back to a TIME. For example, two hours is 7,200 seconds
(2 × 60 × 60), so the following statement adds two hours to each t1 value
in the time_val table:

mysql> SELECT t1,
 -> SEC_TO_TIME(TIME_TO_SEC(t1) + 7200) AS 't1 plus 2 hours'
 -> FROM time_val;
+----------+-----------------+
| t1 | t1 plus 2 hours |
+----------+-----------------+
| 15:00:00 | 17:00:00 |
| 05:01:30 | 07:01:30 |

| 12:30:20 | 14:30:20 |
+----------+-----------------+

If the interval itself is expressed as a TIME, it too should be converted to
seconds before adding the values together. The following example
calculates the sum of the two TIME values in each row of the time_val
table:

mysql> SELECT t1, t2,
 -> TIME_TO_SEC(t1) + TIME_TO_SEC(t2)
 -> AS 't1 + t2 (in seconds)',
 -> SEC_TO_TIME(TIME_TO_SEC(t1) + TIME_TO_SEC(t2))
 -> AS 't1 + t2 (as TIME)'
 -> FROM time_val;
+----------+----------+----------------------+-------------------
+
| t1 | t2 | t1 + t2 (in seconds) | t1 + t2 (as TIME)
|
+----------+----------+----------------------+-------------------
+
| 15:00:00 | 15:00:00 | 108000 | 30:00:00
|
| 05:01:30 | 02:30:20 | 27110 | 07:31:50
|
| 12:30:20 | 17:30:45 | 108065 | 30:01:05
|
+----------+----------+----------------------+-------------------
+

It’s important to recognize that MySQL TIME values represent elapsed
time, not time of day, so they don’t reset to 0 after reaching 24 hours. You
can see this in the first and third output rows from the previous statement.
To produce time-of-day values, enforce a 24-hour wraparound using a
modulo operation before converting the seconds value back to a TIME
value. The number of seconds in a day is 24 × 60 × 60, or 86,400. To
convert any seconds value s to lie within a 24-hour range, use the MOD()
function or the % modulo operator like this:

MOD(s,86400)
s % 86400
s MOD 86400

The three expressions are equivalent. Applying the first of them to the time
calculations from the preceding example produces the following result:

mysql> SELECT t1, t2,
 -> MOD(TIME_TO_SEC(t1) + TIME_TO_SEC(t2), 86400)
 -> AS 't1 + t2 (in seconds)',
 -> SEC_TO_TIME(MOD(TIME_TO_SEC(t1) + TIME_TO_SEC(t2), 86400))
 -> AS 't1 + t2 (as TIME)'
 -> FROM time_val;
+----------+----------+----------------------+-------------------
+
| t1 | t2 | t1 + t2 (in seconds) | t1 + t2 (as TIME)
|
+----------+----------+----------------------+-------------------
+
| 15:00:00 | 15:00:00 | 21600 | 06:00:00
|
| 05:01:30 | 02:30:20 | 27110 | 07:31:50
|
| 12:30:20 | 17:30:45 | 21665 | 06:01:05
|
+----------+----------+----------------------+-------------------
+

NOTE
The permitted range of a TIME column is -838:59:59 to 838:59:59 (that is, -3020399 to
3020399 seconds). However, the range of TIME expressions can be greater, so when you add
time values, you can easily produce a result that lies outside this range and cannot be stored as is
into a TIME column.

Alternatively, you can use the TIMESTAMPDIFF() function to go outside
of the TIMEDIFF() function limits:

mysql> SELECT NOW(),TIMESTAMPDIFF(minute,now(), '2023-01-01
00:00:00');
+---------------------+--
----------+
| NOW() | TIMESTAMPDIFF(minute,now(), '2023-01-01
00:00:00') |
+---------------------+--
----------+
| 2022-03-07 06:38:40 |

431601 |
+---------------------+--
----------+

mysql> SELECT NOW(),TIMESTAMPDIFF(day,now(), '2023-01-01
00:00:00');
+---------------------+--
-------+
| NOW() | TIMESTAMPDIFF(day,now(), '2023-01-01
00:00:00') |
+---------------------+--
-------+
| 2022-03-07 06:38:50 |
299 |
+---------------------+--
-------+

Adding to date or date-and-time values using basic units
Date or date-and-time values converted to basic units can be shifted to
produce other dates. For example, to shift a date forward or backward a
week (seven days), use TO_DAYS() and FROM_DAYS():

mysql> SET @d = '1980-01-01';
mysql> SELECT @d AS date,
 -> FROM_DAYS(TO_DAYS(@d) + 7) AS 'date + 1 week',
 -> FROM_DAYS(TO_DAYS(@d) - 7) AS 'date - 1 week';
+------------+---------------+---------------+
| date | date + 1 week | date - 1 week |
+------------+---------------+---------------+
| 1980-01-01 | 1980-01-08 | 1979-12-25 |
+------------+---------------+---------------+

TO_DAYS() also can convert date-and-time values to days, if you don’t
mind having it chop off the time part.
To preserve the time, you can use UNIX_TIMESTAMP() and
FROM_UNIXTIME() instead, if the initial and resulting values both lie in
the permitted range for TIMESTAMP values (from 1970 partially through
2038). The following statement shifts a DATETIME value forward and
backward by an hour (3,600 seconds):

mysql> SET @dt = '1980-01-01 09:00:00';
mysql> SELECT @dt AS datetime,

 -> FROM_UNIXTIME(UNIX_TIMESTAMP(@dt) + 3600) AS 'datetime + 1
hour',
 -> FROM_UNIXTIME(UNIX_TIMESTAMP(@dt) - 3600) AS 'datetime - 1
hour';
+---------------------+---------------------+--------------------
-+
| datetime | datetime + 1 hour | datetime - 1 hour
|
+---------------------+---------------------+--------------------
-+
| 1980-01-01 09:00:00 | 1980-01-01 10:00:00 | 1980-01-01 08:00:00
|
+---------------------+---------------------+--------------------
-+

8.14 Calculating Ages

Problem
You want to know how old someone is.

Solution
This is a date-arithmetic problem. It amounts to computing the interval
between dates but with a twist. For an age in years, it’s necessary to account
for the relative placement of the start and end dates within the calendar
year. For an age in months, it’s also necessary to account for the placement
of the months and the days within the month.

Discussion
Age determination is a type of date-interval calculation. However, you
cannot simply compute a difference in days and divide by 365 because leap
years throw off the calculation. (It is 365 days from 1995-03-01 to 1996-02-
29, but that is not a year in age terms.) Dividing by 365.25 is slightly more
accurate but still not correct for all dates.
To calculate ages, use the TIMESTAMPDIFF() function. Pass it a birth
date, a current date, and the unit in which you want the age expressed:

TIMESTAMPDIFF(unit,birth,current)

TIMESTAMPDIFF() handles the calculations necessary to adjust for
differing month and year lengths and relative positions of the dates within
the calendar year. Suppose that a sibling table lists the birth dates of
Ilayda and her sister Lara:

mysql> SELECT * FROM sibling;
+--------+------------+
| name | birth |
+--------+------------+
| Ilayda | 2002-12-17 |
| Lara | 2009-06-03 |
+--------+------------+

Using TIMESTAMPDIFF(), you can answer questions such as these:

How old are the Alkins’ children today, in years, months, and days?

mysql> SELECT name,DATE_FORMAT(birth,'%Y-%m-%d') as dob,
 -> DATE_FORMAT(NOW(),'%Y-%m-%d') as today,
 -> TIMESTAMPDIFF(YEAR, birth, NOW()) as age_years',
 -> FLOOR(TIMESTAMPDIFF(DAY, birth, now()) % 30.4375)
as age_days
 -> FROM sibling;
+--------+------------+------------+-----------+------------+-
---------+
| name | dob | today | age_years | age_months |
age_days |
+--------+------------+------------+-----------+------------+-
---------+
| Ilayda | 2002-12-17 | 2022-03-07 | 19 | 2 |
19 |
| Lara | 2009-06-03 | 2022-03-07 | 12 | 9 |
3 |
+--------+------------+------------+-----------+------------+-
---------+

How old was Ilayda when Lara was born, in years and months?

mysql> SELECT name, birth, '2009-06-03' AS 'Lara\'s birth',
 -> TIMESTAMPDIFF(YEAR,birth,'2009-06-03') AS 'age in
years',
 -> TIMESTAMPDIFF(MONTH, birth,'2009-06-09') % 12 as
age_months,

 -> FLOOR(TIMESTAMPDIFF(DAY, birth,'2009-06-09') %
30.4375) as age_days
 -> FROM sibling WHERE name <> 'Lara';
+--------+------------+--------------+-----------+------------
+----------+
| name | birth | Lara's birth | age_years | age_months
| age_days |
+--------+------------+--------------+-----------+------------
+----------+
| Ilayda | 2002-12-17 | 2009-06-09 | 6 | 5
| 22 |
+--------+------------+--------------+-----------+------------
+----------+

For further information about date calculation using these functions, consult
the MySQL Reference Manual.

8.15 Finding the First Day, Last Day, or
Length of a Month

Problem
Given a date, you want to determine the date for the first or last day of the
month in which the date occurs, or the first or last day for the month n
months away. A related problem is to determine the number of days in a
month.

Solution
To determine the date for the first day in a month, use date shifting (an
application of date arithmetic). To determine the date for the last day, use
the LAST_DAY() function. To determine the number of days in a month,
find the date for its last day and use it as the argument to DAYOFMONTH().

Discussion
Sometimes you have a reference date and want to reach a target date that
doesn’t have a fixed relationship to the reference date. For example, the first

https://oreil.ly/pGOMr

or last days of the current month aren’t a fixed number of days from the
current date.
To find the first day of the month for a given date, shift the date back by one
fewer days than its DAYOFMONTH() value:

mysql> SELECT d, DATE_SUB(d,INTERVAL DAYOFMONTH(d)-1 DAY) AS '1st
of month'
 -> FROM date_val;
+------------+--------------+
| d | 1st of month |
+------------+--------------+
1864-02-28	1864-02-01
1900-01-15	1900-01-01
1999-12-31	1999-12-01
2000-06-04	2000-06-01
2017-03-16	2017-03-01
+------------+--------------+

In the general case, to find the first of the month for any month n months
away from a given date, calculate the first of the month for the date and
shift the result by n months:

DATE_ADD(DATE_SUB(d,INTERVAL DAYOFMONTH(d)-1 DAY),INTERVAL n
MONTH)

For example, to find the first day of the previous and following months
relative to a given date, n is -1 and 1:

mysql> SELECT d,
 -> DATE_ADD(DATE_SUB(d,INTERVAL DAYOFMONTH(d)-1 DAY),INTERVAL
-1 MONTH)
 -> AS '1st of previous month',
 -> DATE_ADD(DATE_SUB(d,INTERVAL DAYOFMONTH(d)-1 DAY),INTERVAL
1 MONTH)
 -> AS '1st of following month'
 -> FROM date_val;

+------------+-----------------------+------------------------+
| d | 1st of previous month | 1st of following month |
+------------+-----------------------+------------------------+
1864-02-28	1864-01-01	1864-03-01
1900-01-15	1899-12-01	1900-02-01
1999-12-31	1999-11-01	2000-01-01

| 2000-06-04 | 2000-05-01 | 2000-07-01 |
| 2017-03-16 | 2017-02-01 | 2017-04-01 |
+------------+-----------------------+------------------------+

It’s easier to find the last day of the month for a given date because there is
a function for it:

mysql> SELECT d, LAST_DAY(d) AS 'last of month'
 -> FROM date_val;
+------------+---------------+
| d | last of month |
+------------+---------------+
1864-02-28	1864-02-29
1900-01-15	1900-01-31
1999-12-31	1999-12-31
2000-06-04	2000-06-30
2017-03-16	2017-03-31
+------------+---------------+

For the general case, to find the last day of the month for any month n
months away from a given date, shift the date by that many months first,
then pass it to LAST_DAY():

LAST_DAY(DATE_ADD(d,INTERVAL n MONTH))

For example, to find the last day of the previous and following months
relative to a given date, n is -1 and 1:

mysql> SELECT d,
 -> LAST_DAY(DATE_ADD(d,INTERVAL -1 MONTH))
 -> AS 'last of previous month',
 -> LAST_DAY(DATE_ADD(d,INTERVAL 1 MONTH))
 -> AS 'last of following month'
 -> FROM date_val;
+------------+------------------------+-------------------------+
| d | last of previous month | last of following month |
+------------+------------------------+-------------------------+
1864-02-28	1864-01-31	1864-03-31
1900-01-15	1899-12-31	1900-02-28
1999-12-31	1999-11-30	2000-01-31
2000-06-04	2000-05-31	2000-07-31
2017-03-16	2017-02-28	2017-04-30
+------------+------------------------+-------------------------+

To find the length of a month in days, determine the date of its last day with
LAST_DAY(), then use DAYOFMONTH() to extract the day-of-month
component from the result:

mysql> SELECT d, DAYOFMONTH(LAST_DAY(d)) AS 'days in month' FROM
date_val;
+------------+---------------+
| d | days in month |
+------------+---------------+
1864-02-28	29
1900-01-15	31
1999-12-31	31
2000-06-04	30
2017-03-16	31
+------------+---------------+

8.16 Finding the Day of the Week for a Date

Problem
You want to know the day of the week on which a date falls.

Solution
Use the DAYNAME() function.

Discussion
To determine the name of the day of the week for a given date, use
DAYNAME():

mysql> SELECT CURDATE(), DAYNAME(CURDATE());
+------------+--------------------+
| CURDATE() | DAYNAME(CURDATE()) |
+------------+--------------------+
| 2021-11-24 | Wednesday |
+------------+--------------------+

DAYNAME() is often useful in conjunction with other date-related
techniques. For example, to determine the day of the week for the first of

the month, use the first-of-month expression from Recipe 8.15 as the
argument to DAYNAME():

mysql> SET @d = CURDATE();
mysql> SET @first = DATE_SUB(@d,INTERVAL DAYOFMONTH(@d)-1 DAY);
mysql> SELECT @d AS 'starting date',
 -> @first AS '1st of month date',
 -> DAYNAME(@first) AS '1st of month day';
+---------------+-------------------+------------------+
| starting date | 1st of month date | 1st of month day |
+---------------+-------------------+------------------+
| 2021-11-24 | 2021-11-01 | Monday |
+---------------+-------------------+------------------+

8.17 Finding Dates for Any Weekday of a
Given Week

Problem
You want to compute the date of some weekday for the week in which a
given date lies. Suppose that you want to know the date of the Tuesday that
falls in the same week as 2014-07-09.

Solution
This is an application of date shifting. Figure out the number of days
between the starting weekday of the given date and the desired day, and
shift the date by that many days.

Discussion
This section and the next describe how to convert one date to another when
the target date is specified in terms of days of the week. To solve such
problems, you need to know day-of-week values. Suppose you begin with a
target date of 2014-07-09. To determine the date for Tuesday of the
week in which that date lies, the calculation depends on what weekday it is.

If it’s a Monday, you add a day to produce 2014-07-10, but if it’s a
Wednesday, you subtract a day to produce 2014-07-08.

MySQL provides two functions that are useful here. DAYOFWEEK() treats
Sunday as the first day of the week and returns 1 through 7 for Sunday
through Saturday. WEEKDAY() treats Monday as the first day of the week
and returns 0 through 6 for Monday through Sunday. (The examples shown
here use DAYOFWEEK().) Another kind of day-of-week operation involves
determining the name of the day. DAYNAME() can be used for that.

Calculations that determine one day of the week from another depend on
the day you start from as well as the day you want to reach. I find it easiest
to shift the reference date first to a known point relative to the beginning of
the week, and then shift forward:

1. Shift the reference date back by its DAYOFWEEK() value, which
always produces the date for the Saturday preceding the week.

2. Shift the Saturday date by one day to reach the Sunday date, by two
days to reach the Monday date, and so forth.

In SQL, those operations can be expressed as follows for a date d, where n
is 1 through 7 to produce the dates for Sunday through Saturday:

DATE_ADD(DATE_SUB(d,INTERVAL DAYOFWEEK(d) DAY),INTERVAL n DAY)

That expression splits the “shift back to Saturday” and “shift forward”
phases into separate operations, but because the intervals for both
DATE_SUB() and DATE_ADD() are in days, the expression can be
simplified into a single DATE_ADD() call:

DATE_ADD(d,INTERVAL n-DAYOFWEEK(d) DAY)

Applying this formula to the dates in our date_val table, using an n of 1
for Sunday and 7 for Saturday to find the first and last days of the week,
yields this result:

mysql> SELECT d, DAYNAME(d) AS day,
 -> DATE_ADD(d,INTERVAL 1-DAYOFWEEK(d) DAY) AS Sunday,
 -> DATE_ADD(d,INTERVAL 7-DAYOFWEEK(d) DAY) AS Saturday
 -> FROM date_val;
+------------+----------+------------+------------+
| d | day | Sunday | Saturday |
+------------+----------+------------+------------+
1864-02-28	Sunday	1864-02-28	1864-03-05
1900-01-15	Monday	1900-01-14	1900-01-20
1999-12-31	Friday	1999-12-26	2000-01-01
2000-06-04	Sunday	2000-06-04	2000-06-10
2017-03-16	Thursday	2017-03-12	2017-03-18
+------------+----------+------------+------------+

To determine the date of some weekday in a week relative to that of the
target date, modify the preceding procedure a bit. First, determine the date
of the desired weekday in the week containing the target date and then shift
the result into the desired week.
Calculating the date for a day of the week in some other week is a problem
that breaks down into a day-within-week shift (using the formula just given)
plus a week shift. These operations can be done in either order because the
amount of shift within the week is the same whether or not you shift the
reference date into a different week first. For example, to calculate
Wednesday of a week by the preceding formula, n is 4. To compute the date
for Wednesday two weeks ago, you can perform the day-within-week shift
first, like this:

mysql> SET @target =
 -> DATE_SUB(DATE_ADD(CURDATE(),INTERVAL 4-
DAYOFWEEK(CURDATE()) DAY),
 -> INTERVAL 14 DAY);
mysql> SELECT CURDATE(), @target, DAYNAME(@target);
+------------+------------+------------------+
| CURDATE() | @target | DAYNAME(@target) |
+------------+------------+------------------+
| 2021-11-24 | 2021-11-10 | Wednesday |
+------------+------------+------------------+

Or you can perform the week shift first:

mysql> SET @target =
 -> DATE_ADD(DATE_SUB(CURDATE(),INTERVAL 14 DAY),

 -> INTERVAL 4-DAYOFWEEK(CURDATE()) DAY);
mysql> SELECT CURDATE(), @target, DAYNAME(@target);

+------------+------------+------------------+
| CURDATE() | @target | DAYNAME(@target) |
+------------+------------+------------------+
| 2021-11-24 | 2021-11-10 | Wednesday |
+------------+------------+------------------+

Some applications need to determine dates such as the n-th instance of
particular weekdays. For example, to administer a payroll for which
paydays are the second and fourth Thursdays of each month, you must
know what those dates are. One way to do this for any given month is to
begin with the first-of-month date and shift it forward. It’s easy enough to
shift the date to the Thursday in that week; the trick is to figure out how
many weeks forward to shift the result to reach the second and fourth
Thursdays. If the first of the month occurs on any day from Sunday through
Thursday, you shift forward one week to reach the second Thursday. If the
first of the month occurs on Friday or later, you shift forward by two weeks.
The fourth Thursday is, of course, two weeks after that.
The following Perl code implements this logic to find all paydays in the
year 2021. It runs a loop that constructs the first-of-month date for the
months of the year. For each month, it issues a statement that determines the
dates of the second and fourth Thursdays:

my $year = 2021;
print "MM/YYYY 2nd Thursday 4th Thursday\n";
foreach my $month (1..12)
{
 my $first = sprintf ("%04d-%02d-01", $year, $month);
 my ($thu2, $thu4) = $dbh->selectrow_array (qq{
 SELECT
 DATE_ADD(
 DATE_ADD(?,INTERVAL 5-DAYOFWEEK(?) DAY),
 INTERVAL IF(DAYOFWEEK(?) <= 5, 7, 14) DAY),
 DATE_ADD(
 DATE_ADD(?,INTERVAL 5-DAYOFWEEK(?) DAY),
 INTERVAL IF(DAYOFWEEK(?) <= 5, 21, 28) DAY)
 }, undef, $first, $first, $first, $first, $first,
$first);

 printf "%02d/%04d %s %s\n", $month, $year, $thu2, $thu4;
}

The program produces this output:

MM/YYYY 2nd Thursday 4th Thursday
01/2021 2021-01-14 2021-01-28
02/2021 2021-02-11 2021-02-25
03/2021 2021-03-11 2021-03-25
04/2021 2021-04-08 2021-04-22
05/2021 2021-05-13 2021-05-27
06/2021 2021-06-10 2021-06-24
07/2021 2021-07-08 2021-07-22
08/2021 2021-08-12 2021-08-26
09/2021 2021-09-09 2021-09-23
10/2021 2021-10-14 2021-10-28
11/2021 2021-11-11 2021-11-25
12/2021 2021-12-09 2021-12-23

8.18 Canonizing Not-Quite-ISO Date Strings

Problem
You have a date that is in a format that’s close to, but not exactly in, ISO
format, and you want to convert it into an ISO-format date.

Solution
Canonize the date by passing it to a function that always returns an ISO-
format date result.

Discussion
In Recipe 8.10, we ran into the problem that synthesizing dates with
CONCAT() may produce values that are not quite in ISO format. For
example, the following statement produces first-of-month values in which
the month part may have only a single digit:

mysql> SELECT d, CONCAT(YEAR(d),'-',MONTH(d),'-01') FROM
date_val;

+------------+------------------------------------+
| d | CONCAT(YEAR(d),'-',MONTH(d),'-01') |
+------------+------------------------------------+
1864-02-28	1864-2-01
1900-01-15	1900-1-01
1999-12-31	1999-12-01
2000-06-04	2000-6-01
2017-03-16	2017-3-01
+------------+------------------------------------+

Recipe 8.10 shows a technique using LPAD() for making sure the month
values have two digits. Another way to standardize a close-to-ISO date is to
use it in an expression that produces an ISO date result. For a date d, any of
the following expressions will do:

DATE_ADD(d,INTERVAL 0 DAY)
d + INTERVAL 0 DAY
FROM_DAYS(TO_DAYS(d))
STR_TO_DATE(d,'%Y-%m-%d')

Using those expressions with the non-ISO results from the CONCAT()
operation yields ISO format in several ways:

mysql> SELECT
 -> CONCAT(YEAR(d),'-',MONTH(d),'-01') AS 'non-ISO',
 -> DATE_ADD(CONCAT(YEAR(d),'-',MONTH(d),'-01'),INTERVAL 0
DAY) AS 'ISO 1',
 -> CONCAT(YEAR(d),'-',MONTH(d),'-01') + INTERVAL 0 DAY AS
'ISO 2',
 -> FROM_DAYS(TO_DAYS(CONCAT(YEAR(d),'-',MONTH(d),'-01'))) AS
'ISO 3',
 -> STR_TO_DATE(CONCAT(YEAR(d),'-',MONTH(d),'-01'),'%Y-%m-%d')
AS 'ISO 4'
 -> FROM date_val;
+------------+------------+------------+------------+------------
+
| non-ISO | ISO 1 | ISO 2 | ISO 3 | ISO 4
|
+------------+------------+------------+------------+------------
+
| 1864-2-01 | 1864-02-01 | 1864-02-01 | 1864-02-01 | 1864-02-01
|
| 1900-1-01 | 1900-01-01 | 1900-01-01 | 1900-01-01 | 1900-01-01
|
| 1999-12-01 | 1999-12-01 | 1999-12-01 | 1999-12-01 | 1999-12-01

|
| 2000-6-01 | 2000-06-01 | 2000-06-01 | 2000-06-01 | 2000-06-01
|
| 2017-3-01 | 2017-03-01 | 2017-03-01 | 2017-03-01 | 2017-03-01
|
+------------+------------+------------+------------+------------
+

8.19 Selecting Rows Based on Temporal
Characteristics

Problem
You want to select rows based on temporal conditions.

Solution
Use a date or time condition in the WHERE clause. This may be based on
direct comparison of column values with known values. Or it may be
necessary to apply a function to column values to convert them to a more
appropriate form for testing, such as using MONTH() to test the month part
of a date.

Discussion
Most of the preceding date-based techniques were illustrated by example
statements that produce date or time values as output. To place date-based
restrictions on the rows selected by a statement, use the same techniques in
a WHERE clause. For example, you can select rows by looking for values
that occur before or after a given date, within a date range, or that match
particular month or day values.

Comparing dates to one another
The following statements find rows from the date_val table that occur
either before 1900 or during the 1900s:

mysql> SELECT d FROM date_val where d < '1900-01-01';
+------------+
| d |
+------------+
| 1864-02-28 |
+------------+
mysql> SELECT d FROM date_val where d BETWEEN '1900-01-01' AND
'1999-12-31';
+------------+
| d |
+------------+
| 1900-01-15 |
| 1999-12-31 |
+------------+

When you don’t know the exact date needed for a comparison in a WHERE
clause, you can often calculate it using an expression. For example, to
perform an “on this day in history” statement to search for rows in a table
named history to find events occurring exactly 50 years ago, do this:

SELECT * FROM history WHERE d = DATE_SUB(CURDATE(),INTERVAL 50
YEAR);

You see this kind of thing in newspapers that run columns showing what the
news events were in times past. (In essence, the statement identifies those
events that have reached their n-th anniversary.) To retrieve events that
occurred “on this day” for any year rather than “on this date” for a specific
year, the statement is a bit different. In that case, you need to find rows that
match the current calendar day, ignoring the year. That topic is discussed in
“Comparing dates to calendar days”.
Calculated dates are useful for range testing as well. For example, to find
dates that occur later than 20 years ago, use DATE_SUB() to calculate the
cutoff date:

mysql> SELECT d FROM date_val WHERE d >=
DATE_SUB(CURDATE(),INTERVAL 20 YEAR);
+------------+
| d |
+------------+
| 1999-12-31 |
| 2000-06-04 |

| 2017-03-16 |
+------------+

Note that the expression in the WHERE clause isolates the date column d on
one side of the comparison operator. This is usually a good idea; if the
column is indexed, placing it alone on one side of a comparison enables
MySQL to process the statement more efficiently. To illustrate, the
preceding WHERE clause can be written in a way that’s logically equivalent
but much less efficient for MySQL to execute:

WHERE DATE_ADD(d,INTERVAL 20 YEAR) >= CURDATE();

Here, the d column is used within an expression. That means every row
must be retrieved so that the expression can be evaluated and tested, which
makes any index on the column useless.
Sometimes it’s not so obvious how to rewrite a comparison to isolate a date
column on one side. For example, the following WHERE clause uses only
part of the date column in the comparisons:

WHERE YEAR(d) >= 1987 AND YEAR(d) <= 1991;

To rewrite the first comparison, eliminate the YEAR() call, and replace its
right side with a complete date:

WHERE d >= '1987-01-01' AND YEAR(d) <= 1991;

Rewriting the second comparison is a little trickier. You can eliminate the
YEAR() call on the left side, just as with the first expression, but you can’t
just add -01-01 to the year on the right side. That produces the following
result, which is incorrect:

WHERE d >= '1987-01-01' AND d <= '1991-01-01';

That fails because dates from 1991-01-02 to 1991-12-31 fail the test
but should pass. To rewrite the second comparison correctly, do this:

WHERE d >= '1987-01-01' AND d < '1992-01-01';

Another use for calculated dates occurs frequently in applications that
create rows that have a limited lifetime. Such applications must be able to
determine which rows to delete when performing an expiration operation.
You can approach this problem in a couple of ways:

Store a date in each row indicating when it was created. (Do this by
making the column a TIMESTAMP or by setting it to NOW(); see Recipe
8.8 for details.) To perform an expiration operation later, determine
which rows have a creation date that is too old by comparing that date to
the current date. For example, the statement to expire rows that were
created more than n days ago might look like this:

DELETE FROM mytbl WHERE create_date < DATE_SUB(NOW(),INTERVAL
n DAY);

Store an explicit expiration date in each row by calculating the
expiration date with DATE_ADD() when the row is created. For a row
that should expire in n days, do this:

INSERT INTO mytbl (expire_date,...)
VALUES(DATE_ADD(NOW(),INTERVAL n DAY),...);

To perform the expiration operation in this case, compare the expiration
dates to the current date to see which have been reached:

DELETE FROM mytbl WHERE expire_date < NOW();

Comparing times to one another
Comparisons involving times are similar to those involving dates. For
example, to find times in the t1 column that occurred from 9 AM to 2 PM,
use an expression like one of these:

WHERE t1 BETWEEN '09:00:00' AND '14:00:00';
WHERE HOUR(t1) BETWEEN 9 AND 14;

For an indexed TIME column, the first method is more efficient. The
second method has the property that it works not only for TIME columns
but for DATETIME and TIMESTAMP columns as well.

Comparing dates to calendar days
To answer questions about particular days of the year, use calendar-day
testing. The following examples illustrate how to do this in the context of
looking for birthdays:

Who has a birthday today? This requires matching a particular calendar
day, so you extract the month and day but ignore the year when
performing comparisons:

WHERE MONTH(d) = MONTH(CURDATE()) AND DAYOFMONTH(d) =
DAYOFMONTH(CURDATE());

This kind of statement is commonly applied to biographical data to find
lists of actors, politicians, musicians, and so forth who were born on a
particular day of the year.
It’s tempting to use DAYOFYEAR() to solve “on this day” problems
because it results in simpler statements. But DAYOFYEAR() doesn’t
work properly for leap years. The presence of February 29 throws off the
values for days from March through December:
Who has a birthday this month? In this case, it’s necessary to check only
the month:

WHERE MONTH(d) = MONTH(CURDATE());

Who has a birthday next month? The trick here is that you can’t just add
one to the current month to get the month number that qualifying dates
must match. That gives you 13 for dates in December. To make sure that
you get 1 (January), use either of the following techniques:

WHERE MONTH(d) = MONTH(DATE_ADD(CURDATE(),INTERVAL 1 MONTH));
WHERE MONTH(d) = MOD(MONTH(CURDATE()),12)+1;

Chapter 9. Sorting Query
Results

9.0 Introduction
This chapter covers sorting, an extremely important operation for
controlling how MySQL displays results from SELECT statements. To sort
a query result, add an ORDER BY clause to the query. Without such a clause,
MySQL is free to return rows in any order, so sorting helps bring order to
disorder and makes query results easier to examine and understand.
You can sort rows of a query result in several ways:

Using a single column, a combination of columns, or even parts of
columns or expression results
Using ascending or descending order
Using case-sensitive or case-insensitive string comparisons
Using temporal ordering

Several examples in this chapter use the driver_log table, which
contains columns for recording daily mileage logs for a set of truck drivers:

mysql> SELECT * FROM driver_log;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
1	Ben	2014-07-30	152
2	Suzi	2014-07-29	391
3	Henry	2014-07-29	300
4	Henry	2014-07-27	96
5	Ben	2014-07-29	131
6	Henry	2014-07-26	115
7	Suzi	2014-08-02	502
8	Henry	2014-08-01	197
9	Ben	2014-08-02	79
10	Henry	2014-07-30	203
+--------+-------+------------+-------+

Many other examples use the mail table (used in earlier chapters):

mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size FROM
mail;
+---------------------+---------+---------+---------+---------+--
-------+
| t | srcuser | srchost | dstuser | dsthost |
size |
+---------------------+---------+---------+---------+---------+--
-------+
| 2014-05-11 10:15:08 | barb | saturn | tricia | mars |
58274 |
| 2014-05-12 12:48:13 | tricia | mars | gene | venus |
194925 |
| 2014-05-12 15:02:49 | phil | mars | phil | saturn |
1048 |
| 2014-05-12 18:59:18 | barb | saturn | tricia | venus |
271 |
| 2014-05-14 09:31:37 | gene | venus | barb | mars |
2291 |
| 2014-05-14 11:52:17 | phil | mars | tricia | saturn |
5781 |
| 2014-05-14 14:42:21 | barb | venus | barb | venus |
98151 |
| 2014-05-14 17:03:01 | tricia | saturn | phil | venus |
2394482 |
| 2014-05-15 07:17:48 | gene | mars | gene | saturn |
3824 |
| 2014-05-15 08:50:57 | phil | venus | phil | venus |
978 |
| 2014-05-15 10:25:52 | gene | mars | tricia | saturn |
998532 |
| 2014-05-15 17:35:31 | gene | saturn | gene | mars |
3856 |
| 2014-05-16 09:00:28 | gene | venus | barb | mars |
613 |
| 2014-05-16 23:04:19 | phil | venus | barb | venus |
10294 |
| 2014-05-19 12:49:23 | phil | mars | tricia | saturn |
873 |
| 2014-05-19 22:21:51 | gene | saturn | gene | venus |
23992 |
+---------------------+---------+---------+---------+---------+--
-------+

Other tables are used occasionally as well. To create them, use scripts found
in the tables directory of the recipes distribution.

9.1 Using ORDER BY to Sort Query Results

Problem
Rows in a query result don’t appear in the order you want.

Solution
Add an ORDER BY clause to the query to sort its result.

Discussion
The contents of the driver_log and mail tables shown in the chapter
introduction are disorganized and difficult to make sense of. The values in
the id and t columns are in order only by coincidence.

When you select rows, they’re returned from the database in whatever order
the server happens to use. A relational database makes no guarantee about
the order in which it returns rows—unless you tell it how, by adding an
ORDER BY clause to your SELECT statement. Without ORDER BY, you
may find that the retrieval order changes over time as you modify the table
contents. With an ORDER BY clause, MySQL always sorts rows as you
indicate.
ORDER BY has the following general characteristics:

You can sort using one or more column or expression values.
You can sort columns independently in ascending order (the default) or
descending order.
You can refer to sort columns by name or by using an alias.

This recipe shows some basic sorting techniques, such as how to name the
sort columns and specify the sort direction. Recipes later in this chapter
illustrate how to perform more complex sorts. Paradoxically, you can even
use ORDER BY to disorder a result set, which is useful for randomizing the
rows or (in conjunction with LIMIT) for picking a row at random from a
result set (see Recipes 17.7 and 17.8).

The following examples demonstrate how to sort on a single column or
multiple columns and how to sort in ascending or descending order. The
examples select the rows in the driver_log table but sort them in
different orders to demonstrate the effect of the different ORDER BY
clauses.
This query produces a single-column sort using the driver name:

mysql> SELECT * FROM driver_log ORDER BY name;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
1	Ben	2014-07-30	152
9	Ben	2014-08-02	79
5	Ben	2014-07-29	131
8	Henry	2014-08-01	197
6	Henry	2014-07-26	115
4	Henry	2014-07-27	96
3	Henry	2014-07-29	300
10	Henry	2014-07-30	203
7	Suzi	2014-08-02	502
2	Suzi	2014-07-29	391
+--------+-------+------------+-------+

The default sort direction is ascending. To make the direction for an
ascending sort explicit, add ASC after the sorted column’s name:

SELECT * FROM driver_log ORDER BY name ASC;

The opposite (or reverse) of ascending order is descending order, specified
by adding DESC after the sorted column’s name:

mysql> SELECT * FROM driver_log ORDER BY name DESC;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
2	Suzi	2014-07-29	391
7	Suzi	2014-08-02	502
10	Henry	2014-07-30	203
8	Henry	2014-08-01	197
6	Henry	2014-07-26	115
4	Henry	2014-07-27	96
3	Henry	2014-07-29	300
5	Ben	2014-07-29	131

| 9 | Ben | 2014-08-02 | 79 |
| 1 | Ben | 2014-07-30 | 152 |
+--------+-------+------------+-------+

Closely examine the output from the queries just shown and you’ll notice
that although rows are sorted by name, rows for any given name are in no
special order. (The trav_date values aren’t in date order for Henry or
Ben, for example.) That’s because MySQL doesn’t sort something unless
you tell it to:

The overall order of rows returned by a query is indeterminate unless
you specify an ORDER BY clause.

Within a group of rows that sort together based on the values in a given
column, the order of values in other columns is also indeterminate unless
you name them in the ORDER BY clause.

To more fully control output order, specify a multiple-column sort by listing
each column to use for sorting, separated by commas. The following query
sorts in ascending order by name and by trav_date within the rows for
each name:

mysql> SELECT * FROM driver_log ORDER BY name, trav_date;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
5	Ben	2014-07-29	131
1	Ben	2014-07-30	152
9	Ben	2014-08-02	79
6	Henry	2014-07-26	115
4	Henry	2014-07-27	96
3	Henry	2014-07-29	300
10	Henry	2014-07-30	203
8	Henry	2014-08-01	197
2	Suzi	2014-07-29	391
7	Suzi	2014-08-02	502
+--------+-------+------------+-------+

Multiple-column sorts can be descending as well, but DESC must be
specified after each column name to perform a fully descending sort.

Multiple-column ORDER BY clauses can perform mixed-order sorting
where some columns are sorted in ascending order and others in descending
order. The following query sorts by name in descending order, then by
trav_date in ascending order for each name:

mysql> SELECT * FROM driver_log ORDER BY name DESC, trav_date;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
2	Suzi	2014-07-29	391
7	Suzi	2014-08-02	502
6	Henry	2014-07-26	115
4	Henry	2014-07-27	96
3	Henry	2014-07-29	300
10	Henry	2014-07-30	203
8	Henry	2014-08-01	197
5	Ben	2014-07-29	131
1	Ben	2014-07-30	152
9	Ben	2014-08-02	79
+--------+-------+------------+-------+

The ORDER BY clauses in the queries shown thus far refer to the sorted
columns by name. You can also name the columns by using aliases. That is,
if an output column has an alias, you can refer to the alias in the ORDER BY
clause:

mysql> SELECT name, trav_date, miles AS distance FROM driver_log
 -> ORDER BY distance;
+-------+------------+----------+
| name | trav_date | distance |
+-------+------------+----------+
Ben	2014-08-02	79
Henry	2014-07-27	96
Henry	2014-07-26	115
Ben	2014-07-29	131
Ben	2014-07-30	152
Henry	2014-08-01	197
Henry	2014-07-30	203
Henry	2014-07-29	300
Suzi	2014-07-29	391
Suzi	2014-08-02	502
+-------+------------+----------+

9.2 Using Expressions for Sorting

Problem
You want to sort a query result based on values calculated from a column
rather than the values actually stored in the column.

Solution
Put the expression that calculates the values in the ORDER BY clause.

Discussion
One of the mail table columns shows how large each mail message is, in
bytes:

mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size FROM
mail;
+---------------------+---------+---------+---------+---------+--
-------+
| t | srcuser | srchost | dstuser | dsthost |
size |
+---------------------+---------+---------+---------+---------+--
-------+
| 2014-05-11 10:15:08 | barb | saturn | tricia | mars |
58274 |
| 2014-05-12 12:48:13 | tricia | mars | gene | venus |
194925 |
| 2014-05-12 15:02:49 | phil | mars | phil | saturn |
1048 |
| 2014-05-12 18:59:18 | barb | saturn | tricia | venus |
271 |
…

Suppose that you want to retrieve rows for “big” mail messages (defined as
those larger than 50,000 bytes), but you want them to be displayed and
sorted by sizes in terms of kilobytes, not bytes. In this case, the values to
sort are calculated by an expression:

FLOOR((size+1023)/1024)

The +1023 in the FLOOR() expression groups size values to the nearest
upper boundary of the 1,024-byte categories. Without it, the values group
by lower boundaries (for example, a 2,047-byte message is reported as
having a size of 1 kilobyte rather than 2). Recipe 10.13 discusses this
technique in more detail.
To sort by that expression, put it directly in the ORDER BY clause:

mysql> SELECT t, srcuser, FLOOR((size+1023)/1024)
 -> FROM mail WHERE size > 50000
 -> ORDER BY FLOOR((size+1023)/1024);
+---------------------+---------+-------------------------+
| t | srcuser | FLOOR((size+1023)/1024) |
+---------------------+---------+-------------------------+
2014-05-11 10:15:08	barb	57
2014-05-14 14:42:21	barb	96
2014-05-12 12:48:13	tricia	191
2014-05-15 10:25:52	gene	976
2014-05-14 17:03:01	tricia	2339
+---------------------+---------+-------------------------+

Alternatively, if the sorting expression appears in the output column list,
you can alias it there and refer to the alias in the ORDER BY clause:

mysql> SELECT t, srcuser, FLOOR((size+1023)/1024) AS kilobytes
 -> FROM mail WHERE size > 50000
 -> ORDER BY kilobytes;
+---------------------+---------+-----------+
| t | srcuser | kilobytes |
+---------------------+---------+-----------+
2014-05-11 10:15:08	barb	57
2014-05-14 14:42:21	barb	96
2014-05-12 12:48:13	tricia	191
2014-05-15 10:25:52	gene	976
2014-05-14 17:03:01	tricia	2339
+---------------------+---------+-----------+

You might prefer the alias method for several reasons:
It’s easier to write the alias in the ORDER BY clause than to repeat the
(cumbersome) expression.
Without the alias, if you change the expression one place, you must
change it in the other.

The alias may be useful for display purposes, to provide a better column
label. Note how the third column heading is much more meaningful in
the second of the two preceding queries.

9.3 Displaying One Set of Values While
Sorting by Another

Problem
You want to sort a result set using values that don’t appear in the output
column list.

Solution
That’s not a problem. The ORDER BY clause can refer to columns you don’t
display.

Discussion
ORDER BY is not limited to sorting only those columns named in the output
column list. It can sort using values that are “hidden” (that is, not displayed
in the query output). This technique is commonly used when you have
values that can be represented different ways and you want to display one
type of value but sort by another. For example, you may want to display
mail message sizes not in terms of bytes but as strings such as 103K for
103 kilobytes. You can convert a byte count to that kind of value using this
expression:

CONCAT(FLOOR((size+1023)/1024),'K')

However, such values are strings, so they sort lexically, not numerically. If
you use them for sorting, a value such as 96K sorts after 2339K, even
though it represents a smaller number:

mysql> SELECT t, srcuser,
 -> CONCAT(FLOOR((size+1023)/1024),'K') AS size_in_K
 -> FROM mail WHERE size > 50000
 -> ORDER BY size_in_K;
+---------------------+---------+-----------+
| t | srcuser | size_in_K |
+---------------------+---------+-----------+
2014-05-12 12:48:13	tricia	191K
2014-05-14 17:03:01	tricia	2339K
2014-05-11 10:15:08	barb	57K
2014-05-14 14:42:21	barb	96K
2014-05-15 10:25:52	gene	976K
+---------------------+---------+-----------+

To achieve the desired output order, display the string, but use actual
numeric size for sorting:

mysql> SELECT t, srcuser,
 -> CONCAT(FLOOR((size+1023)/1024),'K') AS size_in_K
 -> FROM mail WHERE size > 50000
 -> ORDER BY size;
+---------------------+---------+-----------+
| t | srcuser | size_in_K |
+---------------------+---------+-----------+
2014-05-11 10:15:08	barb	57K
2014-05-14 14:42:21	barb	96K
2014-05-12 12:48:13	tricia	191K
2014-05-15 10:25:52	gene	976K
2014-05-14 17:03:01	tricia	2339K
+---------------------+---------+-----------+

Displaying values as strings but sorting them as numbers helps solve some
otherwise difficult problems. Members of sports teams typically are
assigned a jersey number, which normally you might think should be stored
using a numeric column. Not so fast! Some players like to have a jersey
number of zero (0), and some like double-zero (00). If a team happens to
have players with both numbers, you cannot represent them using a numeric
column because both values will be treated as the same number. To solve
this problem, store jersey numbers as strings:

CREATE TABLE roster
(
 name CHAR(30), # player name
 jersey_num CHAR(3), # jersey number

 PRIMARY KEY(name)
);

Then the jersey numbers will display the same way you enter them, and 0
and 00 will be treated as distinct values. Unfortunately, although
representing numbers as strings solves the problem of distinguishing
between 0 and 00, it introduces a different problem. Suppose that a team
has the following players:

mysql> SELECT name, jersey_num FROM roster;
+-----------+------------+
| name | jersey_num |
+-----------+------------+
Lynne	29
Ella	0
Elizabeth	100
Nancy	00
Jean	8
Sherry	47
+-----------+------------+

Now try to sort the team members by jersey number. If those numbers are
stored as strings, they sort lexically, and lexical order often differs from
numeric order. That’s certainly true for the team in question:

mysql> SELECT name, jersey_num FROM roster ORDER BY jersey_num;
+-----------+------------+
| name | jersey_num |
+-----------+------------+
Ella	0
Nancy	00
Elizabeth	100
Lynne	29
Sherry	47
Jean	8
+-----------+------------+

The values 100 and 8 are out of place, but that’s easily solved: display the
string values and use the numeric values for sorting. To accomplish this,
add zero to the jersey_num values to force a string-to-number
conversion:

mysql> SELECT name, jersey_num FROM roster ORDER BY jersey_num+0;
+-----------+------------+
| name | jersey_num |
+-----------+------------+
Ella	0
Nancy	00
Jean	8
Lynne	29
Sherry	47
Elizabeth	100
+-----------+------------+

WARNING
Note that because this method performs string-to-number conversion it cannot use indexes and
will run slower as the table gets bigger. As an alternative solution, you can create a column that
will hold the result of this calculation and use it in the ORDER BY expression.

The technique of displaying one value but sorting by another is also useful
when you display values composed from multiple columns that don’t sort
the way you want. For example, the mail table lists message senders using
separate srcuser and srchost values. To display message senders from
the mail table as email addresses in srcuser@srchost format with the
username first, construct those values using the following expression:

CONCAT(srcuser,'@',srchost)

However, those values are no good for sorting if you want to treat the
hostname as more significant than the username. Instead, sort the results
using the underlying column values rather than the displayed composite
values:

mysql> SELECT t, CONCAT(srcuser,'@',srchost) AS sender, size
 -> FROM mail WHERE size > 50000
 -> ORDER BY srchost, srcuser;
+---------------------+---------------+---------+
| t | sender | size |
+---------------------+---------------+---------+
| 2014-05-15 10:25:52 | gene@mars | 998532 |
| 2014-05-12 12:48:13 | tricia@mars | 194925 |

2014-05-11 10:15:08	barb@saturn	58274
2014-05-14 17:03:01	tricia@saturn	2394482
2014-05-14 14:42:21	barb@venus	98151
+---------------------+---------------+---------+

The same idea commonly applies to sorting people’s names. Suppose that a
names table contains last and first names. To display rows sorted by last
name first, the query is straightforward when the columns are displayed
separately:

mysql> SELECT last_name, first_name FROM name
 -> ORDER BY last_name, first_name;
+-----------+------------+
| last_name | first_name |
+-----------+------------+
Blue	Vida
Brown	Kevin
Gray	Pete
White	Devon
White	Rondell
+-----------+------------+

If instead you want to display each name as a single string composed of the
first name, a space, and the last name, begin the query like this:

SELECT CONCAT(first_name,' ',last_name) AS full_name FROM name...

But then how do you sort the names so they come out in last-name order?
Display composite names, but refer to the constituent values in the ORDER
BY clause:

mysql> SELECT CONCAT(first_name,' ',last_name) AS full_name
 -> FROM name
 -> ORDER BY last_name, first_name;
+---------------+
| full_name |
+---------------+
| Vida Blue |
| Kevin Brown |
| Pete Gray |
| Devon White |
| Rondell White |
+---------------+

9.4 Controlling Case Sensitivity of String
Sorts

Problem
String-sorting operations are case sensitive when you don’t want them to
be, or vice versa.

Solution
Alter the comparison characteristics of the sorted values.

Discussion
Recipe 7.1 discusses how string-comparison properties depend on whether
the strings are binary or nonbinary:

Binary strings are sequences of bytes. They are compared byte by byte
using numeric byte values. Character set and lettercase have no meaning
for comparisons.
Nonbinary strings are sequences of characters. They have a character set
and collation and are compared character by character using the order
defined by the collation.

These properties also apply to string sorting because sorting is based on
comparison. To alter the sorting properties of a string column, alter its
comparison properties. (For a summary of which string data types are
binary and nonbinary, see Recipe 7.2.)
The examples in this section use a table that has case-insensitive and case-
sensitive nonbinary columns and a binary column:

CREATE TABLE str_val
(
 ci_str CHAR(3) CHARACTER SET utf8mb4 COLLATE
utf8mb4_0900_ai_ci,
 cs_str CHAR(3) CHARACTER SET utf8mb4 COLLATE
utf8mb4_0900_as_cs,

 bin_str BINARY(3)
);

Suppose that the table has these contents:

+--------+--------+---------+
| ci_str | cs_str | bin_str |
+--------+--------+---------+
AAA	AAA	AAA
aaa	aaa	aaa
bbb	bbb	bbb
BBB	BBB	BBB
+--------+--------+---------+

TIP
As of MySLQ 8.0.19, mysql client prints binary data in hexadecimal format:

mysql> select * from str_val;
+--------+--------+------------------+
| ci_str | cs_str | bin_str |
+--------+--------+------------------+
AAA	AAA	0x414141
aaa	aaa	0x616161
bbb	bbb	0x626262
BBB	BBB	0x424242
+--------+--------+------------------+
4 rows in set (0.00 sec)

To print values in ASCII format, start mysql with the --binary-as-hex=0 option.

Each column contains the same values, but the natural sort orders for the
column data types produce three different results:

The case-insensitive collation sorts a and A together, placing them
before b and B. However, for a given letter, it does not necessarily order
one lettercase before another, as shown by the following result:

mysql> SELECT ci_str FROM str_val ORDER BY ci_str;
+--------+
| ci_str |
+--------+

| AAA |
| aaa |
| bbb |
| BBB |
+--------+

The case-sensitive collation puts a and A before b and B and sorts
lowercase before uppercase:

mysql> SELECT cs_str FROM str_val ORDER BY cs_str;
+--------+
| cs_str |
+--------+
| aaa |
| AAA |
| bbb |
| BBB |
+--------+

The binary strings sort numerically. Assuming that uppercase letters
have numeric values less than those of lowercase letters, a binary sort
results in the following ordering:

mysql> SELECT bin_str FROM str_val ORDER BY bin_str;
+---------+
| bin_str |
+---------+
| AAA |
| BBB |
| aaa |
| bbb |
+---------+

You get the same result for a nonbinary string column that has a binary
collation, as long as the column contains single-byte characters (for
example, CHAR(3) CHARACTER SET latin1 COLLATE
latin1_bin). For multibyte characters, a binary collation still
produces a numeric sort, but the character values use multibyte numbers.

To alter the sorting properties of each column, use the techniques described
in Recipe 7.7 for controlling string comparisons:

To sort case-insensitive strings in case-sensitive fashion, order the sorted
values using a case-sensitive collation:

mysql> SELECT ci_str FROM str_val
 -> ORDER BY ci_str COLLATE utf8mb4_0900_as_cs;
+--------+
| ci_str |
+--------+
| aaa |
| AAA |
| bbb |
| BBB |
+--------+

To sort case-sensitive strings in case-insensitive fashion, order the sorted
values using a case-insensitive collation:

mysql> SELECT cs_str FROM str_val
 -> ORDER BY cs_str COLLATE utf8mb4_0900_ai_ci;
+--------+
| cs_str |
+--------+
| AAA |
| aaa |
| bbb |
| BBB |
+--------+

Alternatively, sort using values that have been converted to the same
lettercase, which makes lettercase irrelevant:

mysql> SELECT cs_str FROM str_val
 -> ORDER BY UPPER(cs_str);
+--------+
| cs_str |
+--------+
| AAA |
| aaa |
| bbb |
| BBB |
+--------+

Binary strings sort using numeric byte values, so there is no concept of
lettercase involved. However, because letters in different cases have

different byte values, comparisons of binary strings effectively are case
sensitive. (That is, a and A are unequal.) To sort binary strings using a
case-insensitive ordering, convert them to nonbinary strings and apply
an appropriate collation. For example, to perform a case-insensitive sort,
use a statement like this:

mysql> SELECT bin_str FROM str_val
 -> ORDER BY CONVERT(bin_str USING utf8mb4) COLLATE
utf8mb4_0900_ai_ci;
+---------+
| bin_str |
+---------+
| AAA |
| aaa |
| bbb |
| BBB |
+---------+

If the character-set default collation is case insensitive (as is true for
utf8mb4), you can omit the COLLATE clause.

9.5 Sorting in Temporal Order

Problem
You want to sort rows in temporal order.

Solution
Sort using a date or time column. If some parts of the values are irrelevant
for the sort that you want to accomplish, ignore them.

Discussion
Many database tables include date or time information, and it’s very often
necessary to sort results in temporal order. MySQL knows how to sort
temporal data types, so there’s no special trick to ordering them. The next
few examples use the mail table, which contains a DATETIME column,

but the same sorting principles apply to DATE, TIME, and TIMESTAMP
columns.
Here are the messages sent by phil:

mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size
 -> FROM mail WHERE srcuser = 'phil';
+---------------------+---------+---------+---------+---------+--
-----+
| t | srcuser | srchost | dstuser | dsthost |
size |
+---------------------+---------+---------+---------+---------+--
-----+
| 2014-05-12 15:02:49 | phil | mars | phil | saturn |
1048 |
| 2014-05-14 11:52:17 | phil | mars | tricia | saturn |
5781 |
| 2014-05-15 08:50:57 | phil | venus | phil | venus |
978 |
| 2014-05-16 23:04:19 | phil | venus | barb | venus |
10294 |
| 2014-05-19 12:49:23 | phil | mars | tricia | saturn |
873 |
+---------------------+---------+---------+---------+---------+--
-----+

To display the messages, most recently sent ones first, use ORDER BY with
DESC:

mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size
 -> FROM mail WHERE srcuser = 'phil' ORDER BY t DESC;
+---------------------+---------+---------+---------+---------+--
-----+
| t | srcuser | srchost | dstuser | dsthost |
size |
+---------------------+---------+---------+---------+---------+--
-----+
| 2014-05-19 12:49:23 | phil | mars | tricia | saturn |
873 |
| 2014-05-16 23:04:19 | phil | venus | barb | venus |
10294 |
| 2014-05-15 08:50:57 | phil | venus | phil | venus |
978 |
| 2014-05-14 11:52:17 | phil | mars | tricia | saturn |
5781 |
| 2014-05-12 15:02:49 | phil | mars | phil | saturn |
1048 |

+---------------------+---------+---------+---------+---------+--
-----+

Sometimes a temporal sort uses only part of a date or time column. In that
case, use an expression that extracts the part or parts you need and sort the
result using the expression. Some examples of this are given in the
following discussion.

Sorting by time of day
You can do time-of-day sorting different ways, depending on your column
type. If the values are stored in a TIME column named timecol, just sort
them directly using ORDER BY timecol. To put DATETIME or
TIMESTAMP values in time-of-day order, extract the time parts and sort
them. For example, the mail table contains DATETIME values, which can
be sorted by time of day like this:

mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size FROM
mail ORDER BY TIME(t);
+---------------------+---------+---------+---------+---------+--
-------+
| t | srcuser | srchost | dstuser | dsthost |
size |
+---------------------+---------+---------+---------+---------+--
-------+
| 2014-05-15 07:17:48 | gene | mars | gene | saturn |
3824 |
| 2014-05-15 08:50:57 | phil | venus | phil | venus |
978 |
| 2014-05-16 09:00:28 | gene | venus | barb | mars |
613 |
| 2014-05-14 09:31:37 | gene | venus | barb | mars |
2291 |
| 2014-05-11 10:15:08 | barb | saturn | tricia | mars |
58274 |
| 2014-05-15 10:25:52 | gene | mars | tricia | saturn |
998532 |
| 2014-05-14 11:52:17 | phil | mars | tricia | saturn |
5781 |
| 2014-05-12 12:48:13 | tricia | mars | gene | venus |
194925 |
…

Sorting by calendar day

To sort date values in calendar order, ignore the year part of the dates and
use only the month and day to order values by where they fall during the
calendar year. Suppose that an occasion table looks like this when values
are ordered by date:

mysql> SELECT date, description FROM occasion ORDER BY date;
+------------+-------------------------------------+
| date | description |
+------------+-------------------------------------+
1215-06-15	Signing of the Magna Carta
1732-02-22	George Washington's birthday
1776-07-14	Bastille Day
1789-07-04	US Independence Day
1809-02-12	Abraham Lincoln's birthday
1919-06-28	Signing of the Treaty of Versailles
1944-06-06	D-Day at Normandy Beaches
1957-10-04	Sputnik launch date
1989-11-09	Opening of the Berlin Wall
+------------+-------------------------------------+

To put these items in calendar order, sort them by month and day within
month:

mysql> SELECT date, description FROM occasion
 -> ORDER BY MONTH(date), DAYOFMONTH(date);
+------------+-------------------------------------+
| date | description |
+------------+-------------------------------------+
1809-02-12	Abraham Lincoln's birthday
1732-02-22	George Washington's birthday
1944-06-06	D-Day at Normandy Beaches
1215-06-15	Signing of the Magna Carta
1919-06-28	Signing of the Treaty of Versailles
1789-07-04	US Independence Day
1776-07-14	Bastille Day
1957-10-04	Sputnik launch date
1989-11-09	Opening of the Berlin Wall
+------------+-------------------------------------+

MySQL has a DAYOFYEAR() function that you might suspect would be
useful for calendar-day sorting. However, it can generate the same value for
different calendar days. For example, February 29 of leap years and March
1 of nonleap years have the same day-of-year value:

mysql> SELECT DAYOFYEAR('1996-02-29'), DAYOFYEAR('1997-03-01');
+-------------------------+-------------------------+
| DAYOFYEAR('1996-02-29') | DAYOFYEAR('1997-03-01') |
+-------------------------+-------------------------+
| 60 | 60 |
+-------------------------+-------------------------+

This means that DAYOFYEAR() can group dates that actually occur on
different calendar days.
If a table represents dates using separate year, month, and day columns,
calendar sorting does not require you to extract date parts. Just sort the
relevant columns directly. For large datasets, sorting using separate date-
part columns can be much faster than sorts based on extracting pieces of
DATE values. There’s no overhead for part extraction, but more
importantly, you can index the date-part columns separately—something
not possible with a DATE column. The principle here is that you should
design the table to make it easy to extract or sort by the values that you
expect to use a lot.

Sorting by day of week
Day-of-week sorting is similar to calendar-day sorting, except that you use
different functions to obtain the relevant ordering values.
You can get the day of the week using DAYNAME(), but that produces
strings that sort lexically rather than in day-of-week order (Sunday,
Monday, Tuesday, and so forth). Here the technique of displaying one value
but sorting by another is useful (see Recipe 9.3). Display day names using
DAYNAME(), but sort in day-of-week order using DAYOFWEEK(), which
returns numeric values from 1 to 7 for Sunday through Saturday:

mysql> SELECT DAYNAME(date) AS day, date, description
 -> FROM occasion
 -> ORDER BY DAYOFWEEK(date);
+----------+------------+-------------------------------------+
| day | date | description |
+----------+------------+-------------------------------------+
Sunday	1776-07-14	Bastille Day
Sunday	1809-02-12	Abraham Lincoln's birthday
Monday	1215-06-15	Signing of the Magna Carta

Tuesday	1944-06-06	D-Day at Normandy Beaches
Thursday	1989-11-09	Opening of the Berlin Wall
Friday	1957-10-04	Sputnik launch date
Friday	1732-02-22	George Washington's birthday
Saturday	1789-07-04	US Independence Day
Saturday	1919-06-28	Signing of the Treaty of Versailles
+----------+------------+-------------------------------------+

To sort rows in day-of-week order but treat Monday as the first day of the
week and Sunday as the last, use the modulo operation and the MOD()
function to map Monday to 0, Tuesday to 1, …, Sunday to 6:

mysql> SELECT DAYNAME(date), date, description
 -> FROM occasion
 -> ORDER BY MOD(DAYOFWEEK(date)+5, 7);
+---------------+------------+-----------------------------------
--+
| DAYNAME(date) | date | description
|
+---------------+------------+-----------------------------------
--+
| Monday | 1215-06-15 | Signing of the Magna Carta
|
| Tuesday | 1944-06-06 | D-Day at Normandy Beaches
|
| Thursday | 1989-11-09 | Opening of the Berlin Wall
|
| Friday | 1957-10-04 | Sputnik launch date
|
| Friday | 1732-02-22 | George Washington's birthday
|
| Saturday | 1789-07-04 | US Independence Day
|
| Saturday | 1919-06-28 | Signing of the Treaty of
Versailles |
| Sunday | 1776-07-14 | Bastille Day
|
| Sunday | 1809-02-12 | Abraham Lincoln's birthday
|
+---------------+------------+-----------------------------------
--+

Table 9-1 shows the DAYOFWEEK() expressions for putting any day of the
week first in the sort order.

Table 9-1. Using modulo to properly order

days of a week

Day to list first DAYOFWEEK() expression
Sunday DAYOFWEEK(date)

Monday MOD(DAYOFWEEK(date)+5, 7)

Tuesday MOD(DAYOFWEEK(date)+4, 7)

Wednesday MOD(DAYOFWEEK(date)+3, 7)

Thursday MOD(DAYOFWEEK(date)+2, 7)

Friday MOD(DAYOFWEEK(date)+1, 7)

Saturday MOD(DAYOFWEEK(date)+0, 7)

You can also use WEEKDAY() for day-of-week sorting, although it returns
a different set of values (0 for Monday through 6 for Sunday).

9.6 Sorting by Substrings of Column Values

Problem
You want to sort a set of values using one or more substrings of each value.

Solution
Extract the pieces you want and sort them separately.

Discussion
This is a specific application of sorting by expression value (see Recipe
9.2). To sort rows using just a particular portion of a column’s values,
extract the substring you need and use it in the ORDER BY clause. This is
easiest if the substrings are at a fixed position and length within the column.
For substrings of variable position or length, you can still use them for
sorting if you have a reliable way to identify them. The next several recipes
show how to use substring extraction to produce specialized sort orders.

9.7 Sorting by Fixed-Length Substrings

Problem
You want to sort using parts of a column that occur at a given position
within the column.

Solution
Pull out the parts you need with LEFT(), SUBSTRING() (MID()), or
RIGHT(), and sort them.

Discussion
Suppose that a housewares table catalogs houseware furnishings, each
identified by 10-character ID values consisting of three subparts: a three-
character category abbreviation (such as DIN for “dining room” or KIT for
“kitchen”), a five-digit serial number, and a two-character country code
indicating where the part is manufactured:

mysql> SELECT * FROM housewares;
+------------+------------------+
| id | description |
+------------+------------------+
DIN40672US	dining table
KIT00372UK	garbage disposal
KIT01729JP	microwave oven
BED00038SG	bedside lamp
BTH00485US	shower stall
BTH00415JP	lavatory
+------------+------------------+

This is not necessarily a good way to store complex ID values, and later
we’ll consider how to represent them using separate columns. For now,
assume that the values must be stored as shown.
To sort rows from this table based on the id values, use the entire column
value:

mysql> SELECT * FROM housewares ORDER BY id;
+------------+------------------+
| id | description |
+------------+------------------+
BED00038SG	bedside lamp
BTH00415JP	lavatory
BTH00485US	shower stall
DIN40672US	dining table
KIT00372UK	garbage disposal
KIT01729JP	microwave oven
+------------+------------------+

But you might also have a need to sort on any of the three subparts (for
example, to sort by country of manufacture). For that kind of operation,
functions such as LEFT(), MID(), and RIGHT() are useful to extract id
value components:

mysql> SELECT id,
 -> LEFT(id,3) AS category,
 -> MID(id,4,5) AS serial,
 -> RIGHT(id,2) AS country
 -> FROM housewares;
+------------+----------+--------+---------+
| id | category | serial | country |
+------------+----------+--------+---------+
DIN40672US	DIN	40672	US
KIT00372UK	KIT	00372	UK
KIT01729JP	KIT	01729	JP
BED00038SG	BED	00038	SG
BTH00485US	BTH	00485	US
BTH00415JP	BTH	00415	JP
+------------+----------+--------+---------+

TIP
Function MID() is a synonym of the function SUBSTRING().

Those fixed-length substrings of the id values can be used for sorting,
either alone or in combination. For example, to sort by product category,
extract and use the category in the ORDER BY clause:

mysql> SELECT * FROM housewares ORDER BY LEFT(id,3);
+------------+------------------+
| id | description |
+------------+------------------+
BED00038SG	bedside lamp
BTH00485US	shower stall
BTH00415JP	lavatory
DIN40672US	dining table
KIT00372UK	garbage disposal
KIT01729JP	microwave oven
+------------+------------------+

To sort by product serial number, use MID() to extract the middle five
characters from the id values, beginning with the fourth:

mysql> SELECT * FROM housewares ORDER BY MID(id,4,5);
+------------+------------------+
| id | description |
+------------+------------------+
BED00038SG	bedside lamp
KIT00372UK	garbage disposal
BTH00415JP	lavatory
BTH00485US	shower stall
KIT01729JP	microwave oven
DIN40672US	dining table
+------------+------------------+

This appears to be a numeric sort, but it’s actually a string sort because
MID() returns strings. The lexical and numeric sort order are the same in
this case because the “numbers” have leading zeros to make them all the
same length.
To sort by country code, use the rightmost two characters of the id values
(ORDER BY RIGHT(id,2)).

You can also sort using combinations of substrings, for example, by country
code and serial number within country:

mysql> SELECT * FROM housewares ORDER BY RIGHT(id,2),
MID(id,4,5);
+------------+------------------+
| id | description |
+------------+------------------+
| BTH00415JP | lavatory |
| KIT01729JP | microwave oven |

BED00038SG	bedside lamp
KIT00372UK	garbage disposal
BTH00485US	shower stall
DIN40672US	dining table
+------------+------------------+

The ORDER BY clauses just shown suffice to sort by substrings of the id
values, but if such operations on the table are common, it might be worth
representing houseware IDs differently, for example, using separate
columns for the ID components. This table, housewares2, is like
housewares but uses category, serial, and country columns
generated from the id column:

CREATE TABLE `housewares2` (
 `id` varchar(20) NOT NULL,
 `category` varchar(3) GENERATED ALWAYS AS (left(`id`,3))
STORED,
 `serial` char(5) GENERATED ALWAYS AS (substr(`id`,4,5)) STORED,
 `country` varchar(2) GENERATED ALWAYS AS (right(`id`,2))
STORED,
 `description` varchar(255) DEFAULT NULL,
 PRIMARY KEY (`id`)
);

In this example, we used generated columns that are generated based on the
expressions, defined at the column creation time.
With the ID values split into separate parts, sorting operations are easier to
specify; refer to individual columns directly rather than pulling out
substrings of the original id column. You can also make operations that
sort the serial and country columns more efficient by adding indexes
on those columns:

mysql> SELECT category, serial, country, id
 -> FROM housewares2 ORDER BY category, country, serial;
+----------+--------+---------+------------+
| category | serial | country | id |
+----------+--------+---------+------------+
BED	00038	SG	BED00038SG
BTH	00415	JP	BTH00415JP
BTH	00485	US	BTH00485US
DIN	40672	US	DIN40672US
KIT	01729	JP	KIT01729JP

| KIT | 00372 | UK | KIT00372UK |
+----------+--------+---------+------------+

This example illustrates an important principle: you might think about
values one way (id values as single strings), but you need not necessarily
represent them that way in the database. If an alternative representation
(separate columns) is more efficient or easier to work with, it may well be
worth using—even if you must reformat the underlying columns so they
appear as people expect.

9.8 Sorting by Variable-Length Substrings

Problem
You want to sort using parts of a column that do not occur at a given
position within the column.

Solution
Determine how to identify the parts you need so that you can extract them.

Discussion
If substrings to be used for sorting vary in length, you need a reliable means
of extracting just the part you want. To see how this works, let’s create a
housewares3 table that is like the housewares table used in Recipe
9.7, except that it has no leading zeros in the serial number part of the id
values:

mysql> SELECT * FROM housewares3;
+------------+------------------+
| id | description |
+------------+------------------+
DIN40672US	dining table
KIT372UK	garbage disposal
KIT1729JP	microwave oven
BED38SG	bedside lamp
BTH485US	shower stall

| BTH415JP | lavatory |
+------------+------------------+

The category and country parts of the id values can be extracted and sorted
using LEFT() and RIGHT(), just as for the housewares table. But now
the numeric segments of the values have different lengths and cannot be
extracted and sorted using a simple MID() call. Instead, use its full version
SUBSTRING() to skip the first three characters. Of the remainder
beginning with the fourth character (the first digit), take everything but the
rightmost two columns. One way to do this is as follows:

mysql> SELECT id,
LEFT(SUBSTRING(id,4),CHAR_LENGTH(SUBSTRING(id,4)-2))
 -> FROM housewares3;
+------------+---
---+
| id |
LEFT(SUBSTRING(id,4),CHAR_LENGTH(SUBSTRING(id,4)-2)) |
+------------+---
---+
| DIN40672US | 40672
|
| KIT372UK | 372
|
| KIT1729JP | 1729
|
| BED38SG | 38
|
| BTH485US | 485
|
| BTH415JP | 415
|
+------------+---
---+

But that’s more complex than necessary. The SUBSTRING() function
takes an optional third argument specifying a desired result length, and we
know that the length of the middle part is equal to the length of the string
minus five (three for the characters at the beginning and two for the
characters at the end). The following query demonstrates how to get the
numeric middle part by beginning with the ID and then stripping the
rightmost suffix:

mysql> SELECT id, SUBSTRING(id,4),
SUBSTRING(id,4,CHAR_LENGTH(id)-5)
 -> FROM housewares3;
+------------+-----------------+---------------------------------
--+
| id | SUBSTRING(id,4) |
SUBSTRING(id,4,CHAR_LENGTH(id)-5) |
+------------+-----------------+---------------------------------
--+
| DIN40672US | 40672US | 40672
|
| KIT372UK | 372UK | 372
|
| KIT1729JP | 1729JP | 1729
|
| BED38SG | 38SG | 38
|
| BTH485US | 485US | 485
|
| BTH415JP | 415JP | 415
|
+------------+-----------------+---------------------------------
--+

Unfortunately, although the final expression correctly extracts the numeric
part from the IDs, the resulting values are strings. Consequently, they sort
lexically rather than numerically:

mysql> SELECT * FROM housewares3
 -> ORDER BY SUBSTRING(id,4,CHAR_LENGTH(id)-5);
+------------+------------------+
| id | description |
+------------+------------------+
KIT1729JP	microwave oven
KIT372UK	garbage disposal
BED38SG	bedside lamp
DIN40672US	dining table
BTH415JP	lavatory
BTH485US	shower stall
+------------+------------------+

How to deal with that? One way is to add zero, which tells MySQL to
perform a string-to-number conversion that results in a numeric sort of the
serial number values:

mysql> SELECT * FROM housewares3
 -> ORDER BY SUBSTRING(id,4,CHAR_LENGTH(id)-5)+0;
+------------+------------------+
| id | description |
+------------+------------------+
BED38SG	bedside lamp
KIT372UK	garbage disposal
BTH415JP	lavatory
BTH485US	shower stall
KIT1729JP	microwave oven
DIN40672US	dining table
+------------+------------------+

In the preceding example, the ability to extract variable-length substrings is
based on the different kinds of characters in the middle of the id values,
compared to the characters on the ends (that is, digits versus nondigits). In
other cases, you may be able to use delimiter characters to pull apart
column values. For the next examples, assume a housewares4 table with
id values that look like this:

mysql> SELECT * FROM housewares4;
+---------------+------------------+
| id | description |
+---------------+------------------+
13-478-92-2	dining table
873-48-649-63	garbage disposal
8-4-2-1	microwave oven
97-681-37-66	bedside lamp
27-48-534-2	shower stall
5764-56-89-72	lavatory
+---------------+------------------+

To extract segments from these values, use
SUBSTRING_INDEX(str,c,n). It searches a string, str, for the n-th
occurrence of a given character, c, and returns everything to the left of that
character. For example, the following call returns 13-478:

SUBSTRING_INDEX('13-478-92-2','-',2)

If n is negative, the search for c proceeds from the right and returns the
rightmost string. This call returns 478-92-2:

SUBSTRING_INDEX('13-478-92-2','-',-3)

By combining SUBSTRING_INDEX() calls with positive and negative
indexes, it’s possible to extract successive pieces from each id value:
extract the first n segments of the value and pull off the rightmost one. By
varying n from 1 to 4, we get the successive segments from left to right:

SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',1),'-',-1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',2),'-',-1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',3),'-',-1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',4),'-',-1)

The first of those expressions can be optimized because the inner
SUBSTRING_INDEX() call returns a single-segment string and is
sufficient by itself to return the leftmost id segment:

SUBSTRING_INDEX(id,'-',1)

Another way to obtain substrings is to extract the rightmost n segments of
the value and pull off the first one. Here we vary n from –4 to –1:

SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',-4),'-',1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',-3),'-',1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',-2),'-',1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',-1),'-',1)

Again, an optimization is possible. For the fourth expression, the inner
SUBSTRING_INDEX() call is sufficient to return the final substring:

SUBSTRING_INDEX(id,'-',-1)

These expressions can be difficult to read and understand, and
experimenting with a few to see how they work may be useful. Here is an
example that shows how to get the second and fourth segments from the id
values:

mysql> SELECT
 -> id,

 -> SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',2),'-',-1) AS
segment2,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',4),'-',-1) AS
segment4
 -> FROM housewares4;
+---------------+----------+----------+
| id | segment2 | segment4 |
+---------------+----------+----------+
13-478-92-2	478	2
873-48-649-63	48	63
8-4-2-1	4	1
97-681-37-66	681	66
27-48-534-2	48	2
5764-56-89-72	56	72
+---------------+----------+----------+

To use the substrings for sorting, use the appropriate expressions in the
ORDER BY clause. (Remember to force a string-to-number conversion by
adding zero if you want a numeric rather than lexical sort.) The following
two queries order the results based on the second id segment. The first
sorts lexically, the second numerically:

mysql> SELECT * FROM housewares4
 -> ORDER BY SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',2),'-
',-1);
+---------------+------------------+
| id | description |
+---------------+------------------+
8-4-2-1	microwave oven
13-478-92-2	dining table
873-48-649-63	garbage disposal
27-48-534-2	shower stall
5764-56-89-72	lavatory
97-681-37-66	bedside lamp
+---------------+------------------+
mysql> SELECT * FROM housewares4
 -> ORDER BY SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',2),'-
',-1)+0;
+---------------+------------------+
| id | description |
+---------------+------------------+
8-4-2-1	microwave oven
873-48-649-63	garbage disposal
27-48-534-2	shower stall
5764-56-89-72	lavatory
13-478-92-2	dining table

| 97-681-37-66 | bedside lamp |
+---------------+------------------+

The substring-extraction expressions here are messy, but at least the column
values to which we apply the expressions have a consistent number of
segments. To sort values that have varying numbers of segments, the job
can be more difficult. Recipe 9.9 shows an example illustrating why that is.

9.9 Sorting Hostnames in Domain Order

Problem
You want to sort hostnames in domain order, with the rightmost parts of the
names more significant than the leftmost parts.

Solution
Break apart the names, and sort the pieces from right to left.

Discussion
Hostnames are strings, and therefore their natural sort order is lexical.
However, it’s often desirable to sort hostnames in domain order, where the
rightmost segments of the hostname values are more significant than the
leftmost segments. Suppose that a hostname table contains the following
names:

mysql> SELECT name FROM hostname ORDER BY name;
+--------------------+
| name |
+--------------------+
| dbi.perl.org |
| jakarta.apache.org |
| lists.mysql.com |
| mysql.com |
| svn.php.net |
| www.kitebird.com |
+--------------------+

The preceding query demonstrates the natural lexical sort order of the name
values. That differs from domain order, as Table 9-2 shows.

Table 9-2. Lexical versus domain sort order

Lexical order Domain order
dbi.perl.org www.kitebird.com

jakarta.apache.org mysql.com

lists.mysql.com lists.mysql.com

mysql.com svn.php.net

svn.php.net jakarta.apache.org

www.kitebird.com dbi.perl.org

Producing domain-ordered output is a substring-sorting problem for which
it’s necessary to extract each segment of the names so they can be sorted in
right-to-left fashion. There is also an additional complication if your values
contain different numbers of segments, as our example hostnames do. (Most
of them have three segments, but mysql.com has only two.)

To extract the pieces of the hostnames, begin by using
SUBSTRING_INDEX() in a manner similar to that described previously
in Recipe 9.8. The hostname values have a maximum of three segments,
from which the pieces can be extracted left to right like this:

SUBSTRING_INDEX(SUBSTRING_INDEX(name,'.',-3),'.',1)
SUBSTRING_INDEX(SUBSTRING_INDEX(name,'.',-2),'.',1)
SUBSTRING_INDEX(name,'.',-1)

These expressions work properly as long as all the hostnames have three
components. But if a name has fewer than three, you don’t get the correct
result, as the following query demonstrates:

mysql> SELECT name,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(name,'.',-3),'.',1) AS
leftmost,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(name,'.',-2),'.',1) AS
middle,

 -> SUBSTRING_INDEX(name,'.',-1) AS rightmost
 -> FROM hostname;
+--------------------+----------+----------+-----------+
| name | leftmost | middle | rightmost |
+--------------------+----------+----------+-----------+
svn.php.net	svn	php	net
dbi.perl.org	dbi	perl	org
lists.mysql.com	lists	mysql	com
mysql.com	mysql	mysql	com
jakarta.apache.org	jakarta	apache	org
www.kitebird.com	www	kitebird	com
+--------------------+----------+----------+-----------+

Notice the output for the mysql.com row; it has mysql for the value of
the leftmost column, where it should have an empty string. The
segment-extraction expressions work by pulling off the rightmost n
segments and then returning the leftmost segment of the result. The source
of the problem for mysql.com is that if there aren’t n segments, the
expression simply returns the leftmost segment of however many there are.
To fix this problem, add a sufficient number of periods at the beginning of
the hostname values to guarantee that they have the requisite number of
segments:

mysql> SELECT name,
 ->
SUBSTRING_INDEX(SUBSTRING_INDEX(CONCAT('..',name),'.',-3),'.',1)
 -> AS leftmost,
 ->
SUBSTRING_INDEX(SUBSTRING_INDEX(CONCAT('.',name),'.',-2),'.',1)
 -> AS middle,
 -> SUBSTRING_INDEX(name,'.',-1) AS rightmost
 -> FROM hostname;
+--------------------+----------+----------+-----------+
| name | leftmost | middle | rightmost |
+--------------------+----------+----------+-----------+
svn.php.net	svn	php	net
dbi.perl.org	dbi	perl	org
lists.mysql.com	lists	mysql	com
mysql.com		mysql	com
jakarta.apache.org	jakarta	apache	org
www.kitebird.com	www	kitebird	com
+--------------------+----------+----------+-----------+

That’s pretty ugly. But the expressions do serve to extract the substrings that
are needed for sorting hostname values correctly in right-to-left fashion:

mysql> SELECT name FROM hostname
 -> ORDER BY
 -> SUBSTRING_INDEX(name,'.',-1),
 ->
SUBSTRING_INDEX(SUBSTRING_INDEX(CONCAT('.',name),'.',-2),'.',1),
 ->
SUBSTRING_INDEX(SUBSTRING_INDEX(CONCAT('..',name),'.',-3),'.',1);
+--------------------+
| name |
+--------------------+
| www.kitebird.com |
| mysql.com |
| lists.mysql.com |
| svn.php.net |
| jakarta.apache.org |
| dbi.perl.org |
+--------------------+

If your hostnames have a maximum of four segments rather than three, add
to the ORDER BY clause another SUBSTRING_INDEX() expression that
adds three dots at the beginning of the hostname values.

9.10 Sorting Dotted-Quad IP Values in
Numeric Order

Problem
You want to sort in numeric order strings that represent IP numbers.

Solution
Break apart the strings, and sort the pieces numerically. Or just use
INET_ATON(). Or consider storing the values as numbers instead.

Discussion

If a table contains IP numbers represented as strings in dotted-quad notation
(192.168.1.10), they sort lexically rather than numerically. To produce
a numeric ordering instead, sort them as four-part values with each part
sorted numerically. Or, to be more efficient, represent the IP numbers as 32-
bit unsigned integers, which take less space and can be ordered by a simple
numeric sort. This section shows both methods.
To sort string-valued dotted-quad IP numbers, use a technique similar to
that for sorting hostnames (see Recipe 9.9) but with the following
differences:

Dotted quads always have four segments. There’s no need to add dots to
the value before extracting substrings.
Dotted quads sort left to right. The order of the substrings used in the
ORDER BY clause is opposite to that used for hostname sorting.

The segments of dotted-quad values are numbers. Add zero to each
substring to force a numeric rather than lexical sort.

Suppose that a hostip table has a string-valued ip column containing IP
numbers:

mysql> SELECT ip FROM hostip ORDER BY ip;
+-----------------+
| ip |
+-----------------+
| 127.0.0.1 |
| 192.168.0.10 |
| 192.168.0.2 |
| 192.168.1.10 |
| 192.168.1.2 |
| 21.0.0.1 |
| 255.255.255.255 |
+-----------------+

The preceding query produces output sorted in lexical order. To sort the ip
values numerically, extract each segment and add zero to convert it to a
number like this:

mysql> SELECT ip FROM hostip
 -> ORDER BY

 -> SUBSTRING_INDEX(ip,'.',1)+0,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(ip,'.',-3),'.',1)+0,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(ip,'.',-2),'.',1)+0,
 -> SUBSTRING_INDEX(ip,'.',-1)+0;
+-----------------+
| ip |
+-----------------+
| 21.0.0.1 |
| 127.0.0.1 |
| 192.168.0.2 |
| 192.168.0.10 |
| 192.168.1.2 |
| 192.168.1.10 |
| 255.255.255.255 |
+-----------------+

However, although that ORDER BY clause produces a correct result, it’s
complicated. A simpler solution uses the INET_ATON() function to
convert network addresses in string form to their underlying numeric
values, then sorts those numbers:

mysql> SELECT ip FROM hostip ORDER BY INET_ATON(ip);
+-----------------+
| ip |
+-----------------+
| 21.0.0.1 |
| 127.0.0.1 |
| 192.168.0.2 |
| 192.168.0.10 |
| 192.168.1.2 |
| 192.168.1.10 |
| 255.255.255.255 |
+-----------------+

If you’re tempted to sort by simply adding zero to the ip value and using
ORDER BY on the result, consider the values that kind of string-to-number
conversion actually produces:

mysql> SELECT ip, ip+0 FROM hostip;
+-----------------+---------+
| ip | ip+0 |
+-----------------+---------+
127.0.0.1	127
192.168.0.2	192.168
192.168.0.10	192.168

192.168.1.2	192.168
192.168.1.10	192.168
255.255.255.255	255.255
21.0.0.1	21
+-----------------+---------+
7 rows in set, 7 warnings (0.00 sec)

The conversion retains only as much of each value as can be interpreted as
a valid number (hence the warnings). The remainder becomes unavailable
for sorting purposes, even though it’s required for a correct ordering.
Use of INET_ATON() in the ORDER BY clause is more efficient than six
SUBSTRING_INDEX() calls. Moreover, if you’re storing IP addresses as
numbers rather than as strings, you can avoid performing any conversion at
all when sorting. You gain other benefits as well: numeric IP addresses have
32 bits, so you can use a 4-byte INT UNSIGNED column to store them,
which requires less storage than the string form. Also, if you index the
column, the query optimizer may be able to use the index for certain
queries. For cases requiring display of numeric IP values in dotted-quad
notation, convert them with the INET_NTOA() function.

9.11 Floating Values to the Head or Tail of the
Sort Order

Problem
You want a column to sort the way it normally does, except for a few values
that should appear at the beginning or end of the sort order. For example,
you want to sort a list in lexical order except for certain high-priority values
that should appear first no matter where they fall in the normal sort order.

Solution
Add an initial sort column to the ORDER BY clause that places those few
values where you want them. The remaining sort columns have their usual
effect for the other values.

Discussion
To sort a result set normally except that you want particular values first,
create an additional sort column that is 0 for those values and 1 for
everything else. This enables you to float the values to the head of the
ascending sort order. To put the values at the tail instead, use descending
sort order or store 1 for rows that you want to be in the end of the list and 0
for others.
Suppose that a column contains NULL values:

mysql> SELECT val FROM t;
+------+
| val |
+------+
| 3 |
| 100 |
| NULL |
| NULL |
| 9 |
+------+

Normally, sorting groups the NULL values at the beginning for an ascending
sort:

mysql> SELECT val FROM t ORDER BY val;
+------+
| val |
+------+
| NULL |
| NULL |
| 3 |
| 9 |
| 100 |
+------+

To put them at the end instead, without changing the order of other values,
introduce an extra ORDER BY column that maps NULL values to a higher
value than non-NULL values:

mysql> SELECT val FROM t ORDER BY IF(val IS NULL,1,0), val;
+------+
| val |

+------+
| 3 |
| 9 |
| 100 |
| NULL |
| NULL |
+------+

The IF() expression creates a new column for the sort that is used as the
primary sort value.
For descending sorts, NULL values group at the end. To put them at the
beginning instead, use the same technique but reverse the second and third
arguments of the IF() function to map NULL values to a lower value than
non-NULL values:

IF(val IS NULL,0,1)

The same technique is useful for floating values other than NULL to either
end of the sort order. Suppose that you want to sort mail table messages in
sender/recipient order, but you want to put messages for a particular sender
first. In the real world, the most interesting sender might be postmaster
or root. Those names don’t appear in the table, so let’s use phil as the
name of interest instead:

mysql> SELECT t, srcuser, dstuser, size
 -> FROM mail
 -> ORDER BY IF(srcuser='phil',0,1), srcuser, dstuser;
+---------------------+---------+---------+---------+
| t | srcuser | dstuser | size |
+---------------------+---------+---------+---------+
2014-05-16 23:04:19	phil	barb	10294
2014-05-12 15:02:49	phil	phil	1048
2014-05-15 08:50:57	phil	phil	978
2014-05-14 11:52:17	phil	tricia	5781
2014-05-19 12:49:23	phil	tricia	873
2014-05-14 14:42:21	barb	barb	98151
2014-05-11 10:15:08	barb	tricia	58274
2014-05-12 18:59:18	barb	tricia	271
2014-05-14 09:31:37	gene	barb	2291
2014-05-16 09:00:28	gene	barb	613
2014-05-15 17:35:31	gene	gene	3856
2014-05-15 07:17:48	gene	gene	3824

2014-05-19 22:21:51	gene	gene	23992
2014-05-15 10:25:52	gene	tricia	998532
2014-05-12 12:48:13	tricia	gene	194925
2014-05-14 17:03:01	tricia	phil	2394482
+---------------------+---------+---------+---------+

The value of the extra sort column is 0 for rows in which the srcuser
value is phil, and 1 for all other rows. By making that the most significant
sort column, rows for messages sent by phil float to the top of the output.
(To sink them to the bottom instead, either sort the column in reverse order
using DESC, or reverse the order of the second and third arguments of the
IF() function.)

You can also use this technique for particular conditions, not only specific
values. To put first those rows where people sent messages to themselves,
do this:

mysql> SELECT t, srcuser, dstuser, size
 -> FROM mail
 -> ORDER BY IF(srcuser=dstuser,0,1), srcuser, dstuser;
+---------------------+---------+---------+---------+
| t | srcuser | dstuser | size |
+---------------------+---------+---------+---------+
2014-05-14 14:42:21	barb	barb	98151
2014-05-19 22:21:51	gene	gene	23992
2014-05-15 17:35:31	gene	gene	3856
2014-05-15 07:17:48	gene	gene	3824
2014-05-12 15:02:49	phil	phil	1048
...

If you have a pretty good idea about the contents of your table, it’s
sometimes possible to eliminate the extra sort column. For example,
srcuser is never NULL in the mail table, so the previous query can be
rewritten as follows to use one fewer column in the ORDER BY clause (this
relies on the property that NULL values sort ahead of all non-NULL values):

SELECT t, srcuser, dstuser, size
FROM mail
ORDER BY IF(srcuser=dstuser,NULL,srcuser), dstuser;

9.12 Defining a Custom Sort Order

Problem
You want to sort values in a nonstandard order.

Solution
Use FIELD() to map column values to a sequence that places the values in
the desired order.

Discussion
Recipe 9.11 shows how to make a specific group of rows float to the head
of the sort order. To impose a specific order on all values in a column, use
the FIELD() function to map them to a list of numeric values and use the
numbers for sorting. FIELD() compares its first argument to the following
arguments and returns an integer indicating which one it matches. (This
works best when the column contains a small number of distinct values.)
The following FIELD() call compares value to str1, str2, str3,
and str4 and returns 1, 2, 3, or 4, depending on which of them value is
equal to:

FIELD(value,str1,str2,str3,str4)

If value is NULL or none of the values match, FIELD() returns 0.

You can use FIELD() to sort an arbitrary set of values into any order you
please. For example, to display driver_log rows for Henry, Suzi, and
Ben, in that order, do this:

mysql> SELECT * FROM driver_log
 -> ORDER BY FIELD(name,'Henry','Suzi','Ben');
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
| 10 | Henry | 2014-07-30 | 203 |
| 8 | Henry | 2014-08-01 | 197 |

6	Henry	2014-07-26	115
4	Henry	2014-07-27	96
3	Henry	2014-07-29	300
7	Suzi	2014-08-02	502
2	Suzi	2014-07-29	391
5	Ben	2014-07-29	131
9	Ben	2014-08-02	79
1	Ben	2014-07-30	152
+--------+-------+------------+-------+

9.13 Sorting ENUM Values

Problem
ENUM values don’t sort like other string columns, and you want them to
retrieve results in the order you expect.

Solution
Study how ENUM stores data, and use those properties to your advantage.
You can, for example, define your own sort order for strings stored in the
ENUM column.

Discussion
ENUM is a string data type, but ENUM values are actually stored numerically
with values ordered the same way they are listed in the table definition.
These numeric values affect how enumerations are sorted, which can be
very useful. Suppose that a table named weekday contains an enumeration
column named day that has weekday names as its members:

CREATE TABLE weekday
(
 day ENUM('Sunday','Monday','Tuesday','Wednesday',
 'Thursday','Friday','Saturday')
);

Internally, MySQL defines the enumeration values Sunday through
Saturday in that definition to have numeric values from 1 to 7. To see

this for yourself, create the table using the definition just shown, and then
insert into it a row for each day of the week. To make the insertion order
differ from the sorted order (so that you can see the effect of sorting), add
the days in random order:

mysql> INSERT INTO weekday (day) VALUES('Monday'),('Friday'),
 -> ('Tuesday'), ('Sunday'), ('Thursday'), ('Saturday'),
('Wednesday');

Then select the values, both as strings and as the internal numeric value
(obtain the latter using +0 to force a string-to-number conversion):

mysql> SELECT day, day+0 FROM weekday;
+-----------+-------+
| day | day+0 |
+-----------+-------+
Monday	2
Friday	6
Tuesday	3
Sunday	1
Thursday	5
Saturday	7
Wednesday	4
+-----------+-------+

Notice that because the query includes no ORDER BY clause, the rows are
returned in unsorted order. If you add an ORDER BY day clause, it becomes
apparent that MySQL uses the internal numeric values for sorting:

mysql> SELECT day, day+0 FROM weekday ORDER BY day;
+-----------+-------+
| day | day+0 |
+-----------+-------+
Sunday	1
Monday	2
Tuesday	3
Wednesday	4
Thursday	5
Friday	6
Saturday	7
+-----------+-------+

What about occasions when you want to sort ENUM values in lexical order?
Force them to be treated as strings for sorting using the CAST() function:

mysql> SELECT day, day+0 FROM weekday ORDER BY CAST(day AS CHAR);
+-----------+-------+
| day | day+0 |
+-----------+-------+
Friday	6
Monday	2
Saturday	7
Sunday	1
Thursday	5
Tuesday	3
Wednesday	4
+-----------+-------+

If you always (or nearly always) sort a non-enumeration column in a
specific nonlexical order, consider changing the data type to ENUM, with its
values listed in the desired sort order. To see how this works, create a
color table containing a string column, and populate it with some sample
rows:

mysql> CREATE TABLE color (name CHAR(10), PRIMARY KEY(name));
mysql> INSERT INTO color (name) VALUES ('blue'),('green'),
 -> ('indigo'),('orange'),('red'),('violet'),('yellow');

Sorting by the name column at this point produces lexical order because
the column contains CHAR values:

mysql> SELECT name FROM color ORDER BY name;
+--------+
| name |
+--------+
| blue |
| green |
| indigo |
| orange |
| red |
| violet |
| yellow |
+--------+

Now suppose that you want to sort the column by the order in which colors
occur in the rainbow. (This is “Roy G. Biv” order; successive letters of that
name indicate the first letters of the corresponding color names.) One way
to produce a rainbow sort is to use FIELD():

mysql> SELECT name FROM color
 -> ORDER BY
 ->
FIELD(name,'red','orange','yellow','green','blue','indigo','viole
t');
+--------+
| name |
+--------+
| red |
| orange |
| yellow |
| green |
| blue |
| indigo |
| violet |
+--------+

To accomplish the same end without FIELD(), use ALTER TABLE to
convert the name column to an ENUM that lists the colors in the desired sort
order:

mysql> ALTER TABLE color
 -> MODIFY name
 ->
ENUM('red','orange','yellow','green','blue','indigo','violet');

After converting the table, sorting on the name column produces rainbow
sorting naturally with no special treatment:

mysql> SELECT name FROM color ORDER BY name;
+--------+
| name |
+--------+
| red |
| orange |
| yellow |
| green |
| blue |
| indigo |

| violet |
+--------+

Note that once you switch to the ENUM data type, you will not be able to
insert any value that does not belong to the list. If you need to change the
ENUM definition, for example, by adding a new color, you will have to
perform one more ALTER command.

Chapter 10. Generating
Summaries

10.0 Introduction
Database systems are useful not only for data storage and retrieval, but they
can also summarize your data in more concise forms. Summaries are useful
when you want the overall picture, not the details. They’re more readily
understood than a long list of records. They enable you to answer questions
such as “How many?” or “What is the total?” or “What is the range of
values?” If you run a business, you may want to know how many customers
you have in each state or how much sales volume you generate each month.
The preceding examples include two common summary types: counting
summaries and content summaries. The first (the number of customer
records per state) is a counting summary. The content of each record is
important only for purposes of placing it into the proper group or category
for counting. Such summaries are essentially histograms, where you sort
items into a set of bins and count the number of items in each bin. The
second example (sales volume per month) is a content summary, in which
sales totals are based on sales values in order of items.
Another summary type produces neither counts nor sums but simply a list
of unique values. This is useful if you care which values are present rather
than how many of each there are. To determine the states in which you have
customers, you need a list of the distinct state names contained in the
records, not a list consisting of the state value from every record.
The summary types available to you depend on the nature of your data. A
counting summary can be generated from all kinds of values, whether they
be numbers, strings, or dates. Summaries that produce sums or averages
apply only to numeric values. You can count instances of customer state
names to produce a demographic analysis of your customer base. And

sometimes it makes sense to apply one summary technique to the result of
another. For example, to determine how many states your customers live in,
generate a list of unique customer states, then count them.
Summary operations in MySQL involve the following SQL constructs:

To compute a summary value from a set of individual values, use one of
the functions known as aggregate functions. These are so called because
they operate on aggregates (groups) of values. Aggregate functions
include COUNT(), which counts rows or values in a query result;
MIN() and MAX(), which find smallest and largest values; and SUM()
and AVG(), which produce sums and means of values. These functions
can be used to compute a value for the entire result set, or with a GROUP
BY clause to group rows into subsets and obtain an aggregate value for
each one.
To obtain a list of unique values, use SELECT DISTINCT rather than
SELECT.

To count unique values, use COUNT(DISTINCT) rather than
COUNT().

The recipes in this chapter first illustrate basic summary techniques and
then show how to perform more complex summary operations. You’ll find
additional examples of summary methods in later chapters, particularly
those that cover joins and statistical operations. (See Chapters 16 and 17.)
Summary queries sometimes involve complex expressions. For summaries
that you execute often, keep in mind that views can make queries easier to
use. Recipe 5.7 demonstrates the basic technique of creating a view. Recipe
10.5 shows how it applies to summary simplification, and you’ll easily see
how it can be used in later sections of the chapter as well.
The primary tables used for examples in this chapter are the driver_log
and mail tables. These were also used in Chapter 9, so they should look
familiar. A third table used throughout the chapter is states, which has
rows containing a few columns of information for each of the United States:

mysql> SELECT * FROM states ORDER BY name;
+----------------+--------+------------+----------+
| name | abbrev | statehood | pop |
+----------------+--------+------------+----------+
Alabama	AL	1819-12-14	5039877
Alaska	AK	1959-01-03	732673
Arizona	AZ	1912-02-14	7276316
Arkansas	AR	1836-06-15	3025891
California	CA	1850-09-09	39237836
Colorado	CO	1876-08-01	5812069
Connecticut	CT	1788-01-09	3605597
…

The name and abbrev columns list the full state name and the
corresponding abbreviation. The statehood column indicates the day on
which the state entered the Union. pop is the state population from the
2010 census, as reported by the US Census Bureau.
This chapter uses other tables occasionally as well. You can create them
with scripts found in the tables directory of the recipes distribution.
Recipe 7.15 describes the reviews table.

10.1 Summarizing with COUNT()

Problem
You want to count the number of rows in an entire table or that match
particular conditions.

Solution
Use the COUNT() function.

Discussion
The COUNT() function calculates number of rows. For example, to display
the rows in a table, use a SELECT * statement, but to count them instead,
use SELECT COUNT(*). Without a WHERE clause, the statement counts

all the rows in the table, such as in the following statement that shows how
many rows the driver_log table contains:

mysql> SELECT COUNT(*) FROM driver_log;
+----------+
| COUNT(*) |
+----------+
| 10 |
+----------+

If you don’t know how many US states there are (perhaps you think there
are 57?), this statement tells you:

mysql> SELECT COUNT(*) FROM states;
+----------+
| COUNT(*) |
+----------+
| 50 |
+----------+

COUNT(*) without a WHERE clause performs a full table scan unless the
storage engine optimized this function. For MyISAM tables that store the
exact number of rows, this is very quick. For InnoDB tables that scan all
entries in the primary key to perform COUNT(*), you may want to avoid
using this function because it can be slow for large tables. If an approximate
row count is good enough, avoid a full scan by extracting the
TABLE_ROWS value from the INFORMATION_SCHEMA database:

SELECT TABLE_ROWS FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'states';

To count only the number of rows that match certain conditions, include an
appropriate WHERE clause in a SELECT COUNT(*) statement. The
conditions can be chosen to make COUNT(*) useful for answering many
kinds of questions:

How many times did drivers travel more than 200 miles in a day?

mysql> SELECT COUNT(*) FROM driver_log WHERE miles > 200;
+----------+

| COUNT(*) |
+----------+
| 4 |
+----------+

How many days did Suzi drive?

mysql> SELECT COUNT(*) FROM driver_log WHERE name = 'Suzi';
+----------+
| COUNT(*) |
+----------+
| 2 |
+----------+

How many of the United States joined the Union in the 19th century?

mysql> SELECT COUNT(*) FROM states
 -> WHERE statehood BETWEEN '1800-01-01' AND '1899-12-31';
+----------+
| COUNT(*) |
+----------+
| 29 |
+----------+

The COUNT() function actually has two forms. The form we’ve been
using, COUNT(*), counts rows. The other form, COUNT(expr), takes a
column name or expression argument and counts the number of non-NULL
values. The following statement shows how to produce both a row count for
a table and a count of the number of non-NULL values in one of its
columns:

SELECT COUNT(*), COUNT(mycol) FROM mytbl;

The fact that COUNT(expr) doesn’t count NULL values is useful for
producing multiple counts from the same set of rows. To count the number
of Saturday and Sunday trips in the driver_log table with a single
statement, do this:

mysql> SELECT
 -> COUNT(IF(DAYOFWEEK(trav_date)=7,1,NULL)) AS 'Saturday
trips',

 -> COUNT(IF(DAYOFWEEK(trav_date)=1,1,NULL)) AS 'Sunday trips'
 -> FROM driver_log;
+----------------+--------------+
| Saturday trips | Sunday trips |
+----------------+--------------+
| 3 | 1 |
+----------------+--------------+

Or to count weekend versus weekday trips, do this:

mysql> SELECT
 -> COUNT(IF(DAYOFWEEK(trav_date) IN (1,7),1,NULL)) AS
'weekend trips',
 -> COUNT(IF(DAYOFWEEK(trav_date) IN (1,7),NULL,1)) AS
'weekday trips'
 -> FROM driver_log;
+---------------+---------------+
| weekend trips | weekday trips |
+---------------+---------------+
| 4 | 6 |
+---------------+---------------+

The IF() expressions determine, for each column value, whether it should
be counted. If so, the expression evaluates to 1 and COUNT() counts it. If
not, the expression evaluates to NULL and COUNT() ignores it. The effect
is to count the number of values that satisfy the condition given as the first
argument to IF().

TIP
The COUNT() function calculates the number of elements, so you can replace 1 with any other
value. The result will be the same.

See Also
For further discussion on the difference between COUNT(*) and
COUNT(expr), see Recipe 10.9.

10.2 Summarizing with MIN() and MAX()

Problem
You want to find the smallest or the largest values in the dataset.

Solution
Use the MIN() and MAX() functions correspondingly.

Discussion
Finding the smallest or largest values in a dataset is somewhat akin to
sorting, except that instead of producing an entire set of sorted values, you
select only a single value at one end or the other of the sorted range. This
operation applies to questions about smallest, largest, oldest, newest, most
expensive, least expensive, and so forth. One way to find such values is to
use the MIN() and MAX() functions. (Another way is to use LIMIT; see
Recipe 5.9.)
Because MIN() and MAX() determine the extreme values in a set, they’re
useful for characterizing ranges:

What date range is represented by the rows in the mail table? What are
the smallest and largest messages sent?

mysql> SELECT
 -> MIN(t) AS earliest, MAX(t) AS latest,
 -> MIN(size) AS smallest, MAX(size) AS largest
 -> FROM mail;
+---------------------+---------------------+----------+------
---+
| earliest | latest | smallest |
largest |
+---------------------+---------------------+----------+------
---+
| 2014-05-11 10:15:08 | 2014-05-19 22:21:51 | 271 |
2394482 |
+---------------------+---------------------+----------+------
---+

What are the smallest and largest US state populations?

mysql> SELECT MIN(pop) AS 'fewest people', MAX(pop) AS 'most
people'
 -> FROM states;
+---------------+-------------+
| fewest people | most people |
+---------------+-------------+
| 578803 | 39237836 |
+---------------+-------------+

What are the first and last state names, lexically speaking? What is the
length of the shortest and longest names?

mysql> SELECT
 -> MIN(name) AS first,
 -> MAX(name) AS last,
 -> MIN(CHAR_LENGTH(name)) AS shortest,
 -> MAX(CHAR_LENGTH(name)) AS longest
 -> FROM states;
+---------+---------+----------+---------+
| first | last | shortest | longest |
+---------+---------+----------+---------+
| Alabama | Wyoming | 4 | 14 |
+---------+---------+----------+---------+

The final query illustrates that MIN() and MAX() need not be applied
directly to column values; they’re also useful for expressions or values
derived from column values.

10.3 Summarizing with SUM() and AVG()

Problem
You want to calculate the total or average (mean) of a set of values.

Solution
Use the SUM() and AVG() functions.

Discussion

SUM() and AVG() produce the total and average (mean) of a set of values:

What is the total amount of mail traffic in bytes and the average size of
each message?

mysql> SELECT
 -> SUM(size) AS 'total traffic',
 -> AVG(size) AS 'average message size'
 -> FROM mail;
+---------------+----------------------+
| total traffic | average message size |
+---------------+----------------------+
| 3798185 | 237386.5625 |
+---------------+----------------------+

How many miles did the drivers in the driver_log table travel? What
was the average number of miles traveled per day?

mysql> SELECT
 -> SUM(miles) AS 'total miles',
 -> AVG(miles) AS 'average miles/day'
 -> FROM driver_log;
+-------------+-------------------+
| total miles | average miles/day |
+-------------+-------------------+
| 2166 | 216.6000 |
+-------------+-------------------+

What is the total population of the United States?

mysql> SELECT SUM(pop) FROM states;
+-----------+
| SUM(pop) |
+-----------+
| 331223695 |
+-----------+

The value represents the population reported for the 2021 census.
SUM() and AVG() are numeric functions, so they can’t be used with
strings or temporal values. But sometimes you can convert nonnumeric
values to useful numeric forms. Suppose that a table stores TIME values
that represent elapsed time:

mysql> SELECT t1 FROM time_val;
+----------+
| t1 |
+----------+
| 15:00:00 |
| 05:01:30 |
| 12:30:20 |
+----------+

To compute the total elapsed time, use TIME_TO_SEC() to convert the
values to seconds before summing them. The resulting sum is also in
seconds; pass it to SEC_TO_TIME() to convert it back to TIME format:

mysql> SELECT SUM(TIME_TO_SEC(t1)) AS 'total seconds',
 -> SEC_TO_TIME(SUM(TIME_TO_SEC(t1))) AS 'total time'
 -> FROM time_val;
+---------------+------------+
| total seconds | total time |
+---------------+------------+
| 117110 | 32:31:50 |
+---------------+------------+

See Also
The SUM() and AVG() functions are especially useful in statistical
applications. They’re explored further in Chapter 17, along with STD(), a
related function that calculates standard deviations.

10.4 Using DISTINCT to Eliminate Duplicates

Problem
You want to skip duplicate values when performing calculations.

Solution
Use the keyword DISTINCT.

Discussion

A summary operation that uses no aggregate functions is determining the
unique values or rows in a dataset. Do this with DISTINCT (or
DISTINCTROW, a synonym). DISTINCT boils down a query result and
often is combined with ORDER BY to place values in more meaningful
order. This query lists in lexical order the drivers named in the
driver_log table:

mysql> SELECT DISTINCT name FROM driver_log ORDER BY name;
+-------+
| name |
+-------+
| Ben |
| Henry |
| Suzi |
+-------+

Without DISTINCT, the statement produces the same names but is not
nearly as easy to understand, even with a small dataset:

mysql> SELECT name FROM driver_log ORDER BY NAME;
+-------+
| name |
+-------+
| Ben |
| Ben |
| Ben |
| Henry |
| Henry |
| Henry |
| Henry |
| Henry |
| Suzi |
| Suzi |
+-------+

To determine the number of different drivers, use COUNT(DISTINCT):

mysql> SELECT COUNT(DISTINCT name) FROM driver_log;
+----------------------+
| COUNT(DISTINCT name) |
+----------------------+
| 3 |
+----------------------+

COUNT(DISTINCT) ignores NULL values. To count NULL as one of the
values in the set if it’s present, use one of the following expressions:

COUNT(DISTINCT val) + IF(COUNT(IF(val IS NULL,1,NULL))=0,0,1)
COUNT(DISTINCT val) + IF(SUM(ISNULL(val))=0,0,1)
COUNT(DISTINCT val) + (SUM(ISNULL(val))<>0);

In this example, we first calculate the number of distinct NOT NULL
values, then add 1 if the sum of NULL values is greater than zero.

DISTINCT queries are often useful in conjunction with aggregate
functions to more fully characterize your data. Suppose that a customer
table contains a state column indicating customer location. Applying
COUNT(*) to the customer table indicates how many customers you
have, using DISTINCT on the state column tells you the number of
states in which you have customers, and COUNT(DISTINCT) on the
state column tells you how many states your customer base represents.

When used with multiple columns, DISTINCT shows the different
combinations of values in the columns, and COUNT(DISTINCT) counts
the number of combinations. The following statements show the different
sender/recipient pairs in the mail table and the number of such pairs:

mysql> SELECT DISTINCT srcuser, dstuser FROM mail
 -> ORDER BY srcuser, dstuser;
+---------+---------+
| srcuser | dstuser |
+---------+---------+
barb	barb
barb	tricia
gene	barb
gene	gene
gene	tricia
phil	barb
phil	phil
phil	tricia
tricia	gene
tricia	phil
+---------+---------+	
mysql> SELECT COUNT(DISTINCT srcuser, dstuser) FROM mail;	
+----------------------------------+	
COUNT(DISTINCT srcuser, dstuser)	

+----------------------------------+
| 10 |
+----------------------------------+

10.5 Creating a View to Simplify Using a
Summary

Problem
You want to make it easier to perform a summary.

Solution
Create a view that does it for you.

Discussion
If you often need a given summary, a technique that enables you to avoid
typing the summarizing expressions repeatedly is to use a view (see Recipe
5.7). For example, the following view implements the weekend versus
weekday trip summary discussed in Recipe 10.1:

mysql> CREATE VIEW trip_summary_view AS
 -> SELECT
 -> COUNT(IF(DAYOFWEEK(trav_date) IN (1,7),1,NULL)) AS
weekend_trips,
 -> COUNT(IF(DAYOFWEEK(trav_date) IN (1,7),NULL,1)) AS
weekday_trips
 -> FROM driver_log;

Selecting from this view is much easier than selecting directly from the
underlying table:

mysql> SELECT * FROM trip_summary_view;
+---------------+---------------+
| weekend_trips | weekday_trips |
+---------------+---------------+
| 4 | 6 |
+---------------+---------------+

10.6 Finding Values Associated with
Minimum and Maximum Values

Problem
You want to know the values for other columns in the row that contains a
minimum or maximum value.

Solution
Use two statements and a user-defined variable. Or a subquery. Or a join.
Or a CTE.

Discussion
MIN() and MAX() find an endpoint of a range of values, but you may also
be interested in other values from the row in which the value occurs. For
example, you can find the largest state population like this:

mysql> SELECT MAX(pop) FROM states;
+----------+
| MAX(pop) |
+----------+
| 39237836 |
+----------+

But that doesn’t show you which state has this population. The obvious
attempt at getting that information looks like this:

mysql> SELECT MAX(pop), name FROM states WHERE pop = MAX(pop);
ERROR 1111 (HY000): Invalid use of group function

Probably everyone tries something like that sooner or later, but it doesn’t
work. Aggregate functions such as MIN() and MAX() cannot be used in
WHERE clauses, which require expressions that apply to individual rows.
The intent of the statement is to determine which row has the maximum
population value and display the associated state name. The problem is that

although you and I know perfectly well what we mean by writing such a
thing, it makes no sense at all in SQL. The statement fails because SQL
uses the WHERE clause to determine which rows to select, but the value of
an aggregate function is known only after selecting the rows from which
the function’s value is determined! So, in a sense, the statement is self-
contradictory. To solve this problem, save the maximum population value in
a user-defined variable, then compare rows to the variable value:

mysql> SET @max = (SELECT MAX(pop) FROM states);
mysql> SELECT pop AS 'highest population', name FROM states WHERE
pop = @max;
+--------------------+------------+
| highest population | name |
+--------------------+------------+
| 39237836 | California |
+--------------------+------------+

Alternatively, for a single-statement solution, use a subquery in the WHERE
clause that returns the maximum population value:

SELECT pop AS 'highest population', name FROM states
WHERE pop = (SELECT MAX(pop) FROM states);

This technique also works even if the minimum or maximum value itself
isn’t actually contained in the row but is only derived from it. To determine
the length of the shortest review in the sample Amazon reviews data, do
this:

mysql> SELECT MAX(CHAR_LENGTH(reviews_virtual)) FROM reviews;
+-----------------------------------+
| MIN(CHAR_LENGTH(reviews_virtual)) |
+-----------------------------------+
| 2 |
+-----------------------------------+

If you want to know “Which review is that?” do this instead:

mysql> SELECT JSON_EXTRACT(appliances_review, "$. reviewTime") as
ReviewTime,
 -> JSON_EXTRACT(appliances_review, "$.reviewerID") as

ReviewerID,
 -> JSON_EXTRACT(appliances_review, "$.asin") as ProductID
 -> JSON_EXTRACT(appliances_review, "$.overall") as Rating
FROM
 -> reviews WHERE CHAR_LENGTH(reviews_virtual) =
 -> (SELECT MIN(CHAR_LENGTH(reviews_virtual)) FROM reviews);
+---------------+-------------------+--------------+--------+
| ReviewTime | ReviewerID | ProductID | Rating |
+---------------+-------------------+--------------+--------+
"03 8, 2015"	"A3B1B4E184FSUZ"	"B000VL060M"	5.0
"03 8, 2015"	"A3B1B4E184FSUZ"	"B0015UGPWQ"	5.0
"03 8, 2015"	"A3B1B4E184FSUZ"	"B000VL060M"	5.0
"03 8, 2015"	"A3B1B4E184FSUZ"	"B0015UGPWQ"	5.0
"02 9, 2015"	"A3B1B4E184FSUZ"	"B0042U16YI"	5.0
"07 25, 2016"	"AJPRN1TD1A0SD"	"B00BIZDI0A"	3.0
+---------------+-------------------+--------------+--------+

Yet another way to select other columns from rows containing a minimum
or maximum value is to use a join. Select the value into another table, then
join it to the original table to select the row that matches the value. To find
the row for the state with the highest population, use a join like this:

mysql> CREATE TEMPORARY TABLE tmp SELECT MAX(pop) as maxpop FROM
states;
mysql> SELECT states.* FROM states INNER JOIN tmp
 -> ON states.pop = tmp.maxpop;
+------------+--------+------------+----------+
| name | abbrev | statehood | pop |
+------------+--------+------------+----------+
| California | CA | 1850-09-09 | 39237836 |
+------------+--------+------------+----------+

As of MySQL 8.0, you can use Common Table Expressions (CTEs) to
perform the same search:

mysql> WITH maxpop
 -> AS (SELECT MAX(pop) as maxpop FROM states)
 -> SELECT states.* FROM states
 -> JOIN maxpop ON states.pop = maxpop.maxpop;
+------------+--------+------------+----------+
| name | abbrev | statehood | pop |
+------------+--------+------------+----------+
| California | CA | 1850-09-09 | 39237836 |
+------------+--------+------------+----------+
1 row in set (0.00 sec)

The preceding code snippets use the same idea: create a temporary table to
store the maximum population number and join it with the original table.
But the latter performs this operation in the single query, so you don’t need
to worry about destroying the temporary table after getting the result. We
discuss CTEs in detail in Recipe 10.18.

See Also
Recipe 16.7 extends the discussion here to the problem of finding rows that
contain minimum or maximum values for multiple groups in a dataset.

10.7 Controlling String Case Sensitivity for
MIN() and MAX()

Problem
MIN() and MAX() select strings in case-sensitive fashion when you don’t
want them to, or vice versa.

Solution
Use different comparison characteristics of the strings.

Discussion
Recipe 7.1 discusses how string-comparison properties depend on whether
the strings are binary or nonbinary:

Binary strings are sequences of bytes. They are compared byte by byte
using numeric byte values. Character set and lettercase have no meaning
for comparisons.
Nonbinary strings are sequences of characters. They have a character set
and collation and are compared character by character using the order
defined by the collation.

These properties also apply to string columns used as the argument to the
MIN() or MAX() function because they are based on comparison. To alter
how these functions work with a string column, alter the column’s
comparison properties. Recipe 7.7 discusses how to control these
properties, and Recipe 9.4 shows how they apply to string sorts. The same
principles apply to finding minimum and maximum string values, so we’ll
just summarize here; read Recipe 9.4 for additional details.

To compare case-insensitive strings in case-sensitive fashion, order the
values using a case-sensitive collation:

SELECT
MIN(str_col COLLATE utf8mb4_0900_as_cs) AS min,
MAX(str_col COLLATE utf8mb4_0900_as_cs) AS max
FROM tbl;

To compare case-sensitive strings in case-insensitive fashion, order the
values using a case-insensitive collation:

SELECT
MIN(str_col COLLATE utf8mb4_0900_ai_ci) AS min,
MAX(str_col COLLATE utf8mb4_0900_ai_ci) AS max
FROM tbl;

Another possibility is to compare values that have all been converted to
the same lettercase, which makes lettercase irrelevant. However, that
also changes the retrieved values:

SELECT
MIN(UPPER(str_col)) AS min,
MAX(UPPER(str_col)) AS max
FROM tbl;

Binary strings compare using numeric byte values, so there is no concept
of lettercase involved. However, because letters in different cases have
different byte values, comparisons of binary strings effectively are case
sensitive (that is, a and A are unequal). To compare binary strings using
a case-insensitive ordering, convert them to nonbinary strings and apply
an appropriate collation:

SELECT
MIN(CONVERT(str_col USING utf8mb4) COLLATE utf8mb4_0900_ai_ci)
AS min,
MAX(CONVERT(str_col USING utf8mb4) COLLATE utf8mb4_0900_ai_ci)
AS max
FROM tbl;

If the default collation is case insensitive (as is true for utf8mb4), you
can omit the COLLATE clause.

10.8 Dividing a Summary into Subgroups

Problem
You want a summary for each subgroup of a set of rows, not an overall
summary value.

Solution
Use a GROUP BY clause to arrange rows into groups.

Discussion
The summary statements shown so far calculate summary values over all
rows in the result set. For example, the following statement determines the
number of records in the mail table, and thus the total number of mail
messages sent:

mysql> SELECT COUNT(*) FROM mail;
+----------+
| COUNT(*) |
+----------+
| 16 |
+----------+

To arrange a set of rows into subgroups and summarize each group, use
aggregate functions in conjunction with a GROUP BY clause. To determine

the number of messages per sender, group the rows by sender name, count
how many times each name occurs, and display the names with the counts:

mysql> SELECT srcuser, COUNT(*) FROM mail GROUP BY srcuser;
+---------+----------+
| srcuser | COUNT(*) |
+---------+----------+
barb	3
gene	6
phil	5
tricia	2
+---------+----------+

That query summarizes the same column that is used for grouping
(srcuser), but that’s not always necessary. Suppose that you want a quick
characterization of the mail table, showing for each sender listed in it the
total amount of traffic sent (in bytes) and the average number of bytes per
message. In this case, you still use the srcuser column to group the rows
but summarize the size values:

mysql> SELECT srcuser,
 -> SUM(size) AS 'total bytes',
 -> AVG(size) AS 'bytes per message'
 -> FROM mail GROUP BY srcuser;
+---------+-------------+-------------------+
| srcuser | total bytes | bytes per message |
+---------+-------------+-------------------+
barb	156696	52232.0000
gene	1033108	172184.6667
phil	18974	3794.8000
tricia	2589407	1294703.5000
+---------+-------------+-------------------+

Use as many grouping columns as necessary to achieve a grouping as fine-
grained as you require. The earlier query that shows the number of
messages per sender is a coarse summary. To be more specific and find out
how many messages each sender sent from each host, use two grouping
columns. This produces a result with nested groups (groups within groups):

mysql> SELECT srcuser, srchost, COUNT(srcuser) FROM mail
 -> GROUP BY srcuser, srchost;
+---------+---------+----------------+

| srcuser | srchost | COUNT(srcuser) |
+---------+---------+----------------+
barb	saturn	2
barb	venus	1
gene	mars	2
gene	saturn	2
gene	venus	2
phil	mars	3
phil	venus	2
tricia	mars	1
tricia	saturn	1
+---------+---------+----------------+

The preceding examples in this section used COUNT(), SUM(), and
AVG() for per-group summaries. You can use MIN() or MAX(), too. With
a GROUP BY clause, they return the smallest or largest value per group. The
following query groups mail table rows by message sender, displaying for
each the size of the largest message sent and the date of the most recent
message:

mysql> SELECT srcuser, MAX(size), MAX(t) FROM mail GROUP BY
srcuser;
+---------+-----------+---------------------+
| srcuser | MAX(size) | MAX(t) |
+---------+-----------+---------------------+
barb	98151	2014-05-14 14:42:21
gene	998532	2014-05-19 22:21:51
phil	10294	2014-05-19 12:49:23
tricia	2394482	2014-05-14 17:03:01
+---------+-----------+---------------------+

You can group by multiple columns and display a maximum for each
combination of values in those columns. This query finds the size of the
largest message sent between each pair of sender and recipient values listed
in the mail table:

mysql> SELECT srcuser, dstuser, MAX(size) FROM mail GROUP BY
srcuser, dstuser;
+---------+---------+-----------+
| srcuser | dstuser | MAX(size) |
+---------+---------+-----------+
| barb | barb | 98151 |
| barb | tricia | 58274 |

gene	barb	2291
gene	gene	23992
gene	tricia	998532
phil	barb	10294
phil	phil	1048
phil	tricia	5781
tricia	gene	194925
tricia	phil	2394482
+---------+---------+-----------+

When using aggregate functions to produce per-group summary values,
watch out for the following trap, which involves selecting nonsummary
table columns not related to the grouping columns. Suppose that you want
to know the longest trip per driver in the driver_log table:

mysql> SELECT name, MAX(miles) AS 'longest trip'
 -> FROM driver_log GROUP BY name;
+-------+--------------+
| name | longest trip |
+-------+--------------+
Ben	152
Henry	300
Suzi	502
+-------+--------------+

But what if you also want to show the date on which each driver’s longest
trip occurred? Can you just add trav_date to the output column list?
Sorry, that doesn’t work:

mysql> SELECT name, trav_date, MAX(miles) AS 'longest trip'
 -> FROM driver_log GROUP BY name;
+-------+------------+--------------+
| name | trav_date | longest trip |
+-------+------------+--------------+
Ben	2014-07-30	152
Henry	2014-07-29	300
Suzi	2014-07-29	502
+-------+------------+--------------+

The query does produce a result, but if you compare it to the full table
(shown here), you’ll see that although the dates for Ben and Henry are
correct, the date for Suzi is not:

+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
| 1 | Ben | 2014-07-30 | 152 | ← Ben's longest trip
| 2 | Suzi | 2014-07-29 | 391 |
| 3 | Henry | 2014-07-29 | 300 | ← Henry's longest trip
4	Henry	2014-07-27	96
5	Ben	2014-07-29	131
6	Henry	2014-07-26	115
7	Suzi	2014-08-02	502
8	Henry	2014-08-01	197
9	Ben	2014-08-02	79
10	Henry	2014-07-30	203
+--------+-------+------------+-------+

So what’s going on? Why does the summary statement produce incorrect
results? This happens because when you include a GROUP BY clause in a
query, the only values that you can meaningfully select are the grouping
columns or summary values calculated from the groups. If you display
additional table columns, they’re not tied to the grouped columns, and the
values displayed for them are indeterminate. (For the statement just shown,
it appears that MySQL may simply be picking the first date for each driver,
regardless of whether it matches the driver’s maximum mileage value.)
To make queries that pick indeterminate values illegal so that you won’t
inadvertently suppose that the trav_date values are correct, set the
ONLY_FULL_GROUP_BY SQL mode:

mysql> SET sql_mode = 'ONLY_FULL_GROUP_BY';
mysql> SELECT name, trav_date, MAX(miles) AS 'longest trip'
 -> FROM driver_log GROUP BY name;
ERROR 1055 (42000): 'cookbook.driver_log.trav_date' isn't in
GROUP BY

The ONLY_FULL_GROUP_BY SQL mode has been part of the default
settings since MySQL 5.7. However, we have seen many legacy
applications that disable this option. We suggest that you always have
ONLY_FULL_GROUP_BY enabled and fix queries that return an error
otherwise.

The general solution to the problem of displaying contents of rows
associated with minimum or maximum group values involves a join. The
technique is described in Recipe 16.7. For the problem at hand, produce the
required results as follows:

mysql> CREATE TEMPORARY TABLE t
 -> SELECT name, MAX(miles) AS miles FROM driver_log GROUP BY
name;
mysql> SELECT d.name, d.trav_date, d.miles AS 'longest trip'
 -> FROM driver_log AS d INNER JOIN t USING (name, miles)
ORDER BY name;
+-------+------------+--------------+
| name | trav_date | longest trip |
+-------+------------+--------------+
Ben	2014-07-30	152
Henry	2014-07-29	300
Suzi	2014-08-02	502
+-------+------------+--------------+

Or, by using a CTE:

mysql> WITH t AS
 -> (SELECT name, MAX(miles) AS miles FROM driver_log GROUP
BY name)
 -> SELECT d.name, d.trav_date, d.miles AS 'longest trip'
 -> FROM driver_log AS d INNER JOIN t USING (name, miles)
ORDER BY name;
+-------+------------+--------------+
| name | trav_date | longest trip |
+-------+------------+--------------+
Ben	2014-07-30	152
Henry	2014-07-29	300
Suzi	2014-08-02	502
+-------+------------+--------------+
3 rows in set (0.01 sec)

10.9 Handling NULL Values with Aggregate
Functions

Problem

You’re summarizing a set of values that may include NULL values, and you
need to know how to interpret the results.

Solution
Understand how aggregate functions handle NULL values.

Discussion
Most aggregate functions ignore NULL values. COUNT() is different:
COUNT(expr) ignores NULL instances of expr, but COUNT(*) counts
rows, regardless of content.
Suppose that an expt table contains experimental results for subjects who
are to be given four tests each and that lists the test score as NULL for tests
not yet administered:

mysql> SELECT subject, test, score FROM expt ORDER BY subject,
test;
+---------+------+-------+
| subject | test | score |
+---------+------+-------+
Jane	A	47
Jane	B	50
Jane	C	NULL
Jane	D	NULL
Marvin	A	52
Marvin	B	45
Marvin	C	53
Marvin	D	NULL
+---------+------+-------+

By using a GROUP BY clause to arrange the rows by subject name, the
number of tests taken by each subject, as well as the total, average, lowest,
and highest scores, can be calculated like this:

mysql> SELECT subject,
 -> COUNT(score) AS n,
 -> SUM(score) AS total,
 -> AVG(score) AS average,
 -> MIN(score) AS lowest,
 -> MAX(score) AS highest

 -> FROM expt GROUP BY subject;
+---------+---+-------+---------+--------+---------+
| subject | n | total | average | lowest | highest |
+---------+---+-------+---------+--------+---------+
| Jane | 2 | 97 | 48.5000 | 47 | 50 |
| Marvin | 3 | 150 | 50.0000 | 45 | 53 |
+---------+---+-------+---------+--------+---------+

You can see from the results in the column labeled n (number of tests) that
the query counts only five values, even though the table contains eight.
Why? Because the values in that column correspond to the number of non-
NULL test scores for each subject. The other summary columns display
results that are calculated only from the non-NULL scores as well.

It makes a lot of sense for aggregate functions to ignore NULL values. If
they followed the usual SQL arithmetic rules, adding NULL to any other
value would produce a NULL result. That would make aggregate functions
really difficult to use: to avoid getting a NULL result, you’d have to filter
out NULL values every time you performed a summary. By ignoring NULL
values, aggregate functions become a lot more convenient.
However, be aware that even though aggregate functions may ignore NULL
values, some of them can still produce NULL as a result. This happens if
there’s nothing to summarize, which occurs if the set of values is empty or
contains only NULL values. The following query is the same as the previous
one, with one small difference. It selects only NULL test scores to illustrate
what happens when there’s nothing for the aggregate functions to operate
on:

mysql> SELECT subject,
 -> COUNT(score) AS n,
 -> SUM(score) AS total,
 -> AVG(score) AS average,
 -> MIN(score) AS lowest,
 -> MAX(score) AS highest
 -> FROM expt WHERE score IS NULL GROUP BY subject;
+---------+---+-------+---------+--------+---------+
| subject | n | total | average | lowest | highest |
+---------+---+-------+---------+--------+---------+
| Jane | 0 | NULL | NULL | NULL | NULL |

| Marvin | 0 | NULL | NULL | NULL | NULL |
+---------+---+-------+---------+--------+---------+

For COUNT(), the number of scores per subject is zero and is reported that
way. On the other hand, SUM(), AVG(), MIN(), and MAX() return NULL
when there are no values to summarize. If you don’t want an aggregate
value of NULL to display as NULL, use IFNULL() to map it appropriately:

mysql> SELECT subject,
 -> COUNT(score) AS n,
 -> IFNULL(SUM(score),0) AS total,
 -> IFNULL(AVG(score),0) AS average,
 -> IFNULL(MIN(score),'Unknown') AS lowest,
 -> IFNULL(MAX(score),'Unknown') AS highest
 -> FROM expt WHERE score IS NULL GROUP BY subject;
+---------+---+-------+---------+---------+---------+
| subject | n | total | average | lowest | highest |
+---------+---+-------+---------+---------+---------+
| Jane | 0 | 0 | 0.0000 | Unknown | Unknown |
| Marvin | 0 | 0 | 0.0000 | Unknown | Unknown |
+---------+---+-------+---------+---------+---------+

COUNT() is somewhat different with regard to NULL values than the other
aggregate functions. Like other aggregate functions, COUNT(expr)
counts only non-NULL values, but COUNT(*) counts rows, no matter what
they contain. You can see the difference between the forms of COUNT()
like this:

mysql> SELECT COUNT(*), COUNT(score) FROM expt;
+----------+--------------+
| COUNT(*) | COUNT(score) |
+----------+--------------+
| 8 | 5 |
+----------+--------------+

This tells us that there are eight rows in the expt table but that only five of
them have the score value filled in. The different forms of COUNT() can
be very useful for counting missing values. Just take the difference:

mysql> SELECT COUNT(*) - COUNT(score) AS missing FROM expt;
+---------+

| missing |
+---------+
| 3 |
+---------+

Missing and nonmissing counts can be determined for subgroups as well.
The following query does so for each subject, providing an easy way to
assess the extent to which the experiment has been completed:

mysql> SELECT subject,
 -> COUNT(*) AS total,
 -> COUNT(score) AS 'nonmissing',
 -> COUNT(*) - COUNT(score) AS missing
 -> FROM expt GROUP BY subject;
+---------+-------+------------+---------+
| subject | total | nonmissing | missing |
+---------+-------+------------+---------+
| Jane | 4 | 2 | 2 |
| Marvin | 4 | 3 | 1 |
+---------+-------+------------+---------+

10.10 Selecting Only Groups with Certain
Characteristics

Problem
You want to calculate group summaries but display results only for groups
that match certain criteria.

Solution
Use a HAVING clause.

Discussion
You’re familiar with the use of WHERE to specify conditions that rows must
satisfy to be selected by a statement. It’s natural, therefore, to use WHERE to
write conditions that involve summary values. The only trouble is that it

doesn’t work. To identify drivers in the driver_log table who drove
more than three days, you might write the statement like this:

mysql> SELECT COUNT(*), name FROM driver_log
 -> WHERE COUNT(*) > 3
 -> GROUP BY name;
ERROR 1111 (HY000): Invalid use of group function

The problem is that WHERE specifies the initial constraints that determine
which rows to select, but the value of COUNT() can be determined only
after the rows have been selected. The solution is to put the COUNT()
expression in a HAVING clause instead. HAVING is analogous to WHERE,
but it applies to group characteristics rather than to single rows. That is,
HAVING operates on the already-selected-and-grouped set of rows,
applying additional constraints based on aggregate function results that
aren’t known during the initial selection process. The preceding query
therefore should be written like this:

mysql> SELECT COUNT(*), name FROM driver_log
 -> GROUP BY name
 -> HAVING COUNT(*) > 3;
+----------+-------+
| COUNT(*) | name |
+----------+-------+
| 5 | Henry |
+----------+-------+

When you use HAVING, you can still include a WHERE clause but only to
select rows to be summarized, not to test already-calculated summary
values.
HAVING can refer to aliases, so the previous query can be rewritten like
this:

mysql> SELECT COUNT(*) AS count, name FROM driver_log
 -> GROUP BY name
 -> HAVING count > 3;
+-------+-------+
| count | name |
+-------+-------+

| 5 | Henry |
+-------+-------+

10.11 Using Counts to Determine Whether
Values Are Unique

Problem
You want to know whether values in a table are unique.

Solution
Use HAVING in conjunction with COUNT().

Discussion
DISTINCT eliminates duplicates but doesn’t show which values actually
were duplicated in the original data. You can use HAVING to find unique
values in situations to which DISTINCT does not apply. HAVING can tell
you which values were unique or nonunique.
The following statements show the days on which only one driver was
active and the days on which more than one driver was active. They’re
based on using HAVING and COUNT() to determine which trav_date
values are unique or nonunique:

mysql> SELECT trav_date, COUNT(trav_date) FROM driver_log
 -> GROUP BY trav_date HAVING COUNT(trav_date) = 1;
+------------+------------------+
| trav_date | COUNT(trav_date) |
+------------+------------------+
2014-07-26	1
2014-07-27	1
2014-08-01	1
+------------+------------------+
mysql> SELECT trav_date, COUNT(trav_date) FROM driver_log
 -> GROUP BY trav_date HAVING COUNT(trav_date) > 1;
+------------+------------------+
| trav_date | COUNT(trav_date) |
+------------+------------------+

2014-07-29	3
2014-07-30	2
2014-08-02	2
+------------+------------------+

This technique works for combinations of values, too. For example, to find
message sender/recipient pairs between whom only one message was sent,
look for combinations that occur only once in the mail table:

mysql> SELECT srcuser, dstuser FROM mail
 -> GROUP BY srcuser, dstuser HAVING COUNT(*) = 1;
+---------+---------+
| srcuser | dstuser |
+---------+---------+
barb	barb
gene	tricia
phil	barb
tricia	gene
tricia	phil
+---------+---------+

Note that this query doesn’t print the count. The previous examples did so,
to show that the counts were being used properly, but you can refer to an
aggregate value in a HAVING clause without including it in the output
column list.

10.12 Grouping by Expression Results

Problem
You want to group rows into subgroups based on values calculated from an
expression.

Solution
In the GROUP BY clause, use an expression that categorizes values.

Discussion

GROUP BY, like ORDER BY, can refer to expressions. This means you can
use calculations as the basis for grouping. As with ORDER BY, you can
write the grouping expression directly in the GROUP BY clause or use an
alias for the expression (if it appears in the output column list) and refer to
the alias in the GROUP BY.

To find days of the year on which more than one state joined the Union,
group by statehood month and day, and then use HAVING and COUNT() to
find the nonunique combinations:

mysql> SELECT
 -> MONTHNAME(statehood) AS month,
 -> DAYOFMONTH(statehood) AS day,
 -> COUNT(*) AS count
 -> FROM states GROUP BY month, day HAVING count > 1;
+----------+------+-------+
| month | day | count |
+----------+------+-------+
February	14	2
June	1	2
March	1	2
May	29	2
November	2	2
+----------+------+-------+

10.13 Summarizing Noncategorical Data

Problem
You want to summarize a set of values that are not naturally categorical.

Solution
Use an expression to group the values into categories.

Discussion
Recipe 10.12 shows how to group rows by expression results. One
important application for this is to categorize values that are not categorical.

This is useful because GROUP BY works best for columns with repetitive
values. For example, you might attempt to perform a population analysis by
grouping rows in the states table using values in the pop column. That
doesn’t work very well due to the high number of distinct values in the
column. In fact, they’re all distinct:

mysql> SELECT COUNT(pop), COUNT(DISTINCT pop) FROM states;
+------------+---------------------+
| COUNT(pop) | COUNT(DISTINCT pop) |
+------------+---------------------+
| 50 | 50 |
+------------+---------------------+

In situations like this, in which values do not group nicely into a small
number of sets, use a transformation that forces them into categories. Begin
by determining the range of population values:

mysql> SELECT MIN(pop), MAX(pop) FROM states;
+----------+----------+
| MIN(pop) | MAX(pop) |
+----------+----------+
| 578803 | 39237836 |
+----------+----------+

You can see from that result that if you divide the pop values by five
million, they’ll group into eight categories—a reasonable number. (The
category ranges will be 1 to 5,000,000, 5,000,001 to 10,000,000, and so
forth.) To put each population value in the proper category, divide by five
million and use the integer result:

mysql> SELECT FLOOR(pop/5000000) AS `max population (millions)`,
 -> COUNT(*) AS `number of states`
 -> FROM states GROUP BY `max population (millions)`
 -> ORDER BY `max population (millions)`;
+---------------------------+------------------+
| max population (millions) | number of states |
+---------------------------+------------------+
0	26
1	14
2	6
3	1
4	1

| 5 | 1 |
| 7 | 1 |
+---------------------------+------------------+

Hmm. That’s not quite right. The expression groups the population values
into a small number of categories but doesn’t report the category values
properly. Let’s try multiplying the FLOOR() results by five:

mysql> SELECT FLOOR(pop/5000000)*5 AS `max population
(millions)`,
 -> COUNT(*) AS `number of states`
 -> FROM states GROUP BY `max population (millions)`
 -> ORDER BY `max population (millions)`;
+---------------------------+------------------+
| max population (millions) | number of states |
+---------------------------+------------------+
0	26
5	14
10	6
15	1
20	1
25	1
35	1
+---------------------------+------------------+

That still isn’t correct. The maximum state population was 35,893,799,
which should go into a category for 40 million, not one for 35 million. The
problem here is that the category-generating expression groups values
toward the lower bound of each category. To group values toward the upper
bound instead, use the following technique. For categories of size n, place a
value x into the proper category using this expression:

FLOOR((x+(n-1))/n)

So the final form of our query looks like this:

mysql> SELECT FLOOR((pop+4999999)/5000000)*5 AS `max population
(millions)`,
 -> COUNT(*) AS `number of states`
 -> FROM states GROUP BY `max population (millions)`
 -> ORDER BY `max population (millions)`;
+---------------------------+------------------+
| max population (millions) | number of states |

+---------------------------+------------------+
5	26
10	14
15	6
20	1
25	1
30	1
40	1
+---------------------------+------------------+

The result shows clearly that the majority of US states have a population of
five million or less.
In some instances, it may be more appropriate to categorize groups on a
logarithmic scale. For example, treat the state population values that way as
follows:

mysql> SELECT FLOOR(LOG10(pop)) AS `log10(population)`,
 -> COUNT(*) AS `number of states`
 -> FROM states GROUP BY `log10(population)`;
+-------------------+------------------+
| log10(population) | number of states |
+-------------------+------------------+
5	5
6	35
7	10
+-------------------+------------------+

The query shows the number of states that have populations measured in
hundreds of thousands, millions, and tens of millions, respectively.
You may have noticed that aliases in the preceding queries are written using
backticks (identifier quoting) rather than single quotes (string quoting).
Quoted aliases in the GROUP BY clause must use identifier quoting or the
alias is treated as a constant string expression and the grouping produces the
wrong result. Identifier quoting clarifies to MySQL that the alias refers to
an output column. The aliases in the output column list could have been
written using string quoting; we used backticks there to avoid mixing alias
quoting styles within a given query.

HOW REPETITIVE IS A SET OF VALUES?
To assess how much repetition is present in a set of values, use the ratio of
COUNT(DISTINCT) and COUNT(). If all values are unique, both counts are the same and the
ratio is 1. This is the case for the t values in the mail table and the pop values in the states
table:

mysql> SELECT COUNT(DISTINCT t) / COUNT(t) FROM mail;
+------------------------------+
| COUNT(DISTINCT t) / COUNT(t) |
+------------------------------+
| 1.0000 |
+------------------------------+
mysql> SELECT COUNT(DISTINCT pop) / COUNT(pop) FROM states;
+----------------------------------+
| COUNT(DISTINCT pop) / COUNT(pop) |
+----------------------------------+
| 1.0000 |
+----------------------------------+

For a more repetitive set of values, COUNT(DISTINCT) is less than COUNT(), and the ratio
is smaller:

mysql> SELECT COUNT(DISTINCT name) / COUNT(name) FROM
driver_log;
+------------------------------------+
| COUNT(DISTINCT name) / COUNT(name) |
+------------------------------------+
| 0.3000 |
+------------------------------------+

What’s the practical use for this ratio? A result close to zero indicates a high degree of
repetition, which means the values will group into a small number of categories naturally. A
result of 1 or close to it indicates many unique values, with the consequence that GROUP BY
won’t be very efficient for grouping the values into categories. (That is, there will be a lot of
categories, relative to the number of values.) This tells you that, to generate a summary, you’ll
probably find it necessary to impose an artificial categorization on the values, using the
techniques described in this recipe.

10.14 Finding Smallest or Largest Summary
Values

Problem
You want to compute per-group summary values but display only the
smallest or largest of them.

Solution
Add a LIMIT clause to the statement. Or use a user-defined variable or
subquery to pick the appropriate summary.

Discussion
MIN() and MAX() find the values at the endpoints of a set of values, but to
find the endpoints of a set of summary values, those functions won’t work.
Their argument cannot be another aggregate function. For example, you can
easily find per-driver mileage totals:

mysql> SELECT name, SUM(miles)
 -> FROM driver_log
 -> GROUP BY name;
+-------+------------+
| name | SUM(miles) |
+-------+------------+
Ben	362
Henry	911
Suzi	893
+-------+------------+

To select only the row for the driver with the most miles, the following
doesn’t work:

mysql> SELECT name, SUM(miles)
 -> FROM driver_log
 -> GROUP BY name
 -> HAVING SUM(miles) = MAX(SUM(miles));
ERROR 1111 (HY000): Invalid use of group function

Instead, order the rows with the largest SUM() values first, and use LIMIT
to select the first row:

mysql> SELECT name, SUM(miles)
 -> FROM driver_log
 -> GROUP BY name
 -> ORDER BY SUM(miles) DESC LIMIT 1;
+-------+------------+
| name | SUM(miles) |
+-------+------------+
| Henry | 911 |
+-------+------------+

However, if more than one row has the given summary value, a LIMIT 1
query won’t tell you that. For example, you might attempt to ascertain the
most common initial letter for state names like this:

mysql> SELECT LEFT(name,1) AS letter, COUNT(*) FROM states
 -> GROUP BY letter ORDER BY COUNT(*) DESC LIMIT 1;
+--------+----------+
| letter | COUNT(*) |
+--------+----------+
| M | 8 |
+--------+----------+

But eight state names also begin with N. To find all most-frequent values
when there may be more than one, use a user-defined variable or subquery
to determine the maximum count, then select those values with a count
equal to the maximum:

mysql> SET @max = (SELECT COUNT(*) FROM states
 -> GROUP BY LEFT(name,1) ORDER BY COUNT(*) DESC LIMIT 1);
mysql> SELECT LEFT(name,1) AS letter, COUNT(*) FROM states
 -> GROUP BY letter HAVING COUNT(*) = @max;
+--------+----------+
| letter | COUNT(*) |
+--------+----------+
| M | 8 |
| N | 8 |
+--------+----------+
mysql> SELECT LEFT(name,1) AS letter, COUNT(*) FROM states
 -> GROUP BY letter HAVING COUNT(*) =
 -> (SELECT COUNT(*) FROM states
 -> GROUP BY LEFT(name,1) ORDER BY COUNT(*) DESC LIMIT 1);
+--------+----------+
| letter | COUNT(*) |
+--------+----------+
| M | 8 |

| N | 8 |
+--------+----------+

10.15 Producing Date-Based Summaries

Problem
You want to produce a summary based on date or time values.

Solution
Use GROUP BY to place temporal values into categories of the appropriate
duration. Often this involves using expressions that extract the significant
parts of dates or times.

Discussion
To sort rows temporally, use ORDER BY with a temporal column. To
summarize rows instead, based on groupings into time intervals, determine
how to categorize rows into the proper intervals, and use GROUP BY to
group them accordingly.
For example, to determine how many drivers were on the road and how
many miles were driven each day, group the rows in the driver_log
table by date:1

mysql> SELECT trav_date,
 -> COUNT(*) AS 'number of drivers', SUM(miles) As 'miles
logged'
 -> FROM driver_log GROUP BY trav_date;
+------------+-------------------+--------------+
| trav_date | number of drivers | miles logged |
+------------+-------------------+--------------+
2014-07-26	1	115
2014-07-27	1	96
2014-07-29	3	822
2014-07-30	2	355
2014-08-01	1	197
2014-08-02	2	581
+------------+-------------------+--------------+

However, this per-day summary grows lengthier as you add more rows to
the table. Over time, the number of distinct dates will become so large that
the summary fails to be useful, and you’d probably decide to increase the
category size. For example, this query categorizes by month:

mysql> SELECT YEAR(trav_date) AS year, MONTH(trav_date) AS month,
 -> COUNT(*) AS 'number of drivers', SUM(miles) As 'miles
logged'
 -> FROM driver_log GROUP BY year, month;
+------+-------+-------------------+--------------+
| year | month | number of drivers | miles logged |
+------+-------+-------------------+--------------+
| 2014 | 7 | 7 | 1388 |
| 2014 | 8 | 3 | 778 |
+------+-------+-------------------+--------------+

Now the number of summary rows grows much more slowly over time.
Eventually, you could summarize based only on year to collapse rows even
more.
Uses for temporal categorizations are numerous:

To produce daily summaries from DATETIME or TIMESTAMP columns
that have the potential to contain many unique values, strip the time-of-
day part to collapse all values occurring within a given day to the same
value. Any of the following GROUP BY clauses will do this, although the
last one is likely to be slowest:

GROUP BY DATE(col_name)
GROUP BY FROM_DAYS(TO_DAYS(col_name))
GROUP BY YEAR(col_name), MONTH(col_name), DAYOFMONTH(col_name)
GROUP BY DATE_FORMAT(col_name,'%Y-%m-%e')

To produce monthly or quarterly sales reports, group by
MONTH(col_name) or QUARTER(col_name) to place dates into
the correct part of the year.

10.16 Working with Per-Group and Overall
Summary Values Simultaneously

Problem
You want to produce a report that requires different levels of summary
detail. Or you want to compare per-group summary values to an overall
summary value.

Solution
Use two statements that retrieve different levels of summary information.
Or use a subquery to retrieve one summary value and refer to it in the outer
query that refers to other summary values. For applications that only
display multiple summary levels (rather than perform additional
calculations on them), WITH ROLLUP might be sufficient.

Discussion
Some reports involve multiple levels of summary information. The
following report displays the total number of miles per driver from the
driver_log table, along with each driver’s miles as a percentage of the
total miles in the entire table:

+-------+--------------+------------------------+
| name | miles/driver | percent of total miles |
+-------+--------------+------------------------+
Ben	362	16.7128
Henry	911	42.0591
Suzi	893	41.2281
+-------+--------------+------------------------+

The percentages represent the ratio of each driver’s miles to the total miles
for all drivers. To perform the percentage calculation, you need a per-group
summary to get each driver’s miles and also an overall summary to get the
total miles. First, run a query to get the overall mileage total:

mysql> SELECT @total := SUM(miles) AS 'total miles' FROM
driver_log;
+-------------+
| total miles |
+-------------+

| 2166 |
+-------------+

Then calculate the per-group values and use the overall total to compute the
percentages:

mysql> SELECT name,
 -> SUM(miles) AS 'miles/driver',
 -> (SUM(miles)*100)/@total AS 'percent of total miles'
 -> FROM driver_log GROUP BY name;
+-------+--------------+------------------------+
| name | miles/driver | percent of total miles |
+-------+--------------+------------------------+
Ben	362	16.7128
Henry	911	42.0591
Suzi	893	41.2281
+-------+--------------+------------------------+

To combine the two statements into one, use a subquery that computes the
total miles:

SELECT name,
SUM(miles) AS 'miles/driver',
(SUM(miles)*100)/(SELECT SUM(miles) FROM driver_log)
 AS 'percent of total miles'
FROM driver_log GROUP BY name;

A similar problem uses multiple summary levels to compare per-group
summary values with the corresponding overall summary value. Suppose
that you want to display drivers who had a lower average miles per day than
the group average. Calculate the overall average in a subquery, and then
compare each driver’s average to the overall average using a HAVING
clause:

mysql> SELECT name, AVG(miles) AS driver_avg FROM driver_log
 -> GROUP BY name
 -> HAVING driver_avg < (SELECT AVG(miles) FROM driver_log);
+-------+------------+
| name | driver_avg |
+-------+------------+
| Ben | 120.6667 |
| Henry | 182.2000 |
+-------+------------+

To display different summary-level values (and not perform calculations
involving one summary level against another), add WITH ROLLUP to the
GROUP BY clause:

mysql> SELECT name, SUM(miles) AS 'miles/driver'
 -> FROM driver_log GROUP BY name WITH ROLLUP;
+-------+--------------+
| name | miles/driver |
+-------+--------------+
Ben	362
Henry	911
Suzi	893
NULL	2166
+-------+--------------+
mysql> SELECT name, AVG(miles) AS driver_avg FROM driver_log
 -> GROUP BY name WITH ROLLUP;
+-------+------------+
| name | driver_avg |
+-------+------------+
Ben	120.6667
Henry	182.2000
Suzi	446.5000
NULL	216.6000
+-------+------------+

In each case, the output row with NULL in the name column represents the
overall sum or average calculated over all drivers.
WITH ROLLUP produces multiple summary levels if you group by more
than one column. The following statement shows the number of mail
messages sent between each pair of users:

mysql> SELECT srcuser, dstuser, COUNT(*)
 -> FROM mail GROUP BY srcuser, dstuser;
+---------+---------+----------+
| srcuser | dstuser | COUNT(*) |
+---------+---------+----------+
barb	barb	1
barb	tricia	2
gene	barb	2
gene	gene	3
gene	tricia	1
phil	barb	1
phil	phil	2
phil	tricia	2

| tricia | gene | 1 |
| tricia | phil | 1 |
+---------+---------+----------+

Adding WITH ROLLUP causes the output to include an intermediate count
for each srcuser value (these are the lines with NULL in the dstuser
column), plus an overall count at the end:

mysql> SELECT srcuser, dstuser, COUNT(*)
 -> FROM mail GROUP BY srcuser, dstuser WITH ROLLUP;
+---------+---------+----------+
| srcuser | dstuser | COUNT(*) |
+---------+---------+----------+
barb	barb	1
barb	tricia	2
barb	NULL	3
gene	barb	2
gene	gene	3
gene	tricia	1
gene	NULL	6
phil	barb	1
phil	phil	2
phil	tricia	2
phil	NULL	5
tricia	gene	1
tricia	phil	1
tricia	NULL	2
NULL	NULL	16
+---------+---------+----------+

10.17 Generating a Report that Includes a
Summary and a List

Problem
You want to create a report that displays a summary, together with the list of
rows associated with each summary value.

Solution

Use two statements that retrieve different levels of summary information.
Or use a programming language to do some of the work so that you can use
a single statement.

Discussion
Suppose that you want to produce a report that looks like this:

Name: Ben; days on road: 3; miles driven: 362
 date: 2014-07-29, trip length: 131
 date: 2014-07-30, trip length: 152
 date: 2014-08-02, trip length: 79
Name: Henry; days on road: 5; miles driven: 911
 date: 2014-07-26, trip length: 115
 date: 2014-07-27, trip length: 96
 date: 2014-07-29, trip length: 300
 date: 2014-07-30, trip length: 203
 date: 2014-08-01, trip length: 197
Name: Suzi; days on road: 2; miles driven: 893
 date: 2014-07-29, trip length: 391
 date: 2014-08-02, trip length: 502

For each driver in the driver_log table, the report shows the following
information:

A summary line showing the driver name, the number of days on the
road, and the number of miles driven
A list that details dates and mileages for the individual trips from which
the summary values are calculated

This scenario is a variation on the “different levels of summary
information” problem discussed in Recipe 10.16. It may not seem like it at
first because one of the types of information is a list rather than a summary.
But that’s really just a “level zero” summary. This kind of problem appears
in many other forms:

You have a database that lists contributions to candidates in your
political party. The party chair requests a printout that shows, for each
candidate, the number of contributions and total amount contributed, as
well as a list of contributor names and addresses.

You want to create a handout for a company presentation that
summarizes total sales per sales region with a list under each region
showing the sales for each state in the region.

Such problems have multiple solutions:
Run separate statements to get the information for each level of detail
that you require. (A single query won’t produce per-group summary
values and a list of each group’s individual rows.)
Fetch the rows that make up the lists and perform the summary
calculations yourself to eliminate the summary statement.

Let’s use each approach to produce the driver report shown at the beginning
of this section. The following implementation (in Python) generates the
report using one query to summarize the days and miles per driver and
another to fetch the individual trip rows for each driver:

select total miles per driver and construct a dictionary that
maps each driver name to days on the road and miles driven
name_map = {}
cursor = conn.cursor()
cursor.execute('''
 SELECT name, COUNT(name), SUM(miles)
 FROM driver_log GROUP BY name
 ''')
for (name, days, miles) in cursor:
 name_map[name] = (days, miles)

select trips for each driver and print the report, displaying
the
summary entry for each driver prior to the list of trips
cursor.execute('''
 SELECT name, trav_date, miles
 FROM driver_log ORDER BY name, trav_date
 ''')
cur_name = ""
for (name, trav_date, miles) in cursor:
 if cur_name != name: # new driver; print driver's summary info
 print("Name: %s; days on road: %d; miles driven: %d" %
 (name, name_map[name][0], name_map[name][1]))
 cur_name = name
 print(" date: %s, trip length: %d" % (trav_date, miles))
cursor.close()

An alternative implementation performs summary calculations within the
program, which reduces the number of queries required. If you iterate
through the trip list and calculate the per-driver day counts and mileage
totals yourself, a single query suffices:

get list of trips for the drivers
cursor = conn.cursor()
cursor.execute('''
 SELECT name, trav_date, miles FROM driver_log
 ORDER BY name, trav_date
 ''')
fetch rows into data structure because we
must iterate through them multiple times
rows = cursor.fetchall()
cursor.close()

iterate through rows once to construct a dictionary that
maps each driver name to days on the road and miles driven
(the dictionary entries are lists rather than tuples because
we need mutable values that can be modified in the loop)
name_map = {}
for (name, trav_date, miles) in rows:
 if name not in name_map: # initialize entry if nonexistent
 name_map[name] = [0, 0]
 name_map[name][0] += 1 # count days
 name_map[name][1] += miles # sum miles

iterate through rows again to print the report, displaying the
summary entry for each driver prior to the list of trips
cur_name = ""
for (name, trav_date, miles) in rows:
 if cur_name != name: # new driver; print driver's summary info
 print("Name: %s; days on road: %d; miles driven: %d" %
 (name, name_map[name][0], name_map[name][1]))
 cur_name = name
 print(" date: %s, trip length: %d" % (trav_date, miles))

Should you require more levels of summary information, this type of
problem gets more difficult. For example, you might want to precede the
report that shows driver summaries and trip logs with a line that shows the
total miles for all drivers:

Total miles driven by all drivers combined: 2166

Name: Ben; days on road: 3; miles driven: 362

 date: 2014-07-29, trip length: 131
 date: 2014-07-30, trip length: 152
 date: 2014-08-02, trip length: 79
Name: Henry; days on road: 5; miles driven: 911
 date: 2014-07-26, trip length: 115
 date: 2014-07-27, trip length: 96
 date: 2014-07-29, trip length: 300
 date: 2014-07-30, trip length: 203
 date: 2014-08-01, trip length: 197
Name: Suzi; days on road: 2; miles driven: 893
 date: 2014-07-29, trip length: 391
 date: 2014-08-02, trip length: 502

In this case, you need either another query to produce the total mileage or
another calculation in your program that computes the overall total.

10.18 Generating Summaries from
Temporary Result Sets

Problem
You want to generate summaries but cannot do so without using temporary
result sets.

Solution
Use CTEs with the WITH clause.

Discussion
We already discussed situations when a temporary table, holding results
from a query, helps to create a summary. In these cases, we referred to the
temporary table from the query, generating a resulting summary. See
Recipes 10.6 and 10.8 for examples.
Temporary tables are not always the best solution for such a task. They have
a number of disadvantages, particularly the following:

You need to maintain the table: delete all of the content when you’re
going to reuse it and drop it once you’re finished working with it.
The CREATE [TEMPORARY] TABLE...SELECT statement
implicitly commits transactions, therefore it cannot be used when there
is a possibility that the content of the original table will change after the
data is inserted into the temporary table. You have to create the table
first, then insert data into it and generate the summary in the multiple-
statement transaction. For example, finding the longest trip per driver
that we discussed in Recipe 10.8 may end up with the following code:

CREATE TEMPORARY TABLE t LIKE driver_log;
START TRANSACTION;
INSERT INTO t SELECT name, MAX(miles) AS miles FROM driver_log
GROUP BY name;
SELECT d.name, d.trav_date, d.miles AS 'longest trip'
FROM driver_log AS d INNER JOIN t USING (name, miles) ORDER BY
name;
COMMIT;
DROP TABLE t;

The optimizer has fewer options to improve performance of the query.
CTEs allow you to create a named temporary result set inside the query.
Following is the CTE syntax:

WITH result_name AS (SELECT ...)
SELECT ...

Then you can refer to the named result in the following query as if it were a
regular table. You can define multiple CTEs and refer to the same named
result multiple times when needed.
Thus, the example in Recipe 10.17 shows the number of trips per driver and
the total mileage, together with trip details that can be resolved with a CTE:

mysql> WITH
 -> trips AS (SELECT name, trav_date, miles FROM driver_log),

 -> summaries AS (
 -> SELECT name, COUNT(name) AS days_on_road, SUM(miles)
AS miles_driven

 -> FROM driver_log GROUP BY name)
 -> SELECT trips.name, days_on_road, miles_driven, trav_date,
miles
 -> FROM summaries LEFT JOIN trips USING(name);
+-------+--------------+--------------+------------+-------+
| name | days_on_road | miles_driven | trav_date | miles |
+-------+--------------+--------------+------------+-------+
Ben	3	362	2014-08-02	79
Ben	3	362	2014-07-29	131
Ben	3	362	2014-07-30	152
Suzi	2	893	2014-08-02	502
Suzi	2	893	2014-07-29	391
Henry	5	911	2014-07-30	203
Henry	5	911	2014-08-01	197
Henry	5	911	2014-07-26	115
Henry	5	911	2014-07-27	96
Henry	5	911	2014-07-29	300
+-------+--------------+--------------+------------+-------+
10 rows in set (0.00 sec)

The keyword WITH starts the CTE.

Assign the name trips to the SELECT statement, retrieving travel
data.

The second statement named SELECT, generates a summary of the
number of trips and total mileage per driver.

The main query refers to two named result sets and joins them using
LEFT JOIN as if they were regular tables.

Each resulting row contains the number of trips, the total amount of
miles driven, and details of the individual trip.

The result includes an entry only for dates actually represented in the table. To generate a
summary with an entry for the range of dates in the table, use a join to fill in the “missing”
values. See Recipe 16.8.

1

Chapter 11. Using Stored
Routines, Triggers, and
Scheduled Events

11.0 Introduction
In this book, the term stored program refers collectively to stored routines,
triggers, and events, and stored routine refers collectively to stored
functions and procedures.
This chapter discusses stored programs, which come in several varieties:

Stored functions and procedures
A stored function or procedure object encapsulates the code for
performing an operation, enabling you to invoke the object easily by
name rather than repeat all its code each time it’s needed. A stored
function performs a calculation and returns a value that can be used in
expressions just like a built-in function such as RAND(), NOW(), or
LEFT(). A stored procedure performs operations for which no return
value is needed. Procedures are invoked with the CALL statement, not
used in expressions. A procedure might update rows in a table or
produce a result set that is sent to the client program.

Triggers
A trigger is an object that activates when a table is modified by an
INSERT, UPDATE, or DELETE statement. For example, you can check
values before they are inserted into a table or specify that any row
deleted from a table should be logged to another table that serves as a
journal of data changes. Triggers automate these actions.

Scheduled events

An event is an object that executes SQL statements at a scheduled time
or times. Think of a scheduled event as something like a Unix cron job
that runs within MySQL. For example, events can help you perform
administrative tasks such as deleting old table rows periodically or
creating nightly summaries.

Stored programs are database objects that are user-defined but stored on the
server side for later execution. This differs from sending a SQL statement
from the client to the server for immediate execution. Each object also has
the property in which it is defined in terms of other SQL statements to be
executed when the object is invoked. The object body is a single SQL
statement, but that statement can use compound-statement syntax (a
BEGIN…END block) that contains multiple statements. Thus, the body can
range from very simple to extremely complex. The following stored
procedure is a trivial routine that does nothing but display the current
MySQL version, using a body that consists of a single SELECT statement:

CREATE PROCEDURE show_version()
SELECT VERSION() AS 'MySQL Version';

More complex operations use a BEGIN…END compound statement:

CREATE PROCEDURE show_part_of_day()
BEGIN
 DECLARE cur_time, day_part TEXT;
 SET cur_time = CURTIME();
 IF cur_time < '12:00:00' THEN
 SET day_part = 'morning';
 ELSEIF cur_time = '12:00:00' THEN
 SET day_part = 'noon';
 ELSE
 SET day_part = 'afternoon or night';
 END IF;
 SELECT cur_time, day_part;
END;

Here, the BEGIN…END block contains multiple statements but is itself
considered to constitute a single statement. Compound statements enable
you to declare local variables and to use conditional logic and looping

constructs. These capabilities provide considerably more flexibility for
algorithmic expression than when you write inline expressions in
noncompound statements such as SELECT or UPDATE.

Each statement within a compound statement must be terminated by a ;
character. That requirement causes a problem if you use the mysql client
to define an object that uses compound statements because mysql itself
interprets ; to determine statement boundaries. The solution is to redefine
mysql’s statement delimiter while you define a compound-statement
object. Recipe 11.1 covers how to do this; be sure to read that recipe before
proceeding to those that follow it.
This chapter illustrates stored routines, triggers, and events by example but
due to space limitations does not otherwise go into much detail about their
extensive syntax. For complete syntax descriptions, see the MySQL
Reference Manual.
Scripts for the examples shown in this chapter are located in the routines,
triggers, and events directories of the recipes distribution. Scripts to
create example tables are located in the tables directory.
In addition to the stored programs shown in this chapter, others can be
found elsewhere in this book. See, for example, Recipes 7.6, 8.3, 16.8, and
24.2.
Stored programs used here are created and invoked under the assumption
that cookbook is the default database. To invoke a program from another
database, qualify its name with the database name:

CALL cookbook.show_version();

Alternatively, create a database specifically for your stored programs, create
them in that database, and always invoke them qualified with that name.
Remember to grant users who will use them the EXECUTE privilege for that
database.

https://oreil.ly/smePp

PRIVILEGES FOR STORED PROGRAMS
When you create a stored routine (function or procedure), the following privilege requirements
must be satisfied or you will have problems:

To create or execute the routine, you must have the CREATE ROUTINE or EXECUTE
privilege, respectively.

If binary logging is enabled for your MySQL server, as is the default since version 8.0,
there are additional requirements for creating stored functions (but not stored procedures).
These requirements are necessary to ensure that if you use the binary log for replication or
for restoring backups, function invocations cause the same effect when re-executed as
they do when originally executed:

— You must have the SUPER or, since version 8.0, SET_USER_ID privilege, and you
must declare either that the function is deterministic or does not modify data by using
one of the DETERMINISTIC, NO SQL, or READS SQL DATA characteristics. (It’s
possible to create functions that are not deterministic or that modify data, but they
might not be safe for replication or for use in backups.)

— Alternatively, if you enable the log_bin_trust_function_creators
system variable, the server waives both of the preceding requirements. You can do this
at server startup, or at runtime if you have the SUPER privilege.

To create a trigger, you must have the TRIGGER privilege for the table associated with the
trigger.

To create a scheduled event, you must have the EVENT privilege for the database in which the
event is created.

For information about granting privileges, see Recipe 24.2.

11.1 Creating Compound-Statement Objects

Problem
You want to define a stored program, but its bodycontains instances of the ;
statement terminator. The mysql client program uses the same terminator
by default, so mysql misinterprets the definition and produces an error.

Solution
Redefine the mysql statement terminator with the delimiter command.

Discussion
Each stored program is an object with a body that must be a single SQL
statement. However, these objects often perform complex operations that
require several statements. To handle this, write the statements within a
BEGIN…END block that forms a compound statement. That is, the block is
itself a single statement but can contain multiple statements, each
terminated by a ; character. The BEGIN…END block can contain
statements such as SELECT or INSERT, but compound statements also
permit conditional statements such as IF or CASE, looping constructs such
as WHILE or REPEAT, or other BEGIN…END blocks.

Compound-statement syntax provides flexibility, but if you define
compound-statement objects within the mysql client, you quickly
encounter a problem: each statement within a compound statement must be
terminated by a ; character, but mysql itself interprets ; to figure out
where statements end so that it can send them one at a time to the server to
be executed. Consequently, mysql stops reading the compound statement
when it sees the first ; character, which is too early. To handle this, tell
mysql to recognize a different statement delimiter so that it ignores ;
characters within the object body. Terminate the object itself with the new
delimiter, which mysql recognizes and then sends the entire object
definition to the server. You can restore the mysql delimiter to its original
value after defining the compound-statement object.
The following example uses a stored function to illustrate how to change
the delimiter, but the principles apply to defining any type of stored
program.
Suppose that you want to create a stored function that calculates and returns
the average size in bytes of mail messages listed in the mail table. The
function can be defined like this, where the body consists of a single SQL
statement:

CREATE FUNCTION avg_mail_size()
RETURNS FLOAT READS SQL DATA
RETURN (SELECT AVG(size) FROM mail);

The RETURNS FLOAT clause indicates the type of the function’s return
value, and READS SQL DATA indicates that the function reads but does not
modify data. The function body follows those clauses: a single RETURN
statement that executes a subquery and returns the resulting value to the
caller. (Every stored function must have at least one RETURN statement.)

In mysql, you can enter that statement as shown and there is no problem.
The definition requires just the single terminator at the end and none
internally, so no ambiguity arises. But suppose instead that you want the
function to take an argument naming a user that it interprets as follows:

If the argument is NULL, the function returns the average size for all
messages (as before).
If the argument is non-NULL, the function returns the average size for
messages sent by that user.

To accomplish this, the function has a more complex body that uses a
BEGIN…END block:

CREATE FUNCTION avg_mail_size(user VARCHAR(8))
RETURNS FLOAT READS SQL DATA
BEGIN
 DECLARE avg FLOAT;
 IF user IS NULL
 THEN # average message size over all users
 SET avg = (SELECT AVG(size) FROM mail);
 ELSE # average message size for given user
 SET avg = (SELECT AVG(size) FROM mail WHERE srcuser = user);
 END IF;
 RETURN avg;
END;

If you try to define the function within mysql by entering that definition as
just shown, mysql improperly interprets the first semicolon in the function
body as ending the definition. Instead, use the delimiter command to
change the mysql delimiter, then restore the delimiter to its default value:

mysql> delimiter $$
mysql> CREATE FUNCTION avg_mail_size(user VARCHAR(8))
 -> RETURNS FLOAT READS SQL DATA

 -> BEGIN
 -> DECLARE avg FLOAT;
 -> IF user IS NULL
 -> THEN # average message size over all users
 -> SET avg = (SELECT AVG(size) FROM mail);
 -> ELSE # average message size for given user
 -> SET avg = (SELECT AVG(size) FROM mail WHERE srcuser =
user);
 -> END IF;
 -> RETURN avg;
 -> END;
 -> $$
Query OK, 0 rows affected (0.02 sec)
mysql> delimiter ;

After defining the stored function, invoke it the same way as a built-in
function:

mysql> SELECT avg_mail_size(NULL), avg_mail_size('barb');
+---------------------+-----------------------+
| avg_mail_size(NULL) | avg_mail_size('barb') |
+---------------------+-----------------------+
| 237386.5625 | 52232 |
+---------------------+-----------------------+

11.2 Using Stored Functions to Simplify
Calculations

Problem
A particular calculation to produce a value must be performed frequently by
different applications, but you don’t want to write the expression for it each
time it’s needed. Or a calculation is difficult to perform inline within an
expression because it requires conditional or looping logic. Or, if a
calculation logic changes, you do not want to perform changes in each
application that uses it.

Solution

Use a stored function to have these details defined in a single place and
make the calculation easy to perform.

Discussion
Stored functions enable you to simplify your applications. Write the code
that produces a calculation result once in a function definition, then simply
invoke the function whenever you need to perform the calculation. Stored
functions also enable you to use more complex algorithmic constructs than
are available when you write a calculation inline within an expression. This
section illustrates how stored functions can be useful in these ways.
(Granted, the example is not that complex, but the principles used here
apply to writing much more elaborate functions.)
Different states in the US charge different rates for sales tax. If you sell
goods to people from different states, you must charge tax using the rate
appropriate for the customer’s state of residence. To handle tax
computations, use a table that lists the sales tax rate for each state, and a
stored function that looks up the tax rate for each state.
To set up the sales_tax_rate table, use the sales_tax_rate.sql script in
the tables directory of the recipes distribution. The table has two
columns: state (a two-letter abbreviation) and tax_rate (a DECIMAL
value rather than a FLOAT, to preserve accuracy).

Define the rate-lookup function, sales_tax_rate(), as follows:

CREATE FUNCTION sales_tax_rate(state_code CHAR(2))
RETURNS DECIMAL(3,2) READS SQL DATA
BEGIN
 DECLARE rate DECIMAL(3,2);
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET rate = 0;
 SELECT tax_rate INTO rate FROM sales_tax_rate WHERE state =
state_code;
 RETURN rate;
END;

Suppose that the tax rates for Vermont and New York are 1% and 9%,
respectively. Try the function to check whether the tax rate is returned

correctly:

mysql> SELECT sales_tax_rate('VT'), sales_tax_rate('NY');
+----------------------+----------------------+
| sales_tax_rate('VT') | sales_tax_rate('NY') |
+----------------------+----------------------+
| 0.01 | 0.09 |
+----------------------+----------------------+

If you take sales from a location not listed in the table, the function cannot
determine the rate for it. In this case, the function assumes a tax rate of 0%:

mysql> SELECT sales_tax_rate('ZZ');
+----------------------+
| sales_tax_rate('ZZ') |
+----------------------+
| 0.00 |
+----------------------+

The function handles states not listed using a CONTINUE handler for NOT
FOUND, which executes if a “No Data” condition occurs: if there is no row
for the given state_param value, the SELECT statement fails to find a
sales tax rate, and the CONTINUE handler sets the rate to 0 and continues
execution with the next statement after the SELECT. (This handler is an
example of stored routine logic not available in inline expressions.
“Handling Errors Within Stored Programs” discusses handlers further.)
To compute sales tax for a purchase, multiply the purchase price by the tax
rate. For example, for Vermont and New York, tax on a $150 purchase is as
follows:

mysql> SELECT 150*sales_tax_rate('VT'), 150*sales_tax_rate('NY');
+--------------------------+--------------------------+
| 150*sales_tax_rate('VT') | 150*sales_tax_rate('NY') |
+--------------------------+--------------------------+
| 1.50 | 13.50 |
+--------------------------+--------------------------+

Or write another function that computes the tax for you:

CREATE FUNCTION sales_tax(state_code CHAR(2), sales_amount
DECIMAL(10,2))
RETURNS DECIMAL(10,2) READS SQL DATA
RETURN sales_amount * sales_tax_rate(state_code);

And use it like this:

mysql> SELECT sales_tax('VT',150), sales_tax('NY',150);
+---------------------+---------------------+
| sales_tax('VT',150) | sales_tax('NY',150) |
+---------------------+---------------------+
| 1.50 | 13.50 |
+---------------------+---------------------+

11.3 Using Stored Procedures to Produce
Multiple Values

Problem
You want to produce multiple values for an operation, but a stored function
can only return a single value.

Solution
Use a stored procedure that has OUT or INOUT parameters, and pass user-
defined variables for those parameters when you invoke the procedure. A
procedure does not “return” a value the way a function does, but it can
assign values to those parameters so that the user-defined variables have the
desired values when the procedure returns.

Discussion
Unlike stored function parameters, which are input values only, a stored
procedure parameter can be any of three types:

An IN parameter is for input only. This is the default if you specify no
type.

An INOUT parameter is used to pass a value in and can also pass a value
out.
An OUT parameter is used to pass a value out.

Thus, to produce multiple values from an operation, you can use INOUT or
OUT parameters. The following example illustrates this, using an IN
parameter for input and passing back three values via OUT parameters.

Recipe 11.1 shows an avg_mail_size() function that returns the
average mail message size for a given sender. The function returns a single
value. To produce additional information, such as the number of messages
and total message size, a function will not work. You could write three
separate functions, but that is cumbersome. Instead, use a single procedure
that retrieves multiple values about a given mail sender. The following
procedure, mail_sender_stats(), runs a query on the mail table to
retrieve mail-sending statistics about a given username, which is the input
value. The procedure determines how many messages that user sent, and the
total and average sizes of the messages in bytes, which it returns through
three OUT parameters:

CREATE PROCEDURE mail_sender_stats(IN user VARCHAR(8),
 OUT messages INT,
 OUT total_size INT,
 OUT avg_size INT)
BEGIN
 # Use IFNULL() to return 0 for SUM() and AVG() in case there
are
 # no rows for the user (those functions return NULL in that
case).
 SELECT COUNT(*), IFNULL(SUM(size),0), IFNULL(AVG(size),0)
 INTO messages, total_size, avg_size
 FROM mail WHERE srcuser = user;
END;

To use the procedure, pass a string containing the username and three user-
defined variables to receive the OUT values. After the procedure returns,
access the variable values:

mysql> CALL
mail_sender_stats('barb',@messages,@total_size,@avg_size);

mysql> SELECT @messages, @total_size, @avg_size;
+-----------+-------------+-----------+
| @messages | @total_size | @avg_size |
+-----------+-------------+-----------+
| 3 | 156696 | 52232 |
+-----------+-------------+-----------+

This routine passes back calculation results. It’s also common to use OUT
parameters for diagnostic purposes, such as status or error indicators.
If you call mail_sender_stats() from within a stored program, you
can pass variables to it using routine parameters or program local variables,
not just user-defined variables.

11.4 Using Triggers to Log Changes to a
Table

Problem
You have a table that maintains current values of items that you track (such
as auctions being bid on), but you’d also like to maintain a journal (history)
of changes to the table.

Solution
Use triggers to “catch” table changes and write them to a separate log table.

Discussion
Suppose that you conduct online auctions and that you maintain
information about each currently active auction in a table that looks like
this:

CREATE TABLE auction
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP,

 item VARCHAR(30) NOT NULL,
 bid DECIMAL(10,2) NOT NULL,
 PRIMARY KEY (id)
);

The auction table contains information about the currently active
auctions (items being bid on and the current bid for each auction). When an
auction begins, insert a row into the table. For each bid on an item, update
its bid column so that as the auction proceeds, the ts column updates to
reflect the most recent bid time. When the auction ends, the bid value is
the final price and the row can be removed from the table.
To maintain a journal that shows all changes to auctions as they progress
from creation to removal, set up another table that serves to record a history
of changes to the auctions. This strategy can be implemented with triggers.
To maintain a history of how each auction progresses, use an
auction_log table with the following columns:

CREATE TABLE auction_log
(
 action ENUM('create','update','delete'),
 id INT UNSIGNED NOT NULL,
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP,
 item VARCHAR(30) NOT NULL,
 bid DECIMAL(10,2) NOT NULL,
 INDEX (id)
);

The auction_log table differs from the auction table in two ways:

It contains an action column to indicate for each row what kind of
change was made.
The id column has a nonunique index (rather than a primary key, which
requires unique values). This permits multiple rows per id value
because a given auction can generate many rows in the log table.

To ensure that changes to the auction table are logged to the
auction_log table, create a set of triggers. The triggers write
information to the auction_log table as follows:

For inserts, log a row-creation operation showing the values in the new
row.
For updates, log a row-update operation showing the new values in the
updated row.
For deletes, log a row-removal operation showing the values in the
deleted row.

For this application, AFTER triggers are used because they activate only
after successful changes to the auction table. (BEFORE triggers might
activate even if the row-change operation fails for some reason.) The trigger
definitions look like this:

CREATE TRIGGER ai_auction AFTER INSERT ON auction
FOR EACH ROW
INSERT INTO auction_log (action,id,ts,item,bid)
VALUES('create',NEW.id,NOW(),NEW.item,NEW.bid);

CREATE TRIGGER au_auction AFTER UPDATE ON auction
FOR EACH ROW
INSERT INTO auction_log (action,id,ts,item,bid)
VALUES('update',NEW.id,NOW(),NEW.item,NEW.bid);

CREATE TRIGGER ad_auction AFTER DELETE ON auction
FOR EACH ROW
INSERT INTO auction_log (action,id,ts,item,bid)
VALUES('delete',OLD.id,OLD.ts,OLD.item,OLD.bid);

The INSERT and UPDATE triggers use NEW.col_name to access the new
values being stored in rows. The DELETE trigger uses OLD.col_name to
access the existing values from the deleted row. The INSERT and UPDATE
triggers use NOW() to get the row-modification times; the ts column is
initialized automatically to the current date and time, but NEW.ts will not
contain that value.
Suppose that an auction is created with an initial bid of $5:

mysql> INSERT INTO auction (item,bid) VALUES('chintz
pillows',5.00);
mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |

+------------------+
| 792 |
+------------------+

The SELECT statement fetches the auction ID value to use for subsequent
actions on the auction. Then the item receives three more bids before the
auction ends and is removed:

mysql> UPDATE auction SET bid = 7.50 WHERE id = 792;
... time passes ...
mysql> UPDATE auction SET bid = 9.00 WHERE id = 792;
... time passes ...
mysql> UPDATE auction SET bid = 10.00 WHERE id = 792;
... time passes ...
mysql> DELETE FROM auction WHERE id = 792;

At this point, no trace of the auction remains in the auction table, but the
auction_log table contains a complete history of what occurred:

mysql> SELECT * FROM auction_log WHERE id = 792 ORDER BY ts;
+--------+-----+---------------------+----------------+-------+
| action | id | ts | item | bid |
+--------+-----+---------------------+----------------+-------+
create	792	2014-01-09 14:57:41	chintz pillows	5.00
update	792	2014-01-09 14:57:50	chintz pillows	7.50
update	792	2014-01-09 14:57:57	chintz pillows	9.00
update	792	2014-01-09 14:58:03	chintz pillows	10.00
delete	792	2014-01-09 14:58:03	chintz pillows	10.00
+--------+-----+---------------------+----------------+-------+

With the strategy just outlined, the auction table remains relatively
small, and you can always find information about auction histories as
necessary by looking in the auction_log table.

11.5 Using Events to Schedule Database
Actions

Problem

You want to set up a database operation that runs periodically without user
intervention.

Solution
MySQL provides an event scheduler that enables you to set up database
operations that run at times that you define. Create an event that executes
according to a schedule.

Discussion
This section describes what you must do to use events, beginning with a
simple event that writes a row to a table at regular intervals.
Begin with a table to hold the mark rows. It contains a TIMESTAMP
column (which MySQL will initialize automatically) and a column to store
a message:

CREATE TABLE mark_log
(
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP,
 message VARCHAR(100)
);

Our logging event will write a string to a new row. To set it up, use a
CREATE EVENT statement:

CREATE EVENT mark_insert
ON SCHEDULE EVERY 5 MINUTE
DO INSERT INTO mark_log (message) VALUES('-- MARK --');

The mark_insert event causes the message '-- MARK --' to be
logged to the mark_log table every five minutes. Use a different interval
for more or less frequent logging.
This event is simple, and its body contains only a single SQL statement. For
an event body that executes multiple statements, use BEGIN…END

compound-statement syntax. In that case, if you use mysql to create the
event, change the statement delimiter while you define the event, as
discussed in Recipe 11.1.
At this point, you should wait a few minutes and then select the contents of
the mark_log table to verify that new rows are being written on schedule.
However, if this is the first event that you’ve set up, you might find that the
table remains empty no matter how long you wait:

mysql> SELECT * FROM mark_log;
Empty set (0.00 sec)

If that’s the case, very likely the event scheduler isn’t running (which was
its default state until version 8.0). Check the scheduler status by examining
the value of the event_scheduler system variable:

mysql> SHOW VARIABLES LIKE 'event_scheduler';
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| event_scheduler | OFF |
+-----------------+-------+

To enable the scheduler interactively if it’s not running, execute the
following statement (which requires the SYSTEM_VARIABLES_ADMIN
or, before version 8.0, SUPER privilege):

SET GLOBAL event_scheduler = 1;

That statement enables the scheduler but only until the server shuts down.
To start the scheduler each time the server starts, enable the system variable
in your my.cnf option file:

[mysqld]
event_scheduler=1

Or use a SET PERSIST statement to store the modified value of the
variable:

SET PERSIST event_scheduler = 1;

When the event scheduler is enabled, the mark_insert event eventually
creates many rows in the table. There are several ways that you can affect
event execution to prevent the table from growing forever:

Drop the event:

DROP EVENT mark_insert;

This is the simplest way to stop an event from occurring. But if you want
it to resume later, you must re-create it.
Disable event execution:

ALTER EVENT mark_insert DISABLE;

That leaves the event in place but causes it not to run until you reactivate
it:

ALTER EVENT mark_insert ENABLE;

Let the event continue to run, but set up another event that “expires” old
mark_log rows. This second event need not run so frequently (perhaps
once a day). Its body should remove rows older than a given threshold.
The following definition creates an event that deletes rows that are more
than two days old:

CREATE EVENT mark_expire
ON SCHEDULE EVERY 1 DAY
DO DELETE FROM mark_log WHERE ts < NOW() - INTERVAL 2 DAY;

If you adopt this strategy, you have cooperating events: one event that
adds rows to the mark_log table and another that removes them. They
act together to maintain a log that contains recent rows but does not
become too large.

11.6 Writing Helper Routines for Executing
Dynamic SQL

Problem
Prepared SQL statements enable you to construct and execute SQL
statements on the fly, but you want to run them in one step instead of
executing three commands: PREPARE, EXECUTE and DEALLOCATE
PREPARE.

Solution
Write a helper procedure that handles the drudgery.

Discussion
Using a prepared SQL statement involves three steps: preparation,
execution, and deallocation. For example, if the @tbl_name and @val
variables hold a table name and a value to insert into the table, you can
create the table and insert the value like this:

SET @stmt = CONCAT('CREATE TABLE ',@tbl_name,' (i INT)');
PREPARE stmt FROM @stmt;
EXECUTE stmt;
DEALLOCATE PREPARE stmt;
SET @stmt = CONCAT('INSERT INTO ',@tbl_name,' (i)
VALUES(',@val,')');
PREPARE stmt FROM @stmt;
EXECUTE stmt;
DEALLOCATE PREPARE stmt;

To ease the burden of going through those steps for each dynamically
created statement, use a helper routine that, given a statement string,
prepares, executes, and deallocates it:

CREATE PROCEDURE exec_stmt(stmt_str TEXT)
BEGIN
 SET @_stmt_str = stmt_str;
 PREPARE stmt FROM @_stmt_str;

 EXECUTE stmt;
 DEALLOCATE PREPARE stmt;
END;

The exec_stmt() routine enables the same statements to be executed
much more simply:

CALL exec_stmt(CONCAT('CREATE TABLE ',@tbl_name,' (i INT)'));
CALL exec_stmt(CONCAT('INSERT INTO ',@tbl_name,' (i)
VALUES(',@val,')'));

exec_stmt() uses an intermediary user-defined variable,
@_stmt_str, because PREPARE accepts a statement only when specified
using either a literal string or a user-defined variable. A statement stored in
a routine parameter does not work. (Avoid using @_stmt_str for your
own purposes, at least if you expect its value to persist across
exec_stmt() invocations.)

Now, how about making it safer to construct statement strings that
incorporate values that might come from external sources, such as web-
form input or command-line arguments? Such information cannot be trusted
and should be treated as a potential SQL injection attack vector:

The QUOTE() function is available for quoting data values.

There is no corresponding function for identifiers, but it’s easy to write
one that doubles internal backticks and adds a backtick at the beginning
and end:

CREATE FUNCTION quote_identifier(id TEXT)
RETURNS TEXT DETERMINISTIC
RETURN CONCAT('`',REPLACE(id,'`','``'),'`');

Revising the preceding example to ensure the safety of data values and
identifiers, we have the following:

SET @tbl_name = quote_identifier(@tbl_name);
SET @val = QUOTE(@val);
CALL exec_stmt(CONCAT('CREATE TABLE ',@tbl_name,' (i INT)'));

CALL exec_stmt(CONCAT('INSERT INTO ',@tbl_name,' (i)
VALUES(',@val,')'));

A constraint on the use of exec_stmt() is that not all SQL statements
are eligible for execution as prepared statements. See the MySQL
Reference Manual for the limitations.

HANDLING ERRORS WITHIN STORED PROGRAMS
Within stored programs, you can catch errors or exceptional conditions using condition
handlers. A handler activates under specific circumstances, causing the code associated with it
to execute. The code takes suitable action, such as performing cleanup processing or setting a
variable that can be tested elsewhere in the program to determine whether the condition
occurred. A handler might even ignore an error if it occurs under certain permitted conditions
and you want to catch it rather than have it terminate your program.

Stored programs can also produce their own errors or warnings to signal that something has
gone wrong.

Recipes 11.7, 11.8, and 11.9 illustrate these techniques. For complete lists of available condition
names, SQLSTATE values, and error codes, consult the MySQL Reference Manual.

11.7 Detecting “No More Rows” Conditions
Using Condition Handlers

Problem
You want to detect “no more rows” conditions and gracefully handle them
instead of interrupting the stored program execution.

Solution
One common use of condition handlers is to detect “no more rows”
conditions. To process a query result one row at a time, use a cursor-based
fetch loop in conjunction with a condition handler that catches the end-of-
data condition. The technique has these essential elements:

A cursor associated with a SELECT statement that reads rows. Open the
cursor to start reading, and close it to stop.

https://oreil.ly/q6aUi
https://oreil.ly/t9UiL

A condition handler that activates when the cursor reaches the end of the
result set and raises an end-of-data condition (NOT FOUND). We used a
similar handler in Recipe 11.2.
A variable that indicates loop termination. Initialize the variable to
FALSE, then set it to TRUE within the condition handler when the end-
of-data condition occurs.
A loop that uses the cursor to fetch each row and exits when the loop-
termination variable becomes TRUE.

Discussion
The following example implements a fetch loop that processes the _ch
states table row by row to calculate the total US population:

CREATE PROCEDURE us_population()
BEGIN
 DECLARE done BOOLEAN DEFAULT FALSE;
 DECLARE state_pop, total_pop BIGINT DEFAULT 0;
 DECLARE cur CURSOR FOR SELECT pop FROM states;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

 OPEN cur;
 fetch_loop: LOOP
 FETCH cur INTO state_pop;
 IF done THEN
 LEAVE fetch_loop;
 END IF;
 SET total_pop = total_pop + state_pop;
 END LOOP;
 CLOSE cur;
 SELECT total_pop AS 'Total U.S. Population';
END;

The done variable is used as a flag that checks when the procedure
decides if it needs to continue executing or stop.

The cursor for the query that fetches each state population.

When MySQL encounters a “not found” error, it stops execution. To
prevent this, we declared a CONTINUE handler that sets the value of the

done variable to TRUE.

We fetch each state population into the state_pop variable.

If the done variable is not true, we continue the loop, otherwise leaving
it.

We add the value of the state_pop variable to the total_pop
variable, which represents the population of the United States.

After leaving the loop, we print the value of the total_pop variable.

This example is mostly for illustration, because in any real application,
you’d use an aggregate function to calculate the total. But that also gives us
an independent check on whether the fetch loop calculates the correct value:

mysql> CALL us_population();
+-----------------------+
| Total U.S. Population |
+-----------------------+
| 331223695 |
+-----------------------+
mysql> SELECT SUM(pop) AS 'Total U.S. Population' FROM states;
+-----------------------+
| Total U.S. Population |
+-----------------------+
| 331223695 |
+-----------------------+

NOT FOUND handlers are also useful for checking whether SELECT…
INTO var_name statements return any results. Recipe 11.2 shows an
example.

11.8 Catching and Ignoring Errors with
Condition Handlers

Problem

You want to ignore benign errors or prevent errors from occurring for
nonexistent users.

Solution
Use a condition handler to catch and handle the error you want to ignore.

Discussion
If you consider an error benign, you can use a handler to ignore it. For
example, many DROP statements in MySQL have an IF EXISTS clause to
suppress errors if objects to be dropped do not exist. But some DROP
statements have no such clause and thus no way to suppress errors. DROP
INDEX is one of these:

mysql> DROP INDEX bad_index ON limbs;
ERROR 1091 (42000): Can't DROP 'bad_index'; check that column/key
exists

To prevent errors from occurring for nonexistent users, invoke DROP
INDEX within a stored procedure that catches code 1091 and ignores it:

CREATE PROCEDURE drop_index(index_name VARCHAR(64), table_name
VARCHAR(64))
BEGIN
 DECLARE CONTINUE HANDLER FOR 1091
 SELECT CONCAT('Unknown index: ', index_name) AS Message;
 CALL exec_stmt(CONCAT('DROP INDEX ', index_name, ' ON ',
table_name));
END;

If the index does not exist, drop_index() writes a message within the
condition handler, but no error occurs:

mysql> CALL drop_index('bad_index', 'limbs');
+--------------------------+
| Message |
+--------------------------+
| Unknown index: bad_index |
+--------------------------+

To ignore the error completely, write the handler using an empty BEGIN…
END block:

DECLARE CONTINUE HANDLER FOR 1091 BEGIN END;

Another approach is to generate a warning, as demonstrated in the next
recipe.

11.9 Raising Errors and Warnings

Problem
You want to raise an error for statements that are valid for MySQL but not
valid for the application you are working on.

Solution
To produce your own errors within a stored program when you detect
something awry, use the SIGNAL statement.

Discussion
This recipe shows some examples, and Recipe 11.11 demonstrates the use
of SIGNAL within a trigger to reject bad data.

Suppose that an application performs a division operation for which you
expect that the divisor will never be zero, and that you want to produce an
error otherwise. You might expect that since version 5.7.4
ERROR_FOR_DIVISION_BY_ZERO SQL mode is enabled, by default
you will get this behavior automatically. But that works only within the
context of data-modification operations such as INSERT. In other contexts,
division by zero produces only a warning:

mysql> SELECT @@sql_mode\G
*************************** 1. row ***************************
@@sql_mode:

ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DA
TE,↩
 ERROR_FOR_DIVISION_BY_ZERO,NO_ENGINE_SUBSTITUTION
1 row in set (0,00 sec)

mysql> SELECT 1/0;
+------+
| 1/0 |
+------+
| NULL |
+------+
1 row in set, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+---------+------+---------------+
| Level | Code | Message |
+---------+------+---------------+
| Warning | 1365 | Division by 0 |
+---------+------+---------------+

To ensure a divide-by-zero error in any context, write a function that
performs the division but checks the divisor first and uses SIGNAL to raise
an error if the “can’t happen” condition occurs:

CREATE FUNCTION divide(numerator FLOAT, divisor FLOAT)
RETURNS FLOAT DETERMINISTIC
BEGIN
 IF divisor = 0 THEN
 SIGNAL SQLSTATE '22012'
 SET MYSQL_ERRNO = 1365, MESSAGE_TEXT = 'unexpected 0
divisor';
 END IF;
 RETURN numerator / divisor;
END;

Test the function in a nonmodification context to verify that it produces an
error:

mysql> SELECT divide(1,0);
ERROR 1365 (22012): unexpected 0 divisor

The SIGNAL statement specifies a SQLSTATE value plus an optional SET
clause you can use to assign values to error attributes. MYSQL_ERRNO

corresponds to the MySQL-specific error code, and MESSAGE_TEXT is a
string of your choice.
SIGNAL can also raise warning conditions, not just errors. The following
routine, drop_user_warn(), is similar to the drop_user() routine
shown earlier, but instead of printing a message for nonexistent users, it
generates a warning that can be displayed with SHOW WARNINGS.
SQLSTATE value 01000 and error 1642 indicate a user-defined unhandled
exception, which the routine signals along with an appropriate message:

CREATE PROCEDURE drop_user_warn(user TEXT, host TEXT)
BEGIN
 DECLARE account TEXT;
 DECLARE CONTINUE HANDLER FOR 1396
 BEGIN
 DECLARE msg TEXT;
 SET msg = CONCAT('Unknown user: ', account);
 SIGNAL SQLSTATE '01000' SET MYSQL_ERRNO = 1642, MESSAGE_TEXT
= msg;
 END;
 SET account = CONCAT(QUOTE(user),'@',QUOTE(host));
 CALL exec_stmt(CONCAT('DROP USER ',account));
END;

Give it a test:

mysql> CALL drop_user_warn('bad-user','localhost');
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+---------+------+--------------------------------------+
| Level | Code | Message |
+---------+------+--------------------------------------+
| Warning | 1642 | Unknown user: 'bad-user'@'localhost' |
+---------+------+--------------------------------------+

11.10 Logging Errors by Accessing the
Diagnostic Area

Problem

You want to log all errors that your stored routine hits.

Solution
Access the diagnostic area using the GET DIAGNOSTICS statement.
Then, save the error information into variables, and use them to log errors.

Discussion
You can not only gracefully handle errors inside the stored routine but also
log them, so you can examine them and fix your application to prevent
similar errors in the future.
The movies_actors_link table is used in Recipe 16.6 to demonstrate
many-to-many relationships. It contains the id of the movies and movie
actors that are stored in the movies and movies_actors tables. Both
columns are defined with the NOT NULL property. Each combination of
movie_id and actor_id should be unique. While Recipe 16.6 does not
define foreign keys (see “Using Foreign Keys to Enforce Referential
Integrity and Prevent Mismatches”), we can define them, so MySQL will
reject values that do not have corresponding entries in the referenced tables:

ALTER TABLE movies_actors_link ADD FOREIGN KEY(movie_id)
REFERENCES movies(id);
ALTER TABLE movies_actors_link ADD FOREIGN KEY(actor_id)
REFERENCES actors(id);

Next we execute the INSERT statement from the MySQL CLI:

mysql> INSERT INTO movies_actors_link VALUES(7, 1);
ERROR 1452 (23000): Cannot add or update a child row: a foreign
key constraint
fails (`cookbook`.`movies_actors_link`, CONSTRAINT
`movies_actors_link_ibfk_1`
FOREIGN KEY (`movie_id`) REFERENCES `movies` (`id`))

Additionally, MySQL provides access to the diagnostic area, so you can
store values from it in the user-defined variables. Use the GET

DIAGNOSTICS command to access the diagnostic area:

mysql> GET DIAGNOSTICS CONDITION 1
 -> @err_number = MYSQL_ERRNO,
 -> @err_sqlstate = RETURNED_SQLSTATE,
 -> @err_message = MESSAGE_TEXT;
Query OK, 0 rows affected (0.01 sec)

Clause CONDITION specifies the condition number. Our query returned
only one condition; therefore, we used number 1. If a query returns multiple
conditions, the diagnostic area would contain data for each of the
conditions. For example, a query could produce multiple warnings.
To access data retrieved by the GET DIAGNOSTICS command, simply
select the values of the user-defined variables:

mysql> SELECT @err_number, @err_sqlstate, @err_message\G
*************************** 1. row ***************************
 @err_number: 1452
@err_sqlstate: 23000
 @err_message: Cannot add or update a child row: a foreign key
constraint
 fails (`cookbook`.`movies_actors_link`,
 CONSTRAINT `movies_actors_link_ibfk_1`
 FOREIGN KEY (`movie_id`) REFERENCES `movies`
(`id`))
1 row in set (0.00 sec)

To record all such errors that users make when inserting data into the
movies_actors_link table, create a procedure that takes two
arguments, movie_id and actor_id, and stores the error information in
the log table.
First, we’ll create the table that will store information about the errors:

CREATE TABLE `movies_actors_log` (
 `err_ts` timestamp NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP,
 `err_number` int DEFAULT NULL,
 `err_sqlstate` char(5) DEFAULT NULL,
 `err_message` TEXT DEFAULT NULL,
 `movie_id` int unsigned DEFAULT NULL,

 `actor_id` int unsigned DEFAULT NULL
);

Then, define the procedure that will insert a row into the
movies_actors_link table and, in case of an error, will log details
into the movies_actors_log table:

CREATE PROCEDURE insert_movies_actors_link(movie INT, actor INT)
BEGIN
 DECLARE e_number INT;
 DECLARE e_sqlstate CHAR(5);
 DECLARE e_message TEXT;

 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 BEGIN
 GET DIAGNOSTICS CONDITION 1
 e_number = MYSQL_ERRNO,
 e_sqlstate = RETURNED_SQLSTATE,
 e_message = MESSAGE_TEXT;
 INSERT INTO movies_actors_log(err_number, err_sqlstate,
err_message,
 movie_id, actor_id)
 VALUES(e_number, e_sqlstate, e_message, movie, actor);
 RESIGNAL;
 END;

 INSERT INTO movies_actors_link VALUES(movie, actor);
END

Declare variables that will store the error number, SQLSTATE, and the
error message.

Create a CONTINUE HANDLER for SQLEXCEPTION, so the
procedure will first log the error, then continue executing.

Store diagnostic information in the variables.

Log details about the error into the movies_actors_log table.

Use the RESIGNAL command to raise the error for the client that called
the procedure.

Run the INSERT into the movies_actors_link table that will
either succeed or raise an error.

To test the procedure, call it few times with different parameters:

mysql> CALL insert_movies_actors_link(7, 11);
ERROR 1452 (23000): Cannot add or update a child row: a foreign
key constraint
fails (`cookbook`.`movies_actors_link`, CONSTRAINT
`movies_actors_link_ibfk_1`
FOREIGN KEY (`movie_id`) REFERENCES `movies` (`id`))
mysql> CALL insert_movies_actors_link(6, 11);
ERROR 1452 (23000): Cannot add or update a child row: a foreign
key constraint
fails (`cookbook`.`movies_actors_link`, CONSTRAINT
`movies_actors_link_ibfk_2`
FOREIGN KEY (`actor_id`) REFERENCES `actors` (`id`))
mysql> CALL insert_movies_actors_link(null, 10);
ERROR 1048 (23000): Column 'movie_id' cannot be null
mysql> CALL insert_movies_actors_link(6, null);
ERROR 1048 (23000): Column 'actor_id' cannot be null
mysql> CALL insert_movies_actors_link(6, 9);
ERROR 1062 (23000): Duplicate entry '6-9' for key
'movies_actors_link.movie_id'

As expected, because we used RESIGNAL, the procedure failed with errors.
Still, all the errors were logged into the movies_actors_log table
along with the values that we tried and failed to insert and a timestamp
when the try happened:

mysql> SELECT * FROM movies_actors_log\G
*************************** 1. row ***************************
 err_ts: 2021-03-12 21:11:30
 err_number: 1452
err_sqlstate: 23000
 err_message: Cannot add or update a child row: a foreign key
constraint fails
 (`cookbook`.`movies_actors_link`,
 CONSTRAINT `movies_actors_link_ibfk_1`
 FOREIGN KEY (`movie_id`) REFERENCES `movies`
(`id`))
 movie_id: 7
 actor_id: 11
*************************** 2. row ***************************
 err_ts: 2021-03-12 21:11:38
 err_number: 1452

err_sqlstate: 23000
 err_message: Cannot add or update a child row: a foreign key
constraint fails
 (`cookbook`.`movies_actors_link`,
 CONSTRAINT `movies_actors_link_ibfk_2`
 FOREIGN KEY (`actor_id`) REFERENCES `actors`
(`id`))
 movie_id: 6
 actor_id: 11
*************************** 3. row ***************************
 err_ts: 2021-03-12 21:11:49
 err_number: 1048
err_sqlstate: 23000
 err_message: Column 'movie_id' cannot be null
 movie_id: NULL
 actor_id: 10
*************************** 4. row ***************************
 err_ts: 2021-03-12 21:11:56
 err_number: 1048
err_sqlstate: 23000
 err_message: Column 'actor_id' cannot be null
 movie_id: 6
 actor_id: NULL
*************************** 5. row ***************************
 err_ts: 2021-03-12 21:12:00
 err_number: 1062
err_sqlstate: 23000
 err_message: Duplicate entry '6-9' for key
'movies_actors_link.movie_id'
 movie_id: 6
 actor_id: 9
5 rows in set (0.00 sec)

See Also
For additional information about the diagnostic area, see “GET
DIAGNOSTICS Statement”.

11.11 Using Triggers to Preprocess or Reject
Data

Problem

https://oreil.ly/guhp9

There are conditions wherein you want to check for data entered into a
table, but you don’t want to write the validation logic for every INSERT.

Solution
Centralize the input-testing logic into a BEFORE INSERT trigger.

Discussion
You can use triggers to perform several types of input checks:

Reject bad data by raising a signal. This gives you access to stored
program logic for more latitude in checking values than is possible with
static constraints such as NOT NULL.

Preprocess values and modify them, if you don’t want to reject them
outright. For example, map out-of-range values to be in range or sanitize
values to put them in canonical form, if you permit entry of close
variants.

Suppose that you have a table of contact information, such as name, state of
residence, email address, and website URL:

CREATE TABLE contact_info
(
 id INT NOT NULL AUTO_INCREMENT,
 name VARCHAR(30), # name of person
 state CHAR(2), # state of residence
 email VARCHAR(50), # email address
 url VARCHAR(255), # web address
 PRIMARY KEY (id)
);

If you want to enforce constraints or perform preprocessing when entering
new rows, ensure the following:

State-of-residence values are two-letter US state codes, valid only if
present in the states table. (In this case, you could declare the column
as an ENUM with 50 members, so it’s more likely you’d use this lookup-

table technique with columns for which the set of valid values is
arbitrarily large or changes over time.)
Email address values must contain an @ character to be valid.

For website URLs, strip any leading http:// or https:// to save
space.

To handle these requirements, create a BEFORE INSERT trigger:

CREATE TRIGGER bi_contact_info BEFORE INSERT ON contact_info
FOR EACH ROW
BEGIN
 IF (SELECT COUNT(*) FROM states WHERE abbrev = NEW.state) = 0
THEN
 SIGNAL SQLSTATE 'HY000'
 SET MYSQL_ERRNO = 1525, MESSAGE_TEXT = 'invalid state
code';
 END IF;
 IF INSTR(NEW.email,'@') = 0 THEN
 SIGNAL SQLSTATE 'HY000'
 SET MYSQL_ERRNO = 1525, MESSAGE_TEXT = 'invalid email
address';
 END IF;
 SET NEW.url = TRIM(LEADING 'http://' FROM NEW.url);
 SET NEW.url = TRIM(LEADING 'https://' FROM NEW.url);
END;

To also handle updates, define a BEFORE UPDATE trigger with the same
body as bi_contact_info.

Test the trigger by executing some INSERT statements to verify that it
accepts valid values, rejects bad ones, and trims URLs:

mysql> INSERT INTO contact_info (name,state,email,url)
 ->
VALUES('Jen','NY','jen@example.com','http://www.example.com');
mysql> INSERT INTO contact_info (name,state,email,url)
 ->
VALUES('Jen','XX','jen@example.com','http://www.example.com');
ERROR 1525 (HY000): invalid state code
mysql> INSERT INTO contact_info (name,state,email,url)
 -> VALUES('Jen','NY','jen','http://www.example.com');
ERROR 1525 (HY000): invalid email address
mysql> SELECT * FROM contact_info;
+----+------+-------+-----------------+-----------------+

| id | name | state | email | url |
+----+------+-------+-----------------+-----------------+
| 1 | Jen | NY | jen@example.com | www.example.com |
+----+------+-------+-----------------+-----------------+

Chapter 12. Working with
Metadata

12.0 Introduction
Most of the SQL statements we’ve used so far have been written to work
with the data stored in the database. That is, after all, what the database is
designed to hold. But sometimes you need more than just data values. You
need information that characterizes or describes those values—the
statement metadata. Metadata is used most often to process result sets but
also applies to other aspects of your interaction with MySQL. This chapter
describes how to obtain and use several types of metadata:

Information about statement results
For statements that delete or update rows, you can determine how many
rows were changed. For a SELECT statement, you can obtain the
number of columns in the result set, as well as information about each
column in the result set, such as the column name and its display width.
For example, to format a tabular display, you can determine how wide
to make each column and whether to justify values to the left or right.

Information about databases and tables
A MySQL server can be queried to determine which databases and
tables it manages. This is useful for existence tests or producing lists.
For example, an application might present a display enabling the user to
select one of the available databases. Table metadata can be examined to
determine column definitions, for example, to determine the legal
values for ENUM or SET columns to generate web form elements
corresponding to the available choices.

Information about the MySQL server

The database server provides information about itself and about the
status of your current session with it. Knowing the server version can be
useful for determining whether it supports a given feature, which helps
you build adaptive applications.

Metadata is closely tied to the implementation of the database system, so it
tends to be database system−dependent. This means that if an application
uses techniques shown in this chapter, it might need some modification if
you port it to other database systems. For example, lists of tables and
databases in MySQL are available by executing SHOW statements.
However, SHOW is a MySQL-specific extension to SQL, so even for APIs
like Perl DBI, PHP PDO, Python DB API, and JDBC that give you a
database-independent way of executing statements, the SQL itself is
MySQL-specific and must be changed to work with other database systems.
A more portable source of metadata is INFORMATION_SCHEMA, a
database that contains information about databases, tables, columns,
character sets, and so forth. INFORMATION_SCHEMA has some
advantages over SHOW:

Other database systems support INFORMATION_SCHEMA, so
applications that use it are likely to be more portable than those that use
SHOW statements.

INFORMATION_SCHEMA is used with standard SELECT syntax, so it’s
more similar to other data-retrieval operations than SHOW statements.

Because of those advantages, recipes in this chapter use
INFORMATION_SCHEMA rather than SHOW in most cases.

A disadvantage of INFORMATION_SCHEMA is that statements to access it
are more verbose than the corresponding SHOW statements. That doesn’t
matter so much when you’re writing programs, but for interactive use,
SHOW statements can be more attractive because they require less typing.

NOTE
The results retrieved from INFORMATION_SCHEMA or SHOW depend on your privileges. You’ll
see information only for those databases or tables for which you have some privileges. Thus, an
existence test for an object returns false if it exists, but you have no privileges for accessing it.
You may need to use a user with administrative privileges to be able to repeat all code examples
that we provide in this chapter.

Scripts that create the tables used in this chapter are located in the tables
directory of the recipes distribution. Scripts containing code for the
examples are located in the metadata directory. (Some of them use utility
functions located in the lib directory.) The distribution often provides
implementations in languages other than those shown.

12.1 Determining the Number of Rows
Affected by a Statement

Problem
You want to know how many rows have been changed by a SQL statement.

Solution
Some APIs return the row count as a return value of the function that
executes the statement. Others provide a separate function that you call
after executing the statement. Use the method available in the programming
language you use.

Discussion
For statements that affect rows (UPDATE, DELETE, INSERT, REPLACE),
each API provides a way to determine the number of rows involved. For
MySQL, the default meaning of “affected by” is “changed by,” not
“matched by.” That is, rows not changed by a statement are not counted,

even if they match the conditions specified in the statement. For example,
the following UPDATE statement results in an “affected by” value of zero
because it changes no columns from their current values, no matter how
many rows the WHERE clause matches:

UPDATE profile SET cats = 0 WHERE cats = 0;

The MySQL server permits a client to set a connect-time flag to indicate
that it wants rows-matched counts, not rows-changed counts. In this case,
the row count for the preceding statement would be equal to the number of
rows with a cats value of 0, even though the statement results in no net
change to the table. However, not all MySQL APIs expose this flag. The
following discussion indicates which APIs enable you to select the type of
count you want and which use the rows-matched count by default rather
than the rows-changed count.

Perl
In Perl DBI scripts, do() returns the row count for statements that modify
rows:

my $count = $dbh->do ($stmt);
report 0 rows if an error occurred
printf "Number of rows affected: %d\n", (defined ($count) ?
$count : 0);

If you prepare a statement first and then execute it, execute() returns the
row count:

my $sth = $dbh->prepare ($stmt);
my $count = $sth->execute ();
printf "Number of rows affected: %d\n", (defined ($count) ?
$count : 0);

To tell MySQL whether to return rows-changed or rows-matched counts,
specify mysql_client_found_rows in the options part of the Data
Source Name (DSN) argument of the connect() call when you connect

to the MySQL server. Set the option to 0 for rows-changed counts and 1 for
rows-matched counts. Here’s an example:

my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit =>
1};
my $dsn =
"DBI:mysql:cookbook:localhost;mysql_client_found_rows=1";
my $dbh = DBI->connect ($dsn, "cbuser", "cbpass", $conn_attrs);

mysql_client_found_rows changes the row-reporting behavior for
the duration of the session.
Although the default behavior for MySQL itself is to return rows-changed
counts, current versions of the Perl DBI driver for MySQL automatically
request rows-matched counts unless you specify otherwise. For applications
that depend on a particular behavior, it’s best to explicitly set the
mysql_client_found_rows option in the DSN to the appropriate
value.

Ruby
In Ruby Mysql2 scripts, the affected_rows method returns the row
count for statements that modify rows:

client.query(stmt)
puts "Number of rows affected: #{client.affected_rows}"

If you use the prepared statements execute method to execute a
statement, use the statement handle affected_rows method to get the
count afterward:

sth = client.prepare(stmt)
sth.execute()
puts "Number of rows affected: #{sth.affected_rows}"

The Ruby driver for MySQL returns rows-changed counts by default, but
the driver supports a Mysql2::Client::FOUND_ROWS option that
enables you to control whether the server returns rows-changed or rows-
matched counts. For example, to request rows-matched counts, do this:

client = Mysql2::Client.new(:flags=>Mysql2::Client::FOUND_ROWS,
:database=>'cookbook')

PHP
In PDO, the database handle exec() method returns the rows-affected
count:

$count = $dbh->exec ($stmt);
printf ("Number of rows updated: %d\n", $count);

If you use prepare() plus execute() instead, the rows-affected count
is available from the statement handle rowCount() method:

$sth = $dbh->prepare ($stmt);
$sth->execute ();
printf ("Number of rows updated: %d\n", $sth->rowCount ());

The PDO driver for MySQL returns rows-changed counts by default, but
the driver supports a PDO::MYSQL_ATTR_FOUND_ROWS attribute that
you can specify at connect time to control whether the server returns rows-
changed or rows-matched counts. The new PDO class constructor takes an
optional key/value array following the password argument. Pass
PDO::MYSQL_ATTR_FOUND_ROWS => 1 in this array to request rows-
matched counts:

$dsn = "mysql:host=localhost;dbname=cookbook";
$dbh = new PDO ($dsn, "cbuser", "cbpass",
 array (PDO::MYSQL_ATTR_FOUND_ROWS => 1));

Python
Python’s DB API makes the rows-changed count available as the value of
the statement cursor’s rowcount attribute:

cursor = conn.cursor()
cursor.execute(stmt)
print("Number of rows affected: %d" % cursor.rowcount)
cursor.close()

To obtain rows-matched counts instead, import the Connector/Python
client-flag constants and pass the FOUND_ROWS flag in the
client_flags parameter of the connect() method:

from mysql.connector.constants import ClientFlag

conn = mysql.connector.connect(
 database="cookbook",
 host="localhost",
 user="cbuser",
 password="cbpass",
 client_flags=[ClientFlag.FOUND_ROWS]
)

Go
The Go SQL driver provides a RowsAffected method of the Result
type that returns the number of changed rows:

res, err := db.Exec(sql)
// Check and handle err
affectedRows, err := res.RowsAffected()
// Check and handle err
fmt.Printf("The statement affected %d rows\n", affectedRows)

To retrieve the row-matched count instead, add a
clientFoundRows=true parameter to the connection string:

db, err := ↩
sql.Open("mysql", "cbuser:cbpass@tcp(127.0.0.1:3306)/cookbook?
clientFoundRows=true")

Java
For statements that modify rows, the Connector/J driver provides rows-
matched counts rather than rows-changed counts, for conformance with the
Java JDBC specification.
The JDBC interface provides row counts two different ways, depending on
the method you invoke to execute the statement. If you use
executeUpdate(), the row count is its return value:

Statement s = conn.createStatement ();
int count = s.executeUpdate (stmt);
s.close ();
System.out.println ("Number of rows affected: " + count);

If you use execute(), that method returns true or false to indicate
whether the statement produces a result set. For statements such as
UPDATE or DELETE that return no result set, execute() returns false,
and the row count is available by calling the getUpdateCount()
method:

Statement s = conn.createStatement ();
if (!s.execute (stmt))
{
 // there is no result set, print the row count
 System.out.println ("Number of rows affected: " +
s.getUpdateCount ());
}
s.close ();

12.2 Obtaining Result Set Metadata

Problem
After retrieving the rows (see Recipe 4.4), you want to know other details
about the result set, such as the column names and data types or how many
rows and columns there are.

Solution
Use the capabilities provided by your API.

Discussion
Statements such as SELECT that generate a result set produce several types
of metadata. This section discusses the information available through each
API, using programs that show how to display the result-set metadata
available after executing a sample statement (SELECT name, birth

FROM profile). The example programs illustrate one of the simplest uses
for this information: when you retrieve a row from a result set and you want
to process the column values in a loop, the column count stored in the
metadata serves as the upper bound on the loop iterator.

Perl
The scope of result-set metadata available from Perl DBI depends on how
you process queries:

Using a statement handle
In this case, invoke prepare() to get the statement handle. This
handle has an execute() method. Invoke it to generate the result set,
then fetch the rows in a loop. With this approach, access to the metadata
is available while the result set is active—that is, after the call to
execute() and until the end of the result set is reached. When the
row-fetching method finds that there are no more rows, it invokes
finish() implicitly, which causes the metadata to become
unavailable. (That also happens if you explicitly call finish()
yourself.) Thus, normally it’s best to access the metadata immediately
after calling execute(), making a copy of any values that you’ll need
to use beyond the end of the fetch loop.

Using a database-handle method that returns the result set in a single
operation

With this approach, any metadata generated while processing the
statement will have been disposed of by the time the method returns.
You can still determine the number of rows and columns from the size
of the result set.

When you use a statement handle to process a query, DBI makes result-set
metadata available after you invoke the handle’s execute() method. This
information is available primarily in the form of references to arrays. For
each such type of metadata, the array has one element per column in the
result set. Access these array references as attributes of the statement

handle. For example, $sth->{NAME} points to the column name array,
with individual column names available as elements of this array:

$name = $sth->{NAME}->[$i];

Or access the entire array like this:

@names = @{$sth->{NAME}};

Table 12-1 lists the attribute names through which you access array-based
metadata and the meaning of values in each array. Names that begin with
uppercase are standard DBI attributes and should be available for most
database engines. Attribute names that begin with mysql_ are MySQL-
specific and nonportable.

Table 12-1. Metadata in Perl

Attribute name Array element meaning
NAME Column name

NAME_lc Column name in lowercase

NAME_uc Column name in uppercase

NULLABLE 0 or empty string = column
 values cannot be NULL

1 = column values can be
 NULL

2 = unknown

PRECISION Column width

SCALE Number of decimal places (for numeric columns)

TYPE Data type (numeric DBI code)

mysql_is_blob True if column has a BLOB (or TEXT) type

mysql_is_key True if column is part of a key

mysql_is_num True if column has a numeric type

mysql_is_pri_key True if column is part of a primary key

mysql_max_length Actual maximum length of column values in result
 set

Attribute name Array element meaning
mysql_table Name of table the column is part of

mysql_type Data type (numeric internal MySQL code)

mysql_type_name Data type name

Some types of metadata, listed in Table 12-2, are accessed as references to
hashes rather than arrays. These hashes have one element per column value.
The element key is the column name, and its value is the position of the
column within the result set, for example:

$col_pos = $sth->{NAME_hash}->{col_name};

Table 12-2. Metadata in Perl,
accessible as references to hashes

Attribute name Hash element meaning
NAME_hash Column name

NAME_hash_lc Column name in lowercase

NAME_hash_uc Column name in uppercase

The number of columns in a result set is available as a scalar value:

$num_cols = $sth->{NUM_OF_FIELDS};

This example code shows how to execute a statement and display result-set
metadata:

my $stmt = "SELECT name, birth FROM profile";
printf "Statement: %s\n", $stmt;
my $sth = $dbh->prepare ($stmt);
$sth->execute();
metadata information becomes available at this point ...
printf "NUM_OF_FIELDS: %d\n", $sth->{NUM_OF_FIELDS};
print "Note: statement has no result set\n" if $sth->
{NUM_OF_FIELDS} == 0;
for my $i (0 .. $sth->{NUM_OF_FIELDS}-1)
{
 printf "--- Column %d (%s) ---\n", $i, $sth->{NAME}->[$i];

 printf "NAME_lc: %s\n", $sth->{NAME_lc}->[$i];
 printf "NAME_uc: %s\n", $sth->{NAME_uc}->[$i];
 printf "NULLABLE: %s\n", $sth->{NULLABLE}->[$i];
 printf "PRECISION: %d\n", $sth->{PRECISION}->[$i];
 printf "SCALE: %d\n", $sth->{SCALE}->[$i];
 printf "TYPE: %d\n", $sth->{TYPE}->[$i];
 printf "mysql_is_blob: %s\n", $sth->{mysql_is_blob}->[$i];
 printf "mysql_is_key: %s\n", $sth->{mysql_is_key}->[$i];
 printf "mysql_is_num: %s\n", $sth->{mysql_is_num}->[$i];
 printf "mysql_is_pri_key: %s\n", $sth->{mysql_is_pri_key}->
[$i];
 printf "mysql_max_length: %d\n", $sth->{mysql_max_length}->
[$i];
 printf "mysql_table: %s\n", $sth->{mysql_table}->[$i];
 printf "mysql_type: %d\n", $sth->{mysql_type}->[$i];
 printf "mysql_type_name: %s\n", $sth->{mysql_type_name}->[$i];
}
$sth->finish (); # release result set because we didn't fetch
its rows

The program produces this output:

Statement: SELECT name, birth FROM profile
NUM_OF_FIELDS: 2
--- Column 0 (name) ---
NAME_lc: name
NAME_uc: NAME
NULLABLE:
PRECISION: 20
SCALE: 0
TYPE: 12
mysql_is_blob:
mysql_is_key:
mysql_is_num: 0
mysql_is_pri_key:
mysql_max_length: 7
mysql_table: profile
mysql_type: 253
mysql_type_name: varchar
--- Column 1 (birth) ---
NAME_lc: birth
NAME_uc: BIRTH
NULLABLE: 1
PRECISION: 10
SCALE: 0
TYPE: 9
mysql_is_blob:
mysql_is_key:
mysql_is_num: 0

mysql_is_pri_key:
mysql_max_length: 10
mysql_table: profile
mysql_type: 10
mysql_type_name: date

To get a row count from a result set generated by calling execute(),
fetch the rows and count them yourself. Using $sth->rows() to get a
count for SELECT statements is expressly deprecated in the DBI
documentation.
You can also obtain a result set by calling one of the DBI methods that uses
a database handle rather than a statement handle, such as
selectall_arrayref() or selectall_hashref(). These
methods provide no access to column metadata. That information already
will have been disposed of by the time the method returns, and is
unavailable to your scripts. However, you can derive column and row
counts by examining the result set itself. Recipe 4.4 discusses the result-set
structures produced by several methods and how to use them to obtain row
and column counts.

Ruby
Ruby Mysql2 gem does not provide its own methods to access result-set
metadata after you execute a statement. You can get column names only by
calling the fields method of the Mysql2::Result class:

stmt = "SELECT name, birth FROM profile"
puts "Statement: #{stmt}"
sth = client.prepare(stmt)
res = sth.execute()
metadata information becomes available at this point ...
puts "Number of columns: #{res.fields.size}"
puts "Note: statement has no result set" if res.count == 0
puts "Columns names: #{res.fields.join(", ")}"
res.free

To obtain other column metadata, query the Information Schema as we
suggest in Recipe 12.5

PHP
In PHP, metadata for SELECT statements is available from PDO after a
successful call to query(). If you execute a statement using prepare()
plus execute() instead (which can be used for SELECT or non-SELECT
statements), metadata becomes available after execute().

To determine metadata availability, check whether the statement handle
columnCount() method returns a value greater than zero. If so, the
handle’s getColumnMeta() method returns an associative array
containing metadata for a single column. Table 12-3 shows the elements of
this array. (The format of the flags value might differ for other database
systems.)

Table 12-3. Metadata in PHP

Name Value
pdo_type Column type (corresponds

 to a PDO::PARAM_XXX
 value)

native_type PHP native type for the
 column value

name Column name

len Column length

precision Column precision

flags Array of flags describing
 the column attributes

table Name of table the column
 is part of

This example code shows how to execute a statement and display result-set
metadata:

$stmt = "SELECT name, birth FROM profile";
print ("Statement: $stmt\n");
$sth = $dbh->prepare ($stmt);
$sth->execute ();
metadata information becomes available at this point ...
$ncols = $sth->columnCount ();

print ("Number of columns: $ncols\n");
if ($ncols == 0)
 print ("Note: statement has no result set\n");
for ($i = 0; $i < $ncols; $i++)
{
 $col_info = $sth->getColumnMeta ($i);
 $flags = implode (",", array_values ($col_info["flags"]));
 printf ("--- Column %d (%s) ---\n", $i, $col_info["name"]);
 printf ("pdo_type: %d\n", $col_info["pdo_type"]);
 printf ("native_type: %s\n", $col_info["native_type"]);
 printf ("len: %d\n", $col_info["len"]);
 printf ("precision: %d\n", $col_info["precision"]);
 printf ("flags: %s\n", $flags);
 printf ("table: %s\n", $col_info["table"]);
}

The program produces this output:

Statement: SELECT name, birth FROM profile
Number of columns: 2
--- Column 0 (name) ---
PDO type: 2
native type: VAR_STRING
len: 20
precision: 0
flags: not_null
table: profile
--- Column 1 (birth) ---
PDO type: 2
native type: DATE
len: 10
precision: 0
flags:
table: profile

To get a row count from a statement that returns rows, fetch the rows and
count them yourself. The rowCount() method is not guaranteed to work
for result sets.

Python
For statements that produce a result set, Python’s DB API makes row and
column counts available, as well as a few information items about
individual columns.

To get the row count for a result set, access the cursor’s rowcount
attribute. This requires that the cursor be buffered so that it fetches query
results immediately; otherwise, you must count the rows as you fetch them.
The column count is not available directly, but after calling fetchone()
or fetchall(), you can determine the count as the length of any result-
set row tuple. It’s also possible to determine the column count without
fetching any rows by using cursor.description. This is a tuple
containing one element per column in the result set, so its length tells you
how many columns are in the set. (If the statement generates no result set,
such as for UPDATE, the value of description is None.) Each element
of the description tuple is another tuple that represents the metadata
for the corresponding column of the result. For Connector/Python, only a
few description values are meaningful. The following code shows how
to access them:

stmt = "SELECT name, birth FROM profile"
print("Statement: %s" % stmt)
buffer cursor so that rowcount has usable value
cursor = conn.cursor(buffered=True)
cursor.execute(stmt)
metadata information becomes available at this point...
print("Number of rows: %d" % cursor.rowcount)
if cursor.description is None: # no result set
 ncols = 0
else:
 ncols = len(cursor.description)
print("Number of columns: %d" % ncols)
if ncols == 0:
 print("Note: statement has no result set")
for i, col_info in enumerate(cursor.description):
 # print name, then other information
 name, type, _, _, _, _, nullable, flags, _ = col_info
 print("--- Column %d (%s) ---" % (i, name))
 print("Type: %d (%s)" % (type, FieldType.get_info(type)))
 print("Nullable: %d" % (nullable))
 print("Flags: %d" % (flags))
cursor.close()

The code uses the FieldType class, imported as follows:

from mysql.connector import FieldType

The program produces this output:

Statement: SELECT name, birth FROM profile
Number of rows: 10
Number of columns: 2
--- Column 0 (name) ---
Type: 253 (VAR_STRING)
Nullable: 0
Flags: 4097
--- Column 1 (birth) ---
Type: 10 (DATE)
Nullable: 1
Flags: 128

Go
Go provides column metadata as array of ColumnType values, returned
by the Rows.ColumnTypes method. You can query each of the array
members to obtain specific characteristic of the column.
Table 12-4 contains methods that the ColumnType supports.

Table 12-4. Metadata in Go

Method name Description
DatabaseTyp
eName

Database type, such as INT or VARCHAR.

DecimalSize Scale and precision for the decimal type.

Length Column type length for the variable length text and binary columns. Not
supported by the MySQL driver.

Name The name or the alias of the column.

Nullable Whenever column is nullable.

ScanType The native Go type, suitable for scanning into Rows.Scan.

You may also get the list of column names if you use the Rows.Columns
method. It returns an array of strings that contain column names or aliases.
The example code demonstrates how to obtain column names and metadata
in the Go application:

package main

import (
 "fmt"
 "log"
 "github.com/svetasmirnova/mysqlcookbook/recipes/lib/cookbook"
)

func main() {
 db := cookbook.Connect()
 defer db.Close()

 stmt := "SELECT name, birth FROM profile"
 fmt.Printf("Statement: %s\n", stmt)

 rows, err := db.Query(stmt)
 if err != nil {
 log.Fatal(err)
 }
 defer rows.Close()

 // metadata information becomes available at this point ...
 cols, err := rows.ColumnTypes()
 if err != nil {
 log.Fatal(err)
 }

 ncols := len(cols)
 fmt.Printf("Number of columns: %d\n", ncols)
 if (ncols == 0) {
 fmt.Println("Note: statement has no result set")
 }

 for i := 0; i < ncols; i++ {
 fmt.Printf("---- Column %d (%s) ----\n", i, cols[i].Name())
 fmt.Printf("DatabaseTypeName: %s\n",
cols[i].DatabaseTypeName())

 collen, ok := cols[i].Length()
 if ok {
 fmt.Printf("Length: %d\n", collen)
 }

 precision, scale, ok := cols[i].DecimalSize()
 if ok {
 fmt.Printf("DecimalSize precision: %d, scale: %d\n",
precision, scale)
 }

 colnull, ok := cols[i].Nullable()
 if ok {
 fmt.Printf("Nullable: %t\n", colnull)
 }

 fmt.Printf("ScanType: %s\n", cols[i].ScanType())
 }
}

The program produces this output:

Statement: SELECT name, birth FROM profile
Number of columns: 2
---- Column 0 (name) ----
DatabaseTypeName: VARCHAR
Nullable: false
ScanType: sql.RawBytes
---- Column 1 (birth) ----
DatabaseTypeName: DATE
Nullable: true
ScanType: sql.NullTime

Java
JDBC makes result-set metadata available through a
ResultSetMetaData object, obtained by calling the
getMetaData() method of your ResultSet object. The metadata
object provides access to several kinds of information. Its
getColumnCount() method returns the number of columns in the result
set. Other types of metadata, illustrated by the following code, provide
information about individual columns and take a column index as their
argument. For JDBC, column indexes begin at 1 rather than 0, unlike our
other APIs:

String stmt = "SELECT name, birth FROM profile";
System.out.println("Statement: " + stmt);
Statement s = conn.createStatement();
s.executeQuery(stmt);
ResultSet rs = s.getResultSet();
ResultSetMetaData md = rs.getMetaData();
// metadata information becomes available at this point...
int ncols = md.getColumnCount();
System.out.println("Number of columns: " + ncols);
if (ncols == 0)

 System.out.println ("Note: statement has no result set");
for (int i = 1; i <= ncols; i++) { // column index values are 1-
based
 System.out.println("--- Column " + i
 + " (" + md.getColumnName (i) + ") ---");
 System.out.println("getColumnDisplaySize: " +
md.getColumnDisplaySize (i));
 System.out.println("getColumnLabel: " + md.getColumnLabel
(i));
 System.out.println("getColumnType: " + md.getColumnType
(i));
 System.out.println("getColumnTypeName: " +
md.getColumnTypeName (i));
 System.out.println("getPrecision: " + md.getPrecision
(i));
 System.out.println("getScale: " + md.getScale (i));
 System.out.println("getTableName: " + md.getTableName
(i));
 System.out.println("isAutoIncrement: " +
md.isAutoIncrement (i));
 System.out.println("isNullable: " + md.isNullable
(i));
 System.out.println("isCaseSensitive: " +
md.isCaseSensitive (i));
 System.out.println("isSigned: " + md.isSigned (i));
}
rs.close();
s.close();

The program produces this output:

Statement: SELECT name, birth FROM profile
Number of columns: 2
--- Column 1 (name) ---
getColumnDisplaySize: 20
getColumnLabel: name
getColumnType: 12
getColumnTypeName: VARCHAR
getPrecision: 20
getScale: 0
getTableName: profile
isAutoIncrement: false
isNullable: 0
isCaseSensitive: false
isSigned: false
--- Column 2 (birth) ---
getColumnDisplaySize: 10
getColumnLabel: birth
getColumnType: 91

getColumnTypeName: DATE
getPrecision: 10
getScale: 0
getTableName: profile
isAutoIncrement: false
isNullable: 1
isCaseSensitive: false
isSigned: false

The row count of the result set is not available directly; you must fetch the
rows and count them.
JDBC has several other result-set metadata calls, but many of them provide
no useful information for MySQL. To try them, consult a JDBC reference to
see what the calls are, and modify the program to see what, if anything, they
return.

12.3 Listing or Checking the Existence of
Databases or Tables

Problem
You want to list the databases hosted by the MySQL server or the tables in a
database. Or you want to check whether a particular database or table
exists.

Solution
Use INFORMATION_SCHEMA to get this information. The SCHEMATA
table contains a row for each database, and the TABLES table contains a
row for each table or view in each database.

Discussion
To retrieve the list of databases hosted by the server, use this statement:

SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA;

To sort the result, add an ORDER BY SCHEMA_NAME clause.

To check whether a specific database exists, use a WHERE clause with a
condition that names the database. If you get a row back, the database
exists. The following Ruby method shows how to perform an existence test
for a database:

def database_exists(client, db_name)
 sth = client.prepare("SELECT SCHEMA_NAME
 FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = ?")
 return sth.execute(db_name).count > 0
end

To obtain the list of tables in a database, name the database in the WHERE
clause of a statement that selects from the TABLES table:

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'cookbook';

To sort the result, add an ORDER BY TABLE_NAME clause.

To obtain a list of tables in the default database, use this statement instead:

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = DATABASE();

If no database has been selected, DATABASE() returns NULL and no rows
match, which is the correct result.
To check whether a specific table exists, use a WHERE clause with a
condition that names the table. Here’s a Ruby method that performs an
existence test for a table in a given database:

def table_exists(client, db_name, tbl_name)
 sth = client.prepare("SELECT TABLE_NAME FROM
INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = ? AND TABLE_NAME =
?")
 return sth.execute(db_name, tbl_name).count > 0
end

Some APIs provide a database-independent way to get database or table
lists. In Perl DBI, the database handle tables() method returns a list of
tables in the default database:

@tables = $dbh->tables ();

For Java, there are JDBC methods designed to return lists of databases or
tables. For each method, invoke your connection object’s
getMetaData() method and use the resulting DatabaseMetaData
object to retrieve the information you want. Here’s how to produce a list of
databases:

// get list of databases
DatabaseMetaData md = conn.getMetaData ();
ResultSet rs = md.getCatalogs ();
while (rs.next ())
 System.out.println (rs.getString (1)); // column 1 = database
name
rs.close ();

To list the tables in a database, do this:

// get list of tables in database named by dbName; if
// dbName is the empty string, the default database is used
DatabaseMetaData md = conn.getMetaData ();
ResultSet rs = md.getTables (dbName, "", "%", null);
while (rs.next ())
 System.out.println (rs.getString (3)); // column 3 = table
name
rs.close ();

12.4 Listing or Checking the Existence of
Views

Problem
You want to check if your database contains views.

Solution
Select only those tables from the INFORMATION_SCHEMA.TABLES table
that have TABLE_TYPE equal to VIEW.

Discussion
The method used in the Recipe 12.3 shows both physical tables and views.
If you need to distinguish them from one another, use the WHERE
TABLE_TYPE='VIEW' clause to list only views:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, TABLE_TYPE
 -> FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_TYPE='VIEW' AND TABLE_SCHEMA='cookbook';
+--------------+---------------------+------------+
| TABLE_SCHEMA | TABLE_NAME | TABLE_TYPE |
+--------------+---------------------+------------+
| cookbook | patients_statistics | VIEW |
+--------------+---------------------+------------+
1 row in set (0,00 sec)

If you want, instead, to list only physical tables, use the
TABLE_TYPE='BASE TABLE' condition:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, TABLE_TYPE
 -> FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_TYPE='BASE TABLE' AND TABLE_SCHEMA='cookbook'
 -> AND TABLE_NAME LIKE 'trip%';
+--------------+------------+------------+
| TABLE_SCHEMA | TABLE_NAME | TABLE_TYPE |
+--------------+------------+------------+
| cookbook | trip_leg | BASE TABLE |
| cookbook | trip_log | BASE TABLE |
+--------------+------------+------------+
2 rows in set (0,00 sec)

12.5 Accessing Table Column Definitions

Problem
You want to find out what columns a table has and how they are defined.

Solution
There are several ways to do this. You can obtain column definitions from
INFORMATION_SCHEMA, from SHOW statements, or from mysqldump.

Discussion
Information about the structure of tables enables you to answer questions
such as “What columns does a table contain and what are their types?” or
“What are the legal values for an ENUM or SET column?” Here are some
applications for that kind of information:

Displaying column lists
A simple use of table information is presenting a list of the table’s
columns. This is common in web-based or Graphical User Interface
(GUI) applications that enable users to construct statements
interactively by selecting a table column from a list and entering a value
against which to compare column values.

Interactive record editing
Knowledge of a table’s structure can be very useful for applications that
modify data interactively. Suppose that an application retrieves a record
from the database, displays a form containing the record’s content so a
user can edit it, and then updates the record in the database after the user
modifies the form and submits it. You can use table structure
information for validating column values, so you would not try to insert
invalid values into a database. If a column is an ENUM, you can find out
the valid enumeration values and check the value submitted by the user
against them to determine whether it’s legal. If the column is an integer
type, check the submitted value to make sure that it consists entirely of
digits, possibly preceded by a + or − character. If the column contains
dates, look for a legal date format.
But what if the user leaves a field empty? If the field corresponds to,
say, a CHAR column in the table, do you set the column value to NULL
or to the empty string? This too is a question that can be answered by

checking the table’s structure. Determine whether the column can
contain NULL values. If it can, set the column to NULL; otherwise, set it
to the empty string.

Mapping column definitions onto web page elements
Some data types such as ENUM and SET correspond naturally to
elements of web forms:

An ENUM has a fixed set of values from which you choose a single
value. This is analogous to a group of radio buttons, a pop-up menu,
or a single-pick scrolling list.
A SET column is similar, except that you can select multiple values;
this corresponds to a group of checkboxes or a multiple-pick
scrolling list.

By using table metadata to access definitions for these types of
columns, you can easily determine a column’s legal values and map
them onto an appropriate form element. Recipe 12.6 discusses how to
get definitions for these types of columns.

MySQL provides several ways to find out about a table’s structure:
Retrieve the information from INFORMATION_SCHEMA. The
COLUMNS table contains the column definitions.

Use a SHOW COLUMNS statement.

Use the SHOW CREATE TABLE statement or the mysqldump
command-line program to obtain a CREATE TABLE statement that
displays the table’s structure.

The following discussion shows how to ask MySQL for table information
using each method. To try the examples, create an item table that lists item
IDs, names, and colors in which each item is available:

CREATE TABLE item
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 name CHAR(20),
 colors ENUM('chartreuse','mauve','lime green','puce') DEFAULT

'puce',
 PRIMARY KEY (id)
);

Using INFORMATION_SCHEMA to get table structure
information
To obtain information about a single column in a table, query the
INFORMATION_SCHEMA.COLUMNS table:

mysql> SELECT * FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'item'
 -> AND COLUMN_NAME = 'colors'\G
*************************** 1. row ***************************
 TABLE_CATALOG: def
 TABLE_SCHEMA: cookbook
 TABLE_NAME: item
 COLUMN_NAME: colors
 ORDINAL_POSITION: 3
 COLUMN_DEFAULT: puce
 IS_NULLABLE: YES
 DATA_TYPE: enum
CHARACTER_MAXIMUM_LENGTH: 10
 CHARACTER_OCTET_LENGTH: 10
 NUMERIC_PRECISION: NULL
 NUMERIC_SCALE: NULL
 DATETIME_PRECISION: NULL
 CHARACTER_SET_NAME: utf8mb4
 COLLATION_NAME: utf8mb4_0900_ai_ci
 COLUMN_TYPE: enum('chartreuse','mauve','lime
green','puce')
 COLUMN_KEY:
 EXTRA:
 PRIVILEGES: select,insert,update,references
 COLUMN_COMMENT:

To obtain information about all columns, omit the COLUMN_NAME
condition from the WHERE clause.

Here are some COLUMNS table columns likely to be of most use:

COLUMN_NAME

The column name.

ORDINAL_POSITION

The position of the column within the table definition.

COLUMN_DEFAULT

The column’s default value.

IS_NULLABLE

YES or NO to indicate whether the column can contain NULL values.

DATA_TYPE, COLUMN_TYPE
Data type information. DATA_TYPE is the data-type keyword, and
COLUMN_TYPE contains additional information such as type attributes.

CHARACTER_SET_NAME, COLLATION_NAME
The character set and collation for string columns. They are NULL for
nonstring columns.

COLUMN_KEY

Information about whether the column is indexed.
INFORMATION_SCHEMA content is easy to use from within programs.
Here’s a PHP function that illustrates this process. It takes database and
table name arguments, selects from INFORMATION_SCHEMA to obtain a
list of the table’s column names, and returns the names as an array. The
ORDER BY ORDINAL_POSITION clause ensures that names in the array
are returned in table-definition order:

function get_column_names ($dbh, $db_name, $tbl_name)
{
 $stmt = "SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS
 WHERE TABLE_SCHEMA = ? AND TABLE_NAME = ?
 ORDER BY ORDINAL_POSITION";
 $sth = $dbh->prepare ($stmt);
 $sth->execute (array ($db_name, $tbl_name));
 return ($sth->fetchAll (PDO::FETCH_COLUMN, 0));
}

get_column_names() returns an array containing only column names.
If you require additional column information, it’s possible to write a more

general get_column_info() routine that returns an array of column
information structures. For implementations of both routines in PHP as well
as other languages, check the library files in the lib directory of the
recipes distribution.

Using SHOW COLUMNS to get table structure information
The SHOW COLUMNS statement produces one row of output for each
column in the table, with each row providing various pieces of information
about the corresponding column. The following example demonstrates
SHOW COLUMNS output for the item table colors column:

mysql> SHOW COLUMNS FROM item LIKE 'colors'\G
*************************** 1. row ***************************
 Field: colors
 Type: enum('chartreuse','mauve','lime green','puce')
 Null: YES
 Key:
Default: puce
 Extra:

SHOW COLUMNS displays information for all columns having a name that
matches the LIKE pattern. To obtain information about all columns, omit
the LIKE clause.

The values displayed by SHOW COLUMNS correspond to these columns of
the INFORMATION_SCHEMA COLUMNS table: COLUMN_NAME,
COLUMN_TYPE, COLUMN_KEY, IS_NULLABLE, COLUMN_DEFAULT,
EXTRA.

SHOW FULL COLUMNS displays additional Collation, Privileges,
and Comment fields for each column. These correspond to the COLUMNS
table COLLATION_NAME, PRIVILEGES, and COLUMN_COMMENT
columns.
SHOW interprets the pattern the same way as for the LIKE operator in the
WHERE clause of a SELECT statement. (For information about pattern
matching, see Recipe 7.10.) If you specify a literal column name, the string
matches only that name, and SHOW COLUMNS displays information only for

that column. If your column name contains SQL pattern characters (% or _)
that you want to match literally, you must escape them with a backslash in
the pattern string to avoid matching other names as well.
The need to escape % and _ characters to match a LIKE pattern literally
also applies to other SHOW statements that permit a name pattern in the
LIKE clause, such as SHOW TABLES and SHOW DATABASES.

Within a program, you can use your API language’s pattern-matching
capabilities to escape SQL pattern characters before putting the column
name into a SHOW statement. In Perl, Ruby, and PHP, use the following
expressions:
Perl:

$name =~ s/([%_])/\\$1/g;

Ruby:

name = name.gsub(/([%_])/, '\\\\\1')

PHP:

$name = preg_replace ('/([%_])/', '\\\\$1', $name);

For Python, import the re module, and use its sub() method:

name = re.sub(r'([%_])', r'\\\1', name)

For Go, use methods from the regexp package:

import "regexp"
// ...
 re := regexp.MustCompile(`([_%])`)
 name = re.ReplaceAllString(name, "\\\\$1")

For Java, use methods from the java.util.regex package:

import java.util.regex.*;

Pattern p = Pattern.compile("([_%])");
Matcher m = p.matcher(name);
name = m.replaceAll ("\\\\$1");

If these expressions appear to have too many backslashes, remember that
the API language processor itself interprets backslashes and strips off a
level before performing the pattern match. To get a literal backslash into the
result, it must be doubled in the pattern. Another level on top of that is
needed if the pattern processor strips a set.

Using SHOW CREATE TABLE to get table structure information
Another way to obtain table structure information from MySQL is from the
CREATE TABLE statement that defines the table. To get this information,
use the SHOW CREATE TABLE statement:

mysql> SHOW CREATE TABLE item\G
*************************** 1. row ***************************
 Table: item
Create Table: CREATE TABLE `item` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `name` char(20) DEFAULT NULL,
 `colors` enum('chartreuse','mauve','lime green','puce') DEFAULT
'puce',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci

From the command line, the same CREATE TABLE information is available
from mysqldump if you use the --no-data option, which tells
mysqldump to dump only the structure of the table and not its data.

The CREATE TABLE format is highly informative and easy to read because
it shows column information in a format similar to the one you used to
create the table in the first place. It also shows the index structure clearly,
whereas the other methods do not. However, you’ll probably find this
method of checking table structure more useful interactively than within
programs. The information isn’t provided in regular row-and-column
format, so it’s more difficult to parse. Also, the format is subject to change

whenever the CREATE TABLE statement is enhanced, which happens from
time to time as MySQL’s capabilities are extended.

12.6 Getting ENUM and SET Column
Information

Problem
You want to know the members of an ENUM or SET column.

Solution
This problem is a subset of getting table structure metadata. Obtain the
column definition from the table metadata, then extract the member list
from the definition.

Discussion
It’s often useful to know the list of allowed values for an ENUM or SET
column. Suppose that you want to present a web form containing a pop-up
menu that has options corresponding to each legal value of an ENUM
column, such as the sizes in which a garment can be ordered or the
available shipping methods for delivering a package. You could hardwire
the choices into the script that generates the form, but if you alter the
column later (for example, to add a new enumeration value), you introduce
a discrepancy between the column and the script that uses it. If instead you
look up the legal values using the table metadata, the script can always
produce a pop-up that contains the proper set of values. A similar approach
applies to SET columns.

To determine the permitted values for an ENUM or SET column, get its
definition using one of the techniques described in Recipe 12.5. For
example, if you select from the INFORMATION_SCHEMA COLUMNS table,

the COLUMN_TYPE value for the colors column of the item table looks
like this:

enum('chartreuse','mauve','lime green','puce')

SET columns are similar, except that they say set rather than enum. For
either data type, extract the permitted values by stripping the initial word
and the parentheses, splitting at the commas, and removing the enclosing
quotes from the individual values.
Let’s write a get_enumorset_info() routine to extract these values
from the data-type definition. While we’re at it, we can have the routine
return the column’s type, its default value, and whether values can be
NULL. Then the routine can be used by scripts that may need more than just
the list of values. Here is a version in Ruby. Its arguments are a database
handle, a database name, a table name, and a column name. It returns a hash
with entries corresponding to the various aspects of the column definition
(or nil if the column does not exist):

def get_enumorset_info(client, db_name, tbl_name, col_name)
 sth = client.prepare(
 "SELECT COLUMN_NAME, COLUMN_TYPE, IS_NULLABLE,
COLUMN_DEFAULT
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE TABLE_SCHEMA = ? AND TABLE_NAME = ? AND
COLUMN_NAME = ?")
 res = sth.execute(db_name, tbl_name, col_name)
 return nil if res.count == 0 # no such column
 row = res.first
 info = {}
 info["name"] = row.values[0]
 return nil unless row.values[1] =~ /^(ENUM|SET)\((.*)\)$/i #
not ENUM or SET
 info["type"] = $1
 # split value list on commas, trim quotes from end of each word
 info["values"] = $2.split(",").collect { |val|
val.sub(/^'(.*)'$/, "\\1") }
 # determine whether column can contain NULL values
 info["nullable"] = (row.values[2].upcase == "YES")
 # get default value (nil represents NULL)
 info["default"] = row.values[3]
 return info
end

The routine uses case-insensitive matching when checking the data type and
nullable attributes. This guards against future lettercase changes in metadata
results.
The following example shows how to access and display each element of
the hash returned by get_enumorset_info():

info = get_enumorset_info(client, db_name, tbl_name, col_name)
puts "Information for #{db_name}.#{tbl_name}.#{col_name}:"
if info.nil?
 puts "No information available (not an ENUM or SET column?)"
else
 puts "Name: " + info["name"]
 puts "Type: " + info["type"]
 puts "Legal values: " + info["values"].join(",")
 puts "Nullable: " + (info["nullable"] ? "yes" : "no")
 puts "Default value: " + (info["default"].nil? ? "NULL" :
info["default"])
end

That code produces the following output for the profile table color
column:

Information for cookbook.profile.color:
Name: color
Type: enum
Legal values: blue,red,green,brown,black,white
Nullable: yes
Default value: NULL

Equivalent routines for other APIs are similar. You can find
implementations in the lib directory of the recipes distribution. Such
routines are useful for validation of input values (see Recipe 14.11).

12.7 Getting Server Metadata

Problem
You want to get information about the MySQL server itself, such as its
version, configuration, and the current status of its components.

Solution
Several SQL functions and SHOW statements return information about the
server.

Discussion
MySQL has several SQL functions and statements that provide you with
information about the server itself and about your current client session.
Table 12-5 shows a few that you may find useful. Both SHOW statements
permit a GLOBAL or SESSION keyword to select global server values or
values specific to your session, and a LIKE 'pattern' clause for
limiting the results to variable names matching the pattern.

Table 12-5. SQL functions and statements to obtain server metadata

Statement Information produced by statement
SELECT VERSION() Server version string

SELECT DATABASE() Default database name (NULL if none)

SELECT USER() Current user as given by client when
connecting

SELECT CURRENT_USER() User used for checking client privileges

SHOW [GLOBAL|SESSION] STATUS Server global or session status indicators

SHOW [GLOBAL|SESSION]
VARIABLES

Server global or status configuration variables

To obtain the information provided by any statement in the table, execute it
and process its result set. For example, SELECT DATABASE() returns the
name of the default database or NULL if no database has been selected. The
following Ruby code uses the statement to present a status display
containing information about the current session:

db = client.query("SELECT DATABASE()").first.values[0]
puts "Default database: " + (db.nil? ? "(no database selected)" :
db)

A given API might provide alternatives to executing SQL statements to
access these types of information. For example, JDBC has several database-
independent methods for obtaining server metadata. Use your connection
object to obtain the database metadata, then invoke the appropriate methods
to get the information in which you’re interested. Consult a JDBC reference
for a complete list, but here are a few representative examples:

DatabaseMetaData md = conn.getMetaData();
// can also get this with SELECT VERSION()
System.out.println("Product version: " +
md.getDatabaseProductVersion());
// this is similar to SELECT USER() but doesn't include the
hostname
System.out.println("Username: " + md.getUserName());

See Also
For more discussion about the use of SHOW (and
INFORMATION_SCHEMA) in the context of server monitoring, see Recipe
23.2.

12.8 Writing Applications That Adapt to the
MySQL Server Version

Problem
You want to use a given feature that is available only in a particular version
of MySQL.

Solution
Ask the server for its version number. If the server is too old to support a
given feature, maybe you can fall back to a workaround, if one exists. Or
ask your user to upgrade.

Discussion

With each new release of MySQL, new features are added. If you’re writing
an application that requires certain features, check the server version to
determine whether they are present; if not, you must perform some sort of
workaround (assuming there is one).
To get the server version, invoke the VERSION() function. The result is a
string that looks something like 5.7.33-debug-log or 8.0.25. In
other words, it returns a string consisting of major, minor, and “patch”
version numbers; possibly some nondigits at the end of the “patch” version;
and possibly some suffix. The version string can be used as is for
presentation purposes, but for comparisons, it’s simpler to work with a
number—in particular, a five-digit number in Mmmtt format, in which M,
mm, tt are the major, minor, and patch version numbers. Perform the
conversion by splitting the string at the periods, stripping from the third
piece the suffix that begins with the first nonnumeric character, and joining
the pieces. For example, 5.7.33-debug-log becomes 50733, and
8.0.25 becomes 80025.

Here’s a Perl DBI function that takes a database-handle argument and
returns a two-element list that contains both the string and numeric forms of
the server version. The code assumes that the minor and patch version parts
are less than 100 and thus no more than two digits each. That should be a
valid assumption because the source code for MySQL itself uses the same
format:

sub get_server_version
{
my $dbh = shift;
my ($ver_str, $ver_num);
my ($major, $minor, $patch);

 # fetch result into scalar string
 $ver_str = $dbh->selectrow_array ("SELECT VERSION()");
 return undef unless defined ($ver_str);
 ($major, $minor, $patch) = split (/\./, $ver_str);
 $patch =~ s/\D.*$//; # strip nonnumeric suffix if present
 $ver_num = $major*10000 + $minor*100 + $patch;
 return ($ver_str, $ver_num);
}

To get both forms of the version information at once, call the function like
this:

my ($ver_str, $ver_num) = get_server_version ($dbh);

To get just one of the values, call it as follows:

my $ver_str = (get_server_version ($dbh))[0]; # string form
my $ver_num = (get_server_version ($dbh))[1]; # numeric form

The following examples demonstrate how to use the numeric version value
to check whether the server supports certain features:

my $ver_num = (get_server_version ($dbh))[1];
printf "Event scheduler: %s\n", ($ver_num >= 50106 ? "yes" :
"no");
printf "4-byte Unicode: %s\n", ($ver_num >= 50503 ? "yes" :
"no");
printf "Fractional seconds: %s\n", ($ver_num >= 50604 ? "yes" :
"no");
printf "SHA-256 passwords: %s\n", ($ver_num >= 50606 ? "yes" :
"no");
printf "ALTER USER: %s\n", ($ver_num >= 50607 ? "yes" :
"no");
printf "INSERT DELAYED: %s\n", ($ver_num >= 50700 ? "no" :
"yes");

The recipes distribution metadata directory contains
get_server_version() implementations in other API languages, and
the routines directory contains a server_version() stored function for
use in SQL statements. The latter function returns only the numeric value
because VERSION() already produces the string value. The following
example shows how to use it to implement a stored procedure that enables
password locking for N failed login attempts if the server is recent enough
to support the ALTER USER...FAILED_LOGIN_ATTEMPTS statement
(MySQL 8.0.19 or later):

CREATE PROCEDURE enable_failed_login_attempts(
 user TEXT, host TEXT,
failed_attempts INT)

BEGIN
 DECLARE account TEXT;
 SET account = CONCAT(QUOTE(user),'@',QUOTE(host));
 IF server_version() >= 80019 AND user <> '' THEN
 CALL exec_stmt(CONCAT('ALTER USER ',account,'
 FAILED_LOGIN_ATTEMPTS ', failed_attempts));
 END IF;
END;

expire_password() requires the exec_stmt() helper routine (see
Recipe 11.6). Both are available in the routines directory. For more
information about password expiration, see Recipe 24.5.

12.9 Getting Child Tables That Reference a
Specific Table via Foreign Key Constraints

Problem
You want to know which other tables refer to your table as the parent via
foreign key constraints.

Solution
Query the INFORMATION_SCHEMA.TABLE_CONSTRAINTS and
INFORMA TION_SCHEMA. KEY_ COLUMN_USAGE tables.

Discussion
Foreign key constraints provide integrity checks, as we discuss in “Using
Foreign Keys to Enforce Referential Integrity and Prevent Mismatches”.
They do it by preventing statements that modify data, referenced by the
linked table, to execute if the result of the statement can break integrity.
Foreign keys help keeping the data correct, but at the same time they can
raise SQL errors that are hard to troubleshoot. And while it is easy to figure
out which table is a parent for the particular child, it is not easy to find

which table is a child of the particular parent. Still it would be good to
know if a table is referenced by a child in case you plan to modify it.
The INFORMATION_SCHEMA.TABLE_CONSTRAINTS table contains all
the constraints created for your MySQL installation. To select foreign key
constraints, narrow your search with the WHERE
CONSTRAINT_TYPE='FOREIGN KEY' clause:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, CONSTRAINT_NAME
 -> FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS
 -> WHERE CONSTRAINT_TYPE='FOREIGN KEY' AND
TABLE_SCHEMA='cookbook';
+--------------+--------------------+---------------------------+
| TABLE_SCHEMA | TABLE_NAME | CONSTRAINT_NAME |
+--------------+--------------------+---------------------------+
| cookbook | movies_actors_link | movies_actors_link_ibfk_1 |
| cookbook | movies_actors_link | movies_actors_link_ibfk_2 |
+--------------+--------------------+---------------------------+
2 rows in set (0,00 sec)

The preceding listing prints the foreign keys we created for the example in
Recipe 11.10. However, this output still lists only the child table. To find
out which table is the parent, we need to join
INFORMATION_SCHEMA.TABLE_CONSTRAINTS with the
INFORMATION_SCHEMA.KEY_COLUMN_USAGE table:

mysql> SELECT ku.CONSTRAINT_NAME, ku.TABLE_NAME, ku.COLUMN_NAME,
 -> ku.REFERENCED_TABLE_NAME, ku.REFERENCED_COLUMN_NAME
 -> FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS tc
 -> JOIN INFORMATION_SCHEMA.KEY_COLUMN_USAGE ku
 -> USING (CONSTRAINT_NAME, TABLE_SCHEMA, TABLE_NAME)
 -> WHERE CONSTRAINT_TYPE='FOREIGN KEY' AND
ku.TABLE_SCHEMA='cookbook'\G
*************************** 1. row ***************************
 CONSTRAINT_NAME: movies_actors_link_ibfk_1
 TABLE_NAME: movies_actors_link
 COLUMN_NAME: movie_id
 REFERENCED_TABLE_NAME: movies
REFERENCED_COLUMN_NAME: id
*************************** 2. row ***************************
 CONSTRAINT_NAME: movies_actors_link_ibfk_2
 TABLE_NAME: movies_actors_link
 COLUMN_NAME: actor_id
 REFERENCED_TABLE_NAME: actors

REFERENCED_COLUMN_NAME: id
2 rows in set (0,00 sec)

In the preceding listing, the TABLE_NAME and COLUMN_NAME columns
refer to the child table, and the REFERENCED_TABLE_NAME and
REFERENCED_COLUMN_NAME tables refer to the parent table.

For InnoDB tables, you can also query the INNODB_FOREIGN and
INNODB_FOREIGN_COLS tables:

mysql> SELECT ID, FOR_NAME, FOR_COL_NAME, REF_NAME, REF_COL_NAME
 -> FROM INFORMATION_SCHEMA.INNODB_FOREIGN JOIN
 -> INFORMATION_SCHEMA.INNODB_FOREIGN_COLS USING(ID)
 -> WHERE ID LIKE 'cookbook%'\G
*************************** 1. row ***************************
 ID: cookbook/movies_actors_link_ibfk_1
 FOR_NAME: cookbook/movies_actors_link
FOR_COL_NAME: movie_id
 REF_NAME: cookbook/movies
REF_COL_NAME: id
*************************** 2. row ***************************
 ID: cookbook/movies_actors_link_ibfk_2
 FOR_NAME: cookbook/movies_actors_link
FOR_COL_NAME: actor_id
 REF_NAME: cookbook/actors
REF_COL_NAME: id
2 rows in set (0,01 sec)

Note that these tables take data from the internal InnoDB data dictionary
that stores database and table names in one field. Therefore, you need to use
the LIKE operator to limit results to the specific database or table.

12.10 Listing Triggers

Problem
You want to list triggers defined for your table.

Solution

Query the INFORMATION_SCHEMA.TRIGGERS table.

Discussion
Knowing which triggers are defined for specific tables is very useful when
you tune performance, especially in the following situations:

A simple update, affecting a couple of rows, runs much longer than you
expect.
Tables, not participating in the application load and not visible in the
processlist, wait for or hold the locks.
Disk IO is high.

For example, to list triggers created for the auction table, use the
following query:

mysql> SELECT EVENT_MANIPULATION, ACTION_TIMING, TRIGGER_NAME,
ACTION_STATEMENT
 -> FROM INFORMATION_SCHEMA.TRIGGERS
 -> WHERE TRIGGER_SCHEMA='cookbook' AND EVENT_OBJECT_TABLE =
'auction'\G
*************************** 1. row ***************************
EVENT_MANIPULATION: INSERT
 ACTION_TIMING: AFTER
 TRIGGER_NAME: ai_auction
 ACTION_STATEMENT: INSERT INTO auction_log
(action,id,ts,item,bid)
VALUES('create',NEW.id,NOW(),NEW.item,NEW.bid)
*************************** 2. row ***************************
EVENT_MANIPULATION: UPDATE
 ACTION_TIMING: AFTER
 TRIGGER_NAME: au_auction
 ACTION_STATEMENT: INSERT INTO auction_log
(action,id,ts,item,bid)
VALUES('update',NEW.id,NOW(),NEW.item,NEW.bid)
*************************** 3. row ***************************
EVENT_MANIPULATION: DELETE
 ACTION_TIMING: AFTER
 TRIGGER_NAME: ad_auction
 ACTION_STATEMENT: INSERT INTO auction_log
(action,id,ts,item,bid)
VALUES('delete',OLD.id,OLD.ts,OLD.item,OLD.bid)
3 rows in set (0,01 sec)

This way, you can get information such as when a trigger is fired and its
body definition. If there is more than one trigger, you’ll see all of them.

12.11 Listing Stored Routines and Scheduled
Events

Problem
You want to know which stored procedures, functions, and scheduled
events are created in your database.

Solution
Query the INFORMATION_SCHEMA.ROUTINES and
INFORMATION_SCHEMA.EVENTS tables.

Discussion
To list both stored functions and stored procedures, query the
INFORMATION_SCHEMA.ROUTINES table. If you want to distinguish
which kind of routine it is, narrow your search by specifying
ROUTINE_TYPE, either FUNCTION or PROCEDURE, by the WHERE
condition.
For example, to list all routines that participate in sequence generation, as
we discuss in Recipe 15.17, use the following code:

mysql> SELECT ROUTINE_NAME, ROUTINE_TYPE FROM
INFORMATION_SCHEMA.ROUTINES
 -> WHERE ROUTINE_SCHEMA='cookbook' AND ROUTINE_NAME LIKE
'%sequence%';
+---------------------+--------------+
| ROUTINE_NAME | ROUTINE_TYPE |
+---------------------+--------------+
sequence_next_value	FUNCTION
create_sequence	PROCEDURE
delete_sequence	PROCEDURE

+---------------------+--------------+
3 rows in set (0,01 sec)

You may additionally select the ROUTINE_DEFINITION column to
obtain the routine body.
To get a list of scheduled events, query the
INFORMATION_SCHEMA.EVENTS table:

mysql> SELECT EVENT_NAME, EVENT_TYPE, INTERVAL_VALUE,
INTERVAL_FIELD, LAST_EXECUTED,
 -> STATUS, ON_COMPLETION, EVENT_DEFINITION FROM
INFORMATION_SCHEMA.EVENTS\G
*************************** 1. row ***************************
 EVENT_NAME: mark_insert
 EVENT_TYPE: RECURRING
 INTERVAL_VALUE: 5
 INTERVAL_FIELD: MINUTE
 LAST_EXECUTED: 2021-07-07 05:10:45
 STATUS: ENABLED
 ON_COMPLETION: NOT PRESERVE
EVENT_DEFINITION: INSERT INTO mark_log (message) VALUES('-- MARK
--')
*************************** 2. row ***************************
 EVENT_NAME: mark_expire
 EVENT_TYPE: RECURRING
 INTERVAL_VALUE: 1
 INTERVAL_FIELD: DAY
 LAST_EXECUTED: 2021-07-07 02:56:14
 STATUS: ENABLED
 ON_COMPLETION: NOT PRESERVE
EVENT_DEFINITION: DELETE FROM mark_log WHERE ts < NOW() -
INTERVAL 2 DAY
2 rows in set (0,00 sec)

This table holds not only event definitions but also metadata, such as when
it was last executed, its scheduled interval, and whether it is enabled or
disabled.

12.12 Listing Installed Plug-Ins

Problem

You want to know which plug-ins are installed for your MySQL server.

Solution
Query the INFORMATION_SCHEMA.PLUGINS table.

Discussion
MySQL is a highly modular system. Many of its parts are pluggable. For
example, all storage engines are also plug-ins. Therefore, it is important to
know which are available on your server. To get information about installed
plug-ins, query the INFORMATION_SCHEMA.PLUGINS table, or run the
SHOW PLUGINS command. While the latter is convenient for interactive
use, the former provides more information:

mysql> SELECT * FROM INFORMATION_SCHEMA.PLUGINS
 -> WHERE PLUGIN_NAME IN ('caching_sha2_password', 'InnoDB',
'Rewriter')\G
*************************** 1. row ***************************
 PLUGIN_NAME: caching_sha2_password
 PLUGIN_VERSION: 1.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: AUTHENTICATION
 PLUGIN_TYPE_VERSION: 2.0
 PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
 PLUGIN_AUTHOR: Oracle Corporation
 PLUGIN_DESCRIPTION: Caching sha2 authentication
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: FORCE
*************************** 2. row ***************************
 PLUGIN_NAME: InnoDB
 PLUGIN_VERSION: 8.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: STORAGE ENGINE
 PLUGIN_TYPE_VERSION: 80025.0
 PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
 PLUGIN_AUTHOR: Oracle Corporation
 PLUGIN_DESCRIPTION: Supports transactions, row-level locking,
and foreign keys
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: FORCE
*************************** 3. row ***************************

 PLUGIN_NAME: Rewriter
 PLUGIN_VERSION: 0.2
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: AUDIT
 PLUGIN_TYPE_VERSION: 4.1
 PLUGIN_LIBRARY: rewriter.so
PLUGIN_LIBRARY_VERSION: 1.10
 PLUGIN_AUTHOR: Oracle Corporation
 PLUGIN_DESCRIPTION: A query rewrite plug-in that rewrites
queries using the parse tree.
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: ON
3 rows in set (0,01 sec)

For storage engines, you can obtain even more details by querying the
INFORMATION_SCHEMA.ENGINES table, or running the SHOW
ENGINES command. Here is the table content for the InnoDB storage
engine:

mysql> SELECT * FROM INFORMATION_SCHEMA.ENGINES WHERE ENGINE =
'InnoDB'\G
*************************** 1. row ***************************
 ENGINE: InnoDB
 SUPPORT: DEFAULT
 COMMENT: Supports transactions, row-level locking, and
foreign keys
TRANSACTIONS: YES
 XA: YES
 SAVEPOINTS: YES
1 row in set (0,00 sec)

12.13 Listing Character Sets and Collations

Problem
Sort order, defining which letters are equal, doesn’t work for you, and you
want to determine what other options you have.

Solution
Obtain a list of characters sets, their default collation, and available
collations by querying the INFORMATION_SCHEMA.CHARACTER_SETS

and INFORMATION_SCHEMA. COLLATIONS tables.

Discussion
In Recipe 7.5, we discussed how to change or set a string’s character set and
collation. But how do you choose the one that best suits your application
requirements?
Fortunately, MySQL itself can help you find the answer. Inside MySQL
client, select from the INFORMATION_SCHEMA.CHARACTER_SETS
table to get a list of all available character sets, their default collations, and
the maximum character length they can store.
For example, to list all Unicode character sets, run the following query:

mysql> SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS
 -> WHERE DESCRIPTION LIKE '%Unicode%' ORDER BY MAXLEN DESC;
+--------------------+----------------------+------------------+-
-------+
| CHARACTER_SET_NAME | DEFAULT_COLLATE_NAME | DESCRIPTION |
MAXLEN |
+--------------------+----------------------+------------------+-
-------+
| utf16 | utf16_general_ci | UTF-16 Unicode |
4 |
| utf16le | utf16le_general_ci | UTF-16LE Unicode |
4 |
| utf32 | utf32_general_ci | UTF-32 Unicode |
4 |
| utf8mb4 | utf8mb4_0900_ai_ci | UTF-8 Unicode |
4 |
| utf8 | utf8_general_ci | UTF-8 Unicode |
3 |
| ucs2 | ucs2_general_ci | UCS-2 Unicode |
2 |
+--------------------+----------------------+------------------+-
-------+
6 rows in set (0,00 sec)

Each character set may have not only default collation but other collations
that allow you to adjust sort order. For example, the Turkish capital letters I
and İ, as well as S and Ş are considered equal by the utf8mb4 character set
with the default collation. This leads to a situation in which MySQL thinks

that the Turkish words ISSIZ (“deserted”) and İŞSİZ (“unemployed”) are the
same:

mysql> CREATE TABLE two_words(deserted VARCHAR(100), unemployed
VARCHAR(100));
Query OK, 0 rows affected (0,03 sec)

mysql> INSERT INTO two_words VALUES('ISSIZ', 'İŞSİZ');
Query OK, 1 row affected (0,00 sec)

mysql> SELECT deserted=unemployed FROM two_words;
+---------------------+
| deserted=unemployed |
+---------------------+
| 1 |
+---------------------+
1 row in set (0,00 sec)

To resolve this situation, let’s check the
INFORMATION_SCHEMA.COLLATIONS table for the collations of the
utf8mb4 character set, applicable for the Turkish language:

mysql> SELECT COLLATION_NAME, CHARACTER_SET_NAME
 -> FROM INFORMATION_SCHEMA.COLLATIONS
 -> WHERE CHARACTER_SET_NAME='utf8mb4' AND COLLATION_NAME LIKE
'%_tr_%';
+-----------------------+--------------------+
| COLLATION_NAME | CHARACTER_SET_NAME |
+-----------------------+--------------------+
| utf8mb4_tr_0900_ai_ci | utf8mb4 |
| utf8mb4_tr_0900_as_cs | utf8mb4 |
+-----------------------+--------------------+
2 rows in set (0,00 sec)

If we try them, we’ll receive the correct result: the words deserted and
unemployed are no longer considered equal:

mysql> SELECT deserted=unemployed COLLATE utf8mb4_tr_0900_ai_ci
FROM two_words;
+---+
| deserted=unemployed COLLATE utf8mb4_tr_0900_ai_ci |
+---+
| 0 |
+---+
1 row in set (0,00 sec)

mysql> SELECT deserted=unemployed COLLATE utf8mb4_tr_0900_as_cs
FROM two_words;
+---+
| deserted=unemployed COLLATE utf8mb4_tr_0900_as_cs |
+---+
| 0 |
+---+
1 row in set (0,00 sec)

The utf8mb4 character set is the default and works well for most setups.
However, you may be in a situation where this is not the case. For example,
if you store the Russian words совершенный (“perfect”) and
совершённый (“accomplished”) in a utf8mb4 column with default
collation, MySQL will consider these two words equal:

mysql > CREATE TABLE `two_words` (
 -> `perfect` varchar(100) DEFAULT NULL,
 -> `accomplished` varchar(100) DEFAULT NULL
 ->) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci;
Query OK, 0 rows affected (0,04 sec)

mysql> INSERT INTO two_words VALUES('совершенный',
'совершённый');
Query OK, 1 row affected (0,01 sec)

mysql> SELECT perfect = accomplished FROM two_words;
+------------------------+
| perfect = accomplished |
+------------------------+
| 1 |
+------------------------+
1 row in set (0,00 sec)

An intuitive way to solve this issue is to use available collations for the
Russian language: utf8mb4_ru_0900_ai_ci. Unfortunately, this does
not work:

mysql> SELECT perfect = accomplished COLLATE
utf8mb4_ru_0900_ai_ci FROM two_words;
+--+
| perfect = accomplished COLLATE utf8mb4_ru_0900_ai_ci |
+--+
| 1 |

+--+
1 row in set (0,00 sec)

The reason for this is that the utf8mb4_ru_0900_ai_ci collation is
accent insensitive. The case sensitive and accent sensitive
utf8mb4_ru_0900_as_cs variation solves the issue:

mysql> SELECT perfect = accomplished COLLATE
utf8mb4_ru_0900_as_cs FROM two_words;
+--+
| perfect = accomplished COLLATE utf8mb4_ru_0900_as_cs |
+--+
| 0 |
+--+
1 row in set (0,00 sec)

The utf8mb4_ru_0900_ai_ci and utf8mb4_ru_0900_as_cs
collations were added in version 8.0. If you’re still using version 5.7 and are
working on the application where this difference is critical, you can also
examine the INFORMATION_SCHEMA.CHARACTER_SETS table for a
character set that supports the Cyrillic alphabet and try it:

mysql> SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS
 -> WHERE DESCRIPTION LIKE '%Russian%' OR DESCRIPTION LIKE
'%Cyrillic%';
+--------------------+----------------------+--------------------
---+--------+
| CHARACTER_SET_NAME | DEFAULT_COLLATE_NAME | DESCRIPTION
| MAXLEN |
+--------------------+----------------------+--------------------
---+--------+
| koi8r | koi8r_general_ci | KOI8-R Relcom
Russian | 1 |
| cp866 | cp866_general_ci | DOS Russian
| 1 |
| cp1251 | cp1251_general_ci | Windows Cyrillic
| 1 |
+--------------------+----------------------+--------------------
---+--------+
3 rows in set (0,00 sec)

mysql> drop table two_words;
Query OK, 0 rows affected (0,02 sec)

mysql> CREATE TABLE two_words(perfect VARCHAR(100), accomplished
VARCHAR(100))
 -> CHARACTER SET cp1251;
Query OK, 0 rows affected (0,04 sec)

mysql> INSERT INTO two_words VALUES('совершенный',
'совершённый');
Query OK, 1 row affected (0,00 sec)

mysql> SELECT perfect = accomplished FROM two_words;
+------------------------+
| perfect = accomplished |
+------------------------+
| 0 |
+------------------------+
1 row in set (0,00 sec)

We’ve chosen the cp1251 character set for our example, but all of them
resolve this comparison issue.

12.14 Listing CHECK Constraints

Problem
You want to examine which CHECK constraints are defined for your
database.

Solution
Query the INFORMATION_SCHEMA.CHECK_CONSTRAINTS and
INFORMA TION_SCHEMA .TABLE_CONSTRAINTS tables.

Discussion
The INFORMATION_SCHEMA.CHECK_CONSTRAINTS table contains a
list of all constraints, the schema for which they are defined, and the
CHECK_CLAUSE that is practically the constraint definition. However, the
table does not store information about which table the constraint is created
in. To list both constraints and tables for which they are defined, join the

INFORMATION_SCHEMA.CHECK_CONSTRAINTS table with the
INFORMATION_SCHEMA.TABLE_CONSTRAINTS table:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, CONSTRAINT_NAME,
ENFORCED, CHECK_CLAUSE
 -> FROM INFORMATION_SCHEMA.CHECK_CONSTRAINTS
 -> JOIN INFORMATION_SCHEMA.TABLE_CONSTRAINTS
 -> USING(CONSTRAINT_NAME)
 -> WHERE CONSTRAINT_TYPE='CHECK' ORDER BY CONSTRAINT_NAME
DESC LIMIT 2\G
*************************** 1. row ***************************
 TABLE_SCHEMA: cookbook
 TABLE_NAME: even
CONSTRAINT_NAME: even_chk_1
 ENFORCED: YES
 CHECK_CLAUSE: ((`even_value` % 2) = 0)
*************************** 2. row ***************************
 TABLE_SCHEMA: cookbook
 TABLE_NAME: book_authors
CONSTRAINT_NAME: book_authors_chk_1
 ENFORCED: YES
 CHECK_CLAUSE: json_schema_valid(_utf8mb4\'{"id": ↩
 "http://www.oreilly.com/mysqlcookbook",
"$schema": ↩
 "http://json-schema.org/draft-04/schema#",
"description": ↩
 "Schema for the table book_authors", "type":
"object", "properties": ↩
 {"name": {"type": "string"}, "lastname": {"type":
"string"}, ↩
 "books": {"type": "array"}}, "required":["name",
"lastname"]} \',`author`)
2 rows in set (0,01 sec)

Chapter 13. Importing and
Exporting Data

13.0 Introduction
Suppose that a file named somedata.csv contains 12 data columns in
comma-separated values (CSV) format. From this file you want to extract
only columns 2, 11, 5, and 9 and use them to create database rows in a
MySQL table that contains name, birth, height, and weight
columns. You must make sure that the height and weight are positive
integers, and convert the birth dates from MM/DD/YY format to YYYY-MM-
DD format. How can you do this?

Data transfer problems with specific requirements occur frequently when
you transfer data into MySQL. Datafiles are not always formatted for being
ready to load into MySQL with no preparation. As a result, it’s often
necessary to preprocess information to put it into a format acceptable for
MySQL. The reverse also is true; data exported from MySQL may need
massaging to be useful for other programs.
Although some data preparation operations require a great deal of hand
checking and reformatting, in most cases you can do at least part of the job
automatically. Virtually all such problems involve at least some elements of
a common set of conversion issues. This chapter and the next discuss what
these issues are, how to deal with them by taking advantage of the existing
tools at your disposal, and how to write your own tools when necessary.
The idea is not to cover all possible situations (an impossible task) but to
show representative techniques and utilities. Use them as is or adapt them.
(There are commercial data-handling tools, but our purpose here is to
enable you to do things yourself.) With respect to the problem posed at the
beginning of this Introduction, see Recipe 14.18 for the solution we arrived
at.

The discussion on how to transfer data to and from MySQL begins with
native MySQL facilities for importing data (the LOAD DATA statement and
the mysqlimport command-line program) and for exporting data (the
SELECT…INTO OUTFILE statement). For situations where the native
facilities do not suffice, we move on to cover techniques for using external
supporting utilities (such as sed and tr) and for writing your own. There
are two broad sets of issues to consider:

How to manipulate the structure of datafiles. When a file is in a format
not suitable for import, you must convert it to a different format. This
may involve issues such as changing the column delimiters or line-
ending sequences, or removing or rearranging columns in the file. This
chapter covers such techniques.
How to manipulate the content of datafiles. If you don’t know whether
the values contained in a file are legal, you may want to preprocess it to
check or reformat them. Numeric values may need verification as lying
within a specific range, dates may need conversion to or from ISO
format, and so forth. Chapter 14 covers those techniques.

Source code for program fragments and scripts discussed in this chapter is
located in the transfer directory of the recipes distribution.

General Import and Export Issues
Incompatible datafile formats and differing rules for interpreting various
kinds of values cause headaches when transferring data between programs.
Nevertheless, certain issues recur frequently. Be aware of them and you can
identify more easily what must be done to solve particular import or export
problems.
In its most basic form, an input stream is just a set of bytes with no
particular meaning. Successful import into MySQL requires recognizing
which bytes represent structural information and which represent the data
values framed by that structure. Because such recognition is key to
decomposing the input into appropriate units, the most fundamental import
issues are these:

What is the record separator? Knowing this enables you to partition the
input stream into records.
What is the field delimiter? Knowing this enables you to partition each
record into field values. Identifying the data values also might include
stripping quotes from around the values or recognizing escape sequences
within them.

The ability to break the input into records and fields is important for
extracting the data values from it. If the values are still not in a form that
can be used directly, you may need to consider other issues:

Do the order and number of columns match the structure of the database
table? Mismatches require rearranging or skipping columns.
How should NULL or empty values be handled? Are they permitted?
Can NULL values even be detected? (Some systems export NULL values
as empty strings, making it impossible to distinguish them.)
Do data values require validation or reformatting? If the values are in a
format that matches MySQL’s expectations, no further processing is
necessary. Otherwise, they must be checked and possibly rewritten.

For export from MySQL, the issues are somewhat the reverse. You can
assume that values stored in the database are valid, but it’s necessary to add
column and record delimiters to form an output stream that has a structure
other programs can recognize, and values may require reformatting for use
by other programs.

File Formats
Datafiles come in many formats, two of which appear frequently in this
chapter:

Tab-delimited or tab-separated values (TSV) format
This is one of the simplest file structures; lines contain values separated
by tab characters. A short tab-delimited file might look like this, where
the whitespace between column values represents single tab characters:

a b c
a,b,c d e f

Comma-separated values (CSV) format
Files written in CSV format vary somewhat; there is apparently no
formal standard describing the format. However, the general idea is that
lines consist of values separated by commas, and values containing
internal commas are enclosed within quotes to prevent the commas
from being interpreted as value delimiters. It’s also common for values
containing spaces to be quoted as well. In this example, each line
contains three values:

a,b,c
"a,b,c","d e",f

It’s trickier to process CSV files than tab-delimited files because
characters like quotes and commas have a dual meaning: they may
represent file structure or be included in the content of data values.

Another important datafile characteristic is the line-ending sequence. The
most common sequences are carriage return (CR), linefeed (LF) and
carriage return/linefeed (CRLF) pair.
Datafiles often begin with a row of column labels. For some import
operations, the row of labels must be discarded to avoid having it be loaded
into your table as data. In other cases, the labels are quite useful:

For import into existing tables, the labels help you match datafile
columns with the table columns if they are not necessarily in the same
order.
The labels can be used for column names when creating a new table
automatically or semiautomatically from a datafile. For example, Recipe
13.20 discusses a utility that examines a datafile and guesses the
CREATE TABLE statement to use to create a table from the file. If a
label row is present, the utility uses the labels for column names.

TAB-DELIMITED, LINEFEED-TERMINATED FORMAT
Although datafiles may be written in many formats, it’s unwieldy to include machinery for
reading multiple formats within each file-processing utility you write. For that reason, many of
the utilities described in this chapter assume for simplicity that their input is in tab-delimited,
linefeed-terminated format. (This is also the default format for MySQL’s LOAD DATA
statement.) By making this assumption, it becomes easier to write programs that read files.

On the other hand, something has to be able to read data in other formats. To handle that
problem, we’ll develop a cvt_file.pl script that can read several types of files. The script
is based on the Perl Text::CSV_XS module, which despite its name is useful for much more
than just CSV data. cvt_file.pl can convert between many file types, making it possible
for other programs that require tab-delimited lines to be used with files not originally written in
that format. In other words, you can use cvt_file.pl to convert a file to tab-delimited,
linefeed-terminated format, and then any program that expects that format can process the file.
The file is available in the recipes distribution.

Notes on Invoking Shell Commands
This chapter shows a number of programs that you invoke from the
command line using a shell like bash or tcsh under Unix or cmd.exe
(“the command prompt”) under Windows. Many of the example commands
for these programs use quotes around option values, and sometimes an
option value is itself a quote character. Quoting conventions vary from one
shell to another, but the following rules seem to work with most of them
(including cmd.exe under Windows):

For an argument that contains spaces, enclose it within double quotes to
prevent the shell from interpreting it as multiple separate arguments. The
shell strips the quotes and passes the argument to the command intact.
To include a double-quote character in the argument itself, precede it
with a backslash.

Some shell commands in this chapter are so long that they’re shown as you
would enter them using several lines, with a backslash character as the line-
continuation character:

$ prog_name \
 argument1 \
 argument2 ...

That works for Unix. On Windows, the continuation character is ^ (or ` for
PowerShell). Alternatively, on any platform, enter the entire command on
one line:

C:\> prog_name argument1 argument2 ...

13.1 Importing Data with LOAD DATA and
mysqlimport

Problem
You want to load a datafile into a table using MySQL’s built-in import
capabilities.

Solution
Use the LOAD DATA statement or the mysqlimport command-line
program.

Discussion
MySQL provides a LOAD DATA statement that acts as a bulk data loader.
Here’s an example statement that reads a file, mytbl.txt, from your current
directory (the directory from which you call mysql client) and loads it into
the mytbl table in the default database:

mysql> LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl;

WARNING
Since MySQL 8.0, the LOCAL loading capability is disabled by default for security reasons.

To enable it on the test server, set the local_infile to ON variable:

SET GLOBAL local_infile = 1;

and start mysql client with the --local-infile option:

mysql -ucbuser -p --local-infile

Alternatively, omit LOCAL from the statement and specify the full pathname to the file, which
must be readable by the server. Local versus nonlocal data loading is discussed shortly.

The MySQL utility program mysqlimport acts as a wrapper around
LOAD DATA so that you can load input files directly from the command
line. The mysqlimport command that is equivalent to the preceding
LOAD DATA statement looks like this, assuming that mytbl is in the
cookbook database:

$ mysqlimport --local cookbook mytbl.txt

For mysqlimport, as with other MySQL programs, you may need to
specify connection parameter options such as --user or --host (see
Recipe 1.4).
LOAD DATA provides options to address many of the import issues
mentioned in the chapter introduction, such as the line-ending sequence for
recognizing how to break input into records, the column value delimiter that
permits records to be broken into separate values, the quoting character that
may enclose column values, quoting and escaping conventions within
values, and NULL value representation.

The following list describes LOAD DATA’s general characteristics and
capabilities; mysqlimport shares most of these behaviors. We’ll note

some differences as we go along, but for the most, what can be done with
LOAD DATA can be done with mysqlimport as well:

By default, LOAD DATA expects the datafile to have the same number of
columns as the table into which you load it, with the columns present in
the same order as in the table. If the file column number or order differ
from the table, you can specify which columns are present and their
order. If the datafile contains fewer columns than the table, MySQL
assigns default values for the missing columns.
LOAD DATA assumes that data values are separated by tab characters
and that lines end with linefeeds (newlines). If a file doesn’t conform to
these conventions, you can specify its format explicitly.
You can indicate that data values may have quotes around them that
should be stripped, and you can specify the quote character.
Several special escape sequences are recognized and converted during
input processing. The default escape character is the backslash (\), but
you can change it. The \N sequence is interpreted as a NULL value. The
\b, \n, \r, \t, \\, and \0 sequences are interpreted as backspace,
linefeed, carriage return, tab, backslash, and ASCII NUL characters.
(NUL is a zero-valued byte; it differs from the SQL NULL value.)

LOAD DATA provides diagnostic information about which input values
cause problems. To display this information, execute a SHOW
WARNINGS statement after the LOAD DATA statement.

This and the following eight recipes describe how to handle these issues
using LOAD DATA or mysqlimport. It’s lengthy because there’s a lot to
cover.

Specifying the datafile location
You can load files located either on the server host or on the client host
from which you issue the LOAD DATA statement. Telling MySQL where to
find your datafile is a matter of knowing the rules that determine where it
looks for the file (particularly important for files not in your current
directory).

By default, the MySQL server assumes that the datafile is located on the
server host. You can load local files that are located on the client host using
LOAD DATA LOCAL rather than LOAD DATA, unless LOCAL capability is
disabled by default.

NOTE
Many of the examples in this chapter assume that LOCAL can be used. If that’s not true for your
system, adapt the examples: omit LOCAL from the statement, and make sure that the file is located
on the MySQL server host and readable to the server.

If the LOAD DATA statement includes no LOCAL keyword, the MySQL
server looks for the file on the server host using the following rules:

Your MySQL account must have the FILE privilege, and the file to be
loaded must be either located in the data directory for the default
database or world readable.
An absolute pathname fully specifies the location of the file in the
filesystem and the server reads it from the given location.
A relative pathname is interpreted two ways, depending on whether it
has a single component or multiple components. For a single-component
filename such as mytbl.txt, the server looks for the file in the database
directory for the default database. (The operation fails if you have not
selected a default database.) For a multiple-component filename such as
xyz/mytbl.txt, the server looks for the file beginning in the MySQL data
directory. That is, it expects to find mytbl.txt in a directory named xyz.
If the secure_file_priv option is set to a directory path, MySQL
is able to access import and export files only in this directory. Specify
absolute path if you use secure_file_priv.

Database directories are located directly under the server’s data directory,
so these two statements are equivalent if the default database is
cookbook:

mysql> LOAD DATA INFILE 'mytbl.txt' INTO TABLE mytbl;
mysql> LOAD DATA INFILE 'cookbook/mytbl.txt' INTO TABLE mytbl;

If the LOAD DATA statement includes the LOCAL keyword, your client
program reads the file on the client host and sends its contents to the server.
The client interprets the pathname like this:

An absolute pathname fully specifies the location of the file in the
filesystem.
A relative pathname specifies the file location relative to the directory
from which you stated the mysql client.

If your file is located on the client host, but you forget to indicate that it’s
local, an error occurs:

mysql> LOAD DATA 'mytbl.txt' INTO TABLE mytbl;
ERROR 1045 (28000): Access denied for user: 'user_name@host_name'
(Using password: YES)

That Access denied message can be confusing: if you’re able to connect
to the server and issue the LOAD DATA statement, it would seem that
you’ve already gained access to MySQL, right? The error message means
the server (not the client) tried to open mytbl.txt on the server host and
could not access it.
If your MySQL server runs on the host from which you issue the LOAD
DATA statement, “remote” and “local” refer to the same host. But the rules
just discussed for locating datafiles still apply. Without LOCAL, the server
reads the datafile directly. With LOCAL, the client program reads the file
and sends its contents to the server.
mysqlimport uses the same rules for finding files as LOAD DATA. By
default, it assumes that the datafile is located on the server host. To indicate
that the file is local to the client host, specify the --local (or -L) option
on the command line.
LOAD DATA assumes that the table is located in the default database. To
load a file into a specific database, qualify the table name with the database

name. The following statement indicates that the mytbl table is located in
the other_db database:

mysql> LOAD DATA LOCAL 'mytbl.txt' INTO TABLE other_db.mytbl;

mysqlimport always requires a database argument:

$ mysqlimport --local cookbook mytbl.txt

LOAD DATA assumes no relationship between the name of the datafile and
the name of the table into which you load the file’s contents.
mysqlimport assumes a fixed relationship between the datafile name
and the table name. Specifically, it uses the last component of the filename
to determine the table name. For example, mysqlimport interprets mytbl,
mytbl.dat, /home/paul/mytbl.csv, and C:\projects\mytbl.txt all as files
containing data for the mytbl table.

NAMING DATAFILES UNDER WINDOWS
Windows systems use \ as the pathname separator in filenames. That’s a bit of a problem
because MySQL interprets the backslash as the escape character in string values. To specify a
Windows pathname, use either doubled backslashes or forward slashes. These two statements
show two ways of referring to the same Windows file:

mysql> LOAD DATA LOCAL INFILE 'C:\\projects\\mydata.txt' INTO
mytbl;
mysql> LOAD DATA LOCAL INFILE 'C:/projects/mydata.txt' INTO
mytbl;

If the NO_BACKSLASH_ESCAPES SQL mode is enabled, the backslash is not special, and you
do not double it:

mysql> SET sql_mode = CONCAT('NO_BACKSLASH_ESCAPES,',
@@sql_mode);
mysql> LOAD DATA LOCAL INFILE 'C:\projects\mydata.txt' INTO
mytbl;

13.2 Specifying Column and Line Delimiters

Problem
Your datafile uses nonstandard column or line delimiters.

Solution
Use the FIELDS TERMINATED BY and LINES TERMINATED BY
clauses for the LOAD DATA INFILE statement and the --fields-
terminated-by and --lines-terminated-by options for
mysqlimport.

Discussion
By default, LOAD DATA assumes that datafile lines are terminated by
linefeed (newline) characters and that values within a line are separated by
tab characters. To provide explicit information about datafile format, use a
FIELDS clause to describe the characteristics of fields within a line, and a
LINES clause to specify the line-ending sequence. The following LOAD
DATA statement indicates that the input file contains data values separated
by colons and lines terminated by carriage returns:

mysql> LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl
 -> FIELDS TERMINATED BY ':' LINES TERMINATED BY '\r';

Each clause follows the table name. If both are present, FIELDS must
precede LINES. The line and field termination indicators can contain
multiple characters. For example, \r\n indicates that lines are terminated
by carriage return/linefeed pairs.
The LINES clause also has a STARTING BY subclause. It specifies the
sequence to be stripped from each input record. (Everything up to the given
sequence is stripped. If you specify STARTING BY 'X' and a record
begins with abcX, all four leading characters are stripped.) Like
TERMINATED BY, the sequence can have multiple characters. If

TERMINATED BY and STARTING BY both are present in the LINES
clause, they can appear in any order.
For mysqlimport, command options provide the format specifiers.
Commands that correspond to the preceding two LOAD DATA statements
look like this:

$ mysqlimport --local cookbook mytbl.txt
$ mysqlimport --local --fields-terminated-by=":" --lines-
terminated-by="\r" \
 cookbook mytbl.txt

Option order doesn’t matter for mysqlimport.

The FIELDS and LINES clauses understand hex notation to specify
arbitrary format characters, which is useful for loading datafiles that use
binary format codes. Suppose that a datafile has lines with Ctrl-A between
fields and Ctrl-B at the end of lines. The ASCII values for Ctrl-A and Ctrl-
B are 1 and 2, so you represent them as 0x01 and 0x02:

FIELDS TERMINATED BY 0x01 LINES TERMINATED BY 0x02

mysqlimport also understands hex constants for format specifiers. You
may find this capability helpful if you don’t like remembering how to type
escape sequences on the command line or when it’s necessary to use quotes
around them. Tab is 0x09, linefeed is 0x0a, and carriage return is 0x0d.
This command indicates that the datafile contains tab-delimited lines
terminated by CRLF pairs:

$ mysqlimport --local --fields-terminated-by=0x09 \
 --lines-terminated-by=0x0d0a cookbook mytbl.txt

When you import datafiles, don’t assume that LOAD DATA (or
mysqlimport) knows more than it does. Some LOAD DATA frustrations
occur because people expect MySQL to know more than it possibly can.
Keep in mind that LOAD DATA has no idea at all about the format of your
datafile. It makes certain assumptions about the input structure, represented

as the default settings for the line and field terminators, and for the quote
and escape character settings. If your input differs from those assumptions,
you must tell MySQL so.
The line-ending sequence used in a datafile typically is determined by the
system from which the file originated. Unix files normally have lines
terminated by linefeeds, which you indicate like this:

LINES TERMINATED BY '\n'

Because \n happens to be the default line terminator, you need not specify
that clause in this case unless you want to indicate the line-ending sequence
explicitly. If files on your system don’t use the Unix default (linefeed), you
must specify the line terminator explicitly. For files that have lines ending
in carriage returns or carriage return/linefeed pairs, respectively, use the
appropriate LINES TERMINATED BY clause:

LINES TERMINATED BY '\r'
LINES TERMINATED BY '\r\n'

For example, to load a Windows file that contains tab-delimited fields and
lines ending with CRLF pairs, use this LOAD DATA statement:

mysql> LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl
 -> LINES TERMINATED BY '\r\n';

The corresponding mysqlimport command is:

$ mysqlimport --local --lines-terminated-by="\r\n" cookbook
mytbl.txt

If the file has been transferred from one machine to another, its contents
may have been changed in subtle ways of which you’re not aware. For
example, a file transfer protocol (FTP) transfer between machines running
different operating systems typically translates line endings to those that are
appropriate for the destination machine if the transfer is performed in text
mode rather than in binary (image) mode.

When in doubt, check the contents of your datafile using a hex dump
program or other utility that displays a visible representation of whitespace
characters like tab, carriage return, and linefeed. Under Unix, programs
such as od or hexdump can display file contents in a variety of formats. If
you don’t have these or some comparable utility, the transfer directory of
the recipes distribution contains hex dumpers written in Perl, Ruby, and
Python (hexdump.pl, hexdump.rb, and hexdump.py), as well as
programs that display printable representations of all characters of a file
(see.pl, see.rb, and see.py). You may find them useful for
examining files to see what they really contain.

13.3 Dealing with Quotes and Special
Characters

Problem
Your datafile contains quotes or special characters and therefore cannot be
loaded with default options.

Solution
Use the FIELDS clause for LOAD DATA INFILE with a combination of
TERMINATED BY, ENCLOSED BY and ESCAPED BY. For
mysqlimport, use the --fields-enclosed-by and --fields-
escaped-by options.

Discussion
If your datafile contains quoted values or escaped characters, tell LOAD
DATA to be aware of them so that it doesn’t load uninterpreted data values
into the database.
The FIELDS clause can specify other format options besides
TERMINATED BY. By default, LOAD DATA assumes that values are

unquoted, and it interprets the backslash (\) as an escape character for
special characters. To indicate the value-quoting character explicitly, use
ENCLOSED BY; MySQL will strip that character from the ends of data
values during input processing. To change the default escape character, use
ESCAPED BY.

You can use the ENCLOSED BY, ESCAPED BY, and TERMINATED BY
subclauses in any order. For example, these FIELDS clauses are
equivalent:

FIELDS TERMINATED BY ',' ENCLOSED BY '"'
FIELDS ENCLOSED BY '"' TERMINATED BY ','

The TERMINATED BY value can consist of multiple characters. If data
values are separated within input lines by *@*, sequences, indicate that like
this:

FIELDS TERMINATED BY '*@*'

To disable escape processing entirely, specify an empty escape sequence:

FIELDS ESCAPED BY ''

When you specify ENCLOSED BY to indicate which quote character should
be stripped from data values, it’s possible to include the quote character
literally within data values by doubling it or by preceding it with the escape
character. For example, if the quote character is " and the escape character
is \, the input value "a""b\"c" is interpreted as a"b"c.

For mysqlimport, the corresponding command options for specifying
quote and escape values are --fields-enclosed-by and --
fields-escaped-by. (When using mysqlimport options that
include quotes or backslashes or other characters that are special to your
command interpreter, you may need to quote or escape the quote or escape
characters.)

13.4 Handling Duplicate Key Values

Problem
You have duplicates in your datafile, and import fails with an error.

Solution
Instruct LOAD DATA INFILE and mysqlimport to either ignore or
replace duplicates.

Discussion
By default, an error occurs if an input record duplicates an existing row in
the column or columns that form a PRIMARY KEY or UNIQUE index. To
control this behavior, specify IGNORE or REPLACE after the filename to
tell MySQL to either ignore duplicate rows or replace old rows with the
new ones.
Suppose that you periodically receive meteorological data about current
weather conditions from various monitoring stations and that you store
various measurements from these stations in a table that looks like this:

CREATE TABLE weatherdata
(
 station INT UNSIGNED NOT NULL,
 type
ENUM('precip','temp','cloudiness','humidity','barometer') NOT
NULL,
 value FLOAT,
 PRIMARY KEY (station, type)
);

The table includes a primary key on the combination of station ID and
measurement type to ensure that it contains only one row per station per
type of measurement. The table is intended to hold only current conditions,
so when new measurements for a given station are loaded into the table,

they should kick out the station’s previous measurements. To accomplish
this, use the REPLACE keyword:

mysql> LOAD DATA LOCAL INFILE 'data.txt' REPLACE INTO TABLE
weatherdata;

mysqlimport has --ignore and --replace options that correspond
to the IGNORE and REPLACE keywords for LOAD DATA.

13.5 Obtaining Diagnostics About Bad Input
Data

Problem
You found differences between the datafile and data loaded into the
database and want to know why import failed for those values.

Solution
Use the SHOW WARNINGS statement.

Discussion
LOAD DATA displays an information line to indicate whether there are any
problematic input values. If so, use SHOW WARNINGS to find where they
are and what the problems are.
When a LOAD DATA statement finishes, it returns a line of information that
tells you how many errors or data conversion problems occurred, for
example:

Records: 134 Deleted: 0 Skipped: 2 Warnings: 13

These values provide general information about the import operation:
Records indicates the number of records found in the file.

Deleted and Skipped are related to the treatment of input records
that duplicate existing table rows on unique index values. Deleted
indicates how many rows were deleted from the table and replaced by
input records, and Skipped indicates how many input records were
ignored in favor of existing rows.
Warnings is something of a catchall that indicates the number of
problems found while loading data values into columns. Either a value
stores into a column properly or it doesn’t. In the latter case, the value
ends up in MySQL as something different, and MySQL counts it as a
warning. (Storing a string abc into a numeric column results in a stored
value of 0, for example.)

What do these values tell you? The Records value normally should match
the number of lines in the input file. If it doesn’t, that’s a sign that MySQL
interprets the file as having a different format than it actually has. In this
case, you’ll likely also see a high Warnings value, which indicates that
many values had to be converted because they didn’t match the expected
data type. The solution to this problem often is to specify the proper
FIELDS and LINES clauses.

Assuming that your FIELDS and LINES format specifiers are correct, a
nonzero Warnings count indicates the presence of bad input values. You
can’t tell from the numbers in the LOAD DATA information line which input
records had problems or which columns were bad. To get that information,
issue a SHOW WARNINGS statement.

Suppose that a table t has this structure:

CREATE TABLE t
(
 i INT,
 c CHAR(3),
 d DATE
);

And suppose that a datafile data.txt looks like this:

1 1 1
abc abc abc
2010-10-10 2010-10-10 2010-10-10

Loading the file into the table causes a number, a string, and a date to be
loaded into each of the three columns. Doing so results in several data
conversions and warnings, which you can see using SHOW WARNINGS
immediately following LOAD DATA:

mysql> LOAD DATA LOCAL INFILE 'data.txt' INTO TABLE t;
Query OK, 3 rows affected, 5 warnings (0.01 sec)
Records: 3 Deleted: 0 Skipped: 0 Warnings: 5
mysql> SHOW WARNINGS;
+---------+------+---
---------+
| Level | Code | Message
|
+---------+------+---
---------+
| Warning | 1265 | Data truncated for column 'd' at row 1
|
| Warning | 1366 | Incorrect integer value: 'abc' for column 'i'
at row 2 |
| Warning | 1265 | Data truncated for column 'd' at row 2
|
| Warning | 1265 | Data truncated for column 'i' at row 3
|
| Warning | 1265 | Data truncated for column 'c' at row 3
|
+---------+------+---
---------+
5 rows in set (0.00 sec)

The SHOW WARNINGS output helps you determine which values were
converted and why. The resulting table looks like this:

mysql> SELECT * FROM t;
+------+------+------------+
| i | c | d |
+------+------+------------+
1	1	0000-00-00
0	abc	0000-00-00
2010	201	2010-10-10
+------+------+------------+

13.6 Skipping Datafile Lines

Problem
You want to skip the few first lines from a datafile.

Solution
Use an IGNORE...LINES clause for LOAD DATA INFILE and the --
ignore-lines option for mysqlimport.

Discussion
To skip the first n lines of a datafile, add an IGNORE n LINES clause to
the LOAD DATA statement. For example, a file might include an initial line
of column labels. You can skip it like this:

mysql> LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl
 -> IGNORE 1 LINES;

mysqlimport supports an --ignore-lines=n option that
corresponds to IGNORE n LINES.

13.7 Specifying Input Column Order

Problem
Column order in the datafile and the table is different, and you need to
change it for the import.

Solution
Specify the order of the columns when importing.

Discussion

LOAD DATA assumes that columns in the datafile have the same order as
the columns in the table. If that’s not true, specify a list to indicate the table
columns into which to load the datafile columns. Suppose that your table
has columns a, b, and c, but successive columns in the datafile correspond
to columns b, c, and a. Load the file like this:

mysql> LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl
(b,c,a);

mysqlimport has a corresponding --columns option to specify the
column list:

$ mysqlimport --local --columns=b,c,a cookbook mytbl.txt

13.8 Preprocessing Input Values Before
Inserting Them

Problem
Values in the datafile cannot be inserted into the database as is. You need to
modify them before inserting.

Solution
Use a SET clause for LOAD DATA INFILE and MySQL functions to
modify values.

Discussion
LOAD DATA can perform limited preprocessing of input values before
inserting them, which sometimes enables you to map input data onto more
appropriate values before loading them into your table. This is useful when
values are not in a format suitable for loading into a table (for example, they
are in the wrong units, or two input fields must be combined and inserted
into a single column).

The previous section shows how to specify a column list for LOAD DATA to
indicate how input fields correspond to table columns. The column list also
can name user-defined variables such that for each input record, the input
fields are assigned to the variables. You can then perform calculations with
those variables before inserting the result into the table. Specify these
calculations in a SET clause that names one or more col_name = expr
assignments, separated by commas.
Suppose that a datafile has the following columns, with the first line
providing column labels:

Date Time Name Weight State
2006-09-01 12:00:00 Bill Wills 200 Nevada
2006-09-02 09:00:00 Jeff Deft 150 Oklahoma
2006-09-04 03:00:00 Bob Hobbs 225 Utah
2006-09-07 08:00:00 Hank Banks 175 Texas

Suppose also that the file is to be loaded into a table that has these columns:

CREATE TABLE t
(
 dt DATETIME,
 last_name CHAR(10),
 first_name CHAR(10),
 weight_kg FLOAT,
 st_abbrev CHAR(2)
);

To import the file, you must address several mismatches between its fields
and the table columns:

The file contains separate date and time fields that must be combined
into date-and-time values for insertion into the DATETIME column.

The file contains a name field, which must be split into separate first and
last name values for insertion into the first_name and last_name
columns.
The file contains a weight in pounds, which must be converted to
kilograms for insertion into the weight_kg column (1 lb. equals .454
kg.).

The file contains state names, but the table contains two-letter
abbreviations. The name can be mapped to the abbreviation by
performing a lookup in the states table.

To handle these conversions, skip the first line that contains the column
labels, assign each input column to a user-defined variable, and write a SET
clause to perform the calculations:

mysql> LOAD DATA LOCAL INFILE 'data.txt' INTO TABLE t
 -> IGNORE 1 LINES
 -> (@date,@time,@name,@weight_lb,@state)
 -> SET dt = CONCAT(@date,' ',@time),
 -> first_name = SUBSTRING_INDEX(@name,' ',1),
 -> last_name = SUBSTRING_INDEX(@name,' ',-1),
 -> weight_kg = @weight_lb * .454,
 -> st_abbrev = (SELECT abbrev FROM states WHERE name =
@state);

After the import operation, the table contains these rows:

mysql> SELECT * FROM t;
+---------------------+-----------+------------+-----------+-----
------+
| dt | last_name | first_name | weight_kg |
st_abbrev |
+---------------------+-----------+------------+-----------+-----
------+
| 2006-09-01 12:00:00 | Wills | Bill | 90.8 | NV
|
| 2006-09-02 09:00:00 | Deft | Jeff | 68.1 | OK
|
| 2006-09-04 03:00:00 | Hobbs | Bob | 102.15 | UT
|
| 2006-09-07 08:00:00 | Banks | Hank | 79.45 | TX
|
+---------------------+-----------+------------+-----------+-----
------+

LOAD DATA can perform data value reformatting, as just shown. Other
examples showing uses for this capability occur elsewhere. (For example,
Recipe 13.12 uses it to map NULL values, and Recipe 14.16 rewrites non-
ISO dates to ISO format during data import.) However, although LOAD
DATA can map input values to other values, it cannot outright reject an

input record that is found to contain unsuitable values. To do that, either
preprocess the input file to remove these records or issue a DELETE
statement after loading the file.

13.9 Ignoring Datafile Columns

Problem
Your datafile contains extra fields that should not be added to the database.

Solution
Specify column order when importing data. In place of the columns that
need to be ignored, specify a user-defined variable.

Discussion
Extra columns at the end of input lines are easy to handle. If a line contains
more columns than are in the table, LOAD DATA just ignores them
(although it might produce a nonzero warning count).
Skipping columns in the middle of lines is a bit more involved. To handle
this, use a column list with LOAD DATA that assigns the columns to be
ignored to a dummy user-defined variable. Suppose that you want to load
information from a Unix password file /etc/passwd, which contains lines in
the following format:

account:password:UID:GID:GECOS:directory:shell

Suppose also that you don’t want to load the password and directory
columns. A table to hold the information in the remaining columns looks
like this:

CREATE TABLE passwd
(
 account CHAR(8), # login name
 uid INT, # user ID

 gid INT, # group ID
 gecos CHAR(60), # name, phone, office, etc.
 shell CHAR(60), # command interpreter
 PRIMARY KEY(account)
);

To load the file, specify that the column delimiter is a colon. Also, tell
LOAD DATA to skip the second and sixth fields that contain the password
and directory. To do this, add a column list in the statement. The list should
include the name of each column to load into the table and a dummy user-
defined variable for columns to be ignored (you can use the same variable
for all of them). The resulting statement looks like this:

mysql> LOAD DATA LOCAL INFILE '/etc/passwd' INTO TABLE passwd
 -> FIELDS TERMINATED BY ':'
 -> (account,@dummy,uid,gid,gecos,@dummy,shell);

The corresponding mysqlimport command includes a --columns
option:

$ mysqlimport --local \
 --columns="account,@dummy,uid,gid,gecos,@dummy,shell" \
 --fields-terminated-by=":" cookbook /etc/passwd

See Also
Another approach to ignoring columns is to preprocess the input file to
remove columns. The yank_col.pl utility, included in the recipes
distribution, can extract and display datafile columns in any order.

13.10 Importing CSV Files

Problem
You want to load a file that is in CSV format.

Solution

Use the appropriate format specifiers with LOAD DATA or mysqlimport.

Discussion
Datafiles in CSV format contain values that are delimited by commas rather
than tabs and that may be quoted with double-quote characters. A CSV file,
mytbl.txt, containing lines that end with carriage return/linefeed pairs can be
loaded into mytbl using LOAD DATA:

mysql> LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl
 -> FIELDS TERMINATED BY ',' ENCLOSED BY '"'
 -> LINES TERMINATED BY '\r\n';

Or like this using mysqlimport:

$ mysqlimport --local --lines-terminated-by="\r\n" \
 --fields-terminated-by="," --fields-enclosed-by="\"" \
 cookbook mytbl.txt

13.11 Exporting Query Results from MySQL

Problem
You want to export the result of a query from MySQL into a file or another
program.

Solution
Use the SELECT…INTO OUTFILE statement, or redirect the output of the
mysql program.

Discussion
The SELECT…INTO OUTFILE statement exports a query result directly
into a file on the server host. To capture the result on the client host instead,
redirect the output of the mysql program. These methods have different

strengths and weaknesses; get to know them both, and apply whichever one
best suits a given situation.

Exporting using the SELECT...INTO OUTFILE statement
The syntax for the SELECT...INTO OUTFILE statement combines a
regular SELECT with INTO OUTFILE file_name. The default output
format is the same as for LOAD DATA, so the following statement exports
the passwd table into /tmp/passwd.txt as a tab-delimited, linefeed-
terminated file:

mysql> SELECT * FROM passwd INTO OUTFILE '/tmp/passwd.txt';

To change the output format, use options similar to those used with LOAD
DATA that indicate how to quote and delimit columns and records. For
example, to export the passwd table (created earlier in Recipe 13.1) in
CSV format with CRLF-terminated lines, use this statement:

mysql> SELECT * FROM passwd INTO OUTFILE '/tmp/passwd.txt'
 -> FIELDS TERMINATED BY ',' ENCLOSED BY '"'
 -> LINES TERMINATED BY '\r\n';

SELECT…INTO OUTFILE has these properties:

The output file is created directly by the MySQL server, so the filename
should indicate where to write the file on the server host. The file
location is determined using the same rules as for LOAD DATA without
LOCAL, as described in Recipe 13.1. (There is no LOCAL version of the
statement analogous to the LOCAL version of LOAD DATA.)

You must have the MySQL FILE privilege to execute the SELECT…
INTO OUTFILE statement.

The output file must not already exist. (This prevents MySQL from
overwriting files that may be important.)
You should have a login account on the server host or some way to
access files on that host. SELECT…INTO OUTFILE is of no value to

you if you cannot retrieve the output file.
Under Unix, before MySQL 8.0.17, the file is created world readable
and is owned by the account used for running the MySQL server. This
means that although you can read the file, you may not be able to delete
it unless you can log in using that account. As of MySQL 8.0.17, the file
is world writable.
If the secure_file_priv option is set, you can only export into the
specified directory.

Exporting using the mysql client program
Because SELECT…INTO OUTFILE writes the datafile on the server host,
you cannot use it unless your MySQL account has the FILE privilege. To
export data into a local file that you own, use another strategy. If all you
require is tab-delimited output, do a “poor-man’s export” by executing a
SELECT statement with the mysql program and redirecting the output to a
file. That way you can write query results into a file on your local host
without the FILE privilege. Here’s an example that exports the login name
and command interpreter columns from the passwd table:

$ mysql -e "SELECT account, shell FROM passwd" --skip-column-
names \
 cookbook > shells.txt

The -e option specifies the statement to execute (see Recipe 1.5), and --
skip-column-names tells MySQL not to write the row of column
names that normally precedes statement output (see Recipe 1.7). The >
operator instructs mysql to redirect output into the file. Otherwise, the
result will be printed onto the screen.
Note that MySQL writes NULL values as the string “NULL.” Some
postprocessing to convert them may be needed, depending on what you
want to do with the output file. We discuss how to handle NULL values
during export and import in Recipe 13.12.

It’s possible to produce output in formats other than tab-delimited by
sending the query result into a postprocessing filter that converts tabs to
something else. For example, to use hash marks as delimiters, convert all
tabs to # characters (TAB indicates where you type a tab character in the
command):

$ mysql --skip-column-names -e "your statement here" db_name \
 | sed -e "s/TAB/#/g" > output_file

You can also use tr for this purpose, although the syntax varies for
different implementations of this utility. For macOS or Linux, the command
looks like this:

$ mysql --skip-column-names -e "your statement here" db_name \
 | tr "\t" "#" > output_file

The mysql commands just shown use --skip-column-names to
suppress column labels from appearing in the output. Under some
circumstances, it may be useful to include the labels (for example, if they
will be useful when importing the file later). In this respect, exporting query
results with mysql is more flexible than SELECT…INTO OUTFILE
because the latter cannot produce output that includes column labels.
Another way to export query results to a file on the client host is to use the
mysql_to_text.pl utility, available in the recipes distribution. That
program has options that enable you to specify the output format explicitly.
To export a query result as an Excel spreadsheet or XML document, use
mysql_to_excel.pl and mysql_to_xml.pl utilities.

13.12 Importing and Exporting NULL Values

Problem
You need to represent NULL values in a datafile.

Solution
Use a value not otherwise present so that you can distinguish NULL from all
other legitimate non-NULL values. When you import the file, convert
instances of that value to NULL.

Discussion
There’s no standard for representing NULL values in datafiles, which makes
them problematic for import and export operations. The difficulty arises
from the fact that NULL indicates the absence of a value, and that’s not easy
to represent literally in a datafile. Using an empty column value is the most
obvious thing to do, but that’s ambiguous for string-valued columns
because there is no way to distinguish a NULL represented that way from a
true empty string. Empty values can be a problem for other data types as
well. For example, if you load an empty value with LOAD DATA into a
numeric column, it is stored as 0 rather than as NULL and thus becomes
indistinguishable from a true 0 in the input.

The usual solution to this problem is to represent NULL using a value not
otherwise present in the data. This is how LOAD DATA and mysqlimport
handle the issue: they understand the value of \N by convention to mean
NULL. (\N is interpreted as NULL only when it occurs by itself, not as part
of a larger value such as x\N or \Nx.) For example, if you load the
following datafile with LOAD DATA, it treats the instances of \N as NULL:

str1 13 1997-10-14
str2 \N 2009-05-07
\N 15 \N
\N \N 1973-07-14

But you might want to interpret values other than \N as signifying NULL,
and you might have different conventions in different columns. Consider
the following datafile:

str1 13 1997-10-14
str2 -1 2009-05-07

Unknown 15
Unknown -1 1973-07-15

The first column contains strings, and Unknown signifies NULL. The
second column contains integers, and -1 signifies NULL. The third column
contains dates, and an empty value signifies NULL. What to do?

To handle situations like this, use LOAD DATA’s input preprocessing
capability: specify a column list that assigns input values to user-defined
variables, and use a SET clause that maps the special values to true NULL
values. If the datafile is named has_nulls.txt, the following LOAD DATA
statement properly interprets its contents:

mysql> LOAD DATA LOCAL INFILE 'has_nulls.txt'
 -> INTO TABLE t (@c1,@c2,@c3)
 -> SET c1 = IF(@c1='Unknown',NULL,@c1),
 -> c2 = IF(@c2=-1,NULL,@c2),
 -> c3 = IF(@c3='',NULL,@c3);

The resulting data after import looks like this:

+------+------+------------+
| c1 | c2 | c3 |
+------+------+------------+
str1	13	1997-10-14
str2	NULL	2009-05-07
NULL	15	NULL
NULL	NULL	1973-07-15
+------+------+------------+

The preceding discussion pertains to interpreting NULL values for import
into MySQL, but it’s also necessary to think about NULL values when
transferring data in the other direction—from MySQL into other programs.
Here are some examples:

SELECT…INTO OUTFILE writes NULL values as \N. Will another
program understand that convention? If not, convert \N to something the
program understands. For example, the SELECT statement can export
the column using an expression like this:

IFNULL(col_name,'Unknown')

You can use mysql in batch mode as an easy way to produce tab-
delimited output (see Recipe 13.11), but then NULL values appear in the
output as instances of the word NULL. If that word occurs nowhere else
in the output, you may be able to postprocess it to convert instances of it
to something more appropriate. For example, you can use a one-line
sed command:

$ sed -e "s/NULL/\\N/g" data.txt > tmp

If the word NULL appears where it represents something other than a
NULL value, it’s ambiguous, and you should probably export your data
differently. For example, use IFNULL() to map NULL values to
something else.

13.13 Exporting Data in SQL Format

Problem
You want to export data in SQL format.

Solution
Use mysqldump or mysqlpump.

Discussion
SQL format is widely used for exporting and importing data. It has such
advantages that it could be executed inside the MySQL clients, as we
discuss in Recipes 1.6 and 13.14. SQL files can also have special
information, such as replication source position (Recipe 3.3), default
character set, and so on. SQL files can contain data for all tables, triggers,
events, and stored routines on the server, so you can use them to copy your
MySQL installation.

Since the very first versions of MySQL, MySQL distribution has contained
a mysqldump utility that allows you to export (dump) data into a SQL file.
mysqldump is very easy to use. For example, to dump all databases, run it
with the --all-databases option:

$ mysqldump --all-databases > all-databases.sql

To copy all tables in the cookbook database, use its name as a
mysqldump parameter:

$ mysqldump cookbook > cookbook.sql

To export just a few tables in the cookbook database, specify their names
after the database name. Thus, to copy the limbs and patients tables,
run the following:

$ mysqldump cookbook limbs patients > limbs_patients.sql

The shell command > redirects output of the mysqldump into a file. You
can also specify a --result-file option to instruct mysqldump to
store the result in the named file.
The resulting file will contain SQL instructions that allow you to re-create a
database and tables in it and then fill them with data.
Normally, MySQL works in high-concurrent environments. Therefore,
mysqldump supports the following options to ensure consistency of the
resulting backup file:

--lock-all-tables

Locks all tables across all databases with a read lock, preventing writes
to any of the tables until the dump is finished.

--lock-tables

Locks all tables for each dumped database separately. This protection
prevents writes only into a database being exported, but it does not

guarantee consistency of the resulting dump for multiple-database
backups.

--single-transaction

Starts a transaction before dumping. This option does not prevent any
write and still guarantees consistency of the backup. This is the
recommended option for backups of tables that use transactional storage
engines.

TIP
Since ensuring consistency may affect performance of the high-concurrent writes, it is advisable
to run mysqldump on the read-only replica.

mysqldump is a mature tool, but it exports data in a single thread. This
may not be as performant as we expect nowadays. Therefore, since version
5.7, MySQL distribution includes one more backup tool: mysqlpump.

mysqlpump works similarly to mysqldump. You can use the same
options as for mysqldump to export all databases, a single database, or
just a few tables. But mysqlpump also supports parallel processing to
speed up the dump process, progress indicators, smarter dumping of the
user accounts, filters, and other features that mysqldump lacks.

Thus, to create a dump of the whole MySQL instance in four threads,
protect the dump with the --single-transaction option and see the
progress bar use command:

$ mysqlpump --default-parallelism=4 --single-transaction \
 > --watch-progress > all-databases.sql
Dump progress: 1/2 tables, 0/7 rows
Dump progress: 142/143 tables, 2574113/4076473 rows
Dump completed in 1837

NOTE
mysqlpump supports the --single-transaction option, but does not support --lock-
all-tables and --lock-tables. It has the --add-locks option instead that surrounds
each dumped table with LOCK TABLES and UNLOCK TABLES statements.

See Also
For additional information about mysqldump, see “mysqldump—A
Database Backup Program”, and for additional information about
mysqlpump, see “mysqlpump—A Database Backup Program” in the
MySQL Reference Manual.

13.14 Importing SQL Data

Problem
You have a SQL dump file and want to import it.

Solution
Process the file using mysql client or MySQL Shell.

Discussion
A SQL dump is just a file with SQL commands. Therefore, you can read it
with mysql client, as we discussed in Recipe 1.6:

$ mysql -ucbuser -p cookbook < cookbook.sql

MySQL Shell supports similar functionality in SQL mode.
To load a dump from the command line, specify the --sql option for the
mysqlsh client and redirect input into it:

https://oreil.ly/tFK7T
https://oreil.ly/oSUHg

$ mysqlsh cbuser:cbpass@127.0.0.1:33060/cookbook --sql < all-
databases.sql

To load a dump while in the interactive session, switch to SQL mode and
use the \source command, or its shortcut, \:

MySQL cookbook SQL > \source cookbook.sql

13.15 Exporting Query Results as XML

Problem
You want to export the result of a query as an XML document.

Solution
Use the mysql client or mysqldump with the --xml option.

Discussion
The mysql client can produce XML-format output from a query result (see
Recipe 1.7).
Suppose that a table named expt contains test scores from an experiment:

mysql> SELECT * FROM expt;
+---------+------+-------+
| subject | test | score |
+---------+------+-------+
Jane	A	47
Jane	B	50
Jane	C	NULL
Jane	D	NULL
Marvin	A	52
Marvin	B	45
Marvin	C	53
Marvin	D	NULL
+---------+------+-------+

Run mysql client with the --xml option:

$ mysql --xml cookbook -e "SELECT * FROM expt;" < expt.xml

The resulting XML document, expt.xml, looks like this:

<?xml version="1.0"?>

<resultset statement="SELECT * FROM expt"↩
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <row>
 <field name="subject">Jane</field>
 <field name="test">A</field>
 <field name="score">47</field>
 </row>
…
 <row>
 <field name="subject">Marvin</field>
 <field name="test">D</field>
 <field name="score" xsi:nil="true" />
 </row>
</resultset>

To produce similar output with mysqldump, run it with the --xml option.
The resulting file will contain the table definition unless you specify the --
no-create-info option:

$ mysqldump --xml cookbook expt
<?xml version="1.0"?>
<mysqldump xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
SET @MYSQLDUMP_TEMP_LOG_BIN = @@SESSION.SQL_LOG_BIN;
SET @@SESSION.SQL_LOG_BIN= 0;
SET @@GLOBAL.GTID_PURGED=/*!80000 '+'*/ '910c760a-0751-11eb-9da8-
0242dc638c6c:1-385,
9113f6b1-0751-11eb-9e7d-0242dc638c6c:1-385,
abf2d315-fb9a-11ea-9815-02421e8c78f1:1-52911';
<database name="cookbook">
 <table_structure name="expt">
 <field Field="subject" Type="varchar(10)"↩
 Null="YES" Key="" Extra="" Comment="" />
 <field Field="test" Type="varchar(5)"↩
 Null="YES" Key="" Extra="" Comment="" />
 <field Field="score" Type="int"↩
 Null="YES" Key="" Extra="" Comment="" />
 <options Name="expt" Engine="InnoDB" Version="10"
Row_format="Dynamic"↩
 Rows="8" Avg_row_length="2048"
Data_length="16384" Max_data_length="0"↩

 Index_length="0" Data_free="0"
Create_time="2022-02-06 13:06:35"↩
 Update_time="2022-02-06 13:06:35"
Collation="utf8mb4_0900_ai_ci"↩
 Create_options="" Comment="" />
 </table_structure>
 <table_data name="expt">
 <row>
 <field name="subject">Jane</field>
 <field name="test">A</field>
 <field name="score">47</field>
 </row>
...
 <row>
 <field name="subject">Marvin</field>
 <field name="test">D</field>
 <field name="score" xsi:nil="true" />
 </row>
 </table_data>
</database>
SET @@SESSION.SQL_LOG_BIN = @MYSQLDUMP_TEMP_LOG_BIN;

13.16 Importing XML into MySQL

Problem
You want to import an XML document into a MySQL table.

Solution
Use the LOAD XML statement.

Discussion
Importing an XML document depends on being able to parse the document
and extract record contents from it. How you do that depends on how the
document is written. To read XML files created by the mysql client, use
the LOAD XML statement.

To load the expt.xml file that we created in Recipe 13.15, run the
following:

LOAD XML LOCAL INFILE 'expt.xml' INTO TABLE expt;

The LOAD XML statement automatically recognizes three different XML
formats:

Column names as attributes and column values as attribute values.

<row subject="Jane" test="A" score=47 />

Column names as tags and column values as tag values.

<row>
 <subject>Jane</subject>
 <test>B</test>
 <score>50</score>
 </row>

Column names as values of the attribute name of the tag field, and
column values as their values.

<row>
 <field name="subject">Jane</field>
 <field name="test">C</field>
 <field name="score" xsi:nil="true" />
 </row>

This is the same format that mysql, mysqldump, and other MySQL
utilities use.

If your XML file uses a different tag name, specify it with a ROWS
IDENTIFIED BY clause. For example, if rows for the table expt are
defined as follows:

<test>
 <field name="subject">Jane</field>
 <field name="test">D</field>
 <field name="score" xsi:nil="true" />
 </test>

Load them with the following statement:

LOAD XML LOCAL INFILE 'expt.xml' INTO TABLE expt ROWS IDENTIFIED
BY '<test>';

13.17 Importing Data in JSON Format

Problem
You have a JSON file and want to import it into a MySQL database.

Solution
Use the MySQL Shell importJson utility.

Discussion
JSON is a popular format for storing data so it can be application generated
or directly exported from the MongoDB database.
The importJson utility takes the path to the JSON file and dictionary of
options as arguments. You can import JSON either into a collection or into
a table. In the latter case, you need to specify the tableColumn in which
to store the document unless the default value, doc, works for you.

The document should contain a list of JSON objects, separated by a new
line. This list should not be a member of a JSON array or another object:

{"arms": 2, "legs": 2, "thing": "human" }
{"arms": 0, "legs": 6, "thing": "insect" }
{"arms": 10, "legs": 0, "thing": "squid" }
{"arms": 0, "legs": 0, "thing": "fish" }
{"arms": 0, "legs": 99, "thing": "centipede" }
{"arms": 0, "legs": 4, "thing": "table" }
{"arms": 2, "legs": 4, "thing": "armchair" }
{"arms": 1, "legs": 0, "thing": "phonograph" }
{"arms": 0, "legs": 3, "thing": "tripod" }
{"arms": 2, "legs": 1, "thing": "Peg Leg Pete" }
{"arms": null, "legs": null, "thing": "space alien" }

You will find a JSON dump of the CollectionLimbs collection in the
collections/limbs.json file of the recipes distribution.

To insert data from the JSON file into the CollectionLimbs collection,
run following code:

 MySQL cookbook JS > options = {
 -> schema: "cookbook",
 -> collection: "CollectionLimbs"
 -> }
 ->
{
 "collection": "CollectionLimbs",
 "schema": "cookbook"
}
 MySQL cookbook JS > util.importJson("limbs.json", options)
Importing from file "limbscol.json" to collection
`cookbook`.`CollectionLimbs` ↩
in MySQL Server at 127.0.0.1:33060

.. 11.. 11
Processed 1.42 KB in 11 documents in 0.0070 sec (11.00
documents/s)
Total successfully imported documents 11 (11.00 documents/s)

First, create a dictionary object with options. At the minimum, you need
to specify the collection name and the schema.

Then call util.importJson with the path to the JSON file and
options dictionary as arguments.

You can also call the importJson utility from the command line without
entering an interactive MySQL Shell session. To do it, use the --import
option of the mysqlsh command, and specify the path to the JSON file
and target collection as parameters:

$ mysqlsh cbuser:cbpass@127.0.0.1:33060/cookbook \
> --import limbs.json CollectionLimbs
WARNING: Using a password on the command-line interface can be
insecure.
Importing from file "limbs.json" to collection
`cookbook`.`CollectionLimbs` ↩
in MySQL Server at 127.0.0.1:33060

.. 11.. 11
Processed 506 bytes in 11 documents in 0.0067 sec (11.00

documents/s)
Total successfully imported documents 11 (11.00 documents/s)

TIP
If no collection or a table with the specific name exists in the database, the importJson utility
will create it for you.

13.18 Importing Data from MongoDB

Problem
You want to import data from a MongoDB collection.

Solution
Export the collection from MongoDB into a file with the help of the
mongoexport utility, and use importJson with the
"convertBsonTypes": true option to import the collection into
MySQL.

Solution
importJson can import documents exported from MongoDB with the
help of the mongoexport utility. Additionally, it can convert BSON data
types into MySQL format. To explore this feature, put
"convertBsonTypes": true into the options dictionary and perform
the import:

 MySQL cookbook JS > options = {
 -> "schema": "cookbook",
 -> "collection": "blogs",
 -> "convertBsonTypes": true
 -> }
 ->
{
 "collection": "blogs",

 "convertBsonTypes": true,
 "schema": "cookbook"
}
 MySQL cookbook JS > util.importJson("blogs.json", options)
Importing from file "blogs.json" to collection `cookbook`.`blogs`
↩
in MySQL Server at 127.0.0.1:33060

.. 2.. 2
Processed 240 bytes in 2 documents in 0.0070 sec (2.00
documents/s)
Total successfully imported documents 2 (2.00 documents/s)

The resulting blogs collection uses data in MySQL format. We can check
it if selected all documents from the collection using MySQL Shell:

 MySQL cookbook JS > shell.getSession().
 -> getSchema('cookbook').
 -> getCollection('blogs').
 -> find()
 ->
{
 "_id": "6029abb942e2e9c45760eabc",
 "author": "Ann Smith",
 "comment": "That's Awesome!",
 "date_created": "2021-02-13T23:01:13.154Z"
}
{
 "_id": "6029abd842e2e9c45760eabd",
 "author": "John Doe",
 "comment": "Love it!",
 "date_created": "2021-02-14T11:20:03Z"
}
2 documents in set (0.0006 sec)

The BSON object identification (OID) value,
"_id": {"$oid":"6029abb94 2e2e9c45760eabc"},
converted to MySQL ID format.

The BSON Date value, "date_created": {"$date":"2021-
02-13T23: 01:13.154Z"}, converted to MySQL Date format.

You will find a JSON dump of the blogs collection in the
collections/blogs.json file of the recipes distribution.

13.19 Exporting Data in JSON Format

Problem
You want to export a MySQL collection into a JSON file.

Solution
Use MySQL Shell to retrieve the result in the JSON format. Redirect the
output into a file if needed.

Discussion
MySQL Shell allows you to retrieve data in JSON format. The following
code snippet dumps the CollectionLimbs collection and redirects
result into a file:

$ mysqlsh cbuser:cbpass@127.0.0.1:33060/cookbook \
> -e "limbs=shell.getSession().getSchema('cookbook').
> getCollection('CollectionLimbs').
> find().execute().fetchAll();
> println(limbs);" > limbs.json

Select the collection.

Fetch all rows from the collection.

Print the result and redirect command output into a file.
The resulting file will contain an array of JSON documents. This is not the
same format that the MySQL Shell importJson utility can use. If you
want to import the data back into MySQL, modify the resulting file. You
can do it with help of the jq utility:

$ jq '.[]' limbs.json > limbs_fixed.json

jq reads the limbs.json file and prints each of its array elements into
standard output. Then, we redirect the result into a limbs_fixed.json

file.

See Also
For additional information about the jq utility, see the jq Manual.

13.20 Guessing Table Structure from a
Datafile

Problem
Someone gives you a datafile and says, “Here, put this into MySQL for
me.” But no table yet exists to hold the data. You need to create a table that
will hold data from the file.

Solution
Use a utility that guesses the table structure by examining the datafile
contents.

Discussion
Sometimes you must import data into MySQL for which no table has yet
been set up. You can create the table yourself, based on any knowledge you
have about the contents of the file. Or you might be able to avoid some of
the work by using guess_table.pl, a utility located in the transfer
directory of the recipes distribution. guess_table.pl reads the
datafile to see what kind of information it contains, then attempts to
produce an appropriate CREATE TABLE statement that matches the
contents of the file. This script is necessarily imperfect because column
contents sometimes are ambiguous. (For example, a column containing a
small number of distinct strings might be a VARCHAR column or an ENUM.)
Still, it may be easier to tweak the CREATE TABLE statement that
guess_table.pl produces than to write the statement from scratch.

https://oreil.ly/Or2KB

This utility also has diagnostic value, although that’s not its primary
purpose. For example, if you believe a column contains only numbers, but
guess_table.pl indicates that it should be a VARCHAR column, that
tells you the column contains at least one nonnumeric value.
guess_table.pl assumes that its input is in tab-delimited, linefeed-
terminated format. It also assumes valid input because any attempt to guess
data types based on possibly flawed data is doomed to failure. This means,
for example, that if a date column is to be recognized as such, it should be
in ISO format. Otherwise, guess_table.pl may characterize it as a
VARCHAR column. If a datafile doesn’t satisfy these assumptions, you may
be able to reformat it first using the cvt_file.pl and cvt_date.pl
utilities, available in the recipes distribution.
guess_table.pl understands the following options:

--labels

Interpret the first input line as a row of column labels, and use them for
table column names. Without this option, guess_table.pl uses
default column names of c1, c2, and so forth.

If the file contains a row of labels and you omit this option,
guess_table.pl treats the labels as data values. The likely result is
that the script will characterize all columns as VARCHAR columns (even
those that otherwise contain only numeric or temporal values), due to
the presence of a nonnumeric or nontemporal value in the column.

--lower, --upper
Force column names in the CREATE TABLE statement to be lowercase
or uppercase.

--quote-names, --skip-quote-names
Quote or do not quote table and column identifiers in the CREATE
TABLE statement with ` characters (for example, `mytbl`). This can
be useful if an identifier is a reserved word. The default is to quote
identifiers.

--report

Generate a report rather than a CREATE TABLE statement. The script
displays the information that it gathers about each column.

--table=tbl_name

Specify the table name to use in the CREATE TABLE statement. The
default name is t.

Here’s an example of how guess_table.pl works. Suppose that a file
named commodities.csv is in CSV format and has the following contents:

commodity,trade_date,shares,price,change
sugar,12-14-2014,1000000,10.50,-.125
oil,12-14-2014,96000,60.25,.25
wheat,12-14-2014,2500000,8.75,0
gold,12-14-2014,13000,103.25,2.25
sugar,12-15-2014,970000,10.60,.1
oil,12-15-2014,105000,60.5,.25
wheat,12-15-2014,2370000,8.65,-.1
gold,12-15-2014,11000,101,-2.25

The first row indicates the column labels, and the following rows contain
data records, one per line. The values in the trade_date column are
dates, but they are in MM-DD-YYYY format rather than the ISO format that
MySQL expects. cvt_date.pl can convert these dates to ISO format.
However, both cvt_date.pl and guess_table.pl require input in
tab-delimited, linefeed-terminated format, so first use cvt_file.pl to
convert the input to tab-delimited, linefeed-terminated format, and
cvt_date.pl to convert the dates:

$ cvt_file.pl --iformat=csv commodities.csv > tmp1.txt
$ cvt_date.pl --iformat=us tmp1.txt > tmp2.txt

Feed the resulting file, tmp2.txt, to guess_table.pl:

$ guess_table.pl --labels --table=commodities tmp2.txt >
commodities.sql

The CREATE TABLE statement that guess_table.pl writes to
commodities.sql looks like this:

CREATE TABLE `commodities`
(
 `commodity` VARCHAR(5) NOT NULL,
 `trade_date` DATE NOT NULL,
 `shares` BIGINT UNSIGNED NOT NULL,
 `price` DOUBLE UNSIGNED NOT NULL,
 `change` DOUBLE NOT NULL
);

guess_table.pl produces that statement based on heuristics such as
these:

A column that contains only numeric values is assumed to be a BIGINT
if no values contain a decimal point, and DOUBLE otherwise.

A numeric column that contains no negative values is likely to be
UNSIGNED.

If a column contains no empty values, guess_table.pl assumes that
it’s probably NOT NULL.

Columns that cannot be classified as numbers or dates are taken to be
VARCHAR columns, with a length equal to the longest value present in
the column.

You might want to edit the CREATE TABLE statement that
guess_table.pl produces, to make modifications such as using smaller
integer types, increasing the size of character fields, changing VARCHAR to
CHAR, adding indexes, or changing a column name that is a reserved word
in MySQL.
To create the table, use the statement produced by guess_table.pl:

$ mysql cookbook < commodities.sql

Then load the datafile into the table (skipping the initial row of labels):

mysql> LOAD DATA LOCAL INFILE 'tmp2.txt' INTO TABLE commodities
 -> IGNORE 1 LINES;

The resulting table contents after import look like this:

mysql> SELECT * FROM commodities;
+-----------+------------+---------+--------+--------+
| commodity | trade_date | shares | price | change |
+-----------+------------+---------+--------+--------+
sugar	2014-12-14	1000000	10.5	-0.125
oil	2014-12-14	96000	60.25	0.25
wheat	2014-12-14	2500000	8.75	0
gold	2014-12-14	13000	103.25	2.25
sugar	2014-12-15	970000	10.6	0.1
oil	2014-12-15	105000	60.5	0.25
wheat	2014-12-15	2370000	8.65	-0.1
gold	2014-12-15	11000	101	-2.25
+-----------+------------+---------+--------+--------+

Chapter 14. Validating and
Reformatting Data

14.0 Introduction
The previous chapter, Chapter 13, focused on methods for moving data into
and out of MySQL, by reading lines and breaking them into separate
columns. In this chapter, we’ll focus on the content rather than structure
issues. For example, if you don’t know whether the values contained in a
file or received via web form are legal, preprocess them to check or
reformat them:

It’s often a good idea to validate data values to make sure they’re legal
for the data types into which you store them. For example, you can make
sure that values intended for INT, DATE, and ENUM columns are
integers, dates in ISO format (YYYY-MM-DD), and legal enumeration
values, respectively.
Data values may need reformatting. You might store credit card values
as a string of digits but permit users of a web application to separate
blocks of digits by spaces or dashes. These values must be rewritten
before storing them. Rewriting dates from one format to another is
especially common, for example, if a program writes dates in MM-DD-
YY format to ISO format for import into MySQL. If a program
understands only date and time formats and not a combined date-and-
time format (such as MySQL uses for the DATETIME and TIMESTAMP
data types), you must split date-and-time values into separate date and
time values.

The chapter deals with formatting and validation issues primarily within the
context of checking entire files, but many of the techniques discussed here
can be applied to one-time validations as well. Consider a web-based
application that presents a form for a user to fill in and then processes its

contents to create a new row in the database. Web APIs generally make
form contents available as a set of already-parsed discrete values, so the
application may not need to deal with record and column delimiters. On the
other hand, validation issues remain paramount. You really have no idea
what kind of values a user is sending your script, so it’s important to check
them.
The first three recipes introduce data validation capabilities available in
MySQL. Starting from Recipe 14.4, we focus on validating and
preprocessing data on the application side. We introduce techniques that
allow you to process large bulks of data effectively.

SERVER-SIDE VERSUS CLIENT-SIDE VALIDATION
As described in Recipes 14.1, 14.2, and 14.3, you can cause data validation to be done on the
server side to be restrictive about accepting bad input data. In this case, the MySQL server
raises an error for values that are invalid for the data types of the columns into which you insert
them.

In the next few recipes, the focus is on validation on the client side rather than on the server
side. Client-side validation can be useful when you require more control over validation than
simply receiving an error from the server. (For example, if you test values yourself, it’s often
easier to provide more informative messages to users about the exact nature of problems with
the values.) Also, it might be necessary to couple validation with reformatting to transform
complex values so that they are compatible with MySQL data types. You have more flexibility
to do this on the client side.

Source code for program fragments and scripts discussed in this chapter is
located in the transfer directory of the recipes distribution, with the
exception that some utility functions are contained in library files located in
the lib directory.

14.1 Using the SQL Mode to Reject Bad Input
Values

Problem

MySQL accepts data values that are invalid, out of range, or otherwise
unsuitable for the data types of the columns into which you insert them.
You want the server to be more restrictive and not accept bad data.

Solution
Check the SQL mode and make sure it is not empty. There are several
modes that you can use to control how strict the server is on data values.
Some modes apply generally to all input values. Others apply to specific
data types such as dates.

Discussion
When the SQL mode is not set or is set to an empty value, MySQL allows
all input values for your table columns, even if the input data types do not
match the column’s data type. Consider the following table, which has
integer, string, and date columns:

mysql> SELECT @@sql_mode;
+------------+
| @@sql_mode |
+------------+
| |
+------------+
1 row in set (0,00 sec)
mysql> CREATE TABLE t (i INT, c CHAR(6), d DATE);

Inserting a row with unsuitable data values into the table causes warnings
(which you can see with SHOW WARNINGS), but the server loads the values
into the table after converting them to some value that fits the column:

mysql> INSERT INTO t (i,c,d) VALUES('-1x','too-long
string!','1999-02-31');
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
Warning	1265	Data truncated for column 'i' at row 1
Warning	1265	Data truncated for column 'c' at row 1
Warning	1264	Out of range value for column 'd' at row 1
+---------+------+--+

mysql> SELECT * FROM t;
+------+--------+------------+
| i | c | d |
+------+--------+------------+
| -1 | too-lo | 0000-00-00 |
+------+--------+------------+

One way to prevent these conversions is to check the input data on the
client side to make sure that it’s legal. This is a reasonable strategy in
certain circumstances (see the sidebar in Recipe 14.0), but there is an
alternative: let the server check data values on the server side and reject
them with an error if they’re invalid.
To do this, set the sql_mode system variable to enable server restrictions
on input data acceptance. With the proper restrictions in place, data values
that would otherwise result in conversions and warnings result in errors
instead. Try the INSERT statement from the previous example again after
enabling “strict” SQL mode:

mysql> SET sql_mode = 'STRICT_ALL_TABLES';
mysql> INSERT INTO t (i,c,d) VALUES('-1x','too-long
string!','1999-02-31');
ERROR 1265 (01000): Data truncated for column 'i' at row 1

Here the statement doesn’t even progress to the second and third data values
because the first is invalid for an integer column and the server raises an
error.
Without input restrictions enabled, the server checks that the month part of
date values is in the range from 1 to 12 and that the day value is legal for
the given month. This means that '2005-02-31' generates a warning by
default (with conversion to zero date '0000-00-00'). In strict mode, an
error occurs.
MySQL still permits dates such as '1999-11-00' or '1999-00-00'
that have zero parts, or the “zero” date ('0000-00-00'). To restrict these
kinds of date values, enable the NO_ZERO_IN_DATE and
NO_ZERO_DATE SQL modes to cause warnings, or errors in strict mode.

For example, to prohibit dates with zero parts or “zero” dates, set the SQL
mode like this:

mysql> SET sql_mode =
'STRICT_ALL_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE';

A simpler way to enable these restrictions, and a few more besides, is to
enable TRADITIONAL SQL mode. TRADITIONAL mode is actually a
constellation of modes, as you can see by setting and displaying the
sql_mode value:

mysql> SET sql_mode = 'TRADITIONAL';
mysql> SELECT @@sql_mode\G
*************************** 1. row ***************************
@@sql_mode:
STRICT_TRANS_TABLES,STRICT_ALL_TABLES,NO_ZERO_IN_DATE,
 NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,TRADITIONAL,
 NO_ENGINE_SUBSTITUTION

You can read more about the various SQL modes in the MySQL Reference
Manual.
The examples shown set the session value of the sql_mode system
variable, so they change the SQL mode only for your current session. To set
the mode globally for all clients, start the server with a --
sql_mode=mode_value option. Alternatively, if you have the
SYSTEM_VARIABLES_ADMIN or SUPER privilege, you can set the
global mode at runtime:

mysql> SET GLOBAL sql_mode = 'mode_value';

https://oreil.ly/Xq6iA

NOTE
Before MySQL 5.7, the SQL mode was forgiving by default. Newer versions are much more
restrictive, and SQL mode is set to ONLY_FULL_GROUP_BY, STRICT_TRANS_ TABLES,
NO_ZERO_IN_DATE, NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO,
NO_AUTO_CREATE_USER, NO_ENGINE_SUBSTITUTION. Therefore, if you want to have a
restrictive server, you don’t need to do anything extra, unless you intentionally relaxed the SQL
mode earlier.

14.2 Using CHECK Constraints to Reject
Invalid Values

Problem
You want to validate data so it follows the business logic of your
application and rejects values if they do not satisfy requirements.

Solution
Use CHECK constraints.

Discussion
If a value matches the MySQL data type format, it does not mean it matches
the logic of the application. For example, if you want to store only even
numbers, you cannot simply use a data type integer, because both odd and
even numbers are valid integers.
CHECK constraints, introduced in version 8.0, allow you to set up a custom
condition on the table column and reject the statement if the value does not
satisfy it. Thus, to create a table that will store only even values, you would
need to use CHECK to check if the number can be divided by two without a
reminder:

mysql> CREATE TABLE even (
 -> even_value INT CHECK(even_value % 2 = 0)

 ->) ENGINE=InnoDB;
Query OK, 0 rows affected (0.03 sec)

Now we can successfully insert even numbers into this table:

mysql> INSERT INTO even VALUES(2);
Query OK, 1 row affected (0.01 sec)

Odd values would be rejected:

mysql> INSERT INTO even VALUES(1);
ERROR 3819 (HY000): Check constraint 'even_chk_1' is violated.

You can also create multiple CHECK constraints for a single column. For
example, to accept only even values that are less than 100, create two
constraints:

mysql> CREATE TABLE even_100 (
 -> even_value INT CHECK(even_value % 2 = 0) CHECK(even_value
< 100)
 ->) ENGINE=InnoDB;
Query OK, 0 rows affected (0.02 sec)

In this case, MySQL will check the first condition, and if it is satisfied it
will process the second one:

mysql> INSERT INTO even_100 VALUES(101);
ERROR 3819 (HY000): Check constraint 'even_100_chk_1' is
violated.
mysql> INSERT INTO even_100 VALUES(102);
ERROR 3819 (HY000): Check constraint 'even_100_chk_2' is
violated.

If you specify a CHECK constraint when defining a column, it will validate
only this column. If you want to check two or more columns in the single
constraint, you will need to specify it separately.
A common validation task is to check if the departure date is later than the
arrival date. We can add such a check to the patients table:

ALTER TABLE patients ADD CONSTRAINT date_check
CHECK((date_departed IS NULL) OR (date_departed >=
date_arrived));

Now, it will not allow you to insert records when the departure date is
earlier than the arrival date:

mysql> INSERT INTO patients (national_id, name, surname, gender,
age, diagnosis,
 -> date_arrived, date_departed)
 -> VALUES('34GD429520', 'John', 'Doe', 'M', 45, 'Data
Phobia',
 -> '2020-07-20', '2020-05-31');
ERROR 3819 (HY000): Check constraint 'date_check' is violated.

14.3 Using Triggers to Reject Input Values

Problem
You want to validate if data to be inserted into the table follows business
logic, but your logic is more complicated than CHECK constraints can
handle. You may also need to rewrite the data instead of rejecting it. Or you
are using an earlier version of MySQL where CHECK constraints are not
available.

Solution
Use BEFORE triggers.

Discussion
CHECK constraints have certain limitations. They do not allow you to use
stored or user-defined functions, subqueries, or user-defined variables. They
also do not allow you to modify inserted data. If you want to format an
inserted value to satisfy your business standards, you may want to explore
another solution, such as validation on the application side or BEFORE
triggers on the MySQL side.

To perform more complicated validation on the MySQL side, create a
trigger and raise a SQL exception in it.
Let’s take a look at an example. Suppose that a groceries table stores details
about the products in a supermarket. In some countries, alcohol can’t be
sold in supermarkets between certain hours. For example, in Turkey, you
wouldn’t be able to buy alcohol in a supermarket between 10 p.m. and 6
a.m. If you are working with such limitations, you may want to limit times
when users can place orders.
Suppose that a groceries table stores details about groceries in the
supermarket:

CREATE TABLE `groceries` (
 `id` int NOT NULL,
 `name` varchar(255) DEFAULT NULL,
 `forbidden_after` time DEFAULT NULL,
 `forbidden_before` time DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;

The forbidden_after and forbidden_before columns define the
time range when a particular item can’t be sold.
Another table, named groceries_order_items, contains information
about purchases:

CREATE TABLE groceries_order_items
(
 order_id INT NOT NULL,
 groceries_id INT NOT NULL,
 quantity INT DEFAULT 0,
 PRIMARY KEY (order_id,groceries_id)
) ENGINE=InnoDB;

To disallow the purchase of items during certain times, you could create a
trigger that checks the current time and if there are any restrictions to a
selected product. If restrictions exist, the purchase will be rejected:

CREATE TRIGGER check_time
BEFORE INSERT ON groceries_order_items

FOR EACH ROW BEGIN
DECLARE forbidden_after_val TIME;
DECLARE forbidden_before_val TIME;
DECLARE name_val VARCHAR(255);
DECLARE message VARCHAR(400);

SELECT forbidden_after, forbidden_before, name
INTO forbidden_after_val, forbidden_before_val, name_val
FROM groceries WHERE id = NEW.groceries_id;

IF (forbidden_after_val IS NOT NULL AND TIME(NOW()) >=
forbidden_after_val)
 OR (forbidden_before_val IS NOT NULL AND TIME(NOW()) <=
forbidden_before_val)
THEN
 SET message=CONCAT('It is forbidden to buy ', name_val,
 ' between ', forbidden_after_val, ' and ',
forbidden_before_val);
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = message;
END IF;
END;

Declare variables to store the time range when the purchase is
forbidden, the name of the product, and an error message.

Select the restricted time range and name of the product into variables.

Check if the current time falls into the forbidden range for the selected
product.

If the time falls into the forbidden range, craft a message explaining
restrictions for the product.

Raise an error and reject the insert.
As a result, you can purchase cheese or water at 3 a.m., but you cannot
purchase beer or wine at that time:

mysql> SELECT CURRENT_TIME();
+----------------+
| CURRENT_TIME() |
+----------------+
| 03:01:40 |
+----------------+
1 row in set (0.00 sec)

mysql> INSERT INTO groceries_order_items VALUES(1,3,1); -- cheese
Query OK, 1 row affected (0.03 sec)

mysql> INSERT INTO groceries_order_items VALUES(1,8,3); -- water
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO groceries_order_items VALUES(1,7,6); -- beer
ERROR 1644 (45000): It is forbidden to buy beer between 22:00:00
and 06:00:00
mysql> INSERT INTO groceries_order_items VALUES(1,6,1); -- wine
ERROR 1644 (45000): It is forbidden to buy wine between 22:00:00
and 06:00:00

The purchase limitation is relaxed during the day:

mysql> SELECT CURRENT_TIME();
+----------------+
| CURRENT_TIME() |
+----------------+
| 14:00:35 |
+----------------+
1 row in set (0.00 sec)

mysql> INSERT INTO groceries_order_items VALUES(1,7,6); -- beer
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO groceries_order_items VALUES(1,6,1); -- wine
Query OK, 1 row affected (0.01 sec)

See Also
For additional information about using triggers to reject or modify invalid
values, see Recipe 11.11.

14.4 Writing an Input-Processing Loop

Problem
You want to make sure that the data values in a file are legal.

Solution

Write an input-processing loop that will check them, possibly rewriting
them into a more suitable format.

Discussion
Many of the validation recipes shown in this chapter are typical of those
that you perform within the context of a program that reads a file and
checks individual column values. The general framework for such a file-
processing utility looks like this:

#!/usr/bin/python3
loop.py: Typical input-processing loop.

Assumes tab-delimited, linefeed-terminated input lines.

import sys

for line in sys.stdin:
 line = line.rstrip()
 # split line at tabs, preserving all fields
 values = line.split("\t")
 for val in values: # iterate through fields in line
 # ... test val here ...
 pass

The for loop reads each input line. Within the loop, each line is broken
into fields. The inner for loop iterates through the fields, enabling each to
be processed in sequence. If you don’t apply a given test uniformly to all
the fields, replace the for loop with separate column-specific tests.

This loop assumes tab-delimited, linefeed-terminated input, an assumption
shared by most of the utilities discussed throughout this chapter. To use
these utilities with datafiles in other formats, you may be able to convert
such files to tab-delimited format using the cvt_file.pl script,
available in the recipes distribution.

14.5 Putting Common Tests in Libraries

Problem
You want to do repeated validation operations.

Solution
Package validation operations as library routines.

Discussion
It’s not unusual for certain validation operations to occur repeatedly, in
which case you’ll probably find it useful to construct a library of functions.
By packaging validation operations as library routines, it is easier to write
utilities based on them, and the utilities make it easier to perform command-
line operations on entire files so that you can avoid editing them yourself.
This also gives the operation a name that’s likely to make the meaning of it
clearer than the comparison code itself. The following test in Python
language performs a pattern match to check that val consists entirely of
digits (optionally preceded by a plus sign), and then makes sure the value is
greater than zero:

p = re.compile('^\+?\d+$')
 s = p.search(val)
 valid = s and (s.group(0) != '0')

In other words, the test looks for strings that represent positive integers. To
make the test easier to use and its intent clearer, package it as a function that
is used like this:

valid = is_positive_integer (val);

Define the function as follows:

def is_positive_integer(val):
 p = re.compile('^\+?\d+$')
 s = p.search(val)
 return s and (s.group(0) != '0')

Now put the function definition into a library file so that multiple scripts
can use it easily. The cookbook_utils.py module file in the lib
directory of the recipes distribution is an example of a library file that
contains a number of validation functions. Take a look through it to see
which functions may be useful in your own programs (or as a model for
writing your own library files). To gain access to this module from within a
script, include a use statement like this:

import cookbook_utils as cu

You must, of course, install the module file in a directory where Python will
find it (see Recipe 4.3).
A significant benefit of putting a collection of utility routines into a library
file is that you can use it for all kinds of programs. It’s rare for a data
manipulation problem to be completely unique. If you can pick and choose
at least a few validation routines from a library, it reduces the amount of
code you must write, even for highly specialized programs.

TIP
To avoid writing your own library routines, look around to see if someone else has already written
suitable routines that you can use. For example, if you check the Perl CPAN (cpan.perl.org),
you’ll find a Data::Validate module hierarchy. The modules there provide library routines that
standardize a number of common validation tasks. Data::Validate::MySQL deals specifically with
MySQL data types.

14.6 Using Pattern Matching to Validate Data

Problem
You want to compare a value to a set of values that is difficult to specify
without writing a really ugly expression.

Solution

Use pattern matching.

Discussion
Pattern matching is a powerful validation tool that enables you to test entire
classes of values with a single expression. You can also use pattern tests to
break matched values into subparts for further individual testing or in
substitution operations to rewrite matched values. For example, you might
break a matched date into pieces to verify that the month is in the range
from 1 to 12, and the day is within the number of days in the month. You
might use a substitution to reorder MM-DD-YYYY or DD-MM-YYYY values
into YYYY-MM-DD format.

The next few sections describe how to use patterns to test several types of
values, but first let’s review some general pattern-matching principles. The
following discussion focuses on Python’s regular-expression capabilities.
Pattern matching in Ruby, PHP, Go, and Perl is similar, although you should
consult the relevant documentation for any differences. For Java, use the
java.util.regex package.

In Python, regular expressions are part of the module re. The pattern
constructor is re.compile(pat):

pattern = re.compile(pat)

To find if a value matches a pattern, use the match method:

it_matched = pattern.match(val) # pattern match

You can construct a regular expression in the match method:

it_matched = re.match(pat, val) # pattern match

Put an re.I flag as the second argument to the regular expression
constructor to make the pattern match case insensitive:

it_matched = re.match(pat, val, re.I) # case-insensitive match

To look for a nonmatch, replace the = operator with the combination of the
= and not operators:

no_match = not re.match(pat, val) # negated pattern match

To perform a substitution in val based on a pattern match, use
re.sub(/pat, replacement, val)replacement/. If pat
occurs within val, it’s replaced by replacement. For a case-insensitive
match, put an re.I flag. To conduct a substitution that replaces only a few
instances of pat rather than all of them, add a count option:

val = re.sub(pat, replacement, val) # substitution
val = re.sub(pat, replacement, val, flags = re.I) # case-
insensitive substitution
val = re.sub(pat, replacement, val, count = 1) # substitution
of the first match
val = re.sub(pat, replacement, val, count = 1, flags = re.I)
 # case-insensitive and the first match

Table 14-1 shows some of the special pattern elements available in Python
regular expressions.

Table 14-1. Pattern elements in Python regular
expressions

Pattern What the pattern matches
^ Beginning of string

$ End of string

. Any character except a newline

\s, \S Whitespace or nonwhitespace character

\d, \D Digit or nondigit character

\w, \W Word (alphanumeric or underscore) or nonword
 character

[...] Any character listed between
 the square brackets

[^...] Any character not listed
 between the square brackets

Pattern What the pattern matches
p1|p2|p3 Alternation; matches any of

 the patterns p1,
 p2, or
 p3

* Zero or more instances of preceding element

+ One or more instances of preceding element

{n} n
 instances of preceding element

{m,n} m
 through n instances of preceding
 element

Many of these pattern elements are the same as those available for
MySQL’s REGEXP regular-expression operator (see Recipe 7.11).

To match a literal instance of a character that is special within patterns, such
as *, ^, or $, precede it with a backslash. Similarly, to include a character
within a character class construction that is special in character classes ([,
], or -), precede it with a backslash. To include a literal ^ in a character
class, list it somewhere other than as the first character between the
parentheses.
Many of the validation patterns shown in the following recipes are of the
form ^pat$. Beginning and ending a pattern with ^ and $ has the effect of
requiring pat to match the entire string that you test. This is common in
data validation contexts because it’s generally desirable to know that a
pattern matches an entire input value, not only part of it. (To be sure that a
value represents an integer, for example, it does no good to know only that
it contains an integer somewhere.) This is not a hard-and-fast rule, however,
and sometimes it’s useful to perform a more relaxed test by omitting the ^
and $ characters as appropriate. For example, if you want to strip leading
and trailing whitespace from a value, use one pattern anchored only to the
beginning of the string and another anchored only to the end:

val = re.sub('^\s+', '', val) # trim leading whitespace
val = re.sub('\s+$', '', val) # trim trailing whitespace

That’s such a common operation, in fact, that it’s a good candidate for being
written as a utility function. The cookbook_utils.py file contains a
function trim_whitespace() that performs both substitutions and
returns the result:

val = trim_whitespace (val)

To remember subsections of a string matched by a pattern, use parentheses
around the relevant pattern parts. After a successful match, you can refer to
the matched substrings using the variables \1, \2, and so forth inside the
regular expression or using the match number as an argument of the method
group:

match = re.match('^(\d+)(.*)$', '2021-04-25')
if match:
 first_part = match.group(1) # this is the year, 2021
 the_rest = match.group(2) # this is the rest of the date,
-04-25

If you want to indicate that an element within a pattern is optional, follow it
with a ? character. To match values consisting of a sequence of digits,
optionally beginning with a minus sign and optionally ending with a period,
use this pattern:

^-?\d+\.?$

Use parentheses to group alternations within a pattern. The following
pattern matches time values in hh:mm format, optionally followed by AM or
PM:

^\d{1,2}:\d{2}\s*(AM|PM)?$

The use of parentheses in that pattern also has the side effect of
remembering the optional part in \1. To suppress that side effect, use
(?:pat) instead:

^\d{1,2}:\d{2}\s*(?:AM|PM)?$

You now have sufficient background in Python pattern matching to enable
the construction of useful validation tests for several types of data values.
The following recipes provide patterns that can be used to test for broad
content types, numbers, temporal values, and email addresses or URLs.
The transfer directory of the recipes distribution contains a
test_pat.py script that reads input values, matches them against several
patterns, and reports which patterns each value matches. The script is easily
extensible, so you can use it as a test harness to try your own patterns.

14.7 Using Patterns to Match Broad Content
Types

Problem
You want to classify values into categories.

Solution
Use a pattern that uses similarly broad categories.

Discussion
To check whether values are empty or nonempty, or consist only of certain
types of characters, the patterns listed in Table 14-2 may suffice.

Table 14-2. Commonly used categories of
characters

Pattern Type of value the pattern matches
^$ Empty value

. Nonempty value

^\s*$ Whitespace, possibly empty

^\s+$ Nonempty whitespace

Pattern Type of value the pattern matches
\S Nonempty, and not

 whitespace

^\d+$ Digits only,
 nonempty

^[a-zA-Z]+$ Alphabetic characters only (case insensitive),
 nonempty

^\w+$ Alphanumeric or underscore
 characters only, nonempty

14.8 Using Patterns to Match Numeric Values

Problem
You want to make sure a string looks like a number.

Solution
Use a pattern that matches the type of number you’re looking for.

Discussion
Patterns can be used to classify values into several types of numbers, as
shown in Table 14-3.

Table 14-3. Patterns that match numbers

Pattern Type of value the pattern matches
^\d+$ Unsigned integer

^-?\d+$ Negative or unsigned
 integer

^[-+]?\d+$ Signed or unsigned
 integer

^[-+]?(\d+(\.\d*)?|\.\d+)$ Floating-point
 number

The pattern ^\d+$ matches unsigned integers by requiring a nonempty
value that consists only of digits from the beginning to the end of the value.
If you care only that a value begins with an integer, you can match an initial
numeric part and extract it. To do this, match only the initial part of the
string (omit the $ that requires the pattern to match to the end of the string),
and place parentheses around the \d+ part. Then refer to the matched
number as group(1) after a successful match:

match = re.match('^(\d+)', val)
if match:
 val = match.group(1)

Some kinds of numeric values have a special format or other unusual
constraints. Here are a few examples and how to deal with them:

ZIP codes
ZIP and ZIP+4 codes are postal codes used for mail delivery in the
United States. They have values like 12345 or 12345-6789 (that is,
five digits, possibly followed by a dash and four more digits). To match
one form or the other, or both forms, use the patterns shown in
Table 14-4.

Table 14-4. Patterns that match ZIP codes

Pattern Type of value the pattern matches
^\d{5}$ ZIP code, five digits

 only

^\d{5}-\d{4}$ ZIP+4 code

^\d{5}(-\d{4})?$ ZIP or ZIP+4
 code

Credit card numbers
Credit card numbers typically consist of digits, but it’s common for
values to be written with spaces, dashes, or other characters between
groups of digits. For example, the following numbers are equivalent:

0123456789012345
0123 4567 8901 2345
0123-4567-8901-2345

To match such values, use this pattern:

^[- \d]+

(Python permits the \d digit specifier within character classes.)
However, that pattern doesn’t identify values of the wrong length, and it
may be useful to remove extraneous characters before storing values in
MySQL. To require credit card values to contain 16 digits, use a
substitution that removes all nondigits, then check the length of the
result:

val = re.sub('\D', '', val)
valid = len(val) == 16

14.9 Using Patterns to Match Dates or Times

Problem
You want to make sure a string looks like a date or time.

Solution
Use a pattern that matches the type of temporal value you expect. Be sure to
consider issues such as how strict to be about delimiters between subparts
and the lengths of the subparts.

Discussion
Dates are a validation headache because they come in so many formats.
Pattern tests are extremely useful for weeding out illegal values but are
often insufficient for full verification: a date might have a number where
you expect a month, but the date isn’t valid if the number is 13. This section

introduces some patterns that match a few common date formats. Recipe
14.14 revisits this topic in more detail and discusses combining pattern tests
with content verification.
To require values to be dates in ISO (YYYY-MM-DD) format, use this
pattern:

^\d{4}-\d{2}-\d{2}$

The pattern requires the - character as the delimiter between date parts. To
permit either - or / as the delimiter, use a character class between the
numeric parts:

^\d{4}[-/]\d{2}[-/]\d{2}$

This pattern will match dates in the formats YYYY-MM-DD, YYYY/MM/DD,
YYYY/MM-DD, and YYYY-MM/DD.

To permit any nondigit delimiter (which corresponds to how MySQL
operates when it interprets strings as dates), use this pattern:

^\d{4}\D\d{2}\D\d{2}$

To permit leading zeros in values like 03 to be missing, just look for three
nonempty digit sequences:

^\d+\D\d+\D\d+$

Of course, that pattern is so general that it also matches other values such as
US Social Security numbers (which have the format 012-34-5678). To
constrain the subpart lengths by requiring two to four digits in the year part
and one or two digits in the month and day parts, use this pattern:

^\d{2,4}?\D\d{1,2}\D\d{1,2}$

For dates in other formats such as MM-DD-YY or DD-MM-YY, similar
patterns apply, but the subparts are arranged in a different order. This

pattern matches both of those formats:

^\d{2}-\d{2}-\d{2}$

To check the values of individual date parts, use parentheses in the pattern
and extract the substrings after a successful match. If you expect dates to be
in ISO format, for example, do this:

match = re.match('^(\d{2,4})\D(\d{1,2})\D(\d{1,2})$', val)
if match:
 (year, month, day) = (match.group(1), match.group(2),
match.group(3))

The library file lib/cookbook_utils.py in the recipes
distribution contains several of these pattern tests, packaged as function
calls. If the date doesn’t match the pattern, they return None. Otherwise,
they return a reference to an array containing the broken-out values for the
year, month, and day. This can be useful for performing further checking on
the components of the date. For example, is_iso_date() looks for
dates that match ISO format. It’s defined as follows:

def is_iso_date(val):
 m = re.match('^(\d{2,4})\D(\d{1,2})\D(\d{1,2})$', val)
 return [int(m.group(1)), int(m.group(2)), int(m.group(3))] if
m else None

The function could be used as follows:

ref = cu.is_iso_date(val)
if ref is not None:
 # val matched ISO format pattern;
 # check its subparts using ref[0] through ref[2]
 pass
else:
 # val didn't match ISO format pattern
 pass

You’ll often find additional processing necessary with dates because date-
matching patterns help to weed out values that are syntactically malformed

but don’t assess whether the individual components contain legal values. To
do that, some range checking is necessary. Recipe 14.14 covers that topic.
If you’re willing to skip subpart testing and just want to rewrite the pieces,
use a substitution. For example, to rewrite values assumed to be in MM-DD-
YY format into YY-MM-DD format, do this:

val = re.sub('^(\d+)\D(\d+)\D(\d+)$', r'\3-\1-\2', val)

Time values are somewhat more orderly than dates, usually being written
with hours first and seconds last, with two digits per part:

^\d{2}:\d{2}:\d{2}$

To be more lenient, permit the hours part to have a single digit, or the
seconds part to be missing:

^\d{1,2}:\d{2}(:\d{2})?$

Mark parts of the time with parentheses if you want to range-check the
individual parts, or perhaps to reformat the value to include a seconds part
of 00 if it happens to be missing. However, this requires some care with the
parentheses and the ? characters in the pattern if the seconds part is
optional. You want to permit the entire :\d{2} at the end of the pattern to
be optional but not to save the : character in \3 if the third time section is
present. To accomplish that, use (?:pat), a grouping notation that doesn’t
save the matched substring. Within that notation, use parentheses around
the digits to save them. Then \3 is None if the seconds part is not present,
and contains the seconds digits otherwise:

m = re.match('^(\d{1,2}):(\d{2})(?::(\d{2}))?$', val)
(hour, min, sec) = (m.group(1), m.group(2), m.group(3))
sec = '00' if sec is None else sec # seconds missing; use 00
val = hour + ':' + min + ':' + sec

To rewrite times from a 12-hour format with AM and PM suffixes to a 24-
hour format, do this:

m = re.match('^(\d{1,2})\D(\d{2})\D(\d{2})(?:\s*(AM|PM))?$', val,
flags = re.I)
(hour, min, sec) = (m.group(1), m.group(2), m.group(3))
supply missing seconds
sec = '00' if sec is None else sec
if int(hour) == 12 and (m.group(4) is None or m.group(4).upper()
== "AM"):
 hour = '00' # 12:xx:xx AM times are 00:xx:xx
elif int(hour) < 12 and (m.group(4) is not None) and
m.group(4).upper() == "PM":
 hour = int(hour) + 12 # PM times other than 12:xx:xx
return [hour, min, sec] # return hour, minute, second

The time parts are placed into groups 1, 2, and 3, with 3 set to None if the
seconds part is missing. The suffix goes into group 4 if it’s present. If the
suffix is AM or missing (None), the value is interpreted as an AM time. If
the suffix is PM, the value is interpreted as a PM time.

See Also
This recipe shows just the beginning of what you can do when processing
dates for data-transfer purposes. Date and time testing and conversion can
be highly idiosyncratic, and the sheer number of issues to consider is mind-
boggling:

What is the basic date format? Dates come in several common styles,
such as ISO (YYYY-MM-DD), US (MM-DD-YY), and British (DD-MM-
YY) formats. And these are just some of the more standard formats.
Many more are possible. For example, a datafile may contain dates
written as June 17, 1959 or as 17 Jun '59.

Are trailing times permitted on dates, or perhaps required? When times
are expected, is the full time required or just the hour and minute?
Do you permit special values like now or today?

Are date parts required to be delimited by a particular character, such as
- or /, or are other delimiters permitted?

Are date parts required to have a specific number of digits? Or are
leading zeros on month and year values permitted to be missing?

Are months written numerically or represented as month names like
January or Jan?

How should two-digit year values be converted to have four digits?
What is the transition point within the range 00 to 99 at which values
change from one century to another?
Should date parts be checked to ensure their validity? Patterns can
recognize strings that look like dates or times, but while they’re
extremely useful for detecting malformed values, they may not be
sufficient. A value like 1947-15-99 may match a pattern but isn’t a
legal date. Pattern testing is thus most useful in conjunction with range
checks on the individual parts of the date.

The prevalence of these issues in data-transfer problems means that you’ll
probably end up writing some of your own validators on occasion to handle
very specific date formats. Other sections of this chapter can provide
additional assistance. For example, Recipe 14.13 covers conversion of two-
digit year values to four-digit form, and Recipe 14.14 discusses how to
perform validity checking on components of date or time values.
You might be able to save yourself some work by using existing date-
checking modules for your API language. Some possibilities: the Perl Date
module, the Ruby date module, the Python datetime module, the PHP
DateTime class, and the Java GregorianCalendar and
SimpleDateTime classes.

14.10 Using Patterns to Match Email
Addresses or URLs

Problem
You want to determine if a value looks like an email address or a URL.

Solution

In your application, use a pattern tuned to the desired level of strictness on
which addresses you accept and which you do not.

Discussion
The immediately preceding recipes use patterns to identify classes of values
such as numbers and dates, which are fairly typical applications for regular
expressions. But pattern matching has much more widespread applicability
for data validation. To give some idea of a few other types of values for
which pattern matching can be used, this recipe shows a few tests for email
addresses and URLs.
To check values that are expected to be email addresses, the pattern should
require at least an @ character with nonempty strings on either side:

.@.

NOTE
Full email address specification is defined by RFC5322 and contains many parts. Regular
expression that rejects all invalid addresses and accepts all valid addresses is pretty complicated to
write. Check http://emailregex.com for examples in popular programming languages to have an
idea.

In this recipe, we’ll show you a pretty minimal test that is sufficient to help correct most innocent
user errors, such as typos when they enter addresses into a web form.

It’s difficult to come up with a fully general pattern that covers all the legal
values and rejects all the illegal ones, but it’s easy to write a pattern that’s at
least a little more restrictive. For example, in addition to being nonempty,
the username and the domain name should consist entirely of characters
other than @ characters or spaces:

^[^@]+@[^@]+$

You may also want to require that the domain name part contain at least two
parts separated by a dot:

https://oreil.ly/AcHbi
http://emailregex.com/

^[^@]+@[^@ .]+\.[^@ .]+

To look for URL values that begin with a protocol specifier of http://,
https://, ftp://, or mailto:, use an alternation that matches any of
them at the beginning of the string:

re.compile('^(https?://|ftp://|mailto:)', flags=re.I)

The alternatives in the pattern are grouped within parentheses because
otherwise the ^ anchors only the first of them to the beginning of the string.
The re.I flag follows the pattern because protocol specifiers in URLs are
not case sensitive. The pattern is otherwise fairly unrestrictive because it
permits anything to follow the protocol specifier. Add further restrictions as
necessary.

14.11 Using Table Metadata to Validate Data

Problem
You want to check input values against the legal members of an ENUM or
SET column.

Solution
Get the column definition, extract the list of members from it, and check
data values against the list.

Discussion
Some forms of validation involve checking input values against information
stored in a database. This includes values to be stored in an ENUM or SET
column, which can be checked against the valid members stored in the
column definition. Database-backed validation also applies to values that
must match those listed in a lookup table to be considered legal. For
example, input records that contain customer IDs can be required to match a

row in a customers table, and state abbreviations in addresses can be
verified against a table that lists each state. This recipe describes ENUM- and
SET-based validation, and Recipe 14.12 discusses how to use lookup
tables.
One way to check input values that correspond to the legal values of ENUM
or SET columns is to get the list of legal column values into an array using
the information in INFORMATION_SCHEMA, then perform an array
membership test. For example, the favorite-color column color from the
profile table is an ENUM defined as follows:

mysql> SELECT COLUMN_TYPE FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'profile'
 -> AND COLUMN_NAME = 'color';

+--+
| COLUMN_TYPE |
+--+
| enum('blue','red','green','brown','black','white') |
+--+

If you extract the list of enumeration members from the COLUMN_TYPE
value and store them in a members list, you can perform the membership
test like this:

valid = True ↩
if list(map(lambda v: v.upper(), members)).count(val.upper()) > 0
↩
else False

We can convert the members list and val to uppercase to perform a case-
insensitive comparison because the default collation is
utf8mb4_0900_ai_ci, which is case insensitive. (If you have a column
with a different collation, adjust accordingly. We discussed how to change
column collation in Recipe 7.5.)
In Recipe 12.6, we wrote a get_enumorset_info() function that
returns ENUM or SET column metadata. This includes the list of members,
so it’s easy to use that function to write another utility routine,

check_enum_value(), that gets the legal enumeration values and
performs the membership test. The routine takes four arguments: a database
handle, the table name and column name for the ENUM column, and the
value to check. It returns true or false to indicate whether the value is legal:

def check_enum_value(conn, db_name, tbl_name, col_name, val):
 valid = 0
 info = get_enumorset_info(conn, db_name, tbl_name, col_name)
 if info is not None and info['type'].upper() == 'ENUM':
 # use case-insensitive comparison because default collation
 # (utf8mb4_0900_ai_ci) is case insensitive (adjust if you use
 # a different collation)
 valid = 1 ↩
 if list(map(lambda v: v.upper(),
info['values'])).count(val.upper()) > 0 ↩
 else 0
 return valid

For single-value testing, such as to validate a value submitted in a web
form, list lookup for each value works well. However, to test a lot of values
(like an entire column in a datafile), it’s better to read the enumeration
values into memory once, then use them repeatedly to check each data
value. Furthermore, it’s a lot more efficient to perform dictionary lookups
than list lookups (in Python at least). To do so, retrieve the legal
enumeration values and store them as keys of a dictionary. Then test each
input value by checking whether it exists as a dictionary key. It’s a little
more effort to construct the dictionary, which is why
check_enum_value() doesn’t do so. But for bulk validation, the
improved lookup speed more than makes up for the dictionary construction
overhead. (To check for yourself the relative efficiency of list membership
tests versus dictionary lookups, try the lookup_time.py script in the
transfer directory of the recipes distribution.)

Begin by getting the metadata for the column, then convert the list of legal
enumeration members to a dictionary:

info = get_enumorset_info(conn, db_name, tbl_name, col_name)
members={}
convert dictionary key to consistent lettercase

for v in info['values']:
 members[v.lower()] = 1

The for loop makes each enumeration member exist as the key of a
dictionary element. The dictionary key is what’s important here; the value
associated with it is irrelevant. (The example shown sets the value to 1, but
you could use None, 0, or any other value.) Note that the code converts the
dictionary keys to lowercase before storing them. This is done because
dictionary key lookups in Python are case sensitive. That’s fine if the values
that you check also are case sensitive, but ENUM columns by default are not.
By converting the enumeration values to a given lettercase before storing
them in the dictionary, and then converting the values you want to check
similarly, you perform, in effect, a case-insensitive key existence test:

valid = 1 if val.lower() in members else 0

The example converts enumeration values and input values to lowercase.
You could just as well use uppercase, as long as you do so for all values
consistently.
Note that the existence test may fail if the input value is the empty string.
You must decide how to handle that case on a column-by-column basis. For
example, if the column permits NULL values, you might interpret the empty
string as equivalent to NULL and thus as being a legal value.

The validation procedure for SET values is similar to that for ENUM values,
except that an input value might consist of any number of SET members,
separated by commas. For the value to be legal, each element in it must be
legal. In addition, because “any number of members” includes “none,” the
empty string is a legal value for any SET column.

For one-shot testing of individual input values, use a
check_set_value() utility function that is similar to
check_enum_value():

def check_set_value(conn, db_name, tbl_name, col_name, val):
 valid = 0
 info = get_enumorset_info(conn, db_name, tbl_name, col_name)

 if info is not None and info['type'].upper() == 'SET':
 if val == "":
 return 1 # empty string is legal element
 # use case-insensitive comparison because default collation
 # (utf8mb4_0900_ai_ci) is case insensitive (adjust if you use
 # a different collation)
 valid = 1 # assume valid until we find out otherwise
 for v in val.split(','):
 if list(map(lambda x: x.upper(),
info['values'])).count(v.upper()) <= 0:
 valid = 0
 break
 return valid

For bulk testing, construct a dictionary from the legal SET members. The
procedure is the same as shown previously for producing a dictionary from
ENUM elements.

To validate a given input value against the SET member dictionary, convert
it to the same lettercase as the hash keys, split it at commas to get a list of
the individual elements of the value, and then check each one. If any of the
elements are invalid, the entire value is invalid:

valid = 1 # assume valid until we find out otherwise
for v in val.split(","):
 if v.lower() not in members:
 valid = 0
 break

After the loop terminates, valid is true if the value is legal for the SET
column, and false otherwise. Empty strings are always legal SET values,
but this code performs no special-case test for an empty string. No such test
is necessary because in that case the split() operation returns an empty
list, the loop never executes, and valid remains true.

14.12 Using a Lookup Table to Validate Data

Problem
You want to check values to make sure they’re listed in a lookup table.

Solution
Issue statements to check whether the values are in the table. The best way
to do this depends on the number of input values and the table size. In this
recipe, we will start our discussion with issuing individual statements, then
create a hash from the entire lookup table, and, finally, improve our
algorithm by remembering already-seen values to avoid querying the
database several times for large datasets.

Discussion
To validate input values against the contents of a lookup table, the
techniques are somewhat similar to those shown in Recipe 14.11 for
checking ENUM and SET columns. However, whereas ENUM and SET
columns usually have a small number of member values, a lookup table can
have an essentially unlimited number of values. You might not want to read
them all into memory.
Validation of input values against the contents of a lookup table can be done
several ways, as illustrated in the following discussion. The tests shown in
the examples perform comparisons against values exactly as they are stored
in the lookup table. To perform case-insensitive comparisons, convert all
values to a consistent lettercase. (See the discussion of case conversion in
Recipe 14.11.)

Issue individual statements
For one-shot operations, test a value by checking whether it’s listed in the
lookup table. The following query returns true (nonzero) for a value that is
present and false otherwise:

cursor.execute("select count(*) from tbl_name where val = %
(val)s", {'val': value})
valid = cursor.fetchone()[0]

This kind of test may be suitable for purposes such as checking a value
submitted in a web form but is inefficient for validating large datasets. It

has no memory for the results of previous tests for values that have been
seen before; consequently, you execute a query for every input value.

Construct a hash from the entire lookup table
To validate a large number of values, it’s better to pull the lookup values
into memory, save them in a data structure, and check each input value
against the contents of that structure. Using an in-memory lookup avoids
the overhead of executing a query for each value.
First, run a query to retrieve all the lookup table values and construct a
dictionary from them:

members = {} # dictionary for lookup values
cursor.execute("SELECT val FROM tbl_name");
rows = cursor.fetchall()
for row in rows:
 members[row[0]] = 1

Then, perform a dictionary key existence test to check a given value:

valid = True if val in members else False

This technique reduces database traffic to a single query. However, for a
large lookup table, that could still be a lot of traffic, and you might not want
to hold the entire table in memory.

PERFORMING LOOKUPS WITH OTHER LANGUAGES
The lookup example shown in this recipe uses a Python dictionary to determine whether a given
value is present in a set of values.

Similar data structures exist for other languages. In Ruby, use a hash, and check input values
using the has_key? method:

valid = members.has_key?(val)

In PHP, use an associative array, and perform a key lookup with isset():

$valid = isset ($members[$val]);

In Perl, use a hash, and check input values using the exists function:

$valid = exists ($members{$val});

For lookups in Java, use a HashMap, and test values with the containsKey() method:

valid = members.containsKey (val);

In Go, use a map, and access its keys directly:

valid := members[val]

The transfer directory of the recipes distribution contains some sample code for lookup
operations in each language.

Remember already-seen values to avoid database lookups
Another lookup technique mixes individual statements with a dictionary
that stores lookup value existence information. This approach can be useful
if you have a very large lookup table. Begin with an empty dictionary:

members = {} # dictionary for lookup values

Then, for each value to be tested, check whether it’s present in the
dictionary. If not, execute a query to check whether the value is present in
the lookup table, and record the result of the query in the dictionary. The

validity of the input value is determined by the value associated with the
key, not by the existence of the key:

if val not in members: # haven't seen this value yet
 cursor.execute(f"SELECT COUNT(*) FROM {tbl_name} WHERE val = %
(val)s",↩
 {'val': val})
 count = cursor.fetchone()[0]
 # store true/false to indicate whether value was found
 members[val] = True if count > 0 else False
valid = members[val]

For this method, the dictionary acts as a cache so that you execute a lookup
query for any given value only once, no matter how many times it occurs in
the input. For datasets that have repeated values, this approach avoids
issuing a separate query for every single test, while requiring an entry in the
dictionary only for each unique value. It thus stands between the other two
approaches in terms of the trade-off between database traffic and program
memory requirements for the dictionary.
Note that the dictionary is used in a different manner for this method than
for the previous method. Previously, the existence of the input value as a
key in the dictionary determined the validity of the value, and the value
associated with the dictionary key was irrelevant. For the dictionary-as-
cache method, the meaning of key existence in the dictionary changes from
“it’s valid” to “it’s been tested before.” For each key, the value associated
with it indicates whether the input value is present in the lookup table. (If
you store as keys only those values that are found to be in the lookup table,
you issue a query for each instance of an invalid value in the input dataset,
which is inefficient.)

14.13 Converting Two-Digit Year Values to
Four-Digit Form

Problem

You want to convert years in date values from two digits to four digits.

Solution
Let MySQL do this for you, or perform the operation yourself if MySQL’s
conversion rules aren’t appropriate.

Discussion
Two-digit year values are a problem because the century is not explicit in
the data values. If you know the range of years spanned by your input, you
can add the century without ambiguity. Otherwise, you can only guess. For
example, the date 10/2/69 would be interpreted by most people in the US as
October 2, 1969. But if it represents Mahatma Gandhi’s birth date, the year
is actually 1869.
One way to convert years to four digits is to let MySQL do it. If you try to
insert into the YEAR column a date containing a two-digit year, MySQL
automatically converts it to four-digit form. MySQL uses a transition point
of 1970; it interprets values from 00 to 69 as the years 2000 to 2069, and
values from 70 to 99 as the years 1970 to 1999. These rules are appropriate
for year values in the range from 1970 to 2069. If your values lie outside
this range, add the proper century yourself before storing them into
MySQL:

mysql> SELECT CAST(69 AS YEAR) AS `69`,
 -> CAST(70 AS YEAR) AS `70`,
 -> CAST(22 AS YEAR) AS `22`;
+------+------+------+
| 69 | 70 | 22 |
+------+------+------+
| 2069 | 1970 | 2022 |
+------+------+------+

To use a different transition point, convert years to four-digit form yourself.
Here’s a general-purpose routine that converts two-digit years to four digits
and supports an arbitrary transition point:

def yy_to_yyyy(year, transition_point = 70):
 if year < 100:
 year += 1900 if year >= transition_point else 2000
 return year

The function uses MySQL’s transition point (70) by default. An optional
second argument may be given to provide a different transition point.
yy_to_yyyy() also verifies that the year actually is less than 100 and
needs converting before modifying it. That way you can pass year values
regardless of whether they include the century. Some sample invocations
using the default transition point have the following results:

val = yy_to_yyyy (60) # returns 2060
val = yy_to_yyyy (1960) # returns 1960 (no conversion done)

Suppose that you want to convert year values as follows, using a transition
point of 50:

00 .. 49 -> 2000 .. 2049
50 .. 99 -> 1950 .. 1999

To do this, pass an explicit transition point argument to yy_to_yyyy():

val = yy_to_yyyy (60, 50) # returns 1960
val = yy_to_yyyy (1960, 50) # returns 1960 (no conversion done)

The yy_to_yyyy() function is included in the cookbook_utils.py
library file of the recipes distribution.

14.14 Performing Validity Checking on Date
or Time Subparts

Problem
A string passes a pattern test as a date or time, but you want to perform
further validity checking.

Solution
Break the value into parts, and perform the appropriate range checking on
each part.

Discussion
Pattern matching may not be sufficient for date or time checking. For
example, a value like 1947-15-19 might match a date pattern, but it’s not
a legal date. To perform more rigorous value testing, combine pattern
matching with range checking. Break out the year, month, and day values,
then check whether each is within the proper range. Years should be less
than 9999 (MySQL represents dates to an upper limit of 9999-12-31),
month values must be in the range from 1 to 12, and days must be in the
range from 1 to the number of days in the month. That last part is the
trickiest: it’s month-dependent, and also year-dependent for February
because it changes for leap years.
Suppose that you’re checking input dates in ISO format. In Recipe 14.9, we
used the is_iso_date() function from the cookbook_utils.py
library file to perform a pattern match on a date string and break it into
component values. is_iso_date() returns None if the value doesn’t
satisfy a pattern that matches ISO date format. Otherwise, it returns a
reference to an array containing the year, month, and day values. The
cookbook_utils.py file also contains is_mmddyy_date() and
is_ddmmyy_date() routines that match dates in US or British format
and return None or a reference to a list of date parts. (The parts returned are
always in year, month, day order, not the order in which the parts appear in
the input date string.)
To perform additional checking on the result returned by any of those
routines (assuming that the result is not None), pass the date parts to
is_valid_date(), another library function:

valid = is_valid_date(ref[0], ref[1], ref[2])

is_valid_date() returns nonzero if the date is valid, 0 otherwise. It
checks the parts of a date like this:

def is_valid_date(year, month, day):
 print(year, month, day)
 if year < 0: # or (month < 0) or (day < 1):
 return 0
 if year > 9999 or month > 12 or day > days_in_month(year,
month):
 return 0
 return 1

is_valid_date() requires separate year, month, and day values, not a
date string. This requires that you break candidate values into components
before invoking it but makes it applicable in more contexts. For example,
you can use it to check dates like 12 February 2003 by mapping the
month to its numeric value before calling is_valid_date(). If
is_valid_date() took a string argument assumed to be in a specific
date format, it would be much less general.
is_valid_date() uses a subsidiary days_in_month() function to
determine the number of days in the month represented by the date.
days_in_month() requires both the year and the month as arguments
because if the month is 2 (February), the number of days depends on
whether the year is a leap year. This means you must pass a four-digit year
value; two-digit years are ambiguous with respect to the century, which
makes proper leap-year testing impossible. The days_in_month() and
is_leap_year() functions are based on techniques taken from that
recipe:

def is_leap_year(year):
 return ((year % 4 == 0) and ((year % 100 != 0) or (year % 400
== 0)))

def days_in_month(year, month):
 day_tbl = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
 days = day_tbl[month - 1]

 if month == 2 and is_leap_year(year):

 days += 1
 return days

To perform validity checking on time values, a similar procedure applies:
verify that the value matches a time pattern and break it into components,
then perform range-testing on the components. For times, the ranges are 0
to 23 for the hour and 0 to 59 for the minute and second. Here is a
is_24hr_time() function that checks for values in 24-hour format and
returns the components:

def is_24hr_time(val):
 m = re.match('^(\d{1,2})\D(\d{2})\D(\d{2})$', val)
 if m is None:
 return None
 return[int(m.group(1)), int(m.group(2)), int(m.group(3))]

The following is_ampm_time() function is similar but looks for times
in 12-hour format with an optional AM or PM suffix, converting PM times
to 24-hour values:

def is_ampm_time(val):
 m = re.match('^(\d{1,2})\D(\d{2})\D(\d{2})(?:\s*(AM|PM))?$',
val, flags = re.I)
 if m is None:
 return None
 (hour, min, sec) = (int(m.group(1)), (m.group(2)),
(m.group(3)))
 # supply missing seconds
 sec = '00' if sec is None else sec
 if hour == 12 and (m.group(4) is None or m.group(4).upper() ==
"AM"):
 hour = '00' # 12:xx:xx AM times are 00:xx:xx
 elif int(hour) < 12 and (m.group(4) is not None) and
m.group(4).upper() == "PM":
 hour = hour + 12 # PM times other than 12:xx:xx
 return [hour, min, sec] # return hour, minute, second

Both functions return None for values that don’t match the pattern.
Otherwise, they return a reference to a three-element array containing the
hour, minute, and second values.

After you obtain the time components, pass them to is_valid_time(),
another utility routine, to perform range checks.

14.15 Writing Date-Processing Utilities

Problem
There is a date-processing operation that you want to perform frequently.

Solution
Write a utility that performs the date-processing operation for you.

Discussion
Due to the idiosyncratic nature of dates, you might occasionally find it
necessary to write date converters. This section shows some sample
converters that serve various purposes:

isoize_date.py reads a file looking for dates in US format (MM-
DD-YY) and converts them to ISO format.

cvt_date.py converts dates to and from ISO, US, or British formats.
It is more general than isoize_date.py but requires that you tell it
what kind of input to expect and what kind of output to produce.
monddyyyy_to_iso.py looks for dates like Feb. 6, 1788 and
converts them to ISO format. It illustrates how to map dates with
nonnumeric parts to a format that MySQL understands.

All three scripts are located in the transfer directory of the recipes
distribution. They assume datafiles are in tab-delimited, linefeed-terminated
format. To work with files that have a different format, use
cvt_file.pl, available in the recipes distribution.

Our first date-processing utility, isoize_date.py, looks for dates in US
format and rewrites them into ISO format. You’ll recognize that it’s

modeled after the general input-processing loop, with some extra stuff
thrown in to perform a specific type of conversion:

#!/usr/bin/python3
isoize_date.py: Read input data, look for values that match
a date pattern, convert them to ISO format. Also converts
2-digit years to 4-digit years, using a transition point of 70.
By default, this looks for dates in MM-DD-[CC]YY format.
Does not check whether dates actually are valid (for example,
won't complain about 13-49-1928).

Assumes tab-delimited, linefeed-terminated input lines.

import sys
import re
import fileinput

transition point at which 2-digit XX year values are assumed to
be
19XX (below that, they are treated as 20XX)
transition = 70

for line in fileinput.input(sys.argv[1:]):
 val = line.split("\t", 10000); # split, preserving all fields
 for i in range(0, len(val)):
 # look for strings in MM-DD-[CC]YY format
 m = re.match('^(\d{1,2})\D(\d{1,2})\D(\d{2,4})$', val[i])
 if not m:
 continue

 (month, day, year) = (int(m.group(1)), int(m.group(2)),
int(m.group(3)))
 # to interpret dates as DD-MM-[CC]YY instead, replace
preceding
 # line with the following one:
 # (day, month, year) = (int(m.group(1)), int(m.group(2)),
int(m.group(3)))

 # convert 2-digit years to 4 digits, then update value in
array
 if year < 100:
 year += 1900 if year >= transition else 2000
 val[i] = "%04d-%02d-%02d" % (year, month, day)
 print("\t".join (val))

If you feed isoize_date.py an input file that looks like this:

Sybil 04-13-70
Nancy 09-30-69
Ralph 11-02-73
Lothair 07-04-63
Henry 02-14-65
Aaron 09-17-68
Joanna 08-20-52
Stephen 05-01-60

It produces the following output:

Sybil 1970-04-13
Nancy 2069-09-30
Ralph 1973-11-02
Lothair 2063-07-04
Henry 2065-02-14
Aaron 2068-09-17
Joanna 2052-08-20
Stephen 2060-05-01

isoize_date.py serves a specific purpose: it converts only from US to
ISO format. It does not perform validity checking on date subparts or
permit the transition point for adding the century to be specified. A more
general tool would be more useful. The next script, cvt_date.py,
extends the capabilities of isoize_date.py; it recognizes input dates in
ISO, US, or British formats and converts any of them to any other. It also
can convert two-digit years to four digits, enable you to specify the
conversion transition point, and warn about bad dates. As such, it can be
used to preprocess input for loading into MySQL or postprocess data
exported from MySQL for use by other programs.
cvt_date.py understands the following options:

--iformat=format, --oformat=format, --format=format
Set the date format for input, output, or both. The default format
value is iso; cvt_date.py also recognizes any string beginning
with us or br as indicating US or British date format.

--add-century

Convert two-digit years to four digits.

--columns=column_list

Convert dates only in the named columns. By default, cvt_date.py
looks for dates in all columns. If this option is given, column_list
should be a list of one or more column positions or ranges separated by
commas. (Ranges can be given as m-n to specify columns m through n.)
Positions begin at 1.

--transition=n

Specify the transition point for two-digit to four-digit year conversions.
The default transition point is 70. This option turns on --add-
century.

--warn

Warn about bad dates. (This option can produce spurious warnings if the
dates have two-digit years and you don’t specify --add-century,
because leap-year testing won’t always be accurate in that case.)

We won’t show the code for cvt_date.py here (most of it is taken up
with processing command-line options), but you can examine the source for
yourself if you like. As an example of how cvt_date.py works, suppose
that you have a newdata.txt file with the following contents:

name1 01/01/99 38
name2 12/31/00 40
name3 02/28/13 42
name4 01/02/18 44

Running the file through cvt_date.py with options indicating that the
dates are in US format and that the century should be added produces this
result:

$ cvt_date.pl --iformat=us --add-century newdata.txt
name1 1999-01-01 38
name2 2000-12-31 40
name3 2013-02-28 42
name4 2018-01-02 44

To produce dates in British format instead with no year conversion, do this:

$ cvt_date.pl --iformat=us --oformat=br newdata.txt
name1 01-01-99 38
name2 31-12-00 40
name3 28-02-13 42
name4 02-01-18 44

cvt_date.py has no knowledge of the meaning of each data column, of
course. If you have a nondate column with values that match the pattern, it
rewrites that column, too. To deal with that, specify a --columns option
to limit the columns that cvt_date.py converts.

isoize_date.py and cvt_date.py both operate on dates written in
all-numeric formats. But dates in datafiles often are written differently, and
it may be necessary to write a special-purpose script to process them.
Suppose an input file contains dates in the following format (these represent
the dates on which US states were admitted to the Union):

Delaware Dec. 7, 1787
Pennsylvania Dec 12, 1787
New Jersey Dec. 18, 1787
Georgia Jan. 2, 1788
Connecticut Jan. 9, 1788
Massachusetts Feb. 6, 1788
…

The dates consist of a three-character month abbreviation (possibly
followed by a period), a numeric day of the month, a comma, and a numeric
year. To import this file into MySQL, you must convert the dates to ISO
format, resulting in a file that looks like this:

Delaware 1787-12-07
Pennsylvania 1787-12-12
New Jersey 1787-12-18
Georgia 1788-01-02
Connecticut 1788-01-09
Massachusetts 1788-02-06
…

That’s a somewhat specialized kind of transformation, although this general
type of problem (converting a particular date format to ISO format) is
hardly uncommon. To perform the conversion, identify the dates as those
values matching an appropriate pattern, map month names to the
corresponding numeric values, and reformat the result. The following
script, monddyyyy_to_iso.py, illustrates how:

#!/usr/bin/python3
monddyyyy_to_iso.py: Convert dates from mon[.] dd, yyyy to ISO
format.

Assumes tab-delimited, linefeed-terminated input

import re
import sys
import fileinput
import warnings

map = {"jan": 1, "feb": 2, "mar": 3, "apr": 4, "may": 5, "jun":
6,
 "jul": 7, "aug": 8, "sep": 9, "oct": 10, "nov": 11, "dec":
12
 } # map 3-char month abbreviations to numeric month

for line in fileinput.input(sys.argv[1:]):
 values = line.rstrip().split("\t", 10000) # split,
preserving all fields
 for i in range(0, len(values)):
 # reformat the value if it matches the pattern, otherwise
assume
 # that it's not a date in the required format and leave it
alone
 m = re.match('^([^.]+)\.? (\d+), (\d+)$', values[i])
 if m:
 # use lowercase month name
 (month, day, year) = (m.group(1).lower(), int(m.group(2)),
int(m.group(3)))
#@ _CHECK_VALIDITY_
 if month in map:
#@ _CHECK_VALIDITY_
 values[i] = "%04d-%02d-%02d" % (year, map[month], day)
 else:
 # warn, but don't reformat
 warnings.warn("%s bad date?" % (values[i]))
 print("\t".join(values))

The script only does reformatting; it doesn’t validate the dates. To do that,
modify the script to use the cookbook_utils.py module by adding this
statement in the beginning of the script:

from cookbook_utils import *

That gives the script access to the module’s is_valid_date() routine.
To use it, change this line:

if month in map:

To this:

if month in map and is_valid_date(year, map[month], day)):

14.16 Importing Non-ISO Date Values

Problem
You want to import date values, but they are not in the ISO (YYYY-MM-DD)
format that MySQL expects.

Solution
Use an external utility to convert the dates to ISO format before importing
the data into MySQL (cvt_date.py is useful here). Or use LOAD
DATA’s capability for preprocessing input data prior to loading it into the
database.

Discussion
Suppose that a table contains three columns, name, date, and value,
where date is a DATE column requiring values in ISO format (YYYY-MM-
DD). Suppose also that you’re given a newdata.txt datafile to be imported
into the table, but its contents look like this:

name1 01/01/99 38
name2 12/31/00 40
name3 02/28/13 42
name4 01/02/18 44

The dates are in MM/DD/YY format and must be converted to ISO format to
be stored as DATE values in MySQL. One way to do this is to run the file
through the cvt_date.py script from Recipe 14.15:

$ cvt_date.py --iformat=us --add-century newdata.txt > tmp.txt

Then load the tmp.txt file into the table. This task also can be accomplished
entirely in MySQL with no external utilities by using SQL to perform the
reformatting operation. As discussed in Recipe 13.1, LOAD DATA can
preprocess input values before inserting them. Applying that capability to
the present problem, the date-rewriting LOAD DATA statement looks like
this, using the STR_TO_DATE() function (see Recipe 8.3) to interpret the
input dates:

mysql> LOAD DATA LOCAL INFILE 'newdata.txt'
 -> INTO TABLE t (name,@date,value)
 -> SET date = STR_TO_DATE(@date,'%m/%d/%y');

With the %y format specifier in STR_TO_DATE(), MySQL converts the
two-digit years to four-digit years automatically, so the original MM/DD/YY
values end up as ISO values in YYYY-MM-DD format. The resulting data
after import looks like this:

+-------+------------+-------+
| name | date | value |
+-------+------------+-------+
name1	1999-01-01	38
name2	2000-12-31	40
name3	2013-02-28	42
name4	2018-01-02	44
+-------+------------+-------+

This procedure assumes that MySQL’s automatic conversion of two-digit
years to four digits produces the correct century values. This means that the

year part of the values must correspond to years in the range from 1970 to
2069. If that’s not true, you must convert the year values some other way.
(For some ideas on how to do this, see Recipe 14.14.)
If the dates are not in a format that STR_TO_DATE() can interpret,
perhaps you can write a stored function to handle them and return ISO date
values. In that case, the LOAD DATA statement looks like this, where
my_date_interp() is your stored function name:

mysql> LOAD DATA LOCAL INFILE 'newdata.txt'
 -> INTO TABLE t (name,@date,value)
 -> SET date = my_date_interp(@date);

14.17 Exporting Dates Using Non-ISO
Formats

Problem
You want to export date values using a format other than MySQL’s default
ISO (YYYY-MM-DD) format. This might be a requirement when exporting
dates from MySQL to applications that don’t use ISO format.

Solution
Use an external utility to rewrite the dates to non-ISO format after
exporting the data from MySQL (cvt_date.py is useful here). Or use
the DATE_FORMAT() function to rewrite the values during the export
operation.

Discussion
Suppose that you want to export data from MySQL into an application that
doesn’t understand ISO-format dates. One way to do this is to export the
data into a file, leaving the dates in ISO format. Then run the file through a

utility such as cvt_date.py that rewrites the dates into the required
format (see Recipe 14.15).
Another approach is to export the dates directly in the required format by
rewriting them with DATE_FORMAT(). Suppose that you have the
following table:

CREATE TABLE datetbl
(
 i INT,
 c CHAR(10),
 d DATE,
 dt DATETIME,
 ts TIMESTAMP,
 PRIMARY KEY(i)
);

Suppose also that you need to export data from this table but with the dates
in any DATE, DATETIME, or TIMESTAMP columns rewritten in US format
(MM-DD-YYYY). A SELECT statement that uses the DATE_FORMAT()
function to rewrite the dates as required looks like this:

SELECT
 i,
 c,
 DATE_FORMAT(d, '%m-%d-%Y') AS d,
 DATE_FORMAT(dt, '%m-%d-%Y %T') AS dt,
 DATE_FORMAT(ts, '%m-%d-%Y %T') AS ts
FROM datetbl;

If datetbl contains the following rows:

3 abc 2005-12-31 2005-12-31 12:05:03 2005-12-
31 12:05:03
4 xyz 2006-01-31 2006-01-31 12:05:03 2006-01-
31 12:05:03

The statement generates output that looks like this:

3 abc 12-31-2005 12-31-2005 12:05:03 12-31-
2005 12:05:03

4 xyz 01-31-2006 01-31-2006 12:05:03 01-31-
2006 12:05:03

14.18 Preprocessing and Importing a File

Problem
Recall the scenario presented at the beginning of Chapter 13:

Suppose that a file named somedata.csv contains 12 data columns in
comma-separated values (CSV) format. From this file you want to extract
only columns 2, 11, 5, and 9 and use them to create database rows in a
MySQL table that contains “name,”“birth,”“height,” and “weight”
columns. You must make sure that the height and weight are positive
integers, and convert the birth dates fromMM/DD/YY format to YYYY-
MM-DD format.

Solution
Combine techniques that we discussed in Chapter 13 and this chapter.

Discussion
Much of the work can be done using the utility programs developed in this
chapter. Convert the file to tab-delimited format with cvt_file.pl,
extract the columns in the desired order with yank_col.pl, and rewrite
the date column to ISO format with cvt_date.py (see Recipe 14.15):

$ cvt_file.pl --iformat=csv somedata.csv \
 | yank_col.pl --columns=2,11,5,9 \
 | cvt_date.py --columns=2 --iformat=us --add-century > tmp

The resulting file, tmp, has four columns representing the name, birth,
height, and weight values, in that order. It needs only to have its height
and weight columns checked to make sure they contain positive integers.
Using the is_positive_integer() library function from the

cookbook_utils.py module file, that task can be achieved using a
short special-purpose script that is little more than an input loop:

#!/usr/bin/python3
validate_htwt.py: Height/weight validation example.

Assumes tab-delimited, linefeed-terminated input lines.

Input columns and the actions to perform on them are as
follows:
1: name; echo as given
2: birth; echo as given
3: height; validate as positive integer
4: weight; validate as positive integer

import sys
import fileinput
import warnings
from cookbook_utils import *

line_num = 0
for line in fileinput.input(sys.argv[1:]):
 line_num += 1
 (name, birth, height, weight) = line.rstrip().split ("\t", 4)
 if not is_positive_integer(height):
 warnings.warn(f"line {line_num}:height {height} is not a
positive integer")
 if not is_positive_integer(weight):
 warnings.warn(f"line {line_num}:weight {weight} is not a
positive integer")

The validate_htwt.py script produces no output (except for warning
messages) because it need not reformat any of the input values. If tmp
passes validation with no errors, it can be loaded into MySQL with a simple
LOAD DATA statement:

mysql> LOAD DATA LOCAL INFILE 'tmp' INTO TABLE tbl_name;

Chapter 15. Generating and
Using Sequences

15.0 Introduction
A sequence is a set of integers (1, 2, 3, …) generated in order on demand.
Sequences see frequent use in databases because many applications require
each row in a table to contain a unique value, and sequences provide an
easy way to generate them. This chapter describes how to use sequences in
MySQL in the following five ways:

Using AUTO_INCREMENT columns
The AUTO_INCREMENT column is MySQL’s mechanism for
generating a sequence over a set of rows. Each time you create a row in
a table that contains an AUTO_INCREMENT column, MySQL
automatically generates the next value in the sequence as the column’s
value. This value serves as a unique identifier, making sequences an
easy way to create items such as customer ID numbers, shipping
package waybill numbers, invoice or purchase order numbers, bug
report IDs, ticket numbers, or product serial numbers.

Retrieving sequence values
For many applications, it’s not enough just to create sequence values.
It’s also necessary to determine the sequence value for a just-inserted
row. A web application may need to redisplay to a user the contents of a
row created from the contents of a form just submitted by the user. The
value may need to be retrieved so it can be stored in rows of a related
table.

Resequencing techniques
It’s possible to renumber a sequence that has holes in it due to row
deletions, reuse deleted values at the top of a sequence, or add a

sequence column to a table that has none.

Managing multiple simultaneous sequences
Special care is necessary when you need to keep track of multiple
sequence values, such as when you create rows in multiple tables that
each have an AUTO_INCREMENT column.

Using single-row sequence generators
Sequences can be used as counters. For example, to count votes in a
poll, you might increment a counter each time a candidate receives a
vote. The counts for a given candidate form a sequence, but because the
count itself is the only value of interest, there is no need to generate a
new row to record each vote. MySQL provides a solution for this
problem using a mechanism that enables a sequence to be easily
generated within a single table row over time. To store multiple counters
in the table, use a column that identifies each counter uniquely. The
same mechanism also enables creation of sequences that increase by
values other than 1 or by nonuniform values.

The engines for most database systems provide sequence-generation
capabilities, although the implementations tend to be engine-dependent.
That’s true for MySQL as well, so the material in this section is almost
completely MySQL-specific, even at the SQL level. In other words, the
SQL for generating sequences is itself nonportable, even if you use an API
such as DBI or JDBC that provides an abstraction layer. Abstract interfaces
may help you process SQL statements portably, but they don’t make
nonportable SQL portable.
Scripts related to the examples shown in this chapter are located in the
sequences directory of the recipes distribution. For scripts that create the
tables used here, look in the tables directory.

15.1 Generating a Sequence with
AUTO_INCREMENT Columns

Problem
Your table includes a column that should contain only unique IDs, and you
need to insert values into this column, ensuring they are part of the
sequence.

Solution
Use an AUTO_INCREMENT column to generate a sequence.

Discussion
This recipe provides the essential background on using
AUTO_INCREMENT columns, beginning with an example that
demonstrates the sequence-generation mechanism. The example centers
around a bug-collection scenario: your eight-year-old son, Junior, is
assigned the task of collecting insects for a class project at school. For each
insect, Junior is to record its name (“ant,” “bee,” and so forth) and its date
and location of collection. You have expounded the benefits of MySQL for
record-keeping to Junior since his early days, so upon your arrival home
from work that day, he immediately announces the necessity of completing
this project and then, looking you straight in the eye, declares that it’s
clearly a task for which MySQL is well-suited. Who are you to argue? So
the two of you get to work. Junior already collected some specimens after
school while waiting for you to come home and has recorded the following
information in his notebook:

Name Date Origin
millipede 2014-09-10 driveway

housefly 2014-09-10 kitchen

grasshopper 2014-09-10 front yard

stink bug 2014-09-10 front yard

cabbage butterfly 2014-09-10 garden

ant 2014-09-10 backyard

ant 2014-09-10 backyard

Name Date Origin
termite 2014-09-10 kitchen woodwork

Looking over Junior’s notes, you’re pleased to see that even at his tender
age, he has learned to write dates in ISO format. However, you also notice
that he’s collected a millipede and a termite, neither of which actually are
insects. You decide to let this pass for the moment; Junior forgot to bring
home the written instructions for the project, so at this point it’s unclear
whether these specimens are acceptable. (You also note with some alarm
Junior’s discovery of termites in the house and make a mental note to call
the exterminator.)
As you consider how to create a table to store this information, it’s apparent
that you need at least name, date, and origin columns corresponding to
the types of information that Junior is required to record:

CREATE TABLE insect
(
 name VARCHAR(30) NOT NULL, # type of insect
 date DATE NOT NULL, # date collected
 origin VARCHAR(30) NOT NULL # where collected
);

However, those columns are insufficient to make the table easy to use. Note
that the records collected thus far are not unique; both ants were collected at
the same time and place. If you put the information into an insect table
that has the structure just shown, neither ant row can be referred to
individually because there’s nothing to distinguish one from another.
Unique IDs would be helpful to make the rows distinct and to provide
values that make each row easy to refer to. An AUTO_INCREMENT column
is good for this purpose, so a better insect table has a structure like this:

CREATE TABLE insect
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (id),
 name VARCHAR(30) NOT NULL, # type of insect
 date DATE NOT NULL, # date collected

 origin VARCHAR(30) NOT NULL # where collected
);

Go ahead and create the insect table using this second CREATE TABLE
statement. (Recipe 15.2 discusses the particulars of the id column
definition.)
Now that you have an AUTO_INCREMENT column, use it to generate new
sequence values. One of the useful properties of an AUTO_INCREMENT
column is that you need not assign its values yourself: MySQL does so for
you. There are two ways to generate new AUTO_INCREMENT values in the
id column. One is to explicitly set the id column to NULL. The following
statement inserts the first four of Junior’s specimens into the insect table
that way:

mysql> INSERT INTO insect (id,name,date,origin) VALUES
 -> (NULL,'housefly','2014-09-10','kitchen'),
 -> (NULL,'millipede','2014-09-10','driveway'),
 -> (NULL,'grasshopper','2014-09-10','front yard'),
 -> (NULL,'stink bug','2014-09-10','front yard');

Alternatively, omit the id column from the INSERT statement entirely.
MySQL permits creating rows without explicitly specifying values for
columns that have a default value. MySQL assigns each missing column its
default value, and the default for an AUTO_INCREMENT column is its next
sequence number. Thus, this statement adds Junior’s other four specimens
to the insect table and generates sequence values without naming the id
column at all:

mysql> INSERT INTO insect (name,date,origin) VALUES
 -> ('cabbage butterfly','2014-09-10','garden'),
 -> ('ant','2014-09-10','backyard'),
 -> ('ant','2014-09-10','backyard'),
 -> ('termite','2014-09-10','kitchen woodwork');

Whichever method you use, MySQL determines the sequence number for
each row and assigns it to the id column, as you can verify:

mysql> SELECT * FROM insect ORDER BY id;
+----+-------------------+------------+------------------+
| id | name | date | origin |
+----+-------------------+------------+------------------+
1	housefly	2014-09-10	kitchen
2	millipede	2014-09-10	driveway
3	grasshopper	2014-09-10	front yard
4	stink bug	2014-09-10	front yard
5	cabbage butterfly	2014-09-10	garden
6	ant	2014-09-10	backyard
7	ant	2014-09-10	backyard
8	termite	2014-09-10	kitchen woodwork
+----+-------------------+------------+------------------+

As Junior collects more specimens, add more rows to the table and they’ll
be assigned the next values in the sequence (9, 10, …).
The concept underlying AUTO_INCREMENT columns is simple enough in
principle: each time you create a new row, MySQL generates the next
number in the sequence and assigns it to the row. But there are certain
subtleties to know about, as well as differences in how different storage
engines handle AUTO_INCREMENT sequences. Awareness of these issues
enables you to use sequences more effectively and avoid surprises. For
example, if you explicitly set the id column to a non-NULL value, one of
two things happens:

If the value is already present in the table, an error occurs if the column
cannot contain duplicates. For the insect table, the id column is a
PRIMARY KEY, which prohibits duplicates:

mysql> INSERT INTO insect (id,name,date,origin) VALUES
 -> (3,'cricket','2014-09-11','basement');
ERROR 1062 (23000): Duplicate entry '3' for key 'PRIMARY'

If the value is not present in the table, MySQL inserts the row using that
value. In addition, if the value is larger than the current sequence
counter, the table’s counter is reset to the value plus 1. The insect
table at this point has sequence values 1 through 8. If you insert a new
row with the id column set to 20, that becomes the new maximum
value. Subsequent inserts that automatically generate id values will

begin at 21. The values 9 through 19 become unused, resulting in a gap
in the sequence.

The next recipe looks in more detail at how to define AUTO_INCREMENT
columns and how they behave.

15.2 Choosing the Data Type for a Sequence
Column

Problem
You want to choose the correct data type to define a sequence column.

Solution
Consider how many unique values your sequence should hold, and choose
the data type accordingly.

Discussion
You should follow certain principles when creating AUTO_INCREMENT
columns. As an illustration, consider how Recipe 15.1 declared the id
column in the insect table:

id INT UNSIGNED NOT NULL AUTO_INCREMENT,
PRIMARY KEY (id)

The AUTO_INCREMENT keyword informs MySQL that it should generate
successive sequence numbers for the column’s values, but the other
information is important, too:

INT is the column’s base data type. You need not necessarily use INT,
but the column should be one of the integer types: TINYINT,
SMALLINT, MEDIUMINT, INT, or BIGINT.

UNSIGNED prohibits negative column values. This is not a required
attribute for AUTO_INCREMENT columns, but sequences consist only of
positive integers (normally beginning at 1), so there is no reason to
permit negative values. Furthermore, not declaring the column to be
UNSIGNED cuts the range of your sequence in half. For example,
TINYINT has a range of –128 to 127. Because sequences include only
positive values, the effective range of a TINYINT sequence is 1 to 127.
TINYINT UNSIGNED has a range of 0 to 255, which increases the
upper end of the sequence to 255. The specific integer type determines
the maximum sequence value. The following table shows the maximum
unsigned value of each type; use this information to choose a type big
enough to hold the largest value you’ll need:

Data type Maximum unsigned value
TINYINT 255

SMALLINT 65,535

MEDIUMINT 16,777,215

INT 4,294,967,295

BIGINT 18,446,744,073,709,551,615

Sometimes people omit UNSIGNED so that they can create rows that
contain negative numbers in the sequence column (using –1 to signify
“has no ID,” for example.) This is a bad idea. MySQL makes no
guarantees about how negative numbers will be treated in an
AUTO_INCREMENT column, so by using them you’re playing with fire.
For example, if you resequence the column, all your negative values get
turned into positive sequence numbers.
AUTO_INCREMENT columns cannot contain NULL values, so id is
declared as NOT NULL. (It’s true that you can specify NULL as the
column value when you insert a new row, but for an
AUTO_INCREMENT column, that really means “generate the next
sequence value.”) MySQL automatically defines AUTO_INCREMENT
columns as NOT NULL if you forget.

AUTO_INCREMENT columns must be indexed. Normally, because a
sequence column exists to provide unique identifiers, you use a
PRIMARY KEY or UNIQUE index to enforce uniqueness. Tables can
have only one PRIMARY KEY, so if the table already has some other
PRIMARY KEY column, you can declare an AUTO_INCREMENT
column to have a UNIQUE index instead:

id INT UNSIGNED NOT NULL AUTO_INCREMENT,
UNIQUE (id)

When you create a table that contains an AUTO_INCREMENT column, it’s
also important to consider which storage engine to use (InnoDB, MyISAM,
and so forth). The engine affects behaviors such as reuse of values deleted
from the top of the sequence (see Recipe 15.3).

15.3 Deleting Rows Without Changing a
Sequence

Problem
You want to delete a few rows from the table that contains an
AUTO_INCREMENT column.

Solution
Use a regular DELETE statement. MySQL would not change the generated
sequence numbers for the existing rows.

Discussion
We have thus far considered how MySQL generates sequence values in an
AUTO_INCREMENT column under circumstances where rows are only
added to a table. But it’s unrealistic to assume that rows will never be
deleted. What happens to the sequence then?

Refer again to Junior’s bug-collection project, for which you currently have
an insect table that looks like this:

mysql> SELECT * FROM insect ORDER BY id;
+----+-------------------+------------+------------------+
| id | name | date | origin |
+----+-------------------+------------+------------------+
1	housefly	2014-09-10	kitchen
2	millipede	2014-09-10	driveway
3	grasshopper	2014-09-10	front yard
4	stink bug	2014-09-10	front yard
5	cabbage butterfly	2014-09-10	garden
6	ant	2014-09-10	backyard
7	ant	2014-09-10	backyard
8	termite	2014-09-10	kitchen woodwork
+----+-------------------+------------+------------------+

That’s about to change because after Junior remembers to bring home the
written instructions for the project, you read through them and discover two
things that affect the table contents:

Specimens should include only insects, not insect-like creatures such as
millipedes and termites.
The purpose of the project is to collect as many different specimens as
possible, not just as many specimens as possible. This means that only
one ant row is permitted.

These instructions dictate that a few rows be removed from the table—
specifically those with id values 2 (millipede), 8 (termite), and 7 (duplicate
ant). Thus, despite Junior’s evident disappointment at the reduction in the
size of his collection, you instruct him to remove those rows by issuing a
DELETE statement:

mysql> DELETE FROM insect WHERE id IN (2,8,7);

This statement illustrates why it’s useful to have unique ID values: they
enable you to specify any row unambiguously. The ant rows are identical
except for the id value. Without that column in the table, it would be more
difficult to delete just one of them (though not impossible; see Recipe 18.5).

After removing the unsuitable rows, the table has these remaining:

mysql> SELECT * FROM insect ORDER BY id;
+----+-------------------+------------+------------+
| id | name | date | origin |
+----+-------------------+------------+------------+
1	housefly	2014-09-10	kitchen
3	grasshopper	2014-09-10	front yard
4	stink bug	2014-09-10	front yard
5	cabbage butterfly	2014-09-10	garden
6	ant	2014-09-10	backyard
+----+-------------------+------------+------------+

The id column sequence now has a hole (row 2 is missing), and the values
7 and 8 at the top of the sequence are no longer present. How do these
deletions affect future insert operations? What sequence number will the
next new row get?
Removing row 2 creates a gap in the middle of the sequence. This has no
effect on subsequent inserts, because MySQL makes no attempt to fill in
holes in a sequence. On the other hand, deleting rows 7 and 8 removes
values at the top of the sequence. For InnoDB or MyISAM tables, values
are not reused. The next sequence number is the smallest positive integer
that has not previously been used. (For a sequence that stands at 8, the next
row gets a value of 9 even if you delete rows 7 and 8 first.) If you require
strictly monotonic sequences, you can use one of these storage engines. For
other storage engines, values removed at the top of the sequence may or
may not be reused. Check the properties of the engine before using it.
If a table uses an engine that differs in value-reuse behavior from the
behavior you require, use ALTER TABLE to change the table to a more
appropriate engine. For example, to change a table to use InnoDB (to
prevent sequence values from being reused after rows are deleted), do this:

ALTER TABLE tbl_name ENGINE = InnoDB;

If you don’t know what engine a table uses, consult
INFORMATION_SCHEMA or use SHOW TABLE STATUS or SHOW

CREATE TABLE to find out. For example, the following statement
indicates that insect is an InnoDB table:

mysql> SELECT ENGINE FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'insect';
+--------+
| ENGINE |
+--------+
| InnoDB |
+--------+

To empty a table and reset the sequence counter (even for engines that
normally do not reuse values), use TRUNCATE TABLE:

TRUNCATE TABLE tbl_name;

15.4 Retrieving Sequence Values

Problem
After creating a row that includes a new sequence number, you want to
know what that number is.

Solution
Invoke the LAST_INSERT_ID() function. If you’re writing a program,
your MySQL API may provide a way to get the value directly without
issuing a SQL statement.

Discussion
It’s common for applications to need to know the AUTO_INCREMENT
value of a newly created row. For example, if you write a web-based
frontend for entering rows into Junior’s insect table, you might have the
application display each new row nicely formatted in a new page
immediately after you hit the Submit button. To do this, you must know the
new id value so that you can retrieve the proper row. Another situation in

which the AUTO_INCREMENT value is needed occurs when you use
multiple tables: after inserting a row in a main table, you need its ID to
create rows in other related tables that refer to the row in the main table.
(Recipe 15.11 shows how to do this.)
When you generate a new AUTO_INCREMENT value, one way to get the
value from the server is to execute a statement that invokes the
LAST_INSERT_ID() function. In addition, many MySQL APIs provide
a client-side mechanism for making the value available without issuing
another statement. This recipe discusses both methods and compares their
characteristics.

Using LAST_INSERT_ID() to obtain AUTO_INCREMENT values
The obvious (but incorrect) way to determine a new row’s
AUTO_INCREMENT value uses the fact that when MySQL generates the
value, it becomes the largest sequence number in the column. Thus, you
might try using the MAX() function to retrieve it:

SELECT MAX(id) FROM insect;

This is unreliable; if another client inserts a row before you issue the
SELECT statement, MAX(id) returns that client’s ID, not yours. It’s
possible to solve this problem by grouping the INSERT and SELECT
statements as a transaction or locking the table, but MySQL provides a
simpler way to obtain the proper value: invoke the LAST_INSERT_ID()
function. It returns the most recent AUTO_INCREMENT value generated
within your session, regardless of what other clients are doing. For
example, to insert a row into the insect table and retrieve its id value, do
this:

mysql> INSERT INTO insect (name,date,origin)
 -> VALUES('cricket','2014-09-11','basement');
mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+

| 9 |
+------------------+

Or you can use the new value to retrieve the entire row, without even
knowing what it is:

mysql> INSERT INTO insect (name,date,origin)
 -> VALUES('moth','2014-09-14','windowsill');
mysql> SELECT * FROM insect WHERE id = LAST_INSERT_ID();
+----+------+------------+------------+
| id | name | date | origin |
+----+------+------------+------------+
| 10 | moth | 2014-09-14 | windowsill |
+----+------+------------+------------+

The server maintains the value returned by LAST_INSERT_ID() on a
session-specific basis. This property is by design, and it’s important because
it prevents clients from interfering with one another. When you generate an
AUTO_INCREMENT value, LAST_INSERT_ID() returns that specific
value, even when other clients generate new rows in the same table in the
meantime.

Using API-specific methods to obtain AUTO_INCREMENT
values
LAST_INSERT_ID() is a SQL function, so you can use it from within
any client that can execute SQL statements. On the other hand, you do have
to execute a separate statement to get its value. When you write your own
programs, you may have another choice. Many MySQL interfaces include
an API-specific extension that returns the AUTO_INCREMENT value
without executing an additional statement. Most of our APIs have this
capability:

Perl
Use the mysql_insertid attribute to obtain the
AUTO_INCREMENT value generated by a statement. This attribute is
accessed through either a database handle or a statement handle,

depending on how you issue the statement. The following example
references it through the database handle:

$dbh->do ("INSERT INTO insect (name,date,origin)
 VALUES('moth','2014-09-14','windowsill')");
my $seq = $dbh->{mysql_insertid};

To access mysql_insertid as a statement-handle attribute, use
prepare() and execute():

my $sth = $dbh->prepare ("INSERT INTO insect
(name,date,origin)
 VALUES('moth','2014-09-
14','windowsill')");
$sth->execute ();
my $seq = $sth->{mysql_insertid};

Ruby
The Ruby Mysql2 gem exposes the client-side AUTO_INCREMENT
value using the last_id method:

client.query("INSERT INTO insect (name,date,origin)
 VALUES('moth','2014-09-14','windowsill')")
seq = client.last_id

PHP
The PDO interface for MySQL has a lastInsertId() database-
handle method that returns the most recent AUTO_INCREMENT value:

$dbh->exec ("INSERT INTO insect (name,date,origin)
 VALUES('moth','2014-09-14','windowsill')");
$seq = $dbh->lastInsertId ();

Python
The Connector/Python driver for DB API provides a lastrowid
cursor object attribute that returns the most recent AUTO_INCREMENT
value:

cursor = conn.cursor()
cursor.execute('''
 INSERT INTO insect (name,date,origin)
 VALUES('moth','2014-09-14','windowsill')
 ''')
seq = cursor.lastrowid

Java
The Connector/J JDBC driver getGeneratedKeys() method
returns AUTO_INCREMENT values. It can be used with a Statement
or PreparedStatement object if you supply an additional
Statement.RETURN_GENERATED_KEYS argument during the
statement-execution process to indicate that you want to retrieve the
sequence value.
For a Statement:

Statement s = conn.createStatement ();
s.executeUpdate ("INSERT INTO insect (name,date,origin)"
 + " VALUES('moth','2014-09-
14','windowsill')",
 Statement.RETURN_GENERATED_KEYS);

For a PreparedStatement:

PreparedStatement s = conn.prepareStatement (
 "INSERT INTO insect (name,date,origin)"
 + " VALUES('moth','2014-09-
14','windowsill')",
 Statement.RETURN_GENERATED_KEYS);
s.executeUpdate ();

Then generate a new result set from getGeneratedKeys() to
access the sequence value:

long seq;
ResultSet rs = s.getGeneratedKeys ();
if (rs.next ())
{
 seq = rs.getLong (1);
}
else

{
 throw new SQLException ("getGeneratedKeys() produced no
value");
}
rs.close ();
s.close ();

Go
The Go MySQL driver provides the LastInsertId method of the
Result interface that returns the latest AUTO_INCREMENT value:

res, err := db.Exec(`INSERT INTO insect (name,date,origin)
 VALUES ('moth','2014-09-
14','windowsill')`)
seq, err := res.LastInsertId()

Server-side and client-side sequence value retrieval compared
As mentioned earlier, the server maintains the value of
LAST_INSERT_ID() on a session-specific basis. By contrast, the API-
specific methods for accessing AUTO_INCREMENT values directly are
implemented on the client side. Server-side and client-side sequence value
retrieval methods have some similarities but also some differences.
All methods, both server-side and client-side, require that you access an
AUTO_INCREMENT value within the same MySQL session that generated
it. If you generate an AUTO_INCREMENT value, then disconnect from the
server and reconnect before attempting to access the value, you’ll get zero.
Within a given session, the persistence of AUTO_INCREMENT values can
be much longer on the server side of the session:

After you execute a statement that generates an AUTO_INCREMENT
value, the value remains available through LAST_INSERT_ID() even
if you execute other statements, as long as none of those statements
generate an AUTO_INCREMENT value.

The sequence value available using client-side API methods typically is
set for every statement, not only those that generate AUTO_INCREMENT
values. If you execute an INSERT statement that generates a new value

and then execute some other statement before accessing the client-side
sequence value, it probably will have been set to zero. The precise
behavior varies among APIs, but to be safe, you can do this: when a
statement generates a sequence value that you won’t use immediately,
save the value in a variable that you can refer to later. Otherwise, you
may find the sequence value wiped out by the time you try to access it.
(For more on this topic, see Recipe 15.10.)

15.5 Renumbering an Existing Sequence

Problem
You have gaps in a sequence column, and you want to resequence it.

Solution
First, consider whether resequencing is necessary. In many cases it is not.
But if you have to, resequence the AUTO_INCREMENT columns
periodically.

Discussion
If you insert rows into a table that has an AUTO_INCREMENT column and
never delete any of them, values in the column form an unbroken sequence.
If you delete rows, the sequence begins to have holes in it. For example,
Junior’s insect table currently looks something like this, with gaps in the
sequence (assuming that you’ve inserted the cricket and moth rows shown
in Recipe 15.4):

mysql> SELECT * FROM insect ORDER BY id;
+----+-------------------+------------+------------+
| id | name | date | origin |
+----+-------------------+------------+------------+
1	housefly	2014-09-10	kitchen
3	grasshopper	2014-09-10	front yard
4	stink bug	2014-09-10	front yard
5	cabbage butterfly	2014-09-10	garden

6	ant	2014-09-10	backyard
9	cricket	2014-09-11	basement
10	moth	2014-09-14	windowsill
+----+-------------------+------------+------------+

MySQL won’t attempt to eliminate these gaps by filling in the unused
values when you insert new rows. People who dislike this behavior tend to
resequence AUTO_INCREMENT columns periodically to eliminate the
holes. The examples in this recipe show how to do that. It’s also possible to
extend the range of an existing sequence (see Recipe 15.6), force deleted
values at the top of a sequence to be reused (see Recipe 15.7), number rows
in a particular order (see Recipe 15.8), or add a sequence column to a table
that doesn’t currently have one (see Recipe 15.9).
Before you decide to resequence an AUTO_INCREMENT column, consider
whether that’s really necessary. It usually isn’t and in some cases can cause
you real problems. For example, you should not resequence a column
containing values that are referenced by another table. Renumbering the
values destroys their correspondence to values in the other table, making it
impossible to properly relate rows in the two tables to one another.
Here are reasons we have seen advanced for resequencing a column:

Aesthetics
Some people prefer unbroken sequences to sequences with holes in
them. If this is why you want to resequence, there’s probably not much
we can say to convince you otherwise. Nevertheless, it’s not a
particularly good reason.

Performance
The impetus for resequencing may stem from the notion that doing so
“compacts” a sequence column by removing gaps and enables MySQL
to run statements more quickly. This is not true. MySQL doesn’t care
whether there are holes, and there is no performance gain to be had by
renumbering an AUTO_INCREMENT column. In fact, resequencing
affects performance negatively in the sense that the table remains locked
while MySQL performs the operation—which may take a nontrivial

amount of time for a large table. Other clients can read from the table
while this is happening, but clients trying to insert new rows are blocked
until the operation is complete.

Running out of numbers
The sequence column’s data type and signedness determine its upper
limit (see Recipe 15.2). If an AUTO_INCREMENT sequence is
approaching the upper limit of its data type, renumbering packs the
sequence and frees up more values at the top. This may be a legitimate
reason to resequence a column, but it is still unnecessary in many cases.
You may be able to change the column data type to increase its upper
limit without changing the values stored in the column; see Recipe 15.6.

If you’re still determined to resequence a column, it’s easy to do: drop the
column from the table, then put it back. MySQL renumbers the values in
the column in an unbroken sequence. The following example shows how to
renumber the id values in the insect table using this technique:

mysql> ALTER TABLE insect DROP id;
mysql> ALTER TABLE insect
 -> ADD id INT UNSIGNED NOT NULL AUTO_INCREMENT FIRST,
 -> ADD PRIMARY KEY (id);

The first ALTER TABLE statement gets rid of the id column (and as a
result also drops the PRIMARY KEY, because the column to which it refers
is no longer present). The second statement restores the column to the table
and establishes it as the PRIMARY KEY. (The FIRST keyword places the
column first in the table, which is where it was originally. Normally, ADD
puts columns at the end of the table.)
When you add an AUTO_INCREMENT column to a table, MySQL
automatically numbers all the rows consecutively, so the resulting contents
of the insect table look like this:

mysql> SELECT * FROM insect ORDER BY id;
+----+-------------------+------------+------------+
| id | name | date | origin |
+----+-------------------+------------+------------+

1	housefly	2014-09-10	kitchen
2	grasshopper	2014-09-10	front yard
3	stink bug	2014-09-10	front yard
4	cabbage butterfly	2014-09-10	garden
5	ant	2014-09-10	backyard
6	cricket	2014-09-11	basement
7	moth	2014-09-14	windowsill
+----+-------------------+------------+------------+

One problem with resequencing a column using separate ALTER TABLE
statements is that the table is without that column for the interval between
the two operations. This might cause difficulties for other clients that try to
access the table during that time. To prevent this from happening, perform
both operations with a single ALTER TABLE statement:

mysql> ALTER TABLE insect
 -> DROP id,
 -> ADD id INT UNSIGNED NOT NULL AUTO_INCREMENT FIRST;

MySQL permits multiple actions to be done with ALTER TABLE
(something not true for all database systems). However, notice that this
multiple-action statement is not simply a concatenation of the two single-
action ALTER TABLE statements. The difference is that it is unnecessary to
reestablish the PRIMARY KEY: MySQL doesn’t drop it unless the indexed
column is missing after all the actions specified in the ALTER TABLE
statement have been performed.

15.6 Extending the Range of a Sequence
Column

Problem
You want to avoid resequencing a column, but you’re running out of room
for new sequence numbers.

Solution

Check whether you can make the column UNSIGNED or change it to use a
larger integer type.

Discussion
Resequencing an AUTO_INCREMENT column changes the contents of
potentially every row in the table. It’s often possible to avoid this by
extending the range of the column, which changes the table’s structure
rather than its contents:

If the data type is signed, make it UNSIGNED to double the range of
available values. Suppose that an id column currently is defined like
this:

id MEDIUMINT NOT NULL AUTO_INCREMENT

The upper range of a signed MEDIUMINT column is 8,388,607. To
increase this to 16,777,215, make the column UNSIGNED with ALTER
TABLE:

ALTER TABLE tbl_name MODIFY id MEDIUMINT UNSIGNED NOT NULL
AUTO_INCREMENT;

If your column is already UNSIGNED and it is not already the largest
integer type (BIGINT), converting it to a larger type increases its range.
Use ALTER TABLE for this, too. Convert the id column in the previous
example from MEDIUMINT to BIGINT like so:

ALTER TABLE tbl_name MODIFY id BIGINT UNSIGNED NOT NULL
AUTO_INCREMENT;

Recipe 15.2 shows the ranges for each integer data type, which can help
you choose an appropriate type.

15.7 Reusing Values at the Top of a
Sequence

Problem
You’ve deleted rows at the top end of your sequence, and you want to avoid
resequencing the column but still reuse the values.

Solution
Use ALTER TABLE to reset the sequence counter. New sequence numbers
will begin with the value one larger than the current maximum in the table.

Discussion
If you have removed rows only from the top of the sequence, those that
remain are still in order with no gaps. (For example, if you have rows
numbered 1 to 100 and you remove the rows with numbers 91 to 100, the
remaining rows are still in unbroken sequence from 1 to 90.) In this special
case, it’s unnecessary to renumber the column. Instead, tell MySQL to
resume the sequence beginning with the value one larger than the highest
existing sequence number by executing this statement, which causes
MySQL to reset the sequence counter down as far as it can for new rows:

ALTER TABLE tbl_name AUTO_INCREMENT = 1;

You can use ALTER TABLE to reset the sequence counter if a sequence
column contains gaps in the middle, but doing so still reuses only values
deleted from the top of the sequence. It does not eliminate the gaps.
Suppose that a table contains sequence values from 1 to 10, from which you
delete the rows for values 3, 4, 5, 9, and 10. The maximum remaining value
is 8, so if you use ALTER TABLE to reset the sequence counter, the next
row is given a value of 9, not 3. To resequence a table to eliminate the gaps,
see Recipe 15.5.

15.8 Ensuring That Rows Are Renumbered in
a Particular Order

Problem
You resequenced a column, but MySQL didn’t number the rows the way
you want.

Solution
Select the rows into another table, using an ORDER BY clause to place them
in the order you want, and let MySQL number them according to the sort
order as it performs the operation.

Discussion
When you resequence an AUTO_INCREMENT column, MySQL is free to
pick the rows from the table in any order, so it doesn’t necessarily renumber
them in the order that you expect. This doesn’t matter at all if your only
requirement is that each row have a unique identifier. But you might have
an application for which it’s important that the rows be assigned sequence
numbers in a particular order. For example, you may want the sequence to
correspond to the order in which rows were created, as indicated by a
TIMESTAMP column. To assign numbers in a particular order, use this
procedure:

1. Create an empty clone of the table (see Recipe 6.1).
2. Copy rows from the original into the clone using INSERT INTO…
SELECT. Copy all columns except the AUTO_INCREMENT column,
using an ORDER BY clause to specify the order in which rows are
copied (and thus the order in which MySQL assigns numbers to the
AUTO_INCREMENT column).

3. Drop the original table, and rename the clone to have the original
table’s name.

4. If the table is a large MyISAM table and has multiple indexes, it is
more efficient to create the new table initially with no indexes except
the one on the AUTO_INCREMENT column. Then copy the original
table into the new table and use ALTER TABLE to add the remaining
indexes afterward.
This applies to InnoDB as well. But InnoDB Change Buffer caches
changes to the secondary indexes in memory and then flushes them to
the disk in the background. This allows you to keep insert
performance at a good speed.

An alternative procedure also works:
1. Create a new table that contains all the columns of the original table

except the AUTO_INCREMENT column.

2. Use INSERT INTO…SELECT to copy the non-AUTO_INCREMENT
columns from the original table into the new table.

3. Use TRUNCATE TABLE on the original table to empty it; this also
resets the sequence counter to 1.

4. Copy rows from the new table back to the original table, using an
ORDER BY clause to sort rows into the order in which you want
sequence numbers assigned. MySQL assigns sequence values to the
AUTO_INCREMENT column.

15.9 Sequencing an Unsequenced Table

Problem
You forgot to include a sequence column when you created a table. Is it too
late to sequence the table rows?

Solution
No. Add an AUTO_INCREMENT column using ALTER TABLE; MySQL
creates the column and numbers its rows.

https://oreil.ly/KYlP1

Discussion
Suppose that a table contains name and age columns but no sequence
column:

mysql> SELECT * FROM t;
+----------+------+
| name | age |
+----------+------+
boris	47
clarence	62
abner	53
+----------+------+

Add a sequence column named id to the table as follows:

mysql> ALTER TABLE t
 -> ADD id INT NOT NULL AUTO_INCREMENT,
 -> ADD PRIMARY KEY (id);
mysql> SELECT * FROM t ORDER BY id;
+----------+------+----+
| name | age | id |
+----------+------+----+
boris	47	1
clarence	62	2
abner	53	3
+----------+------+----+

MySQL numbers the rows for you; it’s unnecessary to assign the values
yourself. Very handy.
By default, ALTER TABLE adds new columns to the end of the table. To
place a column at a specific position, use FIRST or AFTER at the end of
the ADD clause. The following ALTER TABLE statements are similar to the
one just shown but place the id column first in the table or after the name
column, respectively:

ALTER TABLE t
 ADD id INT NOT NULL AUTO_INCREMENT FIRST,
 ADD PRIMARY KEY (id);

ALTER TABLE t
 ADD id INT NOT NULL AUTO_INCREMENT AFTER name,

 ADD PRIMARY KEY (id);

15.10 Managing Multiple Auto-Increment
Values Simultaneously

Problem
You’re executing multiple statements that generate AUTO_INCREMENT
values, and it’s necessary to keep track of them independently. For example,
you’re inserting rows into multiple tables, each of which has its own
AUTO_INCREMENT column.

Solution
Save the sequence values in variables for later use. Alternatively, if you
execute sequence-generating statements from within a program, you might
be able to issue the statements using separate connection or statement
objects to keep them from getting mixed up.

Discussion
As described in Recipe 15.4, the LAST_INSERT_ID() server-side
sequence value function is set each time a statement generates an
AUTO_INCREMENT value, whereas client-side sequence indicators may be
reset for every statement. What if you issue a statement that generates an
AUTO_INCREMENT value, but you don’t want to refer to that value until
after issuing a second statement that also generates an AUTO_INCREMENT
value? In this case, the original value is no longer accessible, either through
LAST_INSERT_ID() or as a client-side value. To retain access to it, save
the value first before issuing the second statement. There are several ways
to do this:

At the SQL level, save the value in a user-defined variable after issuing a
statement that generates an AUTO_INCREMENT value:

INSERT INTO tbl_name (id,...) VALUES(NULL,...);
SET @saved_id = LAST_INSERT_ID();

Then you can issue other statements without regard to their effect on
LAST_INSERT_ID(). To use the original AUTO_INCREMENT value
in a subsequent statement, refer to the @saved_id variable.

At the API level, save the AUTO_INCREMENT value in an API language
variable. This can be done by saving the value returned from either
LAST_INSERT_ID() or any API-specific extension that is available.

Some APIs enable you to maintain separate client-side
AUTO_INCREMENT values. For example, Perl DBI statement handles
have a mysql_insertid attribute, and the attribute value for one
handle is unaffected by activity on another. In Java, use separate
Statement or PreparedStatement objects.

See Recipe 15.11 for application of these techniques to situations in which
you must insert rows into multiple tables that each contain an
AUTO_INCREMENT column.

15.11 Using Auto-Increment Values to
Associate Tables

Problem
You use sequence values from one table as keys in a second table so that
you can associate rows in the two tables with one another. But the
associations aren’t being set up properly.

Solution
You’re probably not inserting rows in the proper order, or you’re losing
track of the sequence values. Change the insertion order, or save the
sequence values so that you can refer to them when you need them.

Discussion
Be careful with an AUTO_INCREMENT value used as an ID value in a
source table if you also store the value in detail table rows for the purpose
of linking the detail rows to the proper source table row. Suppose that an
invoice table lists invoice information for customer orders, and an
inv_item table lists the individual items associated with each invoice.
Here, invoice is the source table and inv_item is the detail table. To
uniquely identify each order, include an AUTO_INCREMENT column,
inv_id, in the invoice table. You’d also store the appropriate invoice
number in each inv_item table row so that you can tell which invoice it
goes with. The tables might look something like this:

CREATE TABLE invoice
(
 inv_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (inv_id),
 date DATE NOT NULL
 # ... other columns could go here
 # ... (customer ID, shipping address, etc.)
);
CREATE TABLE inv_item
(
 inv_id INT UNSIGNED NOT NULL, # invoice ID (from invoice
table)
 INDEX (inv_id),
 qty INT, # quantity
 description VARCHAR(40) # description
);

For this kind of table relationship, it’s typical to insert a row into the source
table first (to generate the AUTO_INCREMENT value that identifies the
row) and then insert the detail rows using LAST_INSERT_ID() to obtain
the source row ID. If a customer buys a hammer, three boxes of nails, and
(in anticipation of finger-bashing with the hammer) a dozen bandages, the
rows pertaining to the order can be inserted into the two tables like so:

INSERT INTO invoice (inv_id,date)
 VALUES(NULL,CURDATE());
INSERT INTO inv_item (inv_id,qty,description)
 VALUES(LAST_INSERT_ID(),1,'hammer');

INSERT INTO inv_item (inv_id,qty,description)
 VALUES(LAST_INSERT_ID(),3,'nails, box');
INSERT INTO inv_item (inv_id,qty,description)
 VALUES(LAST_INSERT_ID(),12,'bandage');

The first INSERT adds a row to the invoice source table and generates a
new AUTO_INCREMENT value for its inv_id column. The following
INSERT statements each add a row to the inv_item detail table, using
LAST_INSERT_ID() to get the invoice number. This associates the detail
rows with the proper source row.
What if you have multiple invoices to process? There’s a right way and a
wrong way to enter the information. The right way is to insert all the
information for the first invoice, then proceed to the next. The wrong way is
to add all the source rows into the invoice table, then add all the detail
rows to the inv_item table. If you do that, all the new detail rows in the
inv_item table have the AUTO_INCREMENT value from the most
recently entered invoice row. Thus, all items appear to be part of that
invoice, and rows in the two tables don’t have the proper associations.
If the detail table contains its own AUTO_INCREMENT column, you must
be even more careful about how you add rows to the tables. Suppose that
you want each row in the inv_item table to have a unique identifier. To
do that, create the inv_item table as follows with an
AUTO_INCREMENT column named item_id:

CREATE TABLE inv_item
(
 inv_id INT UNSIGNED NOT NULL, # invoice ID (from invoice
table)
 item_id INT UNSIGNED NOT NULL AUTO_INCREMENT, # item ID
 PRIMARY KEY (item_id),
 qty INT, # quantity
 description VARCHAR(40) # description
);

The inv_id column enables each inv_item row to be associated with
the proper invoice table row, just as with the original table structure. In
addition, item_id uniquely identifies each item row. However, now that

both tables contain an AUTO_INCREMENT column, you cannot enter
information for an invoice the same way as before. If you execute the
INSERT statements shown previously, they now produce a different result
due to the change in the inv_item table structure. The INSERT into the
invoice table works properly. So does the first INSERT into the
inv_item table; LAST_INSERT_ID() returns the inv_id value from
the source row in the invoice table. However, this INSERT also
generates its own AUTO_INCREMENT value (for the item_id column),
which changes the value of LAST_INSERT_ID() and causes the source
row inv_id value to be “lost.” As a result, each of the remaining inserts
into the inv_item table stores the preceding row’s item_id value into
the inv_id column. This causes the second and following rows to have
incorrect inv_id values.

To avoid this difficulty, save the sequence value generated by the insert into
the source table, and use the saved value for the inserts into the detail table.
To save the value, use a user-defined SQL variable or a variable maintained
by your program. Recipe 15.10 describes those techniques, which apply
here as follows:

Use a user-defined variable
Save the source row AUTO_INCREMENT value in a user-defined
variable for use when inserting the detail rows:

INSERT INTO invoice (inv_id,date)
 VALUES(NULL,CURDATE());
SET @inv_id = LAST_INSERT_ID();
INSERT INTO inv_item (inv_id,qty,description)
 VALUES(@inv_id,1,'hammer');
INSERT INTO inv_item (inv_id,qty,description)
 VALUES(@inv_id,3,'nails, box');
INSERT INTO inv_item (inv_id,qty,description)
 VALUES(@inv_id,12,'bandage');

Use a variable maintained by your program
This method is similar to the previous one but applies only from within
an API. Insert the source row, and then save the AUTO_INCREMENT

value into an API variable for use when inserting detail rows. For
example, in Ruby, access the AUTO_INCREMENT value using the
last_id method:

client.query("INSERT INTO invoice (inv_id,date)
VALUES(NULL,CURDATE())")
inv_id = client.last_id
sth = client.prepare("INSERT INTO inv_item
(inv_id,qty,description)
 VALUES(?,?,?)")
sth.execute(inv_id, 1, "hammer")
sth.execute(inv_id, 3, "nails, box")
sth.execute(inv_id, 12, "bandage")

15.12 Using Sequence Generators as
Counters

Problem
You’re interested only in counting events, so you want to avoid having to
create a new table row for each sequence value.

Solution
Increment a single row per counter.

Discussion
AUTO_INCREMENT columns are useful for generating sequences across a
set of individual rows. But some applications require only a count of the
number of times an event occurs, and there’s no benefit from creating a
separate row for each event. Instances include web page or banner ad hit
counters, a count of items sold, or the number of votes in a poll. Such
applications need only a single row to hold the count as it changes over
time. MySQL provides a mechanism for this that enables counts to be
treated like AUTO_INCREMENT values so that you can not only increment
the count, but also retrieve the updated value easily.

To count a single type of event, use a trivial table with a single row and
column. For example, to record copies sold of a book, create a table like
this:

CREATE TABLE booksales (copies INT UNSIGNED);

However, if you’re counting sales for multiple book titles, that method
doesn’t work well. You certainly don’t want to create a separate single-row
counting table per book. Instead, count them all within a single table by
including a column that uniquely identifies each book. The following table
does this using a title column for the book title in addition to a copies
column that records the number of copies sold:

CREATE TABLE booksales
(
 title VARCHAR(60) NOT NULL, # book title
 copies INT UNSIGNED NOT NULL, # number of copies sold
 PRIMARY KEY (title)
);

To record sales for a given book, different approaches are possible:
Initialize a row for the book with a copies value of 0:

INSERT INTO booksales (title,copies) VALUES('The Greater
Trumps',0);

Then increment the copies value for each sale:

UPDATE booksales SET copies = copies+1 WHERE title = 'The
Greater Trumps';

This method requires that you remember to initialize a row for each
book or the UPDATE will fail.

Use INSERT with ON DUPLICATE KEY UPDATE, which initializes the
row with a count of 1 for the first sale and increments the count for
subsequent sales:

INSERT INTO booksales (title,copies)
VALUES('The Greater Trumps',1)
ON DUPLICATE KEY UPDATE copies = copies+1;

This is simpler because the same statement works to initialize and
update the sales count.

To retrieve the sales count (for example, to display a message to customers
such as “You just purchased copy n of this book”), issue a SELECT query
for the same book title:

SELECT copies FROM booksales WHERE title = 'The Greater Trumps';

Unfortunately, this is not quite correct. Suppose that between the times
when you update and retrieve the count, some other person buys a copy of
the book (and thus increments the copies value). Then the SELECT
statement won’t actually produce the value you incremented the sales count
to, but rather its most recent value. In other words, other clients can affect
the value before you have time to retrieve it. This is similar to the problem
discussed in Recipe 15.4 that can occur if you try to retrieve the most recent
AUTO_INCREMENT value from a column by invoking MAX(col_name)
rather than LAST_INSERT_ID().

There are ways around this (such as by grouping the two statements as a
transaction or by locking the table), but MySQL provides a simpler solution
based on LAST_INSERT_ID(). If you call LAST_INSERT_ID() with
an expression argument, MySQL treats it like an AUTO_INCREMENT
value. To use this feature with the booksales table, modify the count-
incrementing statement slightly:

INSERT INTO booksales (title,copies)
VALUES('The Greater Trumps',LAST_INSERT_ID(1))
ON DUPLICATE KEY UPDATE copies = LAST_INSERT_ID(copies+1);

The statement uses the LAST_INSERT_ID(expr) construct both to
initialize and to increment the count. MySQL treats the expression

argument like an AUTO_INCREMENT value so that you can invoke
LAST_INSERT_ID() later with no argument to retrieve the value:

SELECT LAST_INSERT_ID();

By setting and retrieving the copies column this way, you always get
back the value you set it to, even if some other client updated it in the
meantime. If you issue the INSERT statement from within an API that
provides a mechanism for fetching the most recent AUTO_INCREMENT
value directly, you need not even issue the SELECT query. For example,
using Connector/Python, update a count and get the new value using the
lastrowid attribute:

cursor = conn.cursor()
cursor.execute('''
 INSERT INTO booksales (title,copies)
 VALUES('The Greater Trumps',LAST_INSERT_ID(1))
 ON DUPLICATE KEY UPDATE copies =
LAST_INSERT_ID(copies+1)
 ''')
count = cursor.lastrowid
cursor.close()
conn.commit()

In Java, the operation looks like this:

Statement s = conn.createStatement ();
s.executeUpdate (
 "INSERT INTO booksales (title,copies)"
 + "VALUES('The Greater Trumps',LAST_INSERT_ID(1))"
 + "ON DUPLICATE KEY UPDATE copies =
LAST_INSERT_ID(copies+1)",
 Statement.RETURN_GENERATED_KEYS);
long count;
ResultSet rs = s.getGeneratedKeys ();
if (rs.next ())
{
 count = rs.getLong (1);
}
else
{
 throw new SQLException ("getGeneratedKeys() produced no
value");

}
rs.close ();
s.close ();

Use of LAST_INSERT_ID(expr) for sequence generation has certain
other properties that differ from true AUTO_INCREMENT sequences:

AUTO_INCREMENT values increment by one each time, whereas values
generated by LAST_INSERT_ID(expr) can be any nonnegative
value you want. For example, to produce the sequence 10, 20, 30, …,
increment the count by 10 each time. You need not even increment the
counter by the same value each time. If you sell a dozen copies of a book
rather than a single copy, update its sales count as follows:

INSERT INTO booksales (title,copies)
VALUES('The Greater Trumps',LAST_INSERT_ID(12))
ON DUPLICATE KEY UPDATE copies = LAST_INSERT_ID(copies+12);

To reset a counter, simply set it to the desired value. Suppose that you
want to report to book buyers the sales for the current month, rather than
the total sales (for example, to display messages like “You’re the nth
buyer this month”). To clear the counters to zero at the beginning of each
month, use this statement:

UPDATE booksales SET copies = 0;

One property that’s not so desirable is that the value generated by
LAST_INSERT_ID(expr) is not uniformly available via client-side
retrieval methods under all circumstances. You can get it after UPDATE
or INSERT statements but not for SET statements. If you generate a
value as follows (in Ruby), the client-side value returned by
insert_id is 0, not 48:

client.query("SET @x = LAST_INSERT_ID(48)")
seq = client.last_id

To get the value in this case, ask the server for it:

seq = client.query("SELECT LAST_INSERT_ID()").first.values[0]

15.13 Generating Repeating Sequences

Problem
You require a sequence that contains cycles.

Solution
Make cycles in the sequence with division and modulo operations.

Discussion
Some sequence-generation problems require values that go through cycles.
Suppose that you manufacture items such as pharmaceutical products or
automobile parts, and you must be able to track them by lot number if
manufacturing problems are discovered later that require items sold within
a particular lot to be recalled. Suppose also that you pack and distribute
items 12 units to a box and 6 boxes to a case. In this situation, item
identifiers are three-part values: the unit number (with a value from 1 to
12), the box number (with a value from 1 to 6), and a lot number (with a
value from 1 to the highest current case number).
This item-tracking problem appears to require that you maintain three
counters, so you might generate the next identifier value using an algorithm
like this:

retrieve most recently used case, box, and unit numbers
unit = unit + 1 # increment unit number
if (unit > 12) # need to start a new box?
{
 unit = 1 # go to first unit of next box
 box = box + 1
}
if (box > 6) # need to start a new case?
{
 box = 1 # go to first box of next case
 case = case + 1

}
store new case, box, and unit numbers

Alternatively, it’s possible simply to assign each item a sequence number
identifier and derive the corresponding case, box, and unit numbers from it.
The identifier can come from an AUTO_INCREMENT column or a single-
row sequence generator. The formulas for determining the case, box, and
unit numbers for any item from its sequence number look like this:

unit_num = ((seq - 1) % 12) + 1
box_num = (int ((seq - 1) / 12) % 6) + 1
case_num = int ((seq - 1)/(6 * 12)) + 1

The following table illustrates the relationship between some sample
sequence numbers and the corresponding case, box, and unit numbers:

seq case box unit
1 1 1 1

12 1 1 12

13 1 2 1

72 1 6 12

73 2 1 1

144 2 6 12

15.14 Using Custom Increment Values

Problem
You want to increment sequences not by one but by a different number.

Solution
Use the auto_increment_increment and
auto_increment_offset system variables.

Discussion
By default, MySQL increases values in a column, having an
AUTO_INCREMENT option, by one. This is not always desirable. Suppose
you have a replication chain (Recipe 3.9) of three servers—Venus, Mars,
Saturn—and want to distinguish from which server the inserted value is
originated.
The simplest solution for this issue would be to assign a sequence of 1,
4, 7, 10, ... values to the rows inserted on Venus; a sequence of
2, 5, 8, 11, ... to the rows inserted on Mars and a sequence of 3,
6, 9, 12, ... for the rows inserted on Saturn.

To do it, set the value of the auto_increment_increment system
variable to the number of servers: in our case 3, so MySQL will increment
sequence value by three. Then set auto_increment_offset to 1 on
Venus, to 2 on Mars and to 3 on Saturn. This will instruct MySQL to
start new sequences from the specified values:

Venus> SET auto_increment_offset=1;
Query OK, 0 rows affected (0.00 sec)

Venus> SET auto_increment_increment=3;
Query OK, 0 rows affected (0.00 sec)

Mars> SET auto_increment_offset=2;
Query OK, 0 rows affected (0.00 sec)

Mars> SET auto_increment_increment=3;
Query OK, 0 rows affected (0.00 sec)

Saturn> SET auto_increment_offset=3;
Query OK, 0 rows affected (0.00 sec)

Saturn> SET auto_increment_increment=3;
Query OK, 0 rows affected (0.00 sec)

WARNING
We set session variables for our example, but if you want to affect not only your own session, but
all connections on the server, you need to use SET GLOBAL. To preserve a configuration change
after restart, set these value in the configuration file, or, starting from version 8.0, use the SET
PERSIST command.

If you already have tables with an AUTO-INCREMENT column, specify the
offset using this statement:

ALTER TABLE mytable AUTO_INCREMENT = N;

WARNING
Not all engines support the AUTO_INCREMENT option for CREATE TABLE and ALTER
TABLE. In this case, you can set the starting value for the auto-incremented column by inserting a
row with the desired value, then removing it.

After preparations are done, MySQL will use the
auto_increment_increment value to generate the next sequence
number:

Venus> CREATE TABLE offset(
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> host CHAR(32)
 ->);
Query OK, 0 rows affected (0.03 sec)

Venus> INSERT INTO offset(host) VALUES(@@hostname);
Query OK, 1 row affected (0.01 sec)

Venus> INSERT INTO offset(host) VALUES(@@hostname);
Query OK, 1 row affected (0.01 sec)

Venus> INSERT INTO offset(host) VALUES(@@hostname);
Query OK, 1 row affected (0.01 sec)

Venus> SELECT * FROM offset;
+----+-------+
| id | host |

+----+-------+
1	Venus
4	Venus
7	Venus
+----+-------+
3 rows in set (0.00 sec)

Mars> ALTER TABLE offset AUTO_INCREMENT=2;
Query OK, 0 rows affected (0.36 sec)
Records: 0 Duplicates: 0 Warnings: 0

Mars> INSERT INTO offset(host) VALUES('Mars');
Query OK, 1 row affected (0.00 sec)

Mars> INSERT INTO offset(host) VALUES('Mars');
Query OK, 1 row affected (0.01 sec)

Mars> SELECT * FROM offset;
+----+-------+
| id | host |
+----+-------+
1	Venus
4	Venus
7	Venus
8	Mars
11	Mars
+----+-------+
5 rows in set (0.00 sec)

The hostname system variable contains the value of the MySQL host.
We use it to distinguish machines.

On Venus, the sequence starts from 1, and we have the expected
values: 1, 4, 7.

The table on Mars already existed. The ALTER TABLE command sets
offset for the AUTO_INCREMENT sequence to the desired value.

Since the offset table already had rows on Mars, the new
AUTO_INCREMENT value started from 8 that belongs to the sequence
2, 5, 8, 11,

15.15 Using Window Functions to Number
Rows in the Result Set

Problem
You want to enumerate the result of a SELECT query.

Solution
Use the ROW_NUMBER() window function.

Discussion
Sequences are useful not only when you store data in tables but also when
you work with results of queries.
Suppose you’re running a singing competition. Each singer should have a
turn. To provide everyone an equal chance, the position in the queue should
be defined randomly.
The singers’ names are stored in the name table. To retrieve them in
random order, use the RAND() function:

mysql> SELECT first_name, last_name FROM name ORDER BY RAND();
+------------+-----------+
| first_name | last_name |
+------------+-----------+
Pete	Gray
Vida	Blue
Rondell	White
Kevin	Brown
Devon	White
+------------+-----------+
5 rows in set (0.00 sec)

This query will return the list of names in different orders each time it is
called.
Window functions can perform calculations per each row in the result set,
and we can use them to create a new column with the order in which the

singers will perform.
Window functions work over a specific window that in our case is a
SELECT query. They may access multiple rows while they are executing
but produce results for each row in the window:

mysql> SELECT
 -> ROW_NUMBER() OVER win AS turn,
 -> first_name, last_name FROM name
 -> WINDOW win
 -> AS (ORDER BY RAND());
+------+------------+-----------+
| turn | first_name | last_name |
+------+------------+-----------+
1	Devon	White
2	Kevin	Brown
3	Rondell	White
4	Vida	Blue
5	Pete	Gray
+------+------------+-----------+
5 rows in set (0.00 sec)

The ROW_NUMBER() function defines the position in the singing
schedule.

Other columns in the name table that we want to see in the query result.

The keyword WINDOW defines the named window over which we will
use the ROW_NUMBER function.

Sort the window in random order to get fair queue distribution.
Another common use of the ROW_NUMBER() function is to generate a
sequence of identifiers that later could be used to join the SELECT result
with another table. We discuss this approach in one of the examples in
Recipe 15.16.

See Also
For additional information about window functions, see “Window Function
Concepts and Syntax”.

https://oreil.ly/Kh0K5

15.16 Generating Series with Recursive CTEs

Problem
You want to create a custom sequence, such as a geometric progression or
Fibonacci number.

Solution
Use recursive Common Table Expressions (CTEs) to create the sequence
from the custom formula.

Discussion
Sequences should not always be an arithmetic progression. They could be
any kind of progression and even random numbers or strings.
One way to create custom sequences is recursive CTEs. They are named
temporary result sets that allow self-referencing. Basic recursive CTE
syntax is as follows:

WITH RECURSIVE name(column[, column])
(SELECT expressin[, expression]
UNION ALL
SELECT expressin[, expression]
FROM name WHERE ...)
SELECT * FROM name;

Thus, to generate a geometric progression starting from 2 with a common
ratio 2, use a CTE as follows:

mysql> WITH RECURSIVE geometric_progression(id) AS
 -> (SELECT 2
 -> UNION ALL
 -> SELECT id * 2
 -> FROM geometric_progression
 -> LIMIT 5)
 -> SELECT * FROM geometric_progression;
+------+
| id |
+------+

| 2 |
| 4 |
| 8 |
| 16 |
| 32 |
+------+
5 rows in set (0.00 sec)

Starting value for the sequence.

All subsequent values in the geometric progression are the previous
number multiplied by the common ratio.

To limit the number of the generated numbers and avoid infinite loops,
use either a LIMIT clause or any valid WHERE condition.

Recursive CTEs allow you to create multiple sequences at the same time.
For example, we can use them to create the following:

An id that will use regular arithmetic progression, starting from 1 with a
common difference 1
A geometric progression, starting from 3 with a common ratio 4
A random number between 1 and 5

To create all these in a single query, use a recursive CTE as follows:

mysql> WITH RECURSIVE sequences(id, geo, random) AS
 -> (SELECT 1, 3, FLOOR(1+RAND()*5)
 -> UNION ALL
 -> SELECT id + 1, geo * 4, FLOOR(1+RAND()*5)
 -> FROM sequences
 -> WHERE id < 5)
 -> SELECT * FROM sequences;
+------+------+--------+
| id | geo | random |
+------+------+--------+
1	3	4
2	12	4
3	48	2
4	192	2
5	768	3
+------+------+--------+
5 rows in set (0.00 sec)

To illustrate the use of the custom sequence, suppose that we are working
on a new Data Phobia vaccine and want to start phase III trials on it. Phase
III includes testing the real vaccine and a placebo. Doses are distributed
randomly between volunteers. To perform this trial, we will use a
patients table with participants who do not already have a diagnosis of
Data Phobia. We generate a sequence of two random values and assign
either a real vaccine or a placebo based on that:

mysql> WITH RECURSIVE trial(id, dose) AS
 -> (SELECT 1, IF(1=FLOOR(1+RAND()*2), 'Vaccine', 'Placebo')

 -> UNION ALL
 -> SELECT id+1, IF(1=FLOOR(1+RAND()*2), 'Vaccine',
'Placebo')
 -> FROM trial
 -> WHERE id < (SELECT COUNT(*) FROM patients
 -> WHERE diagnosis != 'Data Phobia' and
result != 'D')),
 -> volunteers AS
 -> (SELECT ROW_NUMBER() OVER win AS id,
 -> national_id, name, surname
 -> FROM patients WHERE diagnosis != 'Data Phobia' and
result != 'D'
 -> WINDOW win AS (ORDER BY surname))
 -> SELECT national_id, name, surname, dose
 -> FROM trial JOIN volunteers USING(id);
+-------------+-----------+-----------+---------+
| national_id | name | surname | dose |
+-------------+-----------+-----------+---------+
84DC051879	William	Brown	Vaccine
78FS043029	David	Davis	Vaccine
38BP394037	Catherine	Hernandez	Placebo
28VU492728	Alice	Jackson	Vaccine
71GE601633	John	Johnson	Vaccine
09SK434607	Richard	Martin	Placebo
30NC108735	Robert	Martinez	Placebo
02WS884704	Sarah	Miller	Placebo
45MY529190	Patricia	Rodriguez	Vaccine
89AR642465	Mary	Smith	Placebo
99XC682639	Emma	Taylor	Vaccine
04WT954962	Peter	Wilson	Vaccine
+-------------+-----------+-----------+---------+
12 rows in set (0.00 sec)

The FLOOR(1+RAND()*2) function generates two random numbers:
1 or 2. The IF function works as a ternary operator: if the first argument
is true, it returns the second one; otherwise, it returns the third
argument.

We do not want patients who have already been diagnosed with Data
Phobia to participate in our tests, and we cannot test our vaccine on
patients who did not recover.

While the patients table has an AUTO_INCREMENT column id, we
cannot use it, because we couldn’t exclude patients that won’t
participate in our tests this way. Therefore, we use a CTE to create a
named result set, volunteers, and generate its own sequence for it.

The ROW_NUMBER() function generates a new sequence for the
patients who participate in the tests.

Join the generated sequence of random values for the dose and the
named result set, volunteers, using a generated id without
including it into the final result set.

See Also
For additional information about CTEs, see Recipe 10.18.

15.17 Creating and Storing Custom
Sequences

Problem
You want to use a custom sequence as a stored id column in the table.

Solution
Create a table that will hold sequence values and a function that will update
and select these values.

Discussion
Although MySQL does not support the SQL SEQUENCE object, it is pretty
easy to imitate one.
First, you need to create a table that will hold sequences:

CREATE TABLE `sequences` (
 `sequence_name` varchar(64) NOT NULL,
 `maximum_value` bigint NOT NULL DEFAULT '9223372036854775807',
 `minimum_value` bigint NOT NULL DEFAULT '-9223372036854775808',
 `increment` bigint NOT NULL DEFAULT '1',
 `start_value` bigint NOT NULL DEFAULT '-9223372036854775808',
 `current_base_value` bigint NOT NULL DEFAULT
'-9223372036854775808',
 `cycle_option` enum('yes','no') NOT NULL DEFAULT 'no',
 PRIMARY KEY (`sequence_name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci;

For this recipe, we used the same table definition that the MySQL
Engineering Team is planning to implement as part of WL#827:
SEQUENCE object as in Oracle, PostgreSQL, and/or SQL:2003. This
definition is not required for real-life sequence implementation that could
be either simpler or have more options.
Columns in the sequences table all have special meanings (see Table 15-
1).

Table 15-1. Columns in the sequences table

Co
lu
m
n

Description Comments

se
qu
en
ce
_n
am
e

Name of the sequence. Required field, should be unique.

https://oreil.ly/juxur

Co
lu
m
n

Description Comments

ma
xi
mu
m_
va
lu
e

Maximum value that the
sequence can generate.

We allow negative values in our custom sequence; therefore,
the maximum possible value is 9223372036854775807, which
is the maximum value for the BIGINT SIGNED datatype. If
you make this column BIGINT UNSIGNED, the sequence
could have twice the values. This option is not critical for the
sequence generation and can be skipped.

mi
ni
mu
m_
va
lu
e

Minimum value for the
sequence.

In our case, the default is -9223372036854775808, which is
the minimum for the BIGINT SIGNED type. Depending on
how you want to create custom sequences, this column could
be skipped or have different types or default values.

in
cr
em
en
t

Increment for the
sequence.

The SQL standard defines the sequence that uses arithmetic
progression. This column contains a common difference for the
progression. This is a required field.

If you create custom sequence, such as geometric progression,
you may have a common ratio in this field or any other value
that allows you to generate the next one.

st
ar
t_
va
lu
e

The value from which
the sequence will start.

This is not an essential field for implementing sentences. In
our case, it is minimum_value by default.

Co
lu
m
n

Description Comments

cu
rr
en
t_
ba
se
_v
al
ue

The value that the
sequence needs to return
when asked for the next
value. Once returned, it
should be replaced with
the newly generated one.

This is a required field. The default is the same as
start_value.

cy
cl
e_
op
ti
on

Does the sequence
support cycles?

If enabled, the sequence will reset back to start_value
when it reaches either its minimum_value or
maximum_value.

Then, we need to create a stored procedure that will update the
sequences table:

CREATE PROCEDURE create_sequence(
 sequence_name VARCHAR(64), start_value BIGINT, increment
BIGINT,
 cycle_option ENUM('yes','no'), maximum_value BIGINT,
minimum_value BIGINT)
BEGIN
 INSERT INTO sequences
 (sequence_name, maximum_value, minimum_value, increment,
start_value,
 current_base_value, cycle_option)
 VALUES(
 sequence_name,
 COALESCE(maximum_value, 9223372036854775807),
 COALESCE(minimum_value, -9223372036854775808),
 COALESCE(increment, 1),
 COALESCE(start_value, -9223372036854775808),
 COALESCE(start_value, -9223372036854775808),
 COALESCE(cycle_option, 'no'));
END;

NOTE
Using stored routines, rather than updating the sequences table directly, has a number of
advantages:

You don’t need to worry about updating the current_base_value each time you use the
sequence.

If the cycle_option value is enabled, the sequence will reset back to start_value
when it reaches either its minimum_value or maximum_value.

You may restrict direct access to the sequences table for anyone, except the administrator,
and still allow application users to use sequences. See Recipe 24.13 for details.

MySQL does not allow us to call a stored function with a variable number
of arguments. The COALESCE function allows you to put defaults if NULL
values are passed in place of the arguments for which you want to have
default values:

mysql> CALL create_sequence('bar', 1, 1, 'no',
9223372036854775807, -9223372036854775808);
Query OK, 1 row affected (0.01 sec)

mysql> CALL create_sequence('baz', 1, 1, 'yes', 10, 1);
Query OK, 1 row affected (0.01 sec)

mysql> call create_sequence('foo',null,null,null, null, null);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM sequences\G
*************************** 1. row ***************************
 sequence_name: bar
 maximum_value: 9223372036854775807
 minimum_value: 1
 increment: 1
 start_value: 1
current_base_value: 1
 cycle_option: no
*************************** 2. row ***************************
 sequence_name: baz
 maximum_value: 10
 minimum_value: 1
 increment: 1
 start_value: 1
current_base_value: 1

 cycle_option: yes
*************************** 3. row ***************************
 sequence_name: foo
 maximum_value: 9223372036854775807
 minimum_value: -9223372036854775808
 increment: 1
 start_value: -9223372036854775808
current_base_value: -9223372036854775808
 cycle_option: no
3 rows in set (0.00 sec)

In the preceding example, we first created a bar sequence that starts from
1, increments by 1, does not have a cycle option, and has a default
maximum_value of 9223372036854775807. Then, we created the baz
sequence that also starts from 1 and increments by 1 but has
cycle_option enabled and a maximum_value 10, so it cycles quite
fast. Finally, we created a foo sequence that has only custom name and all
other defaults.
To get the next sequence value and update the sequence table at the same
time, we will use a stored function:

CREATE FUNCTION sequence_next_value(name varchar(64)) RETURNS
BIGINT
BEGIN
 DECLARE retval BIGINT;
 SELECT current_base_value INTO retval FROM sequences
 WHERE sequence_name=name FOR UPDATE;
 UPDATE sequences SET current_base_value=
 IF((current_base_value+increment <= maximum_value
 AND current_base_value+increment >= minimum_value),
 current_base_value+increment,
 IF('yes' = cycle_option, start_value, NULL)
) WHERE sequence_name=name;
 RETURN retval;
END;

The function first retrieves current_base_value of the sequence
using the SELECT...FOR UPDATE statement, so other connections
won’t modify the sequence until we return the value.
Our function supports cycles. In cases where cycle_option is enabled,
and the next sequence value exceeds the boundaries, it sets

current_base_value to the value, defined by the start_value. If
cycle_option is disabled and the next sequence value exceeds the
boundaries, we insert NULL value into the current_base_value
column, which MySQL will reject with an error. You may consider raising a
custom exception instead.
To demonstrate how cycle_option option works, let’s see how the baz
sequence behaves when its boundaries are reached:

mysql> SELECT sequence_next_value('baz');
+----------------------------+
| sequence_next_value('baz') |
+----------------------------+
| 10 |
+----------------------------+
1 row in set (0.00 sec)

mysql> SELECT sequence_next_value('baz');
+----------------------------+
| sequence_next_value('baz') |
+----------------------------+
| 1 |
+----------------------------+
1 row in set (0.01 sec)

mysql> SELECT sequence_next_value('baz');
+----------------------------+
| sequence_next_value('baz') |
+----------------------------+
| 2 |
+----------------------------+
1 row in set (0.01 sec)

To demonstrate function behavior when the boundaries are reached while
cycle_option is not enabled, we created a sequence that has a small
maximum value:

mysql> CALL create_sequence('boo', 1, 1, 'no', 3, 1);
Query OK, 1 row affected (0.01 sec)

mysql> SELECT sequence_next_value('boo');
+----------------------------+
| sequence_next_value('boo') |
+----------------------------+

| 1 |
+----------------------------+
1 row in set (0.01 sec)

mysql> SELECT sequence_next_value('boo');
+----------------------------+
| sequence_next_value('boo') |
+----------------------------+
| 2 |
+----------------------------+
1 row in set (0.01 sec)

mysql> SELECT sequence_next_value('boo');
ERROR 1048 (23000): Column 'current_base_value' cannot be null

To use custom sequences with tables, simply call
sequence_next_value each time you need the next sequence value:

mysql> CREATE TABLE sequence_test(
 -> id BIGINT NOT NULL PRIMARY KEY,
 -> -- other fields
 ->);
Query OK, 0 rows affected (0.04 sec)

mysql> CALL create_sequence('sequence_test', 10, 5, 'no', null,
null);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO sequence_test
VALUES(sequence_next_value('sequence_test'));
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO sequence_test
VALUES(sequence_next_value('sequence_test'));
Query OK, 1 row affected (0.01 sec)

mysql> select * from sequence_test;
+----+
| id |
+----+
| 10 |
| 15 |
+----+
2 rows in set (0.00 sec)

You can automate sequence-value generation for your tables by using
triggers.

CREATE TRIGGER sequence_test_bi BEFORE INSERT ON sequence_test
FOR EACH ROW SET NEW.id=IFNULL(NEW.id,
sequence_next_value('sequence_test'));

In this example, we generate a new sequence value when a user tries to
insert NULL into the id column of the sequence_test table. If the user,
instead, decides to specify the value explicitly, the trigger would not change
it:

mysql> INSERT INTO sequence_test VALUES();
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO sequence_test VALUES(13);
Query OK, 1 row affected (0.00 sec)

mysql> select * from sequence_test;
+----+
| id |
+----+
| 10 |
| 13 |
| 15 |
| 20 |
+----+
4 rows in set (0.00 sec)

Finally, we need to define a stored procedure to delete the sequence when
we don’t need it:

CREATE PROCEDURE delete_sequence(name VARCHAR(64))
DELETE FROM sequences WHERE sequence_name=name;

You will find code for maintaining custom sequences in the
sequences/custom_sequences.sql file of the recipes distribution.

Chapter 16. Using Joins and
Subqueries

16.0 Introduction
Most queries in earlier chapters used a single table, but for any application
of even moderate complexity, you’ll likely need to use multiple tables.
Some questions simply cannot be answered using a single table, and the real
power of a relational database comes into play when you combine the
information from multiple sources:

Combine rows from tables to obtain more comprehensive information
than can be obtained from individual tables alone
Hold intermediate results for a multiple-stage operation
Modify rows in one table based on information from another

This chapter focuses on two types of statements that use multiple tables:
joins between tables and subqueries that nest one SELECT within another.
It covers the following topics:

Comparing tables to find matches or mismatches
To solve such problems, you should know which types of joins apply.
Inner joins show which rows in one table match rows in another. Outer
joins show matching rows but also find rows in one table not matched
by rows in another.

Deleting unmatched rows
If two datasets are related, but imperfectly, you can determine which
rows are unmatched and remove them as necessary.

Comparing a table to itself
Some problems require comparing a table to itself. This is similar to
performing a join between different tables, except that you must use

table aliases to disambiguate table references.

Producing candidate-detail and many-to-many relationships
Joins enable the production of lists or summaries when each item in one
table can match many items in the other table, or when each item in
either table can match many items in the other table.

The scripts that create the tables used in this chapter are located in the
tables directory of the recipes distribution. For scripts that implement
the techniques discussed here, look in the joins directory.

16.1 Finding Matches Between Tables

Problem
You need to perform a task that requires information from more than one
table.

Solution
Use a join—that is, a query that lists multiple tables in its FROM clause and
tells MySQL how to match information from them.

Discussion
The essential idea behind a join is that it matches rows in one table with
rows in one or more other tables. Joins enable you to combine information
from multiple tables when each one answers only part of the question in
which you’re interested.
A complete join that produces all possible row combinations is called a
Cartesian product. For example, joining each row in a 100-row table to
each row in a 200-row table produces a result containing 100 × 200 =
20,000 rows. With larger tables, or joins between more than two tables, the
result set for a Cartesian product easily becomes immense, so a join
normally includes an ON or USING comparison clause to produce only the

desired matches between tables. (This requires that each table have one or
more columns of common information that link them together logically.)
You can also include a WHERE clause that restricts which of the joined rows
to select. Each clause narrows the focus of the query.
This recipe introduces join syntax and demonstrates how joins answer
specific types of questions when you are looking for matches between
tables. Other sections show how to identify mismatches between tables (see
Recipe 16.2) and how to compare a table to itself (see Recipe 16.4). The
examples assume that you have an art collection and use the following two
tables to record your acquisitions. artist lists those painters whose works
you want to collect, and painting lists each painting you’ve actually
purchased:

CREATE TABLE artist
(
 a_id INT UNSIGNED NOT NULL AUTO_INCREMENT, # artist ID
 name VARCHAR(30) NOT NULL, # artist name
 PRIMARY KEY (a_id),
 UNIQUE (name)
);

CREATE TABLE painting
(
 a_id INT UNSIGNED NOT NULL, # artist ID
 p_id INT UNSIGNED NOT NULL AUTO_INCREMENT, # painting ID
 title VARCHAR(100) NOT NULL, # title of painting
 state VARCHAR(2) NOT NULL, # state where
purchased
 price INT UNSIGNED, # purchase price
(dollars)
 INDEX (a_id),
 PRIMARY KEY (p_id)
);

You’ve just begun the collection, so the tables contain only a few rows:

mysql> SELECT * FROM artist ORDER BY a_id;
+------+----------+
| a_id | name |
+------+----------+
| 1 | Da Vinci |
| 2 | Monet |

| 3 | Van Gogh |
| 4 | Renoir |
+------+----------+
mysql> SELECT * FROM painting ORDER BY a_id, p_id;
+------+------+-------------------+-------+-------+
| a_id | p_id | title | state | price |
+------+------+-------------------+-------+-------+
1	1	The Last Supper	IN	34
1	2	Mona Lisa	MI	87
3	3	Starry Night	KY	48
3	4	The Potato Eaters	KY	67
4	5	Les Deux Soeurs	NE	64
+------+------+-------------------+-------+-------+

The low values in the price column of the painting table betray the
fact that your collection actually contains only cheap imitations, not the
originals. Well, that’s all right: who can afford the originals?
Each table contains partial information about your collection. For example,
the artist table doesn’t tell you which paintings each artist produced,
and the painting table lists artist IDs but not their names. To use the
information in both tables, write a query that performs a join. A join names
two or more tables after the FROM keyword. In the output column list, use *
to select all columns from all tables (i.e., tbl_name.*) to select all
columns from a given table or name specific columns from the joined tables
or expressions based on those columns.
The simplest join involves two tables and selects all columns from each.
The following join between the artist and painting tables shows this
(the ORDER BY clause makes the result easier to read):

mysql> SELECT * FROM artist INNER JOIN painting ORDER BY
artist.a_id;
+------+----------+------+------+-------------------+-------+----
---+
| a_id | name | a_id | p_id | title | state |
price |
+------+----------+------+------+-------------------+-------+----
---+
| 1 | Da Vinci | 1 | 1 | The Last Supper | IN |
34 |
| 1 | Da Vinci | 3 | 3 | Starry Night | KY |
48 |

| 1 | Da Vinci | 4 | 5 | Les Deux Soeurs | NE |
64 |
| 1 | Da Vinci | 1 | 2 | Mona Lisa | MI |
87 |
| 1 | Da Vinci | 3 | 4 | The Potato Eaters | KY |
67 |
| 2 | Monet | 1 | 2 | Mona Lisa | MI |
87 |
| 2 | Monet | 3 | 4 | The Potato Eaters | KY |
67 |
| 2 | Monet | 1 | 1 | The Last Supper | IN |
34 |
| 2 | Monet | 3 | 3 | Starry Night | KY |
48 |
| 2 | Monet | 4 | 5 | Les Deux Soeurs | NE |
64 |
| 3 | Van Gogh | 1 | 2 | Mona Lisa | MI |
87 |
| 3 | Van Gogh | 3 | 4 | The Potato Eaters | KY |
67 |
| 3 | Van Gogh | 1 | 1 | The Last Supper | IN |
34 |
| 3 | Van Gogh | 3 | 3 | Starry Night | KY |
48 |
| 3 | Van Gogh | 4 | 5 | Les Deux Soeurs | NE |
64 |
| 4 | Renoir | 1 | 1 | The Last Supper | IN |
34 |
| 4 | Renoir | 3 | 3 | Starry Night | KY |
48 |
| 4 | Renoir | 4 | 5 | Les Deux Soeurs | NE |
64 |
| 4 | Renoir | 1 | 2 | Mona Lisa | MI |
87 |
| 4 | Renoir | 3 | 4 | The Potato Eaters | KY |
67 |
+------+----------+------+------+-------------------+-------+----
---+

An INNER JOIN produces results that combine values in one table with
values in another table. The preceding query specifies no restrictions on
row matching, so the join generates all row combinations (that is, the
Cartesian product). This result illustrates why such a join generally is not
useful: it produces a lot of unmeaningful output. Clearly, you don’t
maintain these tables to match every artist with every painting.

TIP
In MySQL, JOIN, CROSS JOIN, and INNER JOIN are syntactic equivalents and can replace
one another. You can use CROSS JOIN, or simply JOIN, in all places where we use INNER
JOIN.

To answer questions meaningfully, produce only the relevant matches by
including appropriate join conditions. For example, to produce a list of
paintings together with the artist names, associate rows from the two tables
using a simple WHERE clause that matches values based on the artist ID
column that is common to both tables and serves to link them:

mysql> SELECT * FROM artist INNER JOIN painting
 -> WHERE artist.a_id = painting.a_id
 -> ORDER BY artist.a_id;
+------+----------+------+------+-------------------+-------+----
---+
| a_id | name | a_id | p_id | title | state |
price |
+------+----------+------+------+-------------------+-------+----
---+
| 1 | Da Vinci | 1 | 1 | The Last Supper | IN |
34 |
| 1 | Da Vinci | 1 | 2 | Mona Lisa | MI |
87 |
| 3 | Van Gogh | 3 | 3 | Starry Night | KY |
48 |
| 3 | Van Gogh | 3 | 4 | The Potato Eaters | KY |
67 |
| 4 | Renoir | 4 | 5 | Les Deux Soeurs | NE |
64 |
+------+----------+------+------+-------------------+-------+----
---+

The column names in the WHERE clause include table qualifiers to make it
clear which a_id values to compare. The result indicates who painted each
painting and, conversely, which paintings by each artist are in your
collection.

JOINS AND INDEXES
A join can easily cause MySQL to process large numbers of row combinations, so it’s a good
idea to index the comparison columns. Otherwise, performance drops off quickly as table sizes
increase. For the artist and painting tables, joins are made by comparing the a_id
columns. If you look back at the CREATE TABLE statements for those tables, you see that
a_id is indexed in each table.

Another way to write the same join indicates the matching conditions with
an ON clause:

SELECT * FROM artist INNER JOIN painting
ON artist.a_id = painting.a_id
ORDER BY artist.a_id;

In the special case of equality comparisons between columns with the same
name in both tables, you can use an INNER JOIN with a USING clause
instead. This requires no table qualifiers and names each joined column
only once:

SELECT * FROM artist INNER JOIN painting
USING (a_id)
ORDER BY a_id;

For SELECT * queries, the USING form produces a result that differs from
the ON form: it returns only one instance of each join column, so a_id
appears once, not twice.
Any of ON, USING, or WHERE can include comparisons, so how do you
know which join conditions to put in each clause? As a rule of thumb, it’s
conventional to use ON or USING to specify how to join the tables and the
WHERE clause to restrict which of the joined rows to select. For example, to
join tables based on the a_id column, but select only rows for paintings
obtained in Kentucky, use an ON (or USING) clause to match the rows in
the two tables, and a WHERE clause to test the state column:

mysql> SELECT * FROM artist INNER JOIN painting
 -> ON artist.a_id = painting.a_id
 -> WHERE painting.state = 'KY';

+------+----------+------+------+-------------------+-------+----
---+
| a_id | name | a_id | p_id | title | state |
price |
+------+----------+------+------+-------------------+-------+----
---+
| 3 | Van Gogh | 3 | 3 | Starry Night | KY |
48 |
| 3 | Van Gogh | 3 | 4 | The Potato Eaters | KY |
67 |
+------+----------+------+------+-------------------+-------+----
---+

The preceding queries use SELECT * to display all columns. To be more
selective, name only those columns in which you’re interested:

mysql> SELECT artist.name, painting.title, painting.state,
painting.price
 -> FROM artist INNER JOIN painting
 -> ON artist.a_id = painting.a_id
 -> WHERE painting.state = 'KY';
+----------+-------------------+-------+-------+
| name | title | state | price |
+----------+-------------------+-------+-------+
| Van Gogh | Starry Night | KY | 48 |
| Van Gogh | The Potato Eaters | KY | 67 |
+----------+-------------------+-------+-------+

Joins can use more than two tables. Suppose that you prefer to see complete
state names rather than abbreviations in the preceding query result. The
states table used in earlier chapters maps state abbreviations to names;
add it to the previous query to display the name rather than the
abbreviation:

mysql> SELECT artist.name, painting.title, states.name,
painting.price
 -> FROM artist INNER JOIN painting INNER JOIN states
 -> ON artist.a_id = painting.a_id AND painting.state =
states.abbrev
 -> WHERE painting.state = 'KY';
+----------+-------------------+----------+-------+
| name | title | name | price |
+----------+-------------------+----------+-------+
| Van Gogh | Starry Night | Kentucky | 48 |

| Van Gogh | The Potato Eaters | Kentucky | 67 |
+----------+-------------------+----------+-------+

Another common use of three-way joins is enumerating many-to-many
relationships (see Recipe 16.6).
By including appropriate conditions in your joins, you can answer very
specific questions:

Which paintings did Van Gogh paint? Use the a_id value to find
matching rows, add a WHERE clause to restrict output to rows that
contain the artist name, and select the title from those rows:

mysql> SELECT painting.title
 -> FROM artist INNER JOIN painting ON artist.a_id =
painting.a_id
 -> WHERE artist.name = 'Van Gogh';
+-------------------+
| title |
+-------------------+
| Starry Night |
| The Potato Eaters |
+-------------------+

Who painted the Mona Lisa? Again, use the a_id column to join the
rows, but this time use the WHERE clause to restrict output to rows that
contain the title, and select the artist name from those rows:

mysql> SELECT artist.name
 -> FROM artist INNER JOIN painting ON artist.a_id =
painting.a_id
 -> WHERE painting.title = 'Mona Lisa';
+----------+
| name |
+----------+
| Da Vinci |
+----------+

For which artists did you purchase paintings in Kentucky or Indiana?
This is similar to the previous statement but tests a different column in
the painting table (state) to restrict output to rows for KY or IN:

mysql> SELECT DISTINCT artist.name
 -> FROM artist INNER JOIN painting ON artist.a_id =
painting.a_id
 -> WHERE painting.state IN ('KY','IN');
+----------+
| name |
+----------+
| Da Vinci |
| Van Gogh |
+----------+

The statement also uses DISTINCT to display each artist name just
once. Try it without DISTINCT; Van Gogh appears twice because you
obtained two Van Goghs in Kentucky.
Joins used with aggregate functions produce summaries. This statement
shows how many paintings you have per artist:

mysql> SELECT artist.name, COUNT(*) AS 'number of paintings'
 -> FROM artist INNER JOIN painting ON artist.a_id =
painting.a_id
 -> GROUP BY artist.name;
+----------+---------------------+
| name | number of paintings |
+----------+---------------------+
Da Vinci	2
Renoir	1
Van Gogh	2
+----------+---------------------+

A more elaborate statement uses aggregates to also show how much you
paid for each artist’s paintings, in total and on average:

mysql> SELECT artist.name,
 -> COUNT(*) AS 'number of paintings',
 -> SUM(painting.price) AS 'total price',
 -> AVG(painting.price) AS 'average price'
 -> FROM artist INNER JOIN painting ON artist.a_id =
painting.a_id
 -> GROUP BY artist.name;
+----------+---------------------+-------------+--------------
-+
| name | number of paintings | total price | average price
|
+----------+---------------------+-------------+--------------
-+

| Da Vinci | 2 | 121 | 60.5000
|
| Renoir | 1 | 64 | 64.0000
|
| Van Gogh | 2 | 115 | 57.5000
|
+----------+---------------------+-------------+--------------
-+

The preceding summary statements produce output only for those artists in
the artist table for whom you actually have acquired paintings. (For
example, Monet is listed in the artist table but is not present in the
summary because you have none of his paintings yet.) To summarize all
artists, including those for whom you have no paintings, you must use a
different kind of join—specifically, an outer join:

Joins written with INNER JOIN are inner joins. They produce a result
only for values in one table that match values in another table.
An outer join can produce those matches as well but also can show you
which values in one table are missing from the other. Recipe 16.2
introduces outer joins.

The tbl_name.col_name notation that qualifies a column name with a
table name is always permitted in a join but can be shortened to just
col_name if the name appears in only one of the joined tables. In that
case, MySQL can determine without ambiguity which table the column
comes from, and no table name qualifier is necessary. We can’t do that for
the following join. Both tables have an a_id column, so the ON clause
column references are ambiguous:

mysql> SELECT * FROM artist INNER JOIN painting ON a_id = a_id;
ERROR 1052 (23000): Column 'a_id' in on clause is ambiguous

By contrast, the following query is unambiguous. Each instance of a_id is
qualified with the appropriate table name, only artist has a name
column, and only painting has title and state columns:

mysql> SELECT name, title, state FROM artist INNER JOIN painting
 -> ON artist.a_id = painting.a_id

 -> ORDER BY name;
+----------+-------------------+-------+
| name | title | state |
+----------+-------------------+-------+
Da Vinci	The Last Supper	IN
Da Vinci	Mona Lisa	MI
Renoir	Les Deux Soeurs	NE
Van Gogh	Starry Night	KY
Van Gogh	The Potato Eaters	KY
+----------+-------------------+-------+

To make the meaning of a statement clearer to human readers, it’s often
useful to qualify column names even when that’s not strictly necessary as
far as MySQL is concerned. We tend to use qualified names in join
examples for that reason.
To avoid writing complete table names when qualifying column references,
give each table a short alias and refer to its columns using the alias. The
following two statements are equivalent:

SELECT artist.name, painting.title, states.name, painting.price
FROM artist INNER JOIN painting INNER JOIN states
ON artist.a_id = painting.a_id AND painting.state =
states.abbrev;

SELECT a.name, p.title, s.name, p.price
FROM artist AS a INNER JOIN painting AS p INNER JOIN states AS s
ON a.a_id = p.a_id AND p.state = s.abbrev;

In AS alias_name clauses, the AS is optional.

For complicated statements that select many columns, aliases can save a lot
of typing. In addition, for some types of statements, aliases are not only
convenient but necessary, as will become evident when we get to the topic
of self-joins (see Recipe 16.4).

JOINING TABLES FROM DIFFERENT DATABASES
To perform a join between tables located in different databases, qualify table and column names
sufficiently that MySQL knows what you’re referring to. Thus far, we have used the artist
and painting tables with the implicit understanding that both are in the cookbook
database, so we can simply refer to the tables without specifying any database name when
cookbook is the default database. For example, the following statement uses the two tables to
associate artists with their paintings:

SELECT artist.name, painting.title
FROM artist INNER JOIN painting
ON artist.a_id = painting.a_id;

But suppose instead that artist is in the db1 database and painting is in the db2
database. To indicate this, qualify each table name with a prefix that specifies which database
it’s in. The fully qualified form of the join looks like this:

SELECT db1.artist.name, db2.painting.title
FROM db1.artist INNER JOIN db2.painting
ON db1.artist.a_id = db2.painting.a_id;

Table aliases can simplify that considerably:

SELECT a.name, p.title
FROM db1.artist AS a INNER JOIN db2.painting AS p
ON a.a_id = p.a_id;

If there is no default database, or it is neither db1 nor db2, it’s necessary to fully qualify both
table names. If the default database is either db1 or db2, you can dispense with the
corresponding qualifiers. If the default database is db1, you can omit the db1 qualifiers.
Conversely, if the default database is db2, no db2 qualifiers are necessary.

16.2 Finding Mismatches Between Tables

Problem
You want to find rows in one table that have no match in another. Or you
want to produce a list on the basis of a join between tables, and you want

the list to include an entry for every row in the first table, including those
for which no match occurs in the second table.

Solution
Use an outer join (a LEFT JOIN or a RIGHT JOIN) or a NOT IN
subquery.

Discussion
Recipe 16.1 focuses on inner joins, which find matches between two tables.
However, the answers to some questions require determining which rows
do not have a match (or, stated another way, which rows have values
missing from the other table). For example, you might want to know artists
in the artist table for whom you have no paintings yet. Similar questions
occur in other contexts:

You have a list of potential customers and another list of people who
have placed orders. To focus sales efforts on people who are not yet
actual customers, produce the set of people who are in the first list but
not the second.
You have one list of baseball players and another list of players who
have hit home runs. To determine which players in the first list have not
hit a home run, produce the set of players who are in the first list but not
the second.

These types of questions require use of an outer join. Like inner joins, an
outer join finds matches between tables. But unlike an inner join, an outer
join also determines which rows in one table have no match in another. Two
types of outer joins are LEFT JOIN and RIGHT JOIN.

To see how outer joins are useful, consider the problem of determining
which artists in the artist table are missing from the painting table.
At present, the tables are small, so it’s easy to examine them visually and
see that you have no paintings by Monet (there are no painting rows
with an a_id value of 2):

mysql> SELECT * FROM artist ORDER BY a_id;
+------+----------+
| a_id | name |
+------+----------+
1	Da Vinci
2	Monet
3	Van Gogh
4	Renoir
+------+----------+	
mysql> SELECT * FROM painting ORDER BY a_id, p_id;	
+------+------+-------------------+-------+-------+	
a_id	p_id
+------+------+-------------------+-------+-------+	
1	1
1	2
3	3
3	4
4	5
+------+------+-------------------+-------+-------+

As you acquire more paintings and the tables get larger, it won’t be so easy
to eyeball them and answer questions by inspection. Can you answer it
using SQL? Sure, although first attempts at a solution often look something
like the following statement, which uses a not-equal condition to look for
mismatches between the two tables:

mysql> SELECT * FROM artist INNER JOIN painting
 -> ON artist.a_id <> painting.a_id
 -> ORDER BY artist.a_id;
+------+----------+------+------+-------------------+-------+----
---+
| a_id | name | a_id | p_id | title | state |
price |
+------+----------+------+------+-------------------+-------+----
---+
| 1 | Da Vinci | 4 | 5 | Les Deux Soeurs | NE |
64 |
| 1 | Da Vinci | 3 | 4 | The Potato Eaters | KY |
67 |
| 1 | Da Vinci | 3 | 3 | Starry Night | KY |
48 |
| 2 | Monet | 1 | 1 | The Last Supper | IN |
34 |
| 2 | Monet | 4 | 5 | Les Deux Soeurs | NE |
64 |
| 2 | Monet | 3 | 4 | The Potato Eaters | KY |
67 |

| 2 | Monet | 3 | 3 | Starry Night | KY |
48 |
| 2 | Monet | 1 | 2 | Mona Lisa | MI |
87 |
| 3 | Van Gogh | 1 | 2 | Mona Lisa | MI |
87 |
| 3 | Van Gogh | 1 | 1 | The Last Supper | IN |
34 |
| 3 | Van Gogh | 4 | 5 | Les Deux Soeurs | NE |
64 |
| 4 | Renoir | 3 | 3 | Starry Night | KY |
48 |
| 4 | Renoir | 1 | 2 | Mona Lisa | MI |
87 |
| 4 | Renoir | 1 | 1 | The Last Supper | IN |
34 |
| 4 | Renoir | 3 | 4 | The Potato Eaters | KY |
67 |
+------+----------+------+------+-------------------+-------+----
---+

The query may look plausible but its result obviously is not. For example, it
falsely indicates that each painting was painted by several different artists.
The problem is that the statement lists all combinations of values from the
two tables in which the artist ID values aren’t the same. What you really
need is a list of values in artist that aren’t present at all in painting,
but an inner join can only produce results based on values that are present
in both tables. It can’t tell you anything about values that are missing from
one of them.
When faced with the need to find values in one table with no match in (or
missing from) another table, you should get in the habit of thinking, “Aha,
that’s a LEFT JOIN problem.” A LEFT JOIN is one type of outer join: it’s
similar to an inner join in that it matches rows in the first (left) table with
rows in the second (right) table. In addition, if a left table row has no match
in the right table, a LEFT JOIN still produces a row—one in which all the
columns from the right table are set to NULL. This means you can find
values that are missing from the right table by looking for NULL. It’s easier
to understand how this happens by working in stages. Begin with an inner
join that displays matching rows:

mysql> SELECT * FROM artist INNER JOIN painting
 -> ON artist.a_id = painting.a_id
 -> ORDER BY artist.a_id;
+------+----------+------+------+-------------------+-------+----
---+
| a_id | name | a_id | p_id | title | state |
price |
+------+----------+------+------+-------------------+-------+----
---+
| 1 | Da Vinci | 1 | 1 | The Last Supper | IN |
34 |
| 1 | Da Vinci | 1 | 2 | Mona Lisa | MI |
87 |
| 3 | Van Gogh | 3 | 3 | Starry Night | KY |
48 |
| 3 | Van Gogh | 3 | 4 | The Potato Eaters | KY |
67 |
| 4 | Renoir | 4 | 5 | Les Deux Soeurs | NE |
64 |
+------+----------+------+------+-------------------+-------+----
---+

In this output, the first a_id column comes from the artist table, and
the second one comes from the painting table.

Now substitute LEFT for INNER to see the result you get from an outer
join:

mysql> SELECT * FROM artist LEFT JOIN painting
 -> ON artist.a_id = painting.a_id
 -> ORDER BY artist.a_id;
+------+----------+------+------+-------------------+-------+----
---+
| a_id | name | a_id | p_id | title | state |
price |
+------+----------+------+------+-------------------+-------+----
---+
| 1 | Da Vinci | 1 | 1 | The Last Supper | IN |
34 |
| 1 | Da Vinci | 1 | 2 | Mona Lisa | MI |
87 |
| 2 | Monet | NULL | NULL | NULL | NULL |
NULL |
| 3 | Van Gogh | 3 | 3 | Starry Night | KY |
48 |
| 3 | Van Gogh | 3 | 4 | The Potato Eaters | KY |
67 |
| 4 | Renoir | 4 | 5 | Les Deux Soeurs | NE |

64 |
+------+----------+------+------+-------------------+-------+----
---+

Compared to the inner join, the outer join produces an additional row for
every artist row that has no painting table match, with all
painting columns set to NULL.

Next, to restrict the output only to the unmatched artist rows, add a
WHERE clause that looks for NULL values in any painting column that
cannot otherwise contain NULL. This filters out the rows that the inner join
produces, leaving those produced only by the outer join:

mysql> SELECT * FROM artist LEFT JOIN painting
 -> ON artist.a_id = painting.a_id
 -> WHERE painting.a_id IS NULL;
+------+-------+------+------+-------+-------+-------+
| a_id | name | a_id | p_id | title | state | price |
+------+-------+------+------+-------+-------+-------+
| 2 | Monet | NULL | NULL | NULL | NULL | NULL |
+------+-------+------+------+-------+-------+-------+

Finally, to show only the artist table values that are missing from the
painting table, write the output column list to name only columns from
the artist table. The result is that the LEFT JOIN lists those left-table
rows containing a_id values not present in the right table:

mysql> SELECT artist.* FROM artist LEFT JOIN painting
 -> ON artist.a_id = painting.a_id
 -> WHERE painting.a_id IS NULL;
+------+-------+
| a_id | name |
+------+-------+
| 2 | Monet |
+------+-------+

A similar kind of operation reports each left-table value along with an
indicator as to whether it’s present in the right table. To do this, perform a
LEFT JOIN that counts the number of times each left-table value occurs in
the right table. A count of zero indicates that the value is not present. The

following statement lists each artist from the artist table and shows
whether you have any paintings by the artist:

mysql> SELECT artist.name,
 -> IF(COUNT(painting.a_id)>0,'yes','no') AS 'in collection?'
 -> FROM artist LEFT JOIN painting ON artist.a_id =
painting.a_id
 -> GROUP BY artist.name;
+----------+----------------+
| name | in collection? |
+----------+----------------+
Da Vinci	yes
Monet	no
Renoir	yes
Van Gogh	yes
+----------+----------------+

A RIGHT JOIN is an outer join that is like LEFT JOIN but reverses the
roles of the left and right tables. Semantically, RIGHT JOIN forces the
matching process to produce a row from each table in the right table, even
in the absence of a corresponding row in the left table. Syntactically, tbl1
LEFT JOIN tbl2 is equivalent to tbl2 RIGHT JOIN tbl1. Therefore,
references to LEFT JOIN in this book apply to RIGHT JOIN as well if you
reverse the roles of the tables.
Another way to identify values present in one table but missing from
another is to use a NOT IN subquery. The following example finds artists
not represented in the painting table; compare it to the earlier LEFT
JOIN that answers the same question:

mysql> SELECT * FROM artist
 -> WHERE a_id NOT IN (SELECT a_id FROM painting);

+------+-------+
| a_id | name |
+------+-------+
| 2 | Monet |
+------+-------+

OTHER WAYS TO WRITE LEFT JOIN AND RIGHT JOIN QUERIES
As with INNER JOIN, if the names of the columns to be matched in an outer join are the same
in both tables and you compare them with the = operator, you can use a USING clause rather
than ON. For example, the following two statements are equivalent:

SELECT * FROM t1 LEFT JOIN t2 ON t1.n = t2.n;
SELECT * FROM t1 LEFT JOIN t2 USING (n);

As are these:

SELECT * FROM t1 RIGHT JOIN t2 ON t1.n = t2.n;
SELECT * FROM t1 RIGHT JOIN t2 USING (n);

In the special case that you want to base the comparison on every column that appears in both
tables, you can use NATURAL LEFT JOIN or NATURAL RIGHT JOIN and omit the ON or
USING clause:

SELECT * FROM t1 NATURAL LEFT JOIN t2;
SELECT * FROM t1 NATURAL RIGHT JOIN t2;

See Also
As shown in this section, LEFT JOIN is useful for finding values with no
match in another table or for showing whether each value is matched. LEFT
JOIN may also be used to produce a summary that includes all items in a
list, even those for which there’s nothing to summarize. This is very
common for relationships between a candidate table and a detail table. For
example, a LEFT JOIN can produce “total sales per customer” reports that
list all customers, even those who bought nothing during the summary
period. (For information about candidate-detail lists, see Recipe 16.5.)
LEFT JOIN is also useful for consistency checking when you receive two
datafiles that are supposed to be related, and you want to determine whether
they really are. (That is, you want to check the integrity of their
relationship.) Import each file into a MySQL table, and then run a couple of
LEFT JOIN statements to determine whether there are unattached rows in

one table or the other—that is, rows that have no match in the other table.
Recipe 16.3 discusses how to identify (and optionally delete) these
unattached rows.

16.3 Identifying and Removing Mismatched
or Unattached Rows

Problem
You have two datasets that are related but possibly imperfectly so. You
want to determine whether there are records in either dataset that are
“unattached” (not matched by any record in the other dataset) and perhaps
remove them if so.

Solution
To identify unmatched values in each table, use a LEFT JOIN or a NOT IN
subquery. To remove them, use DELETE with a NOT IN subquery.

Discussion
Inner joins are useful for identifying matches, and outer joins are useful for
identifying mismatches. This property of outer joins is valuable when you
have related datasets for which the relationship might be imperfect.
Mismatches might be found, for example, when you must verify the
integrity of two datafiles received from an external source.
When you have related tables with unmatched rows, you can analyze and
modify them using SQL statements. Specifically, restoring their relationship
is a matter of identifying the unattached rows and then deleting them:

To identify unattached rows, use a LEFT JOIN, because this is a “find
unmatched rows” problem; alternatively, use a NOT IN subquery (see
Recipe 16.2).

To delete rows that are unmatched, use DELETE with a NOT IN
subquery.

It’s useful to know about unmatched data because you can alert whoever
gave you the data. The data collection method might have a flaw that must
be corrected. For example, with sales data, a missing region might mean
that some regional manager didn’t report in and the omission was
overlooked.
The following example shows how to identify and remove mismatched
rows using two datasets that describe sales regions and volume of sales per
region. One dataset contains the ID and location of each region:

mysql> SELECT * FROM sales_region ORDER BY region_id;
+-----------+------------------------+
| region_id | name |
+-----------+------------------------+
1	London, United Kingdom
2	Madrid, Spain
3	Berlin, Germany
4	Athens, Greece
+-----------+------------------------+

The other dataset contains sales volume figures. Each row contains the
amount of sales for a given quarter of a year and indicates the sales region
to which the row applies:

mysql> SELECT region_id, year, quarter, volume
 -> FROM sales_volume ORDER BY region_id, year, quarter;
+-----------+------+---------+--------+
| region_id | year | quarter | volume |
+-----------+------+---------+--------+
1	2014	1	100400
1	2014	2	120000
3	2014	1	280000
3	2014	2	250000
5	2014	1	18000
5	2014	2	32000
+-----------+------+---------+--------+

A little visual inspection reveals that neither table is fully matched by the
other. Sales regions 2 and 4 are not represented in the sales volume table,

and the sales volume table contains rows for region 5, which is not in the
sales region table. But we don’t want to check the tables by inspection. We
want to find unmatched rows by using SQL statements that do the work.
Mismatch identification is a matter of using outer joins. For example, to
find sales regions for which there are no sales volume rows, use the
following LEFT JOIN:

mysql> SELECT sales_region.region_id AS 'unmatched region row
IDs'
 -> FROM sales_region LEFT JOIN sales_volume
 -> ON sales_region.region_id = sales_volume.region_id
 -> WHERE sales_volume.region_id IS NULL;
+--------------------------+
| unmatched region row IDs |
+--------------------------+
| 2 |
| 4 |
+--------------------------+

Conversely, to find sales volume rows that are not associated with any
known region, reverse the roles of the two tables:

mysql> SELECT sales_volume.region_id AS 'unmatched volume row
IDs'
 -> FROM sales_volume LEFT JOIN sales_region
 -> ON sales_volume.region_id = sales_region.region_id
 -> WHERE sales_region.region_id IS NULL;
+--------------------------+
| unmatched volume row IDs |
+--------------------------+
| 5 |
| 5 |
+--------------------------+

In this case, an ID appears more than once in the list if there are multiple
volume rows for a missing region. To see each unmatched ID only once,
use SELECT DISTINCT:

mysql> SELECT DISTINCT sales_volume.region_id AS 'unmatched
volume row IDs'
 -> FROM sales_volume LEFT JOIN sales_region
 -> ON sales_volume.region_id = sales_region.region_id

 -> WHERE sales_region.region_id IS NULL
+--------------------------+
| unmatched volume row IDs |
+--------------------------+
| 5 |
+--------------------------+

You can also identify mismatches using NOT IN subqueries:

mysql> SELECT region_id AS 'unmatched region row IDs'
 -> FROM sales_region
 -> WHERE region_id NOT IN (SELECT region_id FROM
sales_volume);
+--------------------------+
| unmatched region row IDs |
+--------------------------+
| 2 |
| 4 |
+--------------------------+
mysql> SELECT region_id AS 'unmatched volume row IDs'
 -> FROM sales_volume
 -> WHERE region_id NOT IN (SELECT region_id FROM
sales_region);
+--------------------------+
| unmatched volume row IDs |
+--------------------------+
| 5 |
| 5 |
+--------------------------+

To get rid of unmatched rows, use a NOT IN subquery in a DELETE
statement. To remove sales_region rows that match no
sales_volume rows, do this:

DELETE FROM sales_region
WHERE region_id NOT IN (SELECT region_id FROM sales_volume);

To remove mismatched sales_volume rows that match no
sales_region rows, the statement is similar but with the table roles
reversed:

DELETE FROM sales_volume
WHERE region_id NOT IN (SELECT region_id FROM sales_region);

USING FOREIGN KEYS TO ENFORCE REFERENTIAL INTEGRITY AND
PREVENT MISMATCHES

One feature a database system offers to help you maintain consistency between tables is the
ability to define foreign key relationships. This means you can specify explicitly in the table
definition that a primary key in a parent table (such as the region_id column of the
sales_region table) is a parent to a key in another table (the region_id column in the
sales_volume table).

By defining the ID column in the child table as a foreign key to the ID column in the parent, the
database system can enforce certain constraints against illegal operations. For example, it can
prevent you from creating a child row with an ID not present in the parent or from deleting
parent rows without also deleting the corresponding child rows first. A foreign key
implementation may also offer cascaded delete and update: if you delete or update a parent row,
the database engine cascades the effect of the delete or update to any child tables and
automatically deletes or updates the child rows for you. The InnoDB storage engine in MySQL
supports foreign keys and cascaded deletes and updates.

16.4 Comparing a Table to Itself

Problem
You want to compare rows in a table to other rows in the same table. For
example, you want to find all paintings in your collection by the artist who
painted The Potato Eaters. Or you want to know which states listed in the
states table joined the Union in the same year as New York. Or you want
to know which states did not join the Union in the same year as any other
state.

Solution
Problems that require comparing a table to itself involve an operation
known as a self-join. It’s performed much like other joins, except that you
must use table aliases so that you can refer to the same table different ways
within the statement.

Discussion

A special case of joining one table to another occurs when both tables are
the same. This is called a self-join. This may be confusing or strange to
think about at first, but it’s perfectly legal. You’ll likely find yourself using
self-joins quite often because they are so important.
A tip-off that a self-join is required is that you want to know which pairs of
rows in a table satisfy some condition. Suppose that your favorite painting
is The Potato Eaters and you want to identify all items in your collection
that were painted by the same artist. The artist ID and painting titles that we
begin with look like this:

mysql> SELECT a_id, title FROM painting ORDER BY a_id;
+------+-------------------+
| a_id | title |
+------+-------------------+
1	The Last Supper
1	Mona Lisa
3	Starry Night
3	The Potato Eaters
4	Les Deux Soeurs
+------+-------------------+

Solve the problem as follows:
1. Identify which painting table row contains the title The Potato

Eaters so that you can refer to its a_id value.

2. Match other rows in the table that have the same a_id value.

3. Display the titles from those matching rows.
The trick lies in using the proper notation. First attempts at joining a table to
itself often look something like this:

mysql> SELECT title
 -> FROM painting INNER JOIN painting
 -> ON a_id = a_id
 -> WHERE title = 'The Potato Eaters';
ERROR 1066 (42000): Not unique table/alias: 'painting'

The column references in that statement are ambiguous because MySQL
cannot tell which instance of the painting table any given column name

refers to. The solution is to alias at least one instance of the table so that you
can distinguish column references by using different table qualifiers. The
following statement shows how to do this, using the aliases p1 and p2 to
refer to the painting table different ways:

mysql> SELECT p2.title
 -> FROM painting AS p1 INNER JOIN painting AS p2
 -> ON p1.a_id = p2.a_id
 -> WHERE p1.title = 'The Potato Eaters';
+-------------------+
| title |
+-------------------+
| Starry Night |
| The Potato Eaters |
+-------------------+

The statement output illustrates something typical of self-joins: when you
begin with a reference value in one table instance (The Potato Eaters) to
find matching rows in a second table instance (paintings by the same artist),
the output includes the reference value. That makes sense: after all, the
reference matches itself. To find only other paintings by the same artist,
explicitly exclude the reference value from the output:

mysql> SELECT p2.title
 -> FROM painting AS p1 INNER JOIN painting AS p2
 -> ON p1.a_id = p2.a_id
 -> WHERE p1.title = 'The Potato Eaters' AND p2.title <>
p1.title
+--------------+
| title |
+--------------+
| Starry Night |
+--------------+

The preceding statements use ID value comparisons to match rows in the
two table instances, but any kind of value can be used. For example, to use
the states table to answer the question “Which states joined the Union in
the same year as New York?” perform a temporal pairwise comparison
based on the year part of the dates in the table’s statehood column:

mysql> SELECT s2.name, s2.statehood
 -> FROM states AS s1 INNER JOIN states AS s2
 -> ON YEAR(s1.statehood) = YEAR(s2.statehood) AND s1.name <>
s2.name
 -> WHERE s1.name = 'New York'
 -> ORDER BY s2.name;
+----------------+------------+
| name | statehood |
+----------------+------------+
Connecticut	1788-01-09
Georgia	1788-01-02
Maryland	1788-04-28
Massachusetts	1788-02-06
New Hampshire	1788-06-21
South Carolina	1788-05-23
Virginia	1788-06-25
+----------------+------------+

NOTE
In the preceding example, we do not specify the year when New York joined the Union. Instead,
we compare the value of the statehood column for the row where state name is “New York”
and the same statehood column for other states.

Now suppose that you want to find every pair of states that joined the Union
in the same year. In this case, the output potentially can include any pair of
rows from the states table.

A self-join is perfect for this problem:

mysql> SELECT YEAR(s1.statehood) AS year,
 -> s1.name AS name1, s1.statehood AS statehood1,
 -> s2.name AS name2, s2.statehood AS statehood2
 -> FROM states AS s1 INNER JOIN states AS s2
 -> ON YEAR(s1.statehood) = YEAR(s2.statehood) AND s1.name <>
s2.name
 -> ORDER BY year, name1, name2;
+------+----------------+------------+----------------+----------
--+
| year | name1 | statehood1 | name2 |
statehood2 |
+------+----------------+------------+----------------+----------
--+
| 1787 | Delaware | 1787-12-07 | New Jersey | 1787-12-
18 |

| 1787 | Delaware | 1787-12-07 | Pennsylvania | 1787-12-
12 |
| 1787 | New Jersey | 1787-12-18 | Delaware | 1787-12-
07 |
| 1787 | New Jersey | 1787-12-18 | Pennsylvania | 1787-12-
12 |
| 1787 | Pennsylvania | 1787-12-12 | Delaware | 1787-12-
07 |
| 1787 | Pennsylvania | 1787-12-12 | New Jersey | 1787-12-
18 |
…
| 1912 | Arizona | 1912-02-14 | New Mexico | 1912-01-
06 |
| 1912 | New Mexico | 1912-01-06 | Arizona | 1912-02-
14 |
| 1959 | Alaska | 1959-01-03 | Hawaii | 1959-08-
21 |
| 1959 | Hawaii | 1959-08-21 | Alaska | 1959-01-
03 |
+------+----------------+------------+----------------+----------
--+

The condition in the ON clause that requires state pair names not to be
identical eliminates the trivially duplicate rows showing that each state
joined the Union in the same year as itself. But you’ll notice that each
remaining pair of states still appears twice. For example, there is one row
that lists Delaware and New Jersey, and another that lists New Jersey and
Delaware. This is often the case with self-joins: they produce pairs of rows
that contain the same values but for which the values are not in the same
order.
Because the values are not listed in the same order within the rows, they are
not identical, and you can’t get rid of these “near duplicates” by adding
DISTINCT to the statement. To solve this problem, select rows in such a
way that only one row from each pair ever appears in the query result.
Slightly modify the ON clause, from:

ON YEAR(s1.statehood) = YEAR(s2.statehood) AND s1.name <> s2.name

to:

ON YEAR(s1.statehood) = YEAR(s2.statehood) AND s1.name < s2.name

Using < rather than <> selects only those rows in which the first state name
is lexically less than the second, and eliminates rows in which the names
appear in opposite order (as well as rows in which the state names are
identical). The resulting query produces the desired output without
duplicates:

mysql> SELECT YEAR(s1.statehood) AS year,
 -> s1.name AS name1, s1.statehood AS statehood1,
 -> s2.name AS name2, s2.statehood AS statehood2
 -> FROM states AS s1 INNER JOIN states AS s2
 -> ON YEAR(s1.statehood) = YEAR(s2.statehood) AND s1.name <
s2.name
 -> ORDER BY year, name1, name2;
+------+----------------+------------+----------------+----------
--+
| year | name1 | statehood1 | name2 |
statehood2 |
+------+----------------+------------+----------------+----------
--+
| 1787 | Delaware | 1787-12-07 | New Jersey | 1787-12-
18 |
| 1787 | Delaware | 1787-12-07 | Pennsylvania | 1787-12-
12 |
| 1787 | New Jersey | 1787-12-18 | Pennsylvania | 1787-12-
12 |
…
| 1912 | Arizona | 1912-02-14 | New Mexico | 1912-01-
06 |
| 1959 | Alaska | 1959-01-03 | Hawaii | 1959-08-
21 |
+------+----------------+------------+----------------+----------
--+

For self-join problems of the “Which values are not matched by other rows
in the table?” variety, use a LEFT JOIN rather than an INNER JOIN. An
instance of this is the question “Which states did not join the Union in the
same year as any other state?” In this case, the solution uses a LEFT JOIN
of the states table to itself:

mysql> SELECT s1.name, s1.statehood
 -> FROM states AS s1 LEFT JOIN states AS s2
 -> ON YEAR(s1.statehood) = YEAR(s2.statehood) AND s1.name <>
s2.name
 -> WHERE s2.name IS NULL

 -> ORDER BY s1.name;
+----------------+------------+
| name | statehood |
+----------------+------------+
Alabama	1819-12-14
Arkansas	1836-06-15
California	1850-09-09
Colorado	1876-08-01
Illinois	1818-12-03
Indiana	1816-12-11
Iowa	1846-12-28
Kansas	1861-01-29
Kentucky	1792-06-01
…	
Tennessee	1796-06-01
Utah	1896-01-04
Vermont	1791-03-04
West Virginia	1863-06-20
Wisconsin	1848-05-29
+----------------+------------+

For each row in the states table, the statement selects rows for which the
state has a statehood value in the same year, not including that state
itself. For rows having no such match, the LEFT JOIN forces the output to
contain a row anyway, with all the s2 columns set to NULL. Those rows
identify the states with no other state that joined the Union in the same year.

16.5 Producing Candidate-Detail Lists and
Summaries

Problem
Two tables have a relationship such that a row in one table, usually called
the parent table with a candidate key, is referenced by one or more rows in
another table, usually called the child table with a detail row. In this
situation, you want to produce a list that shows each parent row with its
detail rows or a list that produces a summary of the detail rows for each
parent row.

Solution
This is a one-to-many relationship. The solution to this problem involves a
join, but the type of join depends on the question you want answered. To
produce a list containing only parent rows for which some detail row exists,
use an inner join based on the primary key in the parent table. To produce a
list that includes all parent rows, even those with no detail rows, use an
outer join.

Discussion
To produce a list from two tables that have a candidate-detail or parent-
child relationship, a given row in one table might be matched by several
rows in the other. These relationships occur frequently. For example, in
business contexts, one-to-many relationships involve invoices per customer
or items per invoice.
This recipe suggests some candidate-detail questions that you can ask (and
answer) using the artist and painting tables from earlier in the
chapter.
One form of candidate-detail question for these tables is “Which paintings
did each artist paint?” This is a simple inner join (see Recipe 16.1). Match
each artist row to its corresponding painting rows based on the artist
ID values:

mysql> SELECT artist.name, painting.title
 -> FROM artist INNER JOIN painting ON artist.a_id =
painting.a_id
 -> ORDER BY name, title;
+----------+-------------------+
| name | title |
+----------+-------------------+
Da Vinci	Mona Lisa
Da Vinci	The Last Supper
Renoir	Les Deux Soeurs
Van Gogh	Starry Night
Van Gogh	The Potato Eaters
+----------+-------------------+

To also list artists for whom you have no paintings, the join output should
include rows in one table that have no match in the other. That’s a form of
“find the nonmatching rows” problem that requires an outer join (see
Recipe 16.2). Thus, to list each artist row, whether or not any
painting rows match, use a LEFT JOIN:

mysql> SELECT artist.name, painting.title
 -> FROM artist LEFT JOIN painting ON artist.a_id =
painting.a_id
 -> ORDER BY name, title;
+----------+-------------------+
| name | title |
+----------+-------------------+
Da Vinci	Mona Lisa
Da Vinci	The Last Supper
Monet	NULL
Renoir	Les Deux Soeurs
Van Gogh	Starry Night
Van Gogh	The Potato Eaters
+----------+-------------------+

Rows in the result that have NULL in the title column correspond to
artists listed in the artist table for whom you have no paintings.

The same principles apply when producing summaries using candidate and
detail tables. For example, to summarize your art collection by number of
paintings per artist, you might ask, “How many paintings are there per artist
in the painting table?” To find the answer based on artist ID but
displaying the artist’s name (from the artist table), count the paintings
with this statement:

mysql> SELECT artist.name, COUNT(painting.a_id) AS paintings
 -> FROM artist INNER JOIN painting ON artist.a_id =
painting.a_id
 -> GROUP BY artist.name;
+----------+-----------+
| name | paintings |
+----------+-----------+
Da Vinci	2
Renoir	1
Van Gogh	2
+----------+-----------+

On the other hand, you might ask, “How many paintings did each artist
paint?” This is the same question as the previous one (and the same
statement answers it), as long as every artist in the artist table has at
least one corresponding painting table row. But if you have artists in the
artist table not yet represented by any paintings in your collection, they
do not appear in the statement output. To produce a summary that also
includes artists with no paintings in the painting table, use a LEFT
JOIN:

mysql> SELECT artist.name, COUNT(painting.a_id) AS paintings
 -> FROM artist LEFT JOIN painting ON artist.a_id =
painting.a_id
 -> GROUP BY artist.name;
+----------+-----------+
| name | paintings |
+----------+-----------+
Da Vinci	2
Monet	0
Renoir	1
Van Gogh	2
+----------+-----------+

Beware of a subtle error that is easy to make when writing that kind of
statement. Suppose that you write the COUNT() function slightly
differently, like so:

mysql> SELECT artist.name, COUNT(*) AS paintings
 -> FROM artist LEFT JOIN painting ON artist.a_id =
painting.a_id
 -> GROUP BY artist.name;

+----------+-----------+
| name | paintings |
+----------+-----------+
Da Vinci	2
Monet	1
Renoir	1
Van Gogh	2
+----------+-----------+

Now every artist appears to have at least one painting. Why the difference?
The problem is the use of COUNT(*) rather than
COUNT(painting.a_id). The way LEFT JOIN works for unmatched
rows in the left table is that it generates a row with all the columns from the
right table set to NULL. In the example, the right table is painting. The
statement that uses COUNT(painting.a_id) works correctly because
COUNT(expr) counts only non-NULL values. The statement that uses
COUNT(*) is incorrect because it counts rows, including those containing
NULL that correspond to missing artists.

LEFT JOIN is suitable for other types of summaries as well. To produce
additional columns showing the total and average prices of the paintings for
each artist in the artist table, use this statement:

mysql> SELECT artist.name,
 -> COUNT(painting.a_id) AS 'number of paintings',
 -> SUM(painting.price) AS 'total price',
 -> AVG(painting.price) AS 'average price'
 -> FROM artist LEFT JOIN painting ON artist.a_id =
painting.a_id
 -> GROUP BY artist.name;
+----------+---------------------+-------------+---------------+
| name | number of paintings | total price | average price |
+----------+---------------------+-------------+---------------+
Da Vinci	2	121	60.5000
Monet	0	NULL	NULL
Renoir	1	64	64.0000
Van Gogh	2	115	57.5000
+----------+---------------------+-------------+---------------+

Note that COUNT() is zero for artists that are not represented, but SUM()
and AVG() are NULL. The latter two functions return NULL when applied
to a set of values with no non-NULL values. To display a sum or average
value of zero in that case, replace SUM(expr) and AVG(expr) with
IFNULL(SUM(expr),0) and IFNULL(AVG(expr),0).

USING SUBQUERIES IN THE SELECT LIST
To generate master details, you may use subqueries in the select list. For example, to answer the
question “Which paintings did each artist paint?” you can use JOIN as we discussed in the
beginning of this recipe, or a subquery in the SELECT list:

mysql> SELECT title,
 -> (SELECT name FROM artist
 -> WHERE artist.a_id=painting.a_id) AS name
 -> FROM painting;
+-------------------+----------+
| title | name |
+-------------------+----------+
The Last Supper	Da Vinci
Mona Lisa	Da Vinci
Starry Night	Van Gogh
The Potato Eaters	Van Gogh
Les Deux Soeurs	Renoir
+-------------------+----------+
5 rows in set (0,00 sec)

You can use as many subqueries in the SELECT list as you wish. For example, to print the artist
name and the name of the state where the painting was acquired instead of its abbreviation, use
the following query:

SELECT title,
(SELECT name FROM artist WHERE artist.a_id=painting.a_id) AS
name,
(SELECT name FROM states WHERE states.abbrev = painting.state)
AS state
FROM painting;

This approach is useful when you join many tables that do not have referenced values that you
want to use in the resulting output. At the same time, such details are stored in the separate
small tables. In all other cases, using an explicit JOIN is more preferable for performance
reasons.

16.6 Enumerating a Many-to-Many
Relationship

Problem

You want to display a relationship between tables when any row in either
table might be matched by multiple rows in the other.

Solution
This is a many-to-many relationship. It requires a third table for associating
your two primary tables and a three-way join to produce the
correspondences between them.

Discussion
The artist and painting tables used in earlier sections have a one-to-
many relationship: a given artist may have produced many paintings, but
each painting was created by only one artist. One-to-many relationships are
relatively simple, and the two related tables can be joined using a column
that is common to both.
A many-to-many relationship between tables is more complex. It occurs
when a row in one table may have many matches in the other, and vice
versa. An example is the relationship between movies and actors: each
movie may have multiple actors, and each actor may have appeared in
multiple movies. One way to represent this relationship uses a table
structured as follows, with a row for each movie-actor combination:

mysql> SELECT * FROM movies_actors ORDER BY year, movie, actor;
+------+----------------------------+---------------+
| year | movie | actor |
+------+----------------------------+---------------+
1997	The Fifth Element	Bruce Willis
1997	The Fifth Element	Gary Oldman
1997	The Fifth Element	Ian Holm
1999	The Phantom Menace	Ewan McGregor
1999	The Phantom Menace	Liam Neeson
2001	The Fellowship of the Ring	Elijah Wood
2001	The Fellowship of the Ring	Ian Holm
2001	The Fellowship of the Ring	Ian McKellen
2001	The Fellowship of the Ring	Orlando Bloom
2005	Kingdom of Heaven	Liam Neeson
2005	Kingdom of Heaven	Orlando Bloom
2010	Red	Bruce Willis
2010	Red	Helen Mirren

| 2011 | Unknown | Diane Kruger |
| 2011 | Unknown | Liam Neeson |
+------+----------------------------+---------------+

The table captures the nature of this many-to-many relationship, but it’s
also in non-normal form because it unnecessarily stores repetitive
information. For example, information for each movie is recorded multiple
times. To better represent this many-to-many relationship, use multiple
tables:

Store each movie year and name once in a table named movies.

Store each actor name once in a table named actors.

Create a third table, movies_actors_link, that stores movie-actor
associations and serves as a link, or bridge, between the two primary
tables. To minimize the information stored in this table, assign unique
IDs to each movie and actor within their respective tables, and store only
those IDs in the movies_actors_link table.

The resulting movie and actor tables look like this:

mysql> SELECT * FROM movies ORDER BY id;
+----+------+----------------------------+
| id | year | movie |
+----+------+----------------------------+
1	1997	The Fifth Element
2	1999	The Phantom Menace
3	2001	The Fellowship of the Ring
4	2005	Kingdom of Heaven
5	2010	Red
6	2011	Unknown
+----+------+----------------------------+		
mysql> SELECT * FROM actors ORDER BY id;		
+----+---------------+		
id	actor	
+----+---------------+		
1	Bruce Willis	
2	Diane Kruger	
3	Elijah Wood	
4	Ewan McGregor	
5	Gary Oldman	
6	Helen Mirren	
7	Ian Holm	
8	Ian McKellen	

| 9 | Liam Neeson |
| 10 | Orlando Bloom |
+----+---------------+

The movies_actors_link table associates movies and actors as
follows:

mysql> SELECT * FROM movies_actors_link ORDER BY movie_id,
actor_id;
+----------+----------+
| movie_id | actor_id |
+----------+----------+
1	1
1	5
1	7
2	4
2	9
3	3
3	7
3	8
3	10
4	9
4	10
5	1
5	6
6	2
6	9
+----------+----------+

You’ll surely notice that the content of the movies_actors_link table
is entirely meaningless from a human perspective. That’s okay: we need
never display it explicitly. Its utility derives from its ability to link the two
primary tables in queries, without appearing in query output itself. The next
few examples illustrate this principle. They answer questions about the
movies or actors, using three-way joins that relate the two primary tables
using the link table:

List all the pairings that show each movie and who acted in it. This
statement enumerates all the correspondences between the movie and
actor tables and reproduces the information that was originally in the
non-normal movies_actors table:

mysql> SELECT m.year, m.movie, a.actor
 -> FROM movies AS m INNER JOIN movies_actors_link AS l
 -> INNER JOIN actors AS a
 -> ON m.id = l.movie_id AND a.id = l.actor_id
 -> ORDER BY m.year, m.movie, a.actor;
+------+----------------------------+---------------+
| year | movie | actor |
+------+----------------------------+---------------+
1997	The Fifth Element	Bruce Willis
1997	The Fifth Element	Gary Oldman
1997	The Fifth Element	Ian Holm
1999	The Phantom Menace	Ewan McGregor
1999	The Phantom Menace	Liam Neeson
2001	The Fellowship of the Ring	Elijah Wood
2001	The Fellowship of the Ring	Ian Holm
2001	The Fellowship of the Ring	Ian McKellen
2001	The Fellowship of the Ring	Orlando Bloom
2005	Kingdom of Heaven	Liam Neeson
2005	Kingdom of Heaven	Orlando Bloom
2010	Red	Bruce Willis
2010	Red	Helen Mirren
2011	Unknown	Diane Kruger
2011	Unknown	Liam Neeson
+------+----------------------------+---------------+

List the actors in a given movie:

mysql> SELECT a.actor
 -> FROM movies AS m INNER JOIN movies_actors_link AS l
 -> INNER JOIN actors AS a
 -> ON m.id = l.movie_id AND a.id = l.actor_id
 -> WHERE m.movie = 'The Fellowship of the Ring'
 -> ORDER BY a.actor;
+---------------+
| actor |
+---------------+
| Elijah Wood |
| Ian Holm |
| Ian McKellen |
| Orlando Bloom |
+---------------+

List the movies in which a given actor has acted:

mysql> SELECT m.year, m.movie
 -> FROM movies AS m INNER JOIN movies_actors_link AS l
 -> INNER JOIN actors AS a
 -> ON m.id = l.movie_id AND a.id = l.actor_id

 -> WHERE a.actor = 'Liam Neeson'
 -> ORDER BY m.year, m.movie;
+------+--------------------+
| year | movie |
+------+--------------------+
1999	The Phantom Menace
2005	Kingdom of Heaven
2011	Unknown
+------+--------------------+

16.7 Finding Per-Group Minimum or
Maximum Values

Problem
You want to find which row within each group of rows in a table contains
the maximum or minimum value for a given column. For example, you
want to determine the most expensive painting in your collection for each
artist.

Solution
Create a temporary table to hold the per-group maximum or minimum
values, then join the temporary table with the original one to pull out the
matching row for each group. If you prefer a single-query solution, use a
subquery in the FROM clause rather than a temporary table.

Discussion
Many questions involve finding largest or smallest values in a particular
table column, but it’s also common to want to know other values in the row
that contains the value. For example, using the artist and painting
tables with the techniques from Recipe 10.6, it’s possible to answer
questions such as “What is the most expensive painting in the collection,
and who painted it?” One solution is to store the highest price in a user-
defined variable, then use the variable to identify the row containing the
price so that you can retrieve other columns from it:

mysql> SET @max_price = (SELECT MAX(price) FROM painting);
mysql> SELECT artist.name, painting.title, painting.price
 -> FROM artist INNER JOIN painting
 -> ON painting.a_id = artist.a_id
 -> WHERE painting.price = @max_price;
+----------+-----------+-------+
| name | title | price |
+----------+-----------+-------+
| Da Vinci | Mona Lisa | 87 |
+----------+-----------+-------+

The same thing can be done by creating a temporary table to hold the
maximum price and joining it with the other tables:

CREATE TABLE tmp SELECT MAX(price) AS max_price FROM painting;
SELECT artist.name, painting.title, painting.price
FROM artist INNER JOIN painting INNER JOIN tmp
ON painting.a_id = artist.a_id
AND painting.price = tmp.max_price;

On the face of it, using a temporary table and a join is just a more
complicated way of answering the question than with a user-defined
variable. Does this technique have any practical value? Yes, it does, because
it leads to a more general technique for answering more difficult questions.
The previous statements show information only for the single most
expensive painting in the entire painting table. What if your question is
“What is the most expensive painting for each artist?” You can’t use a user-
defined variable to answer that question because the answer requires
finding one price per artist, and a variable holds only a single value. But the
technique of using a temporary table works well because the table can hold
multiple rows, and a join can find matches for all of them.
To answer the question, select each artist ID and the corresponding
maximum painting price into a temporary table. This table contains not only
the maximum painting price but the maximum within each group, where
“group” is defined as “paintings by a given artist.” Then use the artist IDs
and prices stored in the temporary table to match rows in the painting
table, and join the result with the artist table to get the artist names:

mysql> CREATE TABLE tmp
 -> SELECT a_id, MAX(price) AS max_price FROM painting GROUP
BY a_id;
mysql> SELECT artist.name, painting.title, painting.price
 -> FROM artist INNER JOIN painting INNER JOIN tmp
 -> ON painting.a_id = artist.a_id
 -> AND painting.a_id = tmp.a_id
 -> AND painting.price = tmp.max_price;

+----------+-------------------+-------+
| name | title | price |
+----------+-------------------+-------+
Da Vinci	Mona Lisa	87
Van Gogh	The Potato Eaters	67
Renoir	Les Deux Soeurs	64
+----------+-------------------+-------+

To avoid explicitly creating temporary tables and obtain the same result
with a single statement, use CTEs:

WITH tmp AS (SELECT a_id, MAX(price) AS max_price FROM painting
GROUP BY a_id)
SELECT artist.name, painting.title, painting.price
FROM artist INNER JOIN painting INNER JOIN tmp
ON painting.a_id = artist.a_id AND
painting.a_id = tmp.a_id AND painting.price = tmp.max_price;

We discuss CTEs in detail in Recipe 10.18.
Another way to obtain the same result with a single statement is to use a
subquery in the FROM clause that retrieves the same rows contained in the
temporary table:

SELECT artist.name, painting.title, painting.price
FROM artist INNER JOIN painting INNER JOIN
(SELECT a_id, MAX(price) AS max_price FROM painting GROUP BY
a_id) AS tmp
ON painting.a_id = artist.a_id
AND painting.a_id = tmp.a_id
AND painting.price = tmp.max_price;

Yet another way to answer maximum-per-group questions is to use a LEFT
JOIN that joins a table to itself. The following statement identifies the

highest-priced painting per artist ID (use IS NULL to select all the rows
from p1 for which there is no row in p2 with a higher price):

mysql> SELECT p1.a_id, p1.title, p1.price
 -> FROM painting AS p1 LEFT JOIN painting AS p2
 -> ON p1.a_id = p2.a_id AND p1.price < p2.price
 -> WHERE p2.a_id IS NULL;
+------+-------------------+-------+
| a_id | title | price |
+------+-------------------+-------+
1	Mona Lisa	87
3	The Potato Eaters	67
4	Les Deux Soeurs	64
+------+-------------------+-------+

To display artist names rather than ID values, join the result of the LEFT
JOIN to the artist table:

mysql> SELECT artist.name, p1.title, p1.price
 -> FROM painting AS p1 LEFT JOIN painting AS p2
 -> ON p1.a_id = p2.a_id AND p1.price < p2.price
 -> INNER JOIN artist ON p1.a_id = artist.a_id
 -> WHERE p2.a_id IS NULL;
+----------+-------------------+-------+
| name | title | price |
+----------+-------------------+-------+
Da Vinci	Mona Lisa	87
Van Gogh	The Potato Eaters	67
Renoir	Les Deux Soeurs	64
+----------+-------------------+-------+

The self-LEFT JOIN method is perhaps less intuitive than using a
temporary table, a CTE, or a subquery.

See Also
This recipe showed how to answer maximum-per-group questions by
selecting summary information into a temporary table and joining that table
to the original one or by using a subquery in the FROM clause. These
techniques have applications in many contexts. One of them is calculating
team standings, where the standings for each group of teams are determined

by comparing each team in the group to the team with the best record.
Recipe 17.12 discusses how to do this.

16.8 Using a Join to Fill or Identify Holes in a
List

Problem
You want to produce a summary by category, but some categories are
missing from the data to be summarized. Consequently, the summary has
missing categories as well.

Solution
Create a reference table that lists each category, and produce the summary
based on a LEFT JOIN between the list and the table containing your data.
Every category in the reference table will appear in the result, even those
not present in the data to be summarized.

Discussion
A summary query normally produces entries only for categories actually
present in the data. Suppose that you want to summarize the driver_log
table (introduced in Chapter 9), to determine how many drivers were on the
road each day. The table has these rows:

mysql> SELECT * FROM driver_log ORDER BY rec_id;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
1	Ben	2014-07-30	152
2	Suzi	2014-07-29	391
3	Henry	2014-07-29	300
4	Henry	2014-07-27	96
5	Ben	2014-07-29	131
6	Henry	2014-07-26	115
7	Suzi	2014-08-02	502
8	Henry	2014-08-01	197

| 9 | Ben | 2014-08-02 | 79 |
| 10 | Henry | 2014-07-30 | 203 |
+--------+-------+------------+-------+

A simple summary showing the number of active drivers per day looks like
this:

mysql> SELECT trav_date, COUNT(trav_date) AS drivers
 -> FROM driver_log GROUP BY trav_date ORDER BY trav_date;
+------------+---------+
| trav_date | drivers |
+------------+---------+
2014-07-26	1
2014-07-27	1
2014-07-29	3
2014-07-30	2
2014-08-01	1
2014-08-02	2
+------------+---------+

Here, the summary category is date, but the summary is “incomplete” in the
sense that it includes entries only for dates represented in the
driver_log table. To produce a summary that includes all categories (all
dates within the date range represented in the table), including those for
which no driver was active, create a reference table that lists each date:

mysql> CREATE TABLE dates (d DATE);
mysql> INSERT INTO dates (d)
 -> VALUES('2014-07-26'),('2014-07-27'),('2014-07-28'),
 -> ('2014-07-29'),('2014-07-30'),('2014-07-31'),
 -> ('2014-08-01'),('2014-08-02');

Then join the reference table to the driver_log table using a LEFT
JOIN:

mysql> SELECT dates.d, COUNT(driver_log.trav_date) AS drivers
 -> FROM dates LEFT JOIN driver_log ON dates.d =
driver_log.trav_date
 -> GROUP BY d ORDER BY d;
+------------+---------+
| d | drivers |
+------------+---------+
| 2014-07-26 | 1 |

2014-07-27	1
2014-07-28	0
2014-07-29	3
2014-07-30	2
2014-07-31	0
2014-08-01	1
2014-08-02	2
+------------+---------+

Now the summary includes a row for every date in the range because the
LEFT JOIN forces the output to include a row for every date in the
reference table, even those missing from the driver_log table.

The example just shown uses the reference table with a LEFT JOIN to fill
holes in the summary. It’s also possible to use the reference table to detect
holes in the dataset—that is, to determine which categories are not present
in the data to be summarized. The following statement shows those dates on
which no driver was active by looking for reference rows for which no
driver_log table rows have a matching category value:

mysql> SELECT dates.d
 -> FROM dates LEFT JOIN driver_log ON dates.d =
driver_log.trav_date
 -> WHERE driver_log.trav_date IS NULL;
+------------+
| d |
+------------+
| 2014-07-28 |
| 2014-07-31 |
+------------+

Reference tables that contain a list of categories are quite useful in
summary context, as just shown. But creating such tables manually is mind-
numbing and error-prone. It is much easier to use a recursive CTE for this
purpose:

WITH RECURSIVE dates (d) AS (
 SELECT '2014-07-26'
 UNION ALL
 SELECT d + INTERVAL 1 day
 FROM dates
 WHERE d < '2014-08-02')
SELECT dates.d, COUNT(driver_log.trav_date) AS drivers

FROM dates LEFT JOIN driver_log ON dates.d = driver_log.trav_date
GROUP BY d ORDER BY d;

We discuss recursive CTEs in more detail in Recipe 15.16.
If you need a very long list of dates that you expect to reuse often, you may
prefer to store them in a table instead of generating series each time you
need them. In this case, a stored procedure that uses the endpoints of the
range of category values to generate the reference table for you helps
automate the process. In essence, this type of procedure acts as an iterator
that generates a row for each value in the range.
The following procedure, make_date_list(), shows an example of
this approach. It creates a reference table containing a row for every date in
a particular date range. It also indexes the table so that it will be fast in large
joins:

CREATE PROCEDURE make_date_list(db_name TEXT, tbl_name TEXT,
col_name TEXT,
 min_date DATE, max_date DATE)
BEGIN
 DECLARE i, days INT;
 SET i = 0, days = DATEDIFF(max_date,min_date)+1;

 # Make identifiers safe for insertion into SQL statements. Use
db_name
 # and tbl_name to create qualified table name.
 SET tbl_name = CONCAT(quote_identifier(db_name),'.',
 quote_identifier(tbl_name));
 SET col_name = quote_identifier(col_name);
 CALL exec_stmt(CONCAT('DROP TABLE IF EXISTS ',tbl_name));
 CALL exec_stmt(CONCAT('CREATE TABLE ',tbl_name,'(',
 col_name,' DATE NOT NULL, PRIMARY KEY(',
 col_name,'))'));
 WHILE i < days DO
 CALL exec_stmt(CONCAT('INSERT INTO ',tbl_name,'(',col_name,')
VALUES(',
 QUOTE(min_date),' + INTERVAL ',i,'
DAY)'));
 SET i = i + 1;
 END WHILE;
END;

Use make_date_list() to generate the reference table, dates, like
this:

CALL make_date_list('cookbook', 'dates', 'd', '2014-07-26',
'2014-08-02');

Then use the dates table as shown earlier in this section to fill holes in the
summary or to detect holes in the dataset.
You can find the make_date_list() procedure in the joins directory of
the recipes distribution. It requires the exec_stmt() and
quote_identifier() helper routines (see Recipe 11.6), located in the
routines directory. The joins directory also contains a Perl script,
make_date_list.pl, that implements an alternate approach; it
generates date reference tables from the command line.

16.9 Using a Join to Control Query Sort
Order

Problem
You want to sort a statement’s output using a characteristic of the output
that cannot be specified using ORDER BY. For example, you want to sort a
set of rows by subgroups, putting first those groups with the most rows and
last those groups with the fewest rows. But “number of rows in each group”
is not a property of individual rows, so you can’t use it for sorting.

Solution
Derive the ordering information and store it in an auxiliary table. Then join
the original table to the auxiliary table, using the auxiliary table to control
the sort order.

Discussion

Most of the time you sort a query result using an ORDER BY clause that
names which column or columns to use for sorting. But sometimes the
values you want to sort by aren’t present in the rows to be sorted. This is the
case when you want to use group characteristics to order the rows. The
following example uses the driver_log table to illustrate this. The
following query sorts the table using the ID column, which is present in the
rows:

mysql> SELECT * FROM driver_log ORDER BY rec_id;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
1	Ben	2014-07-30	152
2	Suzi	2014-07-29	391
3	Henry	2014-07-29	300
4	Henry	2014-07-27	96
5	Ben	2014-07-29	131
6	Henry	2014-07-26	115
7	Suzi	2014-08-02	502
8	Henry	2014-08-01	197
9	Ben	2014-08-02	79
10	Henry	2014-07-30	203
+--------+-------+------------+-------+

But what if you want to display a list and sort it on the basis of a summary
value not present in the rows? That’s a little trickier. Suppose that you want
to show each driver’s rows by date but place those drivers who drive the
most miles first. You can’t do this with a summary query because then you
wouldn’t get back the individual driver rows. But you can’t do it without a
summary query, either, because the summary values are required for
sorting. The way out of the dilemma is to create another table containing
the summary value per driver and join it to the original table. That way you
can produce the individual rows and also sort them by the summary values.
To summarize the driver totals into another table, do this:

mysql> CREATE TABLE tmp
 -> SELECT name, SUM(miles) AS driver_miles FROM driver_log
GROUP BY name;

That produces the values we need to put the names in the proper total-miles
order:

mysql> SELECT * FROM tmp ORDER BY driver_miles DESC;
+-------+--------------+
| name | driver_miles |
+-------+--------------+
Henry	911
Suzi	893
Ben	362
+-------+--------------+

Then use the name values to join the summary table to the driver_log
table, and use the driver_miles values to sort the result:

mysql> SELECT tmp.driver_miles, driver_log.*
 -> FROM driver_log INNER JOIN tmp ON driver_log.name =
tmp.name
 -> ORDER BY tmp.driver_miles DESC, driver_log.trav_date;
+--------------+--------+-------+------------+-------+
| driver_miles | rec_id | name | trav_date | miles |
+--------------+--------+-------+------------+-------+
911	6	Henry	2014-07-26	115
911	4	Henry	2014-07-27	96
911	3	Henry	2014-07-29	300
911	10	Henry	2014-07-30	203
911	8	Henry	2014-08-01	197
893	2	Suzi	2014-07-29	391
893	7	Suzi	2014-08-02	502
362	5	Ben	2014-07-29	131
362	1	Ben	2014-07-30	152
362	9	Ben	2014-08-02	79
+--------------+--------+-------+------------+-------+

The preceding statement shows the mileage totals in the result. That’s only
to clarify how the values are being sorted. It’s not actually necessary to
display them; they’re needed only for the ORDER BY clause.

To avoid using the temporary table, use a CTE:

WITH tmp AS
(SELECT name, SUM(miles) AS driver_miles FROM driver_log GROUP BY
name)
SELECT tmp.driver_miles, driver_log.*

FROM driver_log INNER JOIN tmp ON driver_log.name = tmp.name
ORDER BY tmp.driver_miles DESC, driver_log.trav_date;

Alternatively, select the same rows using a subquery in the FROM clause:

SELECT tmp.driver_miles, driver_log.*
FROM driver_log INNER JOIN
(SELECT name, SUM(miles) AS driver_miles
FROM driver_log GROUP BY name) AS tmp
ON driver_log.name = tmp.name
ORDER BY tmp.driver_miles DESC, driver_log.trav_date;

16.10 Joining Results of Multiple Queries

Problem
You want to join results of two or more queries.

Solution
Run the queries and store results in the temporary tables, then access those
temporary tables to obtain the final results. Or, use named subqueries, then
join their results. Or, use our favorite method: CTEs that will help you to
perform this task in the easiest and clearest manner.

Discussion
You may need to join not only tables but results of other queries. Assume
you are working with the city and states tables from the recipes
distribution and want to find capital names of the states that belong to the
10 states with the highest populations. At the same time, you want to
include into your search results only those states where the largest city is
the same as the capital.
This task is very easy to solve if you first split it into three parts:

1. Find all states where the capital and the largest city are the same. You
can do it with a query:

SELECT * FROM city WHERE capital=largest;

2. Find 10 states with the highest population:

SELECT * FROM states ORDER BY pop DESC LIMIT 10;

3. Join the results to select rows that exist in both.
There are three ways to do this: by creating intermediate temporary tables,
by joining subquery results, and by using CTEs.

Using intermediate temporary tables
Store results of the queries into temporary tables, then select from them:

mysql> CREATE TEMPORARY TABLE large_capitals
 -> SELECT * FROM city WHERE capital=largest;
Query OK, 17 rows affected (0,00 sec)
Records: 17 Duplicates: 0 Warnings: 0

mysql> CREATE TEMPORARY TABLE top10states
 -> SELECT * FROM states ORDER BY pop DESC LIMIT 10;
Query OK, 10 rows affected (0,00 sec)
Records: 10 Duplicates: 0 Warnings: 0

mysql> SELECT state, capital, pop FROM
 -> large_capitals JOIN top10states
 -> ON(large_capitals.state = top10states.name);
+---------+----------+----------+
| state | capital | pop |
+---------+----------+----------+
| Georgia | Atlanta | 10799566 |
| Ohio | Columbus | 11780017 |
+---------+----------+----------+
2 rows in set (0,00 sec)

TIP
The keyword TEMPORARY for the CREATE TABLE statement instructs MySQL to create a table,
visible for the current session only and which will be destroyed after you close the session. See
Recipe 6.3 for further details.

Using named subqueries

If you need to access the intermediate results only once, you can avoid
creating temporary tables by using subqueries and joining their results.

mysql> SELECT state, capital, pop FROM
 -> (SELECT * FROM city WHERE capital=largest) AS
large_capitals,
 -> (SELECT * FROM states ORDER BY pop DESC LIMIT 10) AS
top10states
 -> WHERE large_capitals.state = top10states.name;
+---------+----------+----------+
| state | capital | pop |
+---------+----------+----------+
| Georgia | Atlanta | 10799566 |
| Ohio | Columbus | 11780017 |
+---------+----------+----------+
2 rows in set (0,00 sec)

Start the query by selecting the columns you need in the final result.

Put the first subquery into brackets, and assign it a unique name.

Do the same for the second subquery.

Narrow the search with a WHERE clause.

Using CTEs
With CTEs, start by naming your subqueries, then join their results as if
they were regular MySQL tables:

mysql> WITH
 -> large_capitals AS (SELECT * FROM city WHERE
capital=largest),
 -> top10states AS (SELECT * FROM states ORDER BY pop DESC
LIMIT 10)
 -> SELECT state, capital, pop
 -> FROM large_capitals JOIN top10states
 -> ON (large_capitals.state = top10states.name);
+---------+----------+----------+
| state | capital | pop |
+---------+----------+----------+
| Georgia | Atlanta | 10799566 |
| Ohio | Columbus | 11780017 |
+---------+----------+----------+
2 rows in set (0,00 sec)

16.11 Referring to Join Output Column
Names in Programs

Problem
You need to process the result of a join from within a program, but column
names in the result set aren’t unique.

Solution
Rewrite the query using column aliases so that each column has a unique
name. Alternatively, refer to the columns by position.

Discussion
Joins typically retrieve columns from related tables, and it’s not unusual for
columns selected from different tables to have the same names. Consider
the following join that shows the items in your art collection. For each
painting, it displays artist name, painting title, the state in which you
acquired the item, and its price:

mysql> SELECT artist.name, painting.title, states.name,
painting.price
 -> FROM artist INNER JOIN painting INNER JOIN states
 -> ON artist.a_id = painting.a_id AND painting.state =
states.abbrev;
+----------+-------------------+----------+-------+
| name | title | name | price |
+----------+-------------------+----------+-------+
Da Vinci	The Last Supper	Indiana	34
Da Vinci	Mona Lisa	Michigan	87
Van Gogh	Starry Night	Kentucky	48
Van Gogh	The Potato Eaters	Kentucky	67
Renoir	Les Deux Soeurs	Nebraska	64
+----------+-------------------+----------+-------+

The statement uses table qualifiers for each output column, but MySQL
doesn’t include table names in the column headings, so not all column
names in the output are distinct. If you process the join result from within a

program and fetch rows into a data structure that references column values
by name, nonunique column names cause values to become inaccessible.
Suppose that you fetch rows in a Perl DBI script like this:

while (my $ref = $sth->fetchrow_hashref ())
{
 ... process row hash here ...
}

Fetching rows into the hash yields three hash elements (name, title,
price); one of the name elements is lost. To solve this problem, supply
aliases that make the column names unique:

SELECT artist.name AS painter, painting.title,
 states.name AS state, painting.price
FROM artist INNER JOIN painting INNER JOIN states
ON artist.a_id = painting.a_id AND painting.state =
states.abbrev;

Now fetching rows into a hash yields four hash elements (painter,
title, state, price).

To address the problem without column renaming, fetch the row into
something other than a hash. For example, fetch the row into an array and
refer to the columns by ordinal position within the array:

while (my @val = $sth->fetchrow_array ())
{
 print "painter: $val[0], title: $val[1], "
 . "state: $val[2], price: $val[3]\n";
}

Chapter 17. Statistical
Techniques

17.0 Introduction
This chapter covers several topics that relate to basic statistical techniques.
For the most part, these recipes build on those described in earlier chapters,
such as the summary techniques discussed in Chapter 10 and join
techniques from Chapter 16. The examples here thus show additional ways
to apply the material from those chapters. Broadly speaking, the topics
discussed in this chapter include the following:

Techniques for characterizing a dataset, such as calculating descriptive
statistics, generating frequency distributions, counting missing values,
and calculating least-squares regressions or correlation coefficients
Randomization methods, such as how to generate random numbers and
apply them to randomizing a set of rows or to selecting individual items
randomly from the rows
Techniques for calculating successive-observation differences,
cumulative sums, and running averages
Methods for producing rank assignments and generating team standings

Statistics covers such a large and diverse array of topics that this chapter
necessarily only scratches the surface and simply illustrates a few of the
potential areas in which MySQL may be applied to statistical analysis. Note
that some statistical measures can be defined in different ways (for
example, do you calculate standard deviation based on n degrees of
freedom or n–1?). If the definition we use for a given term doesn’t match
the one you prefer, adapt the queries or algorithms shown here
appropriately.

You can find scripts related to the examples discussed here in the stats
directory of the recipes distribution, and scripts for creating example
tables in the tables directory.

17.1 Calculating Descriptive Statistics

Problem
You want to characterize a dataset by computing general descriptive or
summary statistics.

Solution
Many common descriptive statistics, such as mean and standard deviation,
are obtained by applying aggregate functions to your data. Others, such as
median or mode, are calculated based on counting queries.

Discussion
Suppose that a testscore table contains observations representing
subject ID, age, sex, and test score:

mysql> SELECT subject, age, sex, score FROM testscore ORDER BY
subject;
+---------+-----+-----+-------+
| subject | age | sex | score |
+---------+-----+-----+-------+
1	5	M	5
2	5	M	4
3	5	F	6
4	5	F	7
5	6	M	8
6	6	M	9
7	6	F	4
8	6	F	6
9	7	M	8
10	7	M	6
11	7	F	9
12	7	F	7
13	8	M	9

14	8	M	6
15	8	F	7
16	8	F	10
17	9	M	9
18	9	M	7
19	9	F	10
20	9	F	9
+---------+-----+-----+-------+

A good first step in analyzing a set of observations is to generate some
descriptive statistics that summarize their general characteristics as a whole.
Common statistical values of this kind include:

The number of observations, their sum, and their range (minimum and
maximum)
Measures of central tendency, such as mean, median, and mode
Measures of variation, such as standard deviation and variance

Aside from the median and mode, all of these can be calculated easily by
invoking aggregate functions:

mysql> SELECT COUNT(score) AS n,
 -> SUM(score) AS sum,
 -> MIN(score) AS minimum,
 -> MAX(score) AS maximum,
 -> AVG(score) AS mean,
 -> STDDEV_SAMP(score) AS 'std. dev.',
 -> VAR_SAMP(score) AS 'variance'
 -> FROM testscore;
+----+------+---------+---------+--------+-----------+----------+
| n | sum | minimum | maximum | mean | std. dev. | variance |
+----+------+---------+---------+--------+-----------+----------+
| 20 | 146 | 4 | 10 | 7.3000 | 1.8382 | 3.3789 |
+----+------+---------+---------+--------+-----------+----------+

The STDDEV_SAMP() and VAR_SAMP() functions produce sample
measures rather than population measures. That is, for a set of n values,
they produce a result that is based on n–1 degrees of freedom. For the
population measures, which are based on n degrees of freedom, use
STDDEV_POP() and VAR_POP() instead. STDDEV() and
VARIANCE() are synonyms for STDDEV_POP() and VAR_POP().

Standard deviation can be used to identify outliers—values that are
uncharacteristically far from the mean. For example, to select values that lie
more than a standard deviation from the mean, do this:

SELECT AVG(score), STDDEV_SAMP(score) INTO @mean, @std FROM
testscore;
SELECT score FROM testscore WHERE ABS(score-@mean) > @std;

MySQL has no built-in function for computing the mode or median of a set
of values, but you can compute them yourself. To determine the mode (the
value that occurs most frequently), count each value and see which is most
common:

mysql> SELECT score, COUNT(score) AS frequency
 -> FROM testscore GROUP BY score ORDER BY frequency DESC;
+-------+-----------+
| score | frequency |
+-------+-----------+
9	5
6	4
7	4
4	2
8	2
10	2
5	1
+-------+-----------+

In this case, 9 is the modal score value.
The median of a set of ordered values can be calculated like this:1

If the number of values is odd, the median is the middle value.
If the number of values is even, the median is the average of the two
middle values.

Based on that definition, use the following procedure to determine the
median of a set of observations stored in the database:

1. Issue a query to count the number of observations. From the count,
you can determine whether the median calculation requires one or two
values and what their indexes are within the ordered set of
observations.

2. Issue a query that includes an ORDER BY clause to sort the
observations and a LIMIT clause to pull out the middle value or
values.

3. If there is a single middle value, it is the median. Otherwise, take the
average of the middle values.

Suppose that a table t contains a score column with 37 values (an odd
number). To get the median, select a single value using a statement like this:

SELECT score FROM t ORDER BY score LIMIT 18,1;

If the column contains 38 values (an even number), select two values:

SELECT score FROM t ORDER BY score LIMIT 18,2;

Then take the values returned by the statement and compute the median
from their average.
The following Perl function implements a median calculation. It takes a
database handle and the names of the database, table, and column that
contain the set of observations. Then it generates the statement that
retrieves the relevant values and returns their average:

sub median
{
my ($dbh, $db_name, $tbl_name, $col_name) = @_;
my ($count, $limit);

 $db_name = $dbh->quote_identifier ($db_name);
 $tbl_name = $dbh->quote_identifier ($tbl_name);
 $col_name = $dbh->quote_identifier ($col_name);

 $count = $dbh->selectrow_array (qq{
 SELECT COUNT($col_name) FROM $db_name.$tbl_name
 });
 return undef unless $count > 0;
 if ($count % 2 == 1) # odd number of values; select middle
value
 {
 $limit = sprintf ("LIMIT %d,1", ($count-1)/2);
 }
 else # even number of values; select middle

two values
 {
 $limit = sprintf ("LIMIT %d,2", $count/2 - 1);
 }

 my $sth = $dbh->prepare (qq{
 SELECT $col_name FROM $db_name.$tbl_name ORDER BY $col_name
$limit
 });
 $sth->execute ();
 my ($n, $sum) = (0, 0);
 while (my $ref = $sth->fetchrow_arrayref ())
 {
 ++$n;
 $sum += $ref->[0];
 }
 return $sum / $n;
}

The preceding technique works for a set of values stored in the database. If
you have already fetched an ordered set of values into an array @val,
compute the median like this instead:

if (@val == 0) # array is empty, median is undefined
{
 $median = undef;
}
elsif (@val % 2 == 1) # array size is odd, median is middle
number
{
 $median = $val[(@val-1)/2];
}
else # array size is even; median is average
{ # of two middle numbers
 $median = ($val[@val/2 - 1] + $val[@val/2]) / 2;
}

The code works for arrays that have an initial subscript of 0; for languages
that use 1-based array indexes, adjust the algorithm accordingly.

17.2 Calculating Descriptive Statistics for
Groups

Problem
You want to produce descriptive statistics for each subgroup of a set of
observations.

Solution
Use aggregate functions but employ a GROUP BY clause to arrange
observations into the appropriate groups.

Discussion
Recipe 17.1 shows how to compute descriptive statistics for the entire set of
scores in the testscore table. To be more specific, use GROUP BY to
divide the observations into groups and calculate statistics for each of them.
For example, the subjects in the testscore table are listed by age and
sex, so it’s possible to calculate similar statistics by age or sex (or both) by
application of appropriate GROUP BY clauses.

Here’s how to calculate by age:

mysql> SELECT age, COUNT(score) AS n,
 -> SUM(score) AS sum,
 -> MIN(score) AS minimum,
 -> MAX(score) AS maximum,
 -> AVG(score) AS mean,
 -> STDDEV_SAMP(score) AS 'std. dev.',
 -> VAR_SAMP(score) AS 'variance'
 -> FROM testscore
 -> GROUP BY age;
+-----+---+------+---------+---------+--------+-----------+------
----+
| age | n | sum | minimum | maximum | mean | std. dev. |
variance |
+-----+---+------+---------+---------+--------+-----------+------
----+
| 5 | 4 | 22 | 4 | 7 | 5.5000 | 1.2910 |
1.6667 |
| 6 | 4 | 27 | 4 | 9 | 6.7500 | 2.2174 |
4.9167 |
| 7 | 4 | 30 | 6 | 9 | 7.5000 | 1.2910 |
1.6667 |
| 8 | 4 | 32 | 6 | 10 | 8.0000 | 1.8257 |

3.3333 |
| 9 | 4 | 35 | 7 | 10 | 8.7500 | 1.2583 |
1.5833 |
+-----+---+------+---------+---------+--------+-----------+------
----+

By sex:

mysql> SELECT sex, COUNT(score) AS n,
 -> SUM(score) AS sum,
 -> MIN(score) AS minimum,
 -> MAX(score) AS maximum,
 -> AVG(score) AS mean,
 -> STDDEV_SAMP(score) AS 'std. dev.',
 -> VAR_SAMP(score) AS 'variance'
 -> FROM testscore
 -> GROUP BY sex;
+-----+----+------+---------+---------+--------+-----------+-----
-----+
| sex | n | sum | minimum | maximum | mean | std. dev. |
variance |
+-----+----+------+---------+---------+--------+-----------+-----
-----+
| M | 10 | 71 | 4 | 9 | 7.1000 | 1.7920 |
3.2111 |
| F | 10 | 75 | 4 | 10 | 7.5000 | 1.9579 |
3.8333 |
+-----+----+------+---------+---------+--------+-----------+-----
-----+

By age and sex:

mysql> SELECT age, sex, COUNT(score) AS n,
 -> SUM(score) AS sum,
 -> MIN(score) AS minimum,
 -> MAX(score) AS maximum,
 -> AVG(score) AS mean,
 -> STDDEV_SAMP(score) AS 'std. dev.',
 -> VAR_SAMP(score) AS 'variance'
 -> FROM testscore
 -> GROUP BY age, sex;
+-----+-----+---+------+---------+---------+--------+-----------
+----------+
| age | sex | n | sum | minimum | maximum | mean | std. dev. |
variance |
+-----+-----+---+------+---------+---------+--------+-----------
+----------+
| 5 | M | 2 | 9 | 4 | 5 | 4.5000 | 0.7071 |

0.5000 |
| 5 | F | 2 | 13 | 6 | 7 | 6.5000 | 0.7071 |
0.5000 |
| 6 | M | 2 | 17 | 8 | 9 | 8.5000 | 0.7071 |
0.5000 |
| 6 | F | 2 | 10 | 4 | 6 | 5.0000 | 1.4142 |
2.0000 |
| 7 | M | 2 | 14 | 6 | 8 | 7.0000 | 1.4142 |
2.0000 |
| 7 | F | 2 | 16 | 7 | 9 | 8.0000 | 1.4142 |
2.0000 |
| 8 | M | 2 | 15 | 6 | 9 | 7.5000 | 2.1213 |
4.5000 |
| 8 | F | 2 | 17 | 7 | 10 | 8.5000 | 2.1213 |
4.5000 |
| 9 | M | 2 | 16 | 7 | 9 | 8.0000 | 1.4142 |
2.0000 |
| 9 | F | 2 | 19 | 9 | 10 | 9.5000 | 0.7071 |
0.5000 |
+-----+-----+---+------+---------+---------+--------+-----------
+----------+

17.3 Generating Frequency Distributions

Problem
You want to know the frequency of occurrence for each value in a table.

Solution
Derive a frequency distribution that summarizes the contents of your
dataset.

Discussion
A common application for per-group summary techniques is to generate a
frequency distribution that shows how often each value occurs. For the
testscore table, the frequency distribution looks like this:

mysql> SELECT score, COUNT(score) AS counts
 -> FROM testscore GROUP BY score;
+-------+--------+

| score | counts |
+-------+--------+
4	2
5	1
6	4
7	4
8	2
9	5
10	2
+-------+--------+

Expressing the results in percentages rather than counts yields relative
frequency distribution. To show each count as a percentage of the total, use
one query to get the total number of observations and another to calculate
the percentages for each group:

mysql> SET @n = (SELECT COUNT(score) FROM testscore);
mysql> SELECT score, (COUNT(score)*100)/@n AS percent
 -> FROM testscore GROUP BY score;

+-------+---------+
| score | percent |
+-------+---------+
4	10.0000
5	5.0000
6	20.0000
7	20.0000
8	10.0000
9	25.0000
10	10.0000
+-------+---------+

The distributions just shown summarize the number of values for individual
scores. However, if the dataset contains a large number of distinct values
and you want a distribution that shows only a small number of categories,
you may want to lump values into categories and produce a count for each
category. Recipe 10.13 discusses “lumping” techniques.
One typical use of frequency distributions is to export the results for use in
a graphing program. But MySQL itself can generate a simple ASCII chart
as a visual representation of the distribution. To display an ASCII bar chart
of the test score counts, convert the counts to strings of * characters:

mysql> SELECT score, REPEAT('*',COUNT(score)) AS 'count
histogram'
 -> FROM testscore GROUP BY score;
+-------+-----------------+
| score | count histogram |
+-------+-----------------+
4	**
5	*
6	****
7	****
8	**
9	*****
10	**
+-------+-----------------+

To chart the relative frequency distribution instead, use the percentage
values:

mysql> SET @n = (SELECT COUNT(score) FROM testscore);
mysql> SELECT score,
 -> REPEAT('*',(COUNT(score)*100)/@n) AS 'percent histogram'
 -> FROM testscore GROUP BY score;
+-------+---------------------------+
| score | percent histogram |
+-------+---------------------------+
4	**********
5	*****
6	********************
7	********************
8	**********
9	*************************
10	**********
+-------+---------------------------+

The ASCII chart method is crude, obviously, but it’s a quick way to get a
picture of the distribution of observations and requires no other tools.
If you generate a frequency distribution for a range of categories where
some of the categories are not represented in your observations, the missing
categories do not appear in the output. To force each category to be
displayed, use a reference table and a LEFT JOIN (a technique discussed in
Recipe 16.8). For the testscore table, the possible scores range from 0
to 10, so a reference table should contain each of those values:

mysql> CREATE TABLE ref (score INT);
mysql> INSERT INTO ref (score)
 -> VALUES(0),(1),(2),(3),(4),(5),(6),(7),(8),(9),(10);

Then join the reference table to the test scores to generate the frequency
distribution. This query shows the counts as well as the histogram:

mysql> SELECT ref.score, COUNT(testscore.score) AS counts,
 -> REPEAT('*',COUNT(testscore.score)) AS 'count histogram'
 -> FROM ref LEFT JOIN testscore ON ref.score =
testscore.score
 -> GROUP BY ref.score;
+-------+--------+-----------+
| score | counts | histogram |
+-------+--------+-----------+
0	0	
1	0	
2	0	
3	0	
4	2	**
5	1	*
6	4	****
7	4	****
8	2	**
9	5	*****
10	2	**
+-------+--------+-----------+

This distribution includes rows for scores 0 through 3, none of which
appear in the frequency distribution shown earlier.
The same principle applies to relative frequency distributions:

mysql> SET @n = (SELECT COUNT(score) FROM testscore);
mysql> SELECT ref.score, (COUNT(testscore.score)*100)/@n AS
percent,
 -> REPEAT('*',(COUNT(testscore.score)*100)/@n) AS 'percent
histogram'
 -> FROM ref LEFT JOIN testscore ON ref.score =
testscore.score
 -> GROUP BY ref.score;
+-------+---------+---------------------------+
| score | percent | percent histogram |
+-------+---------+---------------------------+
0	0.0000	
1	0.0000	
2	0.0000	

3	0.0000	
4	10.0000	**********
5	5.0000	*****
6	20.0000	********************
7	20.0000	********************
8	10.0000	**********
9	25.0000	*************************
10	10.0000	**********
+-------+---------+---------------------------+

17.4 Counting Missing Values

Problem
A set of observations is incomplete. You want to find out how many values
are missing.

Solution
Count the number of NULL values in the set.

Discussion
Values can be missing from a set of observations for any number of reasons:
a test may not yet have been administered, something may have gone wrong
during the test that requires invalidating the observation, and so forth. You
can represent such observations in a dataset as NULL values to signify that
they’re missing or otherwise invalid, then use summary statements to
characterize the completeness of the dataset.
If a table, testscore_withmisses, contains values to be summarized
along a single dimension, a simple summary suffices to characterize the
missing values. Suppose that testscore_withmisses looks like this:

mysql> SELECT subject, score FROM testscore_withmisses ORDER BY
subject;
+---------+-------+
| subject | score |
+---------+-------+
| 1 | 38 |

2	NULL
3	47
4	NULL
5	37
6	45
7	54
8	NULL
9	40
10	49
+---------+-------+

COUNT(*) counts the total number of rows, and COUNT(score) counts
the number of nonmissing scores. The difference between the two values is
the number of missing scores, and that difference in relation to the total
provides the percentage of missing scores. Perform these calculations as
follows:

mysql> SELECT COUNT(*) AS 'n (total)',
 -> COUNT(score) AS 'n (nonmissing)',
 -> COUNT(*) - COUNT(score) AS 'n (missing)',
 -> ((COUNT(*) - COUNT(score)) * 100) / COUNT(*) AS '%
missing'
 -> FROM testscore_withmisses;
+-----------+----------------+-------------+-----------+
| n (total) | n (nonmissing) | n (missing) | % missing |
+-----------+----------------+-------------+-----------+
| 10 | 7 | 3 | 30.0000 |
+-----------+----------------+-------------+-----------+

As an alternative to counting NULL values as the difference between
counts, count them directly using SUM(ISNULL(score)). The
ISNULL() function returns 1 if its argument is NULL and zero otherwise:

mysql> SELECT COUNT(*) AS 'n (total)',
 -> COUNT(score) AS 'n (nonmissing)',
 -> SUM(ISNULL(score)) AS 'n (missing)',
 -> (SUM(ISNULL(score)) * 100) / COUNT(*) AS '% missing'
 -> FROM testscore_withmisses;
+-----------+----------------+-------------+-----------+
| n (total) | n (nonmissing) | n (missing) | % missing |
+-----------+----------------+-------------+-----------+
| 10 | 7 | 3 | 30.0000 |
+-----------+----------------+-------------+-----------+

If values are arranged in groups, occurrences of NULL values can be
assessed on a per-group basis. Suppose that testscore_withmisses2
contains scores for subjects that are distributed among conditions for two
factors, A and B, each of which has two levels:

mysql> SELECT subject, A, B, score FROM testscore_withmisses2
ORDER BY subject;
+---------+------+------+-------+
| subject | A | B | score |
+---------+------+------+-------+
1	1	1	18
2	1	1	NULL
3	1	1	23
4	1	1	24
5	1	2	17
6	1	2	23
7	1	2	29
8	1	2	32
9	2	1	17
10	2	1	NULL
11	2	1	NULL
12	2	1	25
13	2	2	NULL
14	2	2	33
15	2	2	34
16	2	2	37
+---------+------+------+-------+

To produce a summary for each combination of conditions, use a GROUP
BY clause:

mysql> SELECT A, B, COUNT(*) AS 'n (total)',
 -> COUNT(score) AS 'n (nonmissing)',
 -> COUNT(*) - COUNT(score) AS 'n (missing)',
 -> ((COUNT(*) - COUNT(score)) * 100) / COUNT(*) AS '%
missing'
 -> FROM testscore_withmisses2
 -> GROUP BY A, B;
+------+------+-----------+----------------+-------------+-------
----+
| A | B | n (total) | n (nonmissing) | n (missing) | %
missing |
+------+------+-----------+----------------+-------------+-------
----+
| 1 | 1 | 4 | 3 | 1 |
25.0000 |

| 1 | 2 | 4 | 4 | 0 |
0.0000 |
| 2 | 1 | 4 | 2 | 2 |
50.0000 |
| 2 | 2 | 4 | 3 | 1 |
25.0000 |
+------+------+-----------+----------------+-------------+-------
----+

17.5 Calculating Linear Regressions or
Correlation Coefficients

Problem
You want to calculate the least-squares regression line for two variables or
the correlation coefficient that expresses the strength of the relationship
between them.

Solution
Apply summary functions to make these calculations.

Discussion
When the data values for two variables, X and Y, are stored in a database,
the least-squares regression for them can be calculated easily using
aggregate functions. The same is true for the correlation coefficient. The
two calculations are actually fairly similar, and many terms for performing
the computations are common to the two procedures.
Suppose that you want to calculate a least-squares regression using the age
and test score values for the observations in the testscore table:

mysql> SELECT age, score FROM testscore;
+-----+-------+
| age | score |
+-----+-------+
| 5 | 5 |
| 5 | 4 |

5	6
5	7
6	8
6	9
6	4
6	6
7	8
7	6
7	9
7	7
8	9
8	6
8	7
8	10
9	9
9	7
9	10
9	9
+-----+-------+

The following equation expresses the regression line, where a and b are the
intercept and slope of the line:

Y = bX + a

Letting age be X and score be Y, begin by computing the terms needed
for the regression equation. These include the number of observations; the
means, sums, and sums of squares for each variable; and the sum of the
products of each variable:2

mysql> SELECT COUNT(score), AVG(age), SUM(age), SUM(age*age),
 -> AVG(score), SUM(score), SUM(score*score), SUM(age*score)
 -> INTO @n, @meanX, @sumX, @sumXX, @meanY, @sumY, @sumYY,
@sumXY
 -> FROM testscore;
Query OK, 1 row affected (0,00 sec)

mysql> SELECT
 -> @n AS N,
 -> @meanX AS 'X mean',
 -> @sumX AS 'X sum',
 -> @sumXX AS 'X sum of squares',
 -> @meanY AS 'Y mean',
 -> @sumY AS 'Y sum',
 -> @sumYY AS 'Y sum of squares',
 -> @sumXY AS 'X*Y sum'

 -> FROM testscore\G
*************************** 1. row ***************************
 N: 20
 X mean: 7.000000000
 X sum: 140
X sum of squares: 1020
 Y mean: 7.300000000
 Y sum: 146
Y sum of squares: 1130
 X*Y sum: 1053

From those terms, calculate the regression slope and intercept as follows:

mysql> SET @b := (@n*@sumXY - @sumX*@sumY) / (@n*@sumXX -
@sumX*@sumX);
mysql> SET @a := (@meanY - @b*@meanX);
mysql> SELECT @b AS slope, @a AS intercept;
+-------------+----------------------+
| slope | intercept |
+-------------+----------------------+
| 0.775000000 | 1.875000000000000000 |
+-------------+----------------------+

The regression equation then is:

mysql> SELECT CONCAT('Y = ',@b,'X + ',@a) AS 'least-squares
regression';
+---+
| least-squares regression |
+---+
| Y = 0.775000000X + 1.875000000000000000 |
+---+

To compute the correlation coefficient, use many of the same terms:

mysql> SELECT
 -> (@n*@sumXY - @sumX*@sumY)
 -> / SQRT((@n*@sumXX - @sumX*@sumX) * (@n*@sumYY -
@sumY*@sumY))
 -> AS correlation;
+--------------------+
| correlation |
+--------------------+
| 0.6117362044219903 |
+--------------------+

17.6 Generating Random Numbers

Problem
You need a source of random numbers.

Solution
Use the RAND() function.

Discussion
MySQL has a RAND() function that produces random numbers between 0
and 1:

mysql> SELECT RAND(), RAND(), RAND();
+---------------------+--------------------+---------------------
+
| RAND() | RAND() | RAND()
|
+---------------------+--------------------+---------------------
+
| 0.37415416573561183 | 0.9068914557871329 | 0.41199481246247405
|
+---------------------+--------------------+---------------------
+

When invoked with an integer argument, RAND() uses that value to seed
the random number generator. You can use this feature to produce a
repeatable series of numbers for a column of a query result. The following
example shows that RAND() without an argument produces a different
column of values per query, whereas RAND(N) produces a repeatable
column:

mysql> SELECT i, RAND(), RAND(10), RAND(20) FROM numbers;
+------+---------------------+---------------------+-------------
--------+
| i | RAND() | RAND(10) | RAND(20)
|
+------+---------------------+---------------------+-------------
--------+

| 1 | 0.00708185882035816 | 0.6570515219653505 |
0.15888261251047497 |
| 2 | 0.5417692908474889 | 0.12820613023657923 |
0.6355305003333189 |
| 3 | 0.6876009085100152 | 0.6698761160204896 |
0.7010046948688149 |
| 4 | 0.8126967007412544 | 0.9647622201263553 |
0.5984320040777623 |
+------+---------------------+---------------------+-------------
--------+
mysql> SELECT i, RAND(), RAND(10), RAND(20) FROM numbers;
+------+----------------------+---------------------+------------
---------+
| i | RAND() | RAND(10) | RAND(20)
|
+------+----------------------+---------------------+------------
---------+
| 1 | 0.059957268703689115 | 0.6570515219653505 |
0.15888261251047497 |
| 2 | 0.9068000166740269 | 0.12820613023657923 |
0.6355305003333189 |
| 3 | 0.35412830799271194 | 0.6698761160204896 |
0.7010046948688149 |
| 4 | 0.050241520675124156 | 0.9647622201263553 |
0.5984320040777623 |
+------+----------------------+---------------------+------------
---------+

To seed RAND() randomly, pick a seed value based on a source of entropy.
Possible sources are the current timestamp or connection identifier, alone or
perhaps in combination:

RAND(UNIX_TIMESTAMP())
RAND(CONNECTION_ID())
RAND(UNIX_TIMESTAMP()+CONNECTION_ID())

However, it’s probably better to use other seed value sources if you have
them. For example, if your system has a /dev/random or /dev/urandom
device, read the device and use it to generate a value for seeding RAND().

HOW RANDOM IS RAND()?
Does the RAND() function generate evenly distributed numbers? Check it out for yourself with
the following Python script, rand_test.py, from the stats directory of the recipes
distribution. (That directory also contains equivalent scripts in other languages.) The script uses
RAND() to generate random numbers and constructs a frequency distribution from them, using
10 categories (“buckets”). This provides a means of assessing how evenly distributed the values
are:

#!/usr/bin/python
rand_test.pl: create a frequency distribution of RAND()
values.
This provides a test of the randomness of RAND().

Method: Draw random numbers in the range from 0 to 1.0,
and count how many of them occur in .1-sized intervals

import cookbook

npicks = 1000 # number of times to pick a number
bucket = [0] * 10 # buckets for counting picks in each
interval

conn = cookbook.connect()
cursor = conn.cursor()

for i in range(0, npicks):
 cursor.execute("SELECT RAND()")
 (val,) = cursor.fetchone()
 slot = int(val * 10)
 if slot > 9:
 slot = 9 # put 1.0 in last slot
 bucket[slot] += 1

cursor.close()
conn.close()

Print the resulting frequency distribution

for slot, val in enumerate(bucket):
 print("%2d %d" % (slot+1, val))

17.7 Randomizing a Set of Rows

Problem
You want to randomize a set of rows or values.

Solution
Use ORDER BY RAND().

Discussion
MySQL’s RAND() function can be used to randomize the order in which a
query returns its rows. Somewhat paradoxically, this randomization is
achieved by adding an ORDER BY clause to the query. The technique is
roughly equivalent to a spreadsheet randomization method. Suppose that a
spreadsheet contains this set of values:

Patrick
Penelope
Pertinax
Polly

To place these in random order, first add another column that contains
randomly chosen numbers:

Patrick .73
Penelope .37
Pertinax .16
Polly .48

Then sort the rows according to the values of the random numbers:

Pertinax .16
Penelope .37
Polly .48
Patrick .73

At this point, the original values have been placed in random order; the
effect of sorting the random numbers is to randomize the values associated

with them. To rerandomize the values, choose another set of random
numbers, and sort the rows again.
In MySQL, achieve a similar effect by associating a set of random numbers
with a query result and sorting the result by those numbers. To do this, add
an ORDER BY RAND() clause:

mysql> SELECT name FROM rand_names ORDER BY RAND();
+----------+
| name |
+----------+
| Pertinax |
| Patrick |
| Polly |
| Penelope |
+----------+
mysql> SELECT name FROM rand_names ORDER BY RAND();
+----------+
| name |
+----------+
| Polly |
| Pertinax |
| Penelope |
| Patrick |
+----------+

Applications for randomizing a set of rows include any scenario that uses
selection without replacement (choosing each item from a set of items until
there are no more items left). Some examples of this are the following:

Determining the starting order for participants in an event. List the
participants in a table, and select them in random order.
Assigning starting lanes or gates to participants in a race. List the lanes
in a table, and select a random lane order.
Choosing the order in which to present a set of quiz questions.
Shuffling a deck of cards. Represent each card by a row in a table, and
shuffle the deck by selecting the rows in random order. Deal them one
by one until the deck is exhausted.

To use the last example as an illustration, let’s implement a card deck–
shuffling algorithm. Shuffling and dealing cards is randomization plus

selection without replacement: each card is dealt once before any is dealt
twice; when the deck is used up, it is reshuffled to rerandomize it for a new
dealing order. Within a program, this task can be performed with MySQL
using a table named deck that has 52 rows, assuming a set of cards with
each combination of 13 face values and 4 suits:

1. Select the entire table, and store it into an array.
2. Each time a card is needed, take the next element from the array.
3. When the array is exhausted, all the cards have been dealt.

“Reshuffle” the table to generate a new card order.
Setting up the deck table is a tedious task if you insert the 52 card records
by writing all the INSERT statements manually. The deck contents can be
generated more easily in combinatorial fashion within a program by
generating each pairing of face value with suit. Here’s some PHP code that
creates a deck table with face and suit columns, then populates the
table using nested loops to generate the pairings for the INSERT
statements:

$sth = $dbh->exec ("DROP TABLE IF EXISTS deck");

$sth = $dbh->exec ("
 CREATE TABLE deck
 (
 face ENUM('A', 'K', 'Q', 'J', '10', '9', '8',
 '7', '6', '5', '4', '3', '2') NOT NULL,
 suit ENUM('hearts', 'diamonds', 'clubs', 'spades') NOT NULL
)
");

$face_array = array ("A", "K", "Q", "J", "10", "9", "8",
 "7", "6", "5", "4", "3", "2");
$suit_array = array ("hearts", "diamonds", "clubs", "spades");

insert a "card" into the deck for each combination of suit and
face

$sth = $dbh->prepare ("INSERT INTO deck (face,suit)
VALUES(?,?)");
foreach ($face_array as $face)
 foreach ($suit_array as $suit)
 $sth->execute (array ($face, $suit));

Shuffling the cards is a matter of issuing this statement:

SELECT face, suit FROM deck ORDER BY RAND();

To do that and store the results in an array within a script, write a
shuffle_deck() function that issues the query and returns the resulting
values in an array (again shown in PHP):

function shuffle_deck ($dbh)
{
 $sth = $dbh->query ("SELECT face, suit FROM deck ORDER BY
RAND()");
 $sth->setFetchMode (PDO::FETCH_OBJ);
 return ($sth->fetchAll ());
}

Deal the cards by keeping a counter that ranges from 0 to 51 to indicate
which card to select. When the counter reaches 52, the deck is exhausted
and should be shuffled again.

WARNING
Use this method only for tables with small numbers of rows. Ordering by RAND() does not allow
MySQL to use indexes to resolve ORDER BY; therefore, such queries will be slow on large tables.

17.8 Selecting Random Items from a Set of
Rows

Problem
You want to pick an item or items randomly from a set of values.

Solution
Randomize the values, then pick the first one (or the first few, if you need
more than one).

Discussion
If a set of items is stored in MySQL, choose one at random as follows:

1. Select the items in the set in random order, using ORDER BY RAND()
as described in Recipe 17.7.

2. Add LIMIT 1 to the query to pick the first item.

For example, to perform a simple simulation of tossing a die, create a die
table containing rows with values from 1 to 6 corresponding to the six faces
of a die cube:

CREATE TABLE die (n INT\);

Then pick rows from the table at random:

mysql> SELECT n FROM die ORDER BY RAND() LIMIT 1;
+------+
| n |
+------+
| 6 |
+------+
mysql> SELECT n FROM die ORDER BY RAND() LIMIT 1;
+------+
| n |
+------+
| 4 |
+------+
mysql> SELECT n FROM die ORDER BY RAND() LIMIT 1;
+------+
| n |
+------+
| 5 |
+------+
mysql> SELECT n FROM die ORDER BY RAND() LIMIT 1;
+------+
| n |
+------+
| 4 |
+------+

As you repeat this operation, you pick a random sequence of items from the
set. This is a form of selection with replacement: an item is chosen from a
pool of items and then returned to the pool for the next pick. Because items

are replaced, it’s possible to pick the same item multiple times when
making successive choices this way. Other examples of selection with
replacement include:

Selecting a banner ad to display on a web page
Picking a row for a “quote of the day” application
“Pick a card, any card” magic tricks that begin with a full deck of cards
each time

To pick more than one item, change the LIMIT argument. For example, to
draw five winning entries at random from a table named drawing that
contains contest entries, use RAND() in combination with LIMIT:

SELECT * FROM drawing ORDER BY RAND() LIMIT 5;

A special case occurs when you pick a single row from a table that you
know contains a column with values in the range from 1 to n in unbroken
sequence. Under these circumstances, it’s possible to avoid performing an
ORDER BY operation on the entire table. Pick a random number in that
range and select the matching row:

SET @id = FLOOR(RAND()*n)+1;
SELECT ... FROM tbl_name WHERE id = @id;

This is much quicker than ORDER BY RAND() LIMIT 1 as the table size
increases.

17.9 Calculating Successive-Row Differences

Problem
A table contains successive cumulative values in its rows, and you want to
compute the differences between pairs of successive rows.

Solution

Use a self-join that matches pairs of adjacent rows and calculates the
differences between members of each pair.

Discussion
Self-joins are useful when you have a set of absolute (or cumulative) values
that you want to convert to relative values representing the differences
between successive pairs of rows. For example, if you take an automobile
trip and write down the total miles traveled at each stopping point, you can
compute the difference between successive points to determine the distance
from one stop to the next. Here is such a table that shows the stops for a trip
from San Antonio, Texas, to Madison, Wisconsin. Each row shows the total
miles driven as of each stop:

mysql> SELECT seq, city, miles FROM trip_log ORDER BY seq;
+-----+------------------+-------+
| seq | city | miles |
+-----+------------------+-------+
1	San Antonio, TX	0
2	Dallas, TX	263
3	Benton, AR	566
4	Memphis, TN	745
5	Portageville, MO	878
6	Champaign, IL	1164
7	Madison, WI	1412
+-----+------------------+-------+

A self-join can convert these cumulative values to successive differences
that represent the distances from each city to the next. The following
statement shows how to use the sequence numbers in the rows to match
pairs of successive rows and compute the differences between each pair of
mileage values:

mysql> SELECT t1.seq AS seq1, t2.seq AS seq2,
 -> t1.city AS city1, t2.city AS city2,
 -> t1.miles AS miles1, t2.miles AS miles2,
 -> t2.miles-t1.miles AS dist
 -> FROM trip_log AS t1 INNER JOIN trip_log AS t2
 -> ON t1.seq+1 = t2.seq
 -> ORDER BY t1.seq;
+------+------+------------------+------------------+--------+---

-----+------+
| seq1 | seq2 | city1 | city2 | miles1 |
miles2 | dist |
+------+------+------------------+------------------+--------+---
-----+------+
| 1 | 2 | San Antonio, TX | Dallas, TX | 0 |
263 | 263 |
| 2 | 3 | Dallas, TX | Benton, AR | 263 |
566 | 303 |
| 3 | 4 | Benton, AR | Memphis, TN | 566 |
745 | 179 |
| 4 | 5 | Memphis, TN | Portageville, MO | 745 |
878 | 133 |
| 5 | 6 | Portageville, MO | Champaign, IL | 878 |
1164 | 286 |
| 6 | 7 | Champaign, IL | Madison, WI | 1164 |
1412 | 248 |
+------+------+------------------+------------------+--------+---
-----+------+

The presence of the seq column in the trip_log table is important for
calculating successive difference values. It’s needed for establishing which
row precedes another and matching each row n with row n+1. The
implication is that to perform relative-difference calculations using a table
of absolute or cumulative values, it must include a sequence column that
has no gaps. If the table contains a sequence column but there are gaps,
renumber it (see Recipe 15.5). If the table contains no such column, add one
(see Recipe 15.9).
A more complex situation occurs when you compute successive differences
for more than one column and use the results in a calculation. The
following table, player_stats, shows some cumulative numbers for a
baseball player at the end of each month of his season. ab indicates the
total at-bats, and h the total hits the player has had as of a given date. (The
first row indicates the starting point of the player’s season, which is why the
ab and h values are zero.)

mysql> SELECT id, date, ab, h, TRUNCATE(IFNULL(h/ab,0),3) AS ba
 -> FROM player_stats ORDER BY id;
+----+------------+-----+----+-------+
| id | date | ab | h | ba |
+----+------------+-----+----+-------+
| 1 | 2013-04-30 | 0 | 0 | 0.000 |

2	2013-05-31	38	13	0.342
3	2013-06-30	109	31	0.284
4	2013-07-31	196	49	0.250
5	2013-08-31	304	98	0.322
+----+------------+-----+----+-------+

The last column of the query result also shows the player’s batting average
as of each date. This column is not stored in the table but is easily computed
as the ratio of hits to at-bats. The result provides a general idea of how the
player’s hitting performance changed over the course of the season, but it
provides no picture of how the player did during each individual month. To
determine that, calculate relative differences between pairs of rows. This is
easily done with a self-join that matches row n with row n+1 to calculate
differences between pairs of at-bats and hits values. These differences
enable computation of batting average during each month:

mysql> SELECT
 -> t1.id AS id1, t2.id AS id2,
 -> t2.date,
 -> t1.ab AS ab1, t2.ab AS ab2,
 -> t1.h AS h1, t2.h AS h2,
 -> t2.ab-t1.ab AS abdiff,
 -> t2.h-t1.h AS hdiff,
 -> TRUNCATE(IFNULL((t2.h-t1.h)/(t2.ab-t1.ab),0),3) AS ba
 -> FROM player_stats AS t1 INNER JOIN player_stats AS t2
 -> ON t1.id+1 = t2.id
 -> ORDER BY t1.id;
+-----+-----+------------+-----+-----+----+----+--------+-------
+-------+
| id1 | id2 | date | ab1 | ab2 | h1 | h2 | abdiff | hdiff |
ba |
+-----+-----+------------+-----+-----+----+----+--------+-------
+-------+
| 1 | 2 | 2013-05-31 | 0 | 38 | 0 | 13 | 38 | 13 |
0.342 |
| 2 | 3 | 2013-06-30 | 38 | 109 | 13 | 31 | 71 | 18 |
0.253 |
| 3 | 4 | 2013-07-31 | 109 | 196 | 31 | 49 | 87 | 18 |
0.206 |
| 4 | 5 | 2013-08-31 | 196 | 304 | 49 | 98 | 108 | 49 |
0.453 |
+-----+-----+------------+-----+-----+----+----+--------+-------
+-------+

These results show much more clearly than the original table that the player
started off well but had a slump in the middle of the season, particularly in
July. They also indicate just how strong his performance was in August.

17.10 Finding Cumulative Sums and Running
Averages

Problem
You have a set of observations measured over time and want to compute the
cumulative sum of the observations at each measurement point. Or you
want to compute a running average at each point.

Solution
Use a self-join to produce the sets of successive observations at each
measurement point, then apply aggregate functions to each set of values to
compute its sum or average.

Discussion
Recipe 17.9 illustrates how a self-join can produce relative values from
absolute values. A self-join can do the opposite as well, producing
cumulative values at each successive stage of a set of observations. The
following table shows a set of rainfall measurements taken over a series of
days. The values in each row show the observation date and precipitation in
inches:

mysql> SELECT date, precip FROM rainfall ORDER BY date;
+------------+--------+
| date | precip |
+------------+--------+
2014-06-01	1.50
2014-06-02	0.00
2014-06-03	0.50
2014-06-04	0.00

| 2014-06-05 | 1.00 |
+------------+--------+

To calculate cumulative rainfall for a given day, add that day’s precipitation
value to the values for all the previous days. For example, determine the
cumulative rainfall as of 2014-06-03 like this:

mysql> SELECT SUM(precip) FROM rainfall WHERE date <= '2014-06-
03';
+-------------+
| SUM(precip) |
+-------------+
| 2.00 |
+-------------+

To get the cumulative figures for all days represented in the table, it’s
tedious to compute the value separately for each day. A self-join can do this
for all days with a single statement. Use one instance of the rainfall
table as a reference, and determine for the date in each row the sum of the
precip values in all rows occurring up through that date in another
instance of the table. The following statement shows the daily and
cumulative precipitation for each day:

mysql> SELECT t1.date, t1.precip AS 'daily precip',
 -> SUM(t2.precip) AS 'cum. precip'
 -> FROM rainfall AS t1 INNER JOIN rainfall AS t2
 -> ON t1.date >= t2.date
 -> GROUP BY t1.date;
+------------+--------------+-------------+
| date | daily precip | cum. precip |
+------------+--------------+-------------+
2014-06-01	1.50	1.50
2014-06-02	0.00	1.50
2014-06-03	0.50	2.00
2014-06-04	0.00	2.00
2014-06-05	1.00	3.00
+------------+--------------+-------------+

The self-join can be extended to display the number of days elapsed at each
date, as well as the running averages for amount of precipitation each day:

mysql> SELECT t1.date, t1.precip AS 'daily precip',
 -> SUM(t2.precip) AS 'cum. precip',
 -> COUNT(t2.precip) AS 'days elapsed',
 -> AVG(t2.precip) AS 'avg. precip'
 -> FROM rainfall AS t1 INNER JOIN rainfall AS t2
 -> ON t1.date >= t2.date
 -> GROUP BY t1.date;
+------------+--------------+-------------+--------------+-------
------+
| date | daily precip | cum. precip | days elapsed | avg.
precip |
+------------+--------------+-------------+--------------+-------
------+
| 2014-06-01 | 1.50 | 1.50 | 1 |
1.500000 |
| 2014-06-02 | 0.00 | 1.50 | 2 |
0.750000 |
| 2014-06-03 | 0.50 | 2.00 | 3 |
0.666667 |
| 2014-06-04 | 0.00 | 2.00 | 4 |
0.500000 |
| 2014-06-05 | 1.00 | 3.00 | 5 |
0.600000 |
+------------+--------------+-------------+--------------+-------
------+

In the preceding statement, the number of days elapsed and the precipitation
running averages can be computed easily using COUNT() and AVG()
because there are no missing days in the table. If missing days are
permitted, the calculation becomes more complicated because the number
of days elapsed for each calculation is no longer the same as the number of
rows.
You can see this by deleting the rows for the days that had no precipitation
to produce “holes” in the table:

mysql> DELETE FROM rainfall WHERE precip = 0;
mysql> SELECT date, precip FROM rainfall ORDER BY date;
+------------+--------+
| date | precip |
+------------+--------+
2014-06-01	1.50
2014-06-03	0.50
2014-06-05	1.00
+------------+--------+

Deleting those rows doesn’t change the cumulative sum or running average
for the dates that remain, but it does change how they must be calculated. If
you execute the self-join again, it yields incorrect results for the days-
elapsed and average precipitation columns:

mysql> SELECT t1.date, t1.precip AS 'daily precip',
 -> SUM(t2.precip) AS 'cum. precip',
 -> COUNT(t2.precip) AS 'days elapsed',
 -> AVG(t2.precip) AS 'avg. precip'
 -> FROM rainfall AS t1 INNER JOIN rainfall AS t2
 -> ON t1.date >= t2.date
 -> GROUP BY t1.date;

+------------+--------------+-------------+--------------+-------
------+
| date | daily precip | cum. precip | days elapsed | avg.
precip |
+------------+--------------+-------------+--------------+-------
------+
| 2014-06-01 | 1.50 | 1.50 | 1 |
1.500000 |
| 2014-06-03 | 0.50 | 2.00 | 2 |
1.000000 |
| 2014-06-05 | 1.00 | 3.00 | 3 |
1.000000 |
+------------+--------------+-------------+--------------+-------
------+

To fix the problem, determine the number of days elapsed a different way.
Take the minimum and maximum date involved in each sum and calculate a
days-elapsed value from them:

DATEDIFF(MAX(t2.date),MIN(t2.date)) + 1

That value must be used for the days-elapsed column and for computing the
running averages. The resulting statement is as follows:

mysql> SELECT t1.date, t1.precip AS 'daily precip',
 -> SUM(t2.precip) AS 'cum. precip',
 -> DATEDIFF(MAX(t2.date),MIN(t2.date)) + 1 AS 'days elapsed',
 -> SUM(t2.precip) / (DATEDIFF(MAX(t2.date),MIN(t2.date)) + 1)
 -> AS 'avg. precip'

 -> FROM rainfall AS t1 INNER JOIN rainfall AS t2
 -> ON t1.date >= t2.date
 -> GROUP BY t1.date;
+------------+--------------+-------------+--------------+-------
------+
| date | daily precip | cum. precip | days elapsed | avg.
precip |
+------------+--------------+-------------+--------------+-------
------+
| 2014-06-01 | 1.50 | 1.50 | 1 |
1.500000 |
| 2014-06-03 | 0.50 | 2.00 | 3 |
0.666667 |
| 2014-06-05 | 1.00 | 3.00 | 5 |
0.600000 |
+------------+--------------+-------------+--------------+-------
------+

As this example illustrates, calculation of cumulative values from relative
values requires only a column that enables rows to be placed into the proper
order. (For the rainfall table, that’s the date column.) Values in the
column need not be sequential, or even numeric. This differs from
calculations that produce difference values from cumulative values (see
Recipe 17.9), which require a table that has a column containing an
unbroken sequence.
The running averages in the rainfall examples are based on dividing
cumulative precipitation sums by number of days elapsed as of each day.
When the table has no gaps, the number of days is the same as the number
of values summed, making it easy to find successive averages. When rows
are missing, the calculations become more complex. This demonstrates that
it’s necessary to consider the nature of your data and calculate averages
appropriately. The next example is conceptually similar to the previous ones
in that it calculates cumulative sums and running averages but performs the
computations yet another way.
The following table shows a marathon runner’s performance at each stage
of a 26-kilometer run. The values in each row show the length of each stage
in kilometers and how long the runner took to complete the stage. In other
words, the values pertain to intervals within the marathon and thus are
relative to the whole:

mysql> SELECT stage, km, t FROM marathon ORDER BY stage;
+-------+----+----------+
| stage | km | t |
+-------+----+----------+
1	5	00:15:00
2	7	00:19:30
3	9	00:29:20
4	5	00:17:50
+-------+----+----------+

To calculate cumulative distance in kilometers at each stage, use a self-join
like this:

mysql> SELECT t1.stage, t1.km, SUM(t2.km) AS 'cum. km'
 -> FROM marathon AS t1 INNER JOIN marathon AS t2
 -> ON t1.stage >= t2.stage
 -> GROUP BY t1.stage;
+-------+----+---------+
| stage | km | cum. km |
+-------+----+---------+
1	5	5
2	7	12
3	9	21
4	5	26
+-------+----+---------+

Cumulative distances are easy to compute because they can be summed
directly. The calculation for accumulating time values is more involved:
convert times to seconds, total the resulting values, and convert the sum
back to a time value. To compute the runner’s average speed at the end of
each stage, take the ratio of cumulative distance over cumulative time.
Putting all this together yields the following statement:

mysql> SELECT t1.stage, t1.km, t1.t,
 -> SUM(t2.km) AS 'cum. km',
 -> SEC_TO_TIME(SUM(TIME_TO_SEC(t2.t))) AS 'cum. t',
 -> SUM(t2.km)/(SUM(TIME_TO_SEC(t2.t))/(60*60)) AS 'avg.
km/hour'
 -> FROM marathon AS t1 INNER JOIN marathon AS t2
 -> ON t1.stage >= t2.stage
 -> GROUP BY t1.stage;
+-------+----+----------+---------+----------+--------------+
| stage | km | t | cum. km | cum. t | avg. km/hour |
+-------+----+----------+---------+----------+--------------+
| 1 | 5 | 00:15:00 | 5 | 00:15:00 | 20.0000 |

2	7	00:19:30	12	00:34:30	20.8696
3	9	00:29:20	21	01:03:50	19.7389
4	5	00:17:50	26	01:21:40	19.1020
+-------+----+----------+---------+----------+--------------+

We can see from this that the runner’s average pace increased a little during
the second stage of the race but then decreased thereafter, presumably as a
result of fatigue.

17.11 Assigning Ranks

Problem
You want to assign ranks to a set of values.

Solution
Decide on a ranking method, then put the values in the desired order and
apply the method to them.

Discussion
Some kinds of statistical tests require assignment of ranks. This section
describes three ranking methods and shows how each can be implemented
by using window functions. The examples assume that a ranks table
contains the following scores, which are to be ranked with the values in
descending order:

mysql> SELECT score FROM ranks ORDER BY score DESC;
+-------+
| score |
+-------+
| 5 |
| 4 |
| 4 |
| 3 |
| 2 |
| 2 |
| 2 |

| 1 |
+-------+

One type of ranking simply assigns each value its row number within the
ordered set of values. To produce such rankings, use the ROW_NUMBER()
window function:

mysql> SELECT ROW_NUMBER() OVER win AS 'rank',
 -> score FROM ranks WINDOW win AS (ORDER BY score DESC);
+------+-------+
| rank | score |
+------+-------+
1	5
2	4
3	4
4	3
5	2
6	2
7	2
8	1
+------+-------+
8 rows in set (0,00 sec)

That kind of ranking doesn’t take into account the possibility of ties
(instances of values that are the same). The DENSE_RANK() window
function does so by advancing the rank only when values change:

mysql> SELECT DENSE_RANK() OVER win AS 'rank',
 > score FROM ranks WINDOW win AS (ORDER BY score DESC);
+------+-------+
| rank | score |
+------+-------+
1	5
2	4
2	4
3	3
4	2
4	2
4	2
5	1
+------+-------+

The RANK() window function is something of a combination of the other
two methods. It ranks values by row number, except when ties occur. In that

case, the tied values each get a rank equal to the row number of the first of
the values:

mysql> SELECT ROW_NUMBER() OVER win AS 'row',
 -> RANK() OVER win AS 'rank',
 -> score FROM ranks WINDOW win AS (ORDER BY score DESC);
+------+------+-------+
| row | rank | score |
+------+------+-------+
1	1	5
2	2	4
3	2	4
4	4	3
5	5	2
6	5	2
7	5	2
8	8	1
+------+------+-------+

Ranks are easy to assign within a program as well. For example, the
following Ruby fragment ranks the scores in ranks using the third ranking
method:

res = client.query("SELECT score FROM ranks ORDER BY score DESC")
 rownum = 0
 rank = 0
 prev_score = nil
 puts "Row\tRank\tScore\n"
 res.each do |row|
 score = row.values[0]
 rownum += 1
 rank = rownum if rownum == 1 || prev_score != score
 prev_score = score
 puts "#{rownum}\t#{rank}\t#{score}"
 end

The third type of ranking is commonly used for sporting events. The
following table contains the American League pitchers who won 15 or more
games during the 2001 baseball season:

mysql> SELECT name, wins FROM al_winner ORDER BY wins DESC, name;
+----------------+------+
| name | wins |
+----------------+------+

Mulder, Mark	21
Clemens, Roger	20
Moyer, Jamie	20
Garcia, Freddy	18
Hudson, Tim	18
Abbott, Paul	17
Mays, Joe	17
Mussina, Mike	17
Sabathia, C.C.	17
Zito, Barry	17
Buehrle, Mark	16
Milton, Eric	15
Pettitte, Andy	15
Radke, Brad	15
Sele, Aaron	15
+----------------+------+

These pitchers can be assigned ranks using the third method as follows:

mysql> SELECT ROW_NUMBER() OVER win AS 'row',
 -> RANK() OVER win AS 'rank',
 -> name, wins
 -> FROM al_winner WINDOW win AS (ORDER BY wins DESC);
+------+------+----------------+------+
| row | rank | name | wins |
+------+------+----------------+------+
1	1	Mulder, Mark	21
2	2	Clemens, Roger	20
3	2	Moyer, Jamie	20
4	4	Garcia, Freddy	18
5	4	Hudson, Tim	18
6	6	Zito, Barry	17
7	6	Sabathia, C.C.	17
8	6	Mussina, Mike	17
9	6	Mays, Joe	17
10	6	Abbott, Paul	17
11	11	Buehrle, Mark	16
12	12	Milton, Eric	15
13	12	Pettitte, Andy	15
14	12	Radke, Brad	15
15	12	Sele, Aaron	15
+------+------+----------------+------+

See Also
For additional information about window functions, see Recipe 15.15.

17.12 Computing Team Standings

Problem
You want to compute team standings from their win-loss records, including
the games-behind (GB) values.

Solution
Determine which team is in first place, then join that result to the original
rows.

Discussion
Standings for sports teams that compete against one another is a ranking
problem, but ranks are not based on a single measure, as in Recipe 17.11.
Standings are based on two values: wins and losses. Teams are ranked
according to which has the best win-loss record, and teams not in first place
are assigned a “games-behind” value indicating how many games out of
first place they are. This section shows how to calculate those values. The
first example uses a table containing a single set of team records to illustrate
the logic of the calculations. The second example uses a table containing
several sets of records (that is, the records for all teams in both divisions of
a league, for both halves of the season). In this case, it’s necessary to use a
join to perform the calculations independently for each group of teams.
Consider the following table, standings1, which contains a single set of
baseball team records representing the final standings for the Northern
League in the year 1902:

mysql> SELECT team, wins, losses FROM standings1
 -> ORDER BY wins-losses DESC;
+-------------+------+--------+
| team | wins | losses |
+-------------+------+--------+
Winnipeg	37	20
Crookston	31	25
Fargo	30	26

Grand Forks	28	26
Devils Lake	19	31
Cavalier	15	32
+-------------+------+--------+

The rows are sorted by the win-loss differential, which is how to place
teams in order from first place to last place. But displays of team standings
typically include each team’s winning percentage and a figure indicating
how many games behind the leader all the other teams are. So let’s add that
information to the output. Calculating the percentage is easy. It’s the ratio of
wins to total games played and can be determined using this expression:

wins / (wins + losses)

This expression involves division by zero when a team has not played any
games yet. For simplicity, I’ll assume a nonzero number of games. To
handle this condition, you’d use a more general expression:

IF(wins=0,0,wins/(wins+losses))

This expression relies on the fact that no division operation is necessary
unless the team has won at least one game.
Determining the games-behind value is a little trickier. It’s based on the
relationship of the win-loss records for two teams, calculated as the average
of two values:

How many more wins the first-place team has than the second-place
team
How many fewer losses the first-place team has than the second-place
team

Suppose that two teams, A and B, have the following win-loss records:

+------+------+--------+
| team | wins | losses |
+------+------+--------+
| A | 17 | 11 |
| B | 14 | 12 |
+------+------+--------+

Here, team B has to win three more games, and team A has to lose one
more game for the teams to be even. The average of three and one is two,
thus B is two games behind A. Mathematically, the games-behind
calculation for the two teams is as follows:

((winsA - winsB) + (lossesB - lossesA)) / 2

With a little rearrangement of terms, the expression becomes the following:

((winsA - lossesA) - (winsB - lossesB)) / 2

The second expression is equivalent to the first, but it has each factor
written as a single team’s win-loss differential, rather than as a comparison
between teams. That makes it easier to work with because each factor can
be determined independently from a single team record. The first factor
represents the first-place team’s win-loss differential, so if we calculate that
value first, the other team GB values can be determined in relation to it.
The first-place team is the one with the largest win-loss differential. To find
that value and save it in a variable, use this statement:

mysql> SET @wl_diff = (SELECT MAX(wins-losses) FROM standings1);

Then use the differential as follows to produce team standings that include
winning percentage and GB values:

mysql> SELECT team, wins AS W, losses AS L,
 -> wins/(wins+losses) AS PCT,
 -> (@wl_diff - (wins-losses)) / 2 AS GB
 -> FROM standings1
 -> ORDER BY wins-losses DESC, PCT DESC;
+-------------+------+------+--------+---------+
| team | W | L | PCT | GB |
+-------------+------+------+--------+---------+
Winnipeg	37	20	0.6491	0.0000
Crookston	31	25	0.5536	5.5000
Fargo	30	26	0.5357	6.5000
Grand Forks	28	26	0.5185	7.5000
Devils Lake	19	31	0.3800	14.5000
Cavalier	15	32	0.3191	17.0000
+-------------+------+------+--------+---------+

There are a couple of minor formatting issues to address at this point.
Typically, standings list display percentages to three decimal places, and the
GB value to one decimal place (except that the GB value for the first-place
team is displayed as -). To display n decimal places, use
TRUNCATE(expr,n). To display the GB value for the first-place team
appropriately, use an IF() expression that maps 0 to a dash:

mysql> SELECT team, wins AS W, losses AS L,
 -> TRUNCATE(wins/(wins+losses),3) AS PCT,
 -> IF(@wl_diff = wins-losses,
 -> '-',TRUNCATE((@wl_diff - (wins-losses))/2,1)) AS GB
 -> FROM standings1
 -> ORDER BY wins-losses DESC, PCT DESC;
+-------------+------+------+-------+------+
| team | W | L | PCT | GB |
+-------------+------+------+-------+------+
Winnipeg	37	20	0.649	-
Crookston	31	25	0.553	5.5
Fargo	30	26	0.535	6.5
Grand Forks	28	26	0.518	7.5
Devils Lake	19	31	0.380	14.5
Cavalier	15	32	0.319	17.0
+-------------+------+------+-------+------+

These statements order the teams by win-loss differential, using winning
percentage as a tie-breaker in case there are teams with the same differential
value. It’s simpler to sort by percentage, of course, but then you wouldn’t
always get the correct ordering. It’s a curious fact that a team with a lower
winning percentage can actually be higher in the standings than a team with
a higher percentage. (This generally occurs early in the season, when teams
may have played highly disparate numbers of games, relatively speaking.)
Consider the case in which two teams, A and B, have the following rows:

+------+------+--------+
| team | wins | losses |
+------+------+--------+
| A | 4 | 1 |
| B | 2 | 0 |
+------+------+--------+

Applying the GB and percentage calculations to these team records yields
the following result, in which the first-place team actually has a lower
winning percentage than the second-place team:

+------+------+------+-------+------+
| team | W | L | PCT | GB |
+------+------+------+-------+------+
| A | 4 | 1 | 0.800 | - |
| B | 2 | 0 | 1.000 | 0.5 |
+------+------+------+-------+------+

The standings calculations shown thus far can be done without a join. They
involve only a single set of team records, so the first-place team’s win-loss
differential can be stored in a variable. A more complex situation occurs
when a dataset includes several sets of team records. For example, the 1997
Northern League had two divisions (Eastern and Western). In addition,
separate standings were maintained for the first and second halves of the
season because season-half winners in each division played one another for
the right to compete in the league championship. The following table,
standings2, shows what these rows look like, ordered by season half,
division, and win-loss differential:

mysql> SELECT half, division, team, wins, losses FROM standings2
 -> ORDER BY half, division, wins-losses DESC;
+------+----------+-----------------+------+--------+
| half | division | team | wins | losses |
+------+----------+-----------------+------+--------+
1	Eastern	St. Paul	24	18
1	Eastern	Thunder Bay	18	24
1	Eastern	Duluth-Superior	17	24
1	Eastern	Madison	15	27
1	Western	Winnipeg	29	12
1	Western	Sioux City	28	14
1	Western	Fargo-Moorhead	21	21
1	Western	Sioux Falls	15	27
2	Eastern	Duluth-Superior	22	20
2	Eastern	St. Paul	21	21
2	Eastern	Madison	19	23
2	Eastern	Thunder Bay	18	24
2	Western	Fargo-Moorhead	26	16
2	Western	Winnipeg	24	18
2	Western	Sioux City	22	20

| 2 | Western | Sioux Falls | 16 | 26 |
+------+----------+-----------------+------+--------+

Generating the standings for these rows requires computing the GB values
separately for each of the four combinations of season half and division.
First, calculate the win-loss differential for the first-place team in each
group and save the values into a separate firstplace table:

mysql> CREATE TEMPORARY TABLE firstplace
 -> SELECT half, division, MAX(wins-losses) AS wl_diff
 -> FROM standings2
 -> GROUP BY half, division;

Then join the firstplace table to the original standings, associating
each team record with the proper win-loss differential to compute its GB
value:

mysql> SELECT wl.half, wl.division, wl.team, wl.wins AS W,
wl.losses AS L,
 -> TRUNCATE(wl.wins/(wl.wins+wl.losses),3) AS PCT,
 -> IF(fp.wl_diff = wl.wins-wl.losses,
 -> '-',TRUNCATE((fp.wl_diff - (wl.wins-wl.losses)) / 2,1))
AS GB
 -> FROM standings2 AS wl INNER JOIN firstplace AS fp
 -> ON wl.half = fp.half AND wl.division = fp.division
 -> ORDER BY wl.half, wl.division, wl.wins-wl.losses DESC, PCT
DESC;
+------+----------+-----------------+------+------+-------+------
+
| half | division | team | W | L | PCT | GB
|
+------+----------+-----------------+------+------+-------+------
+
| 1 | Eastern | St. Paul | 24 | 18 | 0.571 | -
|
| 1 | Eastern | Thunder Bay | 18 | 24 | 0.428 | 6.0
|
| 1 | Eastern | Duluth-Superior | 17 | 24 | 0.414 | 6.5
|
| 1 | Eastern | Madison | 15 | 27 | 0.357 | 9.0
|
| 1 | Western | Winnipeg | 29 | 12 | 0.707 | -
|
| 1 | Western | Sioux City | 28 | 14 | 0.666 | 1.5
|

| 1 | Western | Fargo-Moorhead | 21 | 21 | 0.500 | 8.5
|
| 1 | Western | Sioux Falls | 15 | 27 | 0.357 | 14.5
|
| 2 | Eastern | Duluth-Superior | 22 | 20 | 0.523 | -
|
| 2 | Eastern | St. Paul | 21 | 21 | 0.500 | 1.0
|
| 2 | Eastern | Madison | 19 | 23 | 0.452 | 3.0
|
| 2 | Eastern | Thunder Bay | 18 | 24 | 0.428 | 4.0
|
| 2 | Western | Fargo-Moorhead | 26 | 16 | 0.619 | -
|
| 2 | Western | Winnipeg | 24 | 18 | 0.571 | 2.0
|
| 2 | Western | Sioux City | 22 | 20 | 0.523 | 4.0
|
| 2 | Western | Sioux Falls | 16 | 26 | 0.380 | 10.0
|
+------+----------+-----------------+------+------+-------+------
+

That output is difficult to read, however. To make it easier to understand,
you might execute the statement from within a program and reformat its
results to display each set of team records separately. Here’s some Perl code
that does that by beginning a new output group each time it encounters a
new group of standings. The code assumes that the join statement has just
been executed and that its results are available through the statement handle
$sth:

my ($cur_half, $cur_div) = ("", "");
while (my ($half, $div, $team, $wins, $losses, $pct, $gb)
 = $sth->fetchrow_array ())
{
 if ($cur_half ne $half || $cur_div ne $div) # new group of
standings?
 {
 # print standings header and remember new half/division
values
 print "\n$div Division, season half $half\n";
 printf "%-20s %3s %3s %5s %s\n", "Team", "W", "L", "PCT",
"GB";
 $cur_half = $half;
 $cur_div = $div;
 }

 printf "%-20s %3d %3d %5s %s\n", $team, $wins, $losses,
$pct, $gb;
}

The reformatted output looks like this:

Eastern Division, season half 1
Team W L PCT GB
St. Paul 24 18 0.571 -
Thunder Bay 18 24 0.428 6.0
Duluth-Superior 17 24 0.414 6.5
Madison 15 27 0.357 9.0

Western Division, season half 1
Team W L PCT GB
Winnipeg 29 12 0.707 -
Sioux City 28 14 0.666 1.5
Fargo-Moorhead 21 21 0.500 8.5
Sioux Falls 15 27 0.357 14.5

Eastern Division, season half 2
Team W L PCT GB
Duluth-Superior 22 20 0.523 -
St. Paul 21 21 0.500 1.0
Madison 19 23 0.452 3.0
Thunder Bay 18 24 0.428 4.0

Western Division, season half 2
Team W L PCT GB
Fargo-Moorhead 26 16 0.619 -
Winnipeg 24 18 0.571 2.0
Sioux City 22 20 0.523 4.0
Sioux Falls 16 26 0.380 10.0

The code just shown comes from the calc_standings.pl script in the
stats directory of the recipes distribution. That directory also contains a
PHP script, calc_standings.php, that produces output in the form of
HTML tables, which you might prefer for generating standings in a web
environment.

The definition of median given here isn’t fully general; it doesn’t address what to do if the middle
values in the dataset are duplicated.
To see where these terms come from, consult any standard statistics text.

1

2

Chapter 18. Handling
Duplicates

18.0 Introduction
Tables or result sets sometimes contain duplicate rows. In some cases, this
is acceptable. For example, if you conduct a web poll that records the date
and client IP number along with the votes, duplicate rows may be permitted
because it’s possible for large numbers of votes to appear to originate from
the same IP number for an internet service that routes traffic from its
customers through a single proxy host. In other cases, duplicates are
unacceptable, and you’ll want to take steps to avoid them. Operations
involved in handling duplicate rows include the following:

Preventing duplicates from being created in the first place. If each row in
a table is intended to represent a single entity (such as a person, an item
in a catalog, or a specific observation in an experiment), the occurrence
of duplicates makes it impossible to refer to each row unambiguously, so
it’s best to make sure duplicates never occur.
Counting the number of duplicates to determine whether they are present
and to what extent.
Identifying duplicated values (or the rows containing them) so you can
see where they occur.
Eliminating duplicates to ensure that each row is unique. This may
involve removing rows from a table to leave only unique rows or
selecting a result set in such a way that no duplicates appear in the
output. For example, to display a list of the states in which you have
customers, you probably don’t want a long list of state names from all
customer records. A list showing each state name only once suffices and
is easier to understand.

Several tools are at your disposal for dealing with duplicate rows. Choose
them according to the objective that you want to achieve:

When you create a table, include a primary key or unique index to
prevent duplicates from being added to the table. MySQL uses the index
as a constraint to enforce the requirement that each row in the table
contains a unique key in the indexed column or columns.
In conjunction with a unique index, the INSERT IGNORE and
REPLACE statements enable you to handle insertion of duplicate rows
gracefully without generating errors. For bulk-loading operations, the
same options are available in the form of the IGNORE or REPLACE
modifiers for the LOAD DATA statement.

To determine whether a table contains duplicates, use GROUP BY to
categorize rows into groups and COUNT() to see how many rows are in
each group. Chapter 10 describes these techniques in the context of
producing summaries, but they’re useful for duplicate counting and
identification as well. A counting summary groups values into categories
to determine how frequently each one occurs.
SELECT DISTINCT removes duplicate rows from a result set (see
Recipe 5.4 for more information). For an existing table that already
contains duplicates, you can select unique rows into a second table and
use it to replace the original table. Or, if you determine that there are n
identical rows in a table, you can use DELETE…LIMIT to eliminate n–
1 instances from that specific set of rows.

Scripts related to the examples shown in this chapter are located in the dups
directory of the recipes distribution. For scripts that create the tables
used here, look in the tables directory.

18.1 Preventing Duplicates from Occurring in
a Table

Problem

You want to prevent a table from ever containing duplicates.

Solution
Use a PRIMARY KEY or a UNIQUE index.

Discussion
To ensure that rows in a table are unique, some column or combination of
columns must be required to contain unique values in each row. When this
requirement is satisfied, you can refer to any row in the table
unambiguously by using its unique identifier. To make sure a table has this
characteristic, include a PRIMARY KEY or UNIQUE index in the table
structure. The following table contains no such index, so it permits
duplicate rows:

CREATE TABLE person
(
 last_name CHAR(20),
 first_name CHAR(20),
 address CHAR(40)
);

To prevent multiple rows with the same first and last name values from
being created in this table, add a PRIMARY KEY to its definition. When you
do this, the indexed columns must be NOT NULL, because a PRIMARY KEY
prohibits NULL values:

CREATE TABLE person
(
 last_name CHAR(20) NOT NULL,
 first_name CHAR(20) NOT NULL,
 address CHAR(40),
 PRIMARY KEY (last_name, first_name)
);

The presence of a unique index in a table normally causes an error to occur
if you insert a row into the table that duplicates an existing row in the

column or columns that define the index. Recipe 18.3 discusses how to
handle such errors or modify MySQL’s duplicate-handling behavior.
Another way to enforce uniqueness is to add a UNIQUE index rather than a
PRIMARY KEY to a table. The two types of indexes are similar, but a
UNIQUE index can be created on columns that permit NULL values. For the
person table, it’s likely that you’d require both the first and last names to
be filled in. If so, you still declare the columns as NOT NULL, and the
following table definition is effectively equivalent to the preceding one:

CREATE TABLE person
(
 last_name CHAR(20) NOT NULL,
 first_name CHAR(20) NOT NULL,
 address CHAR(40),
 UNIQUE (last_name, first_name)
);

If a UNIQUE index does happen to permit NULL values, NULL is special
because it is the one value that can occur multiple times. The rationale for
this is that it is not possible to know whether one unknown value is the
same as another, so multiple unknown values are permitted.
Of course, you might want the person table to reflect the real world, in
which people do sometimes have the same name. In this case, you cannot
set up a unique index based on the name columns, because duplicate names
must be permitted. Instead, each person must be assigned some sort of
unique identifier, which becomes the value that distinguishes one row from
another. In MySQL, it’s common to accomplish this by using an
AUTO_INCREMENT column:

CREATE TABLE person
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 last_name CHAR(20),
 first_name CHAR(20),
 address CHAR(40),
 PRIMARY KEY (id)
);

In this case, when you create a row with an id value of NULL, MySQL
assigns that column a unique ID automatically. Another possibility is to
assign identifiers externally and use those IDs as unique keys. For example,
citizens in a given country might have unique taxpayer ID numbers. If so,
those numbers can serve as the basis for a unique index:

CREATE TABLE person
(
 tax_id INT UNSIGNED NOT NULL,
 last_name CHAR(20),
 first_name CHAR(20),
 address CHAR(40),
 PRIMARY KEY (tax_id)
);

See Also
If an existing table already contains duplicate rows that you want to
remove, see Recipe 18.5. Chapter 15 further discusses AUTO_INCREMENT
columns.

18.2 Having More Than One Unique Key in
the Table

Problem
You need two or more column sets in the table to have unique values.

Solution
Define as many unique keys as needed.

Discussion
It may be possible that two or more column combinations need to have
unique values independently from one another. For example, the person
table from the last example in Recipe 18.1 has a tax_id column

representing a taxpayer ID and thus needs to store unique values. You may
still want to keep a unique index on (last_name, first_name).
This way you can be sure that each person has their own taxpayer ID and
that any taxpayer ID belongs to only one person.
Any table can have at most one primary key. Therefore, you need to choose
which key will be the primary key and which will be the secondary unique
key. As we describe in Recipe 21.2, primary keys for the InnoDB storage
engine are included in all secondary indexes, and it is critical for
performance to define them using the smallest data type possible.
Therefore, it is straightforward to define a primary key for the tax_id
column and a key on (last_name, first_name) as a secondary
unique index.
The resulting table definition will look like this:

CREATE TABLE `person` (
 `tax_id` INT UNSIGNED NOT NULL,
 `last_name` CHAR(20) DEFAULT NULL,
 `first_name` CHAR(20) DEFAULT NULL,
 `address` CHAR(40) DEFAULT NULL,
 PRIMARY KEY (`tax_id`),
 UNIQUE KEY `last_name` (`last_name`,`first_name`)
);

18.3 Dealing with Duplicates When Loading
Rows into a Table

Problem
You’ve created a table with a unique index to prevent duplicate values in
the indexed column or columns. But this results in an error if you attempt to
insert a duplicate row, and you want to avoid having to deal with such
errors.

Solution

One approach is to just ignore the error. Another is to use an INSERT
IGNORE, REPLACE, or INSERT…ON DUPLICATE KEY UPDATE
statement, each of which modifies MySQL’s duplicate-handling behavior.
For bulk-loading operations, LOAD DATA has modifiers that enable you to
specify how to handle duplicates.

Discussion
By default, MySQL generates an error when you insert a row that
duplicates an existing unique key value. Suppose that the person table has
the following structure, with a unique index on the last_name and
first_name columns:

CREATE TABLE person
(
 last_name CHAR(20) NOT NULL,
 first_name CHAR(20) NOT NULL,
 address CHAR(40),
 PRIMARY KEY (last_name, first_name)
);

An attempt to insert a row with duplicate values in the indexed columns
results in an error:

mysql> INSERT INTO person (last_name, first_name)
 -> VALUES('Pinter', 'Marlene');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO person (last_name, first_name)
 -> VALUES('Pinter', 'Marlene');
ERROR 1062 (23000): Duplicate entry 'Pinter-Marlene' for key
'person.PRIMARY'

If you issue the statements from the mysql program interactively, you can
simply say, “Okay, that didn’t work,” ignore the error, and continue. But if
you write a program to insert the rows, an error may terminate the program.
One way to avoid this is to modify the program’s error-handling behavior to
trap the error and then ignore it. See Recipe 4.2 for information about error-
handling techniques.

To prevent the error from occurring in the first place, you might consider
using a two-query method to solve the duplicate-row problem:

Issue a SELECT to check whether the row is already present.

Issue an INSERT if the row is not present.

But that doesn’t really work: another client might insert the same row after
the SELECT and before the INSERT, in which case the error would still
occur for your INSERT. To make sure that doesn’t happen, you could use a
transaction or lock the tables, but then you’ve gone from two statements to
four. MySQL provides three single-query solutions to the problem of
handling duplicate rows. Choose from among them depending on the
duplicate-handling behavior you want:

To keep the original row when a duplicate occurs, use INSERT IGNORE
rather than INSERT. If the row duplicates no existing row, MySQL
inserts it as usual. If the row is a duplicate, the IGNORE keyword tells
MySQL to discard it silently without generating an error:

mysql> INSERT IGNORE INTO person (last_name, first_name)
 -> VALUES('Brown', 'Bartholomew');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT IGNORE INTO person (last_name, first_name)
 -> VALUES('Brown', 'Bartholomew');
Query OK, 0 rows affected, 1 warning (0.00 sec)

The row count value indicates whether the row was inserted or ignored.
From within a program, you can obtain this value by checking the rows-
affected function provided by your API (see Recipes 4.4 and 12.1).
To replace the original row with the new one when a duplicate occurs,
use REPLACE rather than INSERT. If the row is new, it’s inserted just
as with INSERT. If it’s a duplicate, the new row replaces the old one:

mysql> REPLACE INTO person (last_name, first_name, address)
 -> VALUES('Baxter', 'Wallace', '57 3rd Ave.');
Query OK, 1 row affected (0.00 sec)
mysql> REPLACE INTO person (last_name, first_name, address)
 -> VALUES('Baxter', 'Wallace', '57 3rd Ave., Apt 102');
Query OK, 2 rows affected (0.00 sec)

The rows-affected value in the second case is 2 because the original row
is deleted and the new row is inserted in its place.
To modify columns of an existing row when a duplicate occurs, use
INSERT…ON DUPLICATE KEY UPDATE. If the row is new, it’s
inserted. If it’s a duplicate, the ON DUPLICATE KEY UPDATE clause
indicates how to modify the existing row in the table. In other words,
this statement can insert or update a row as necessary. The rows-affected
count indicates what happened: 1 for an insert, 2 for an update.

INSERT IGNORE is more efficient than REPLACE because it doesn’t
actually insert duplicates. Thus, it’s most applicable when you just want to
make sure a copy of a given row is present in a table. REPLACE, on the
other hand, is often more appropriate for tables in which other nonkey
columns need to be replaced. INSERT…ON DUPLICATE KEY UPDATE is
appropriate when you must insert a record if it doesn’t exist but just update
some of its columns if the new record is a duplicate in the indexed columns.
Suppose that you maintain a table named passtbl for a web application
that contains email addresses and password hash values, and that is indexed
by email address:

CREATE TABLE passtbl
(
 email VARCHAR(60) NOT NULL,
 password VARBINARY(60) NOT NULL,
 PRIMARY KEY (email)
);

How do you create new rows for new users but change passwords of
existing rows for existing users? Here’s a typical algorithm for handling
row maintenance:

1. Issue a SELECT to check whether a row already exists with a given
email value.

2. If no such row exists, add a new one with INSERT.

3. If the row does exist, update it with UPDATE.

These steps must be performed within a transaction or with the tables
locked to prevent other users from changing the tables while you’re using
them. In MySQL, you can use REPLACE to simplify both cases to the same
single-statement operation:

REPLACE INTO passtbl (email,password) VALUES(address,hash_value);

If no row with the given email address exists, MySQL creates a new one.
Otherwise, MySQL replaces it, in effect updating the password column
of the row associated with the address.
INSERT IGNORE and REPLACE are useful when you know exactly what
values should be stored in the table when you attempt to insert a row. That’s
not always the case. For example, you might want to insert a row if it
doesn’t exist but update only certain parts of it otherwise. This commonly
occurs when you use a table for counting. Suppose that you record votes for
candidates in polls, using the following table:

CREATE TABLE poll_vote
(
 poll_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 candidate_id INT UNSIGNED,
 vote_count INT UNSIGNED,
 PRIMARY KEY (poll_id, candidate_id)
);

The primary key is the combination of poll and candidate number. The table
should be used like this:

For the first vote received for a given poll candidate, insert a new row
with a vote count of 1.
For subsequent votes for that candidate, increment the vote count of the
existing record.

Neither INSERT IGNORE nor REPLACE are appropriate here because for
all votes except the first, you don’t know what the vote count should be.
INSERT…ON DUPLICATE KEY UPDATE works better here. The
following example shows how it works, beginning with an empty table:

mysql> SELECT * FROM poll_vote;
Empty set (0.00 sec)
mysql> INSERT INTO poll_vote (poll_id,candidate_id,vote_count)
VALUES(14,3,1)
 -> ON DUPLICATE KEY UPDATE vote_count = vote_count + 1;
Query OK, 1 row affected (0.00 sec)
mysql> SELECT * FROM poll_vote;

+---------+--------------+------------+
| poll_id | candidate_id | vote_count |
+---------+--------------+------------+
| 14 | 3 | 1 |
+---------+--------------+------------+
1 row in set (0.00 sec)
mysql> INSERT INTO poll_vote (poll_id,candidate_id,vote_count)
VALUES(14,3,1)
 -> ON DUPLICATE KEY UPDATE vote_count = vote_count + 1;
Query OK, 2 rows affected (0.00 sec)
mysql> SELECT * FROM poll_vote;
+---------+--------------+------------+
| poll_id | candidate_id | vote_count |
+---------+--------------+------------+
| 14 | 3 | 2 |
+---------+--------------+------------+
1 row in set (0.00 sec)

For the first INSERT, no row for the candidate exists, so the row is
inserted. For the second INSERT, the row exists, so MySQL just updates
the vote count. With INSERT…ON DUPLICATE KEY UPDATE, you need
not check whether the row exists; MySQL does it for you. The row count
indicates what action the INSERT statement performs: 1 for a new row and
2 for an update to an existing row.
The techniques just described have the benefit of eliminating overhead that
might otherwise be required for a transaction. But this benefit comes at the
price of portability because they all involve MySQL-specific syntax. If
portability is a high priority, you might prefer to use a transactional
approach, as we discuss in Chapter 20.

USING INSERT...ON DUPLICATE KEY UPDATE ON A TABLE WITH TWO
OR MORE UNIQUE KEYS

When a table has two or more unique keys, INSERT...ON DUPLICATE KEY UPDATE can
update any row that violates the unique constraint.

Assume that the person table from Recipe 18.2 has two rows:

mysql> SELECT * FROM person;
+--------+-----------+------------+--------------------------+
| tax_id | last_name | first_name | address |
+--------+-----------+------------+--------------------------+
| 12345 | Isaacson | Jim | 515 Fordam St., Apt. 917 |
| 23941 | Baxter | Wallace | 57 3rd Ave. |
+--------+-----------+------------+--------------------------+
2 rows in set (0,00 sec)

And we want to add a new row for Taylor McTavish:

INSERT INTO person VALUES(12345, 'McTavish', 'Taylor', '432
River Run')
ON DUPLICATE KEY UPDATE address = '432 River Run';

We expect that if no record for Taylor McTavish exists in the table, a new row will be inserted.
Otherwise, the address will be updated. However, this is not exactly the case:

mysql> INSERT INTO person VALUES(12345, 'McTavish', 'Taylor',
 -> '432 River Run')
 -> ON DUPLICATE KEY UPDATE address = '432 River Run';
Query OK, 2 rows affected (0,00 sec)

mysql> SELECT * FROM person;
+--------+-----------+------------+---------------+
| tax_id | last_name | first_name | address |
+--------+-----------+------------+---------------+
| 12345 | Isaacson | Jim | 432 River Run |
| 23941 | Baxter | Wallace | 57 3rd Ave. |
+--------+-----------+------------+---------------+
2 rows in set (0,00 sec)

A new row was not inserted even though a record for Taylor McTavish does not exist in the
table. Instead, the row with tax_id=12345, belonging to Jim Isaacson, was modified and
now stores the address of Taylor McTavish.

MySQL does not allow you to specify if the row should be updated only if a particular unique
key was violated. When the table has two or more unique keys, it is easy to make a mistake and
update the wrong row. We recommend that you avoid using INSERT...ON DUPLICATE

KEY UPDATE for modifying tables that have more than one unique key. You may consider
using stored routines instead, which we discussed in Chapter 11.

See Also
For bulk record-loading operations in which you use the LOAD DATA
statement to load a set of rows from a file into a table, control duplicate-row
handling using the statement’s IGNORE and REPLACE modifiers. These
produce behavior analogous to that of the INSERT IGNORE and REPLACE
statements. For more information, see Recipe 13.1.
Recipe 15.12 further demonstrates the use of INSERT…ON DUPLICATE
KEY UPDATE for initializing and updating counts.

18.4 Counting and Identifying Duplicates

Problem
You want to determine whether a table contains duplicates and to what
extent they occur. Or you want to see the rows that contain the duplicated
values.

Solution
Use a counting summary that displays duplicated values. To see the rows in
which the duplicated values occur, join the summary to the original table to
display the matching rows.

Discussion
Suppose that your website has a sign-up page that enables visitors to add
themselves to your mailing list to receive periodic product catalog mailings.
But you forgot to include a unique index in the table when you created it,
and now you suspect that some people are signed up multiple times.
Perhaps they forgot they were already on the list, or perhaps people added

friends to the list who were already signed up. Either way, the result of
having duplicate rows is that you mail out duplicate catalogs. This is an
additional expense to you, and it annoys the recipients. This section
discusses how to determine whether there are duplicate rows in a table, how
prevalent they are, and how to display them. (For tables that do contain
duplicates, Recipe 18.5 describes how to eliminate them.)
To determine whether duplicates occur in a table, use a counting summary
(a topic covered in Chapter 10). Summary techniques can be applied to
identifying and counting duplicates by grouping rows with GROUP BY and
counting the rows in each group using COUNT(). For the examples here,
assume that catalog recipients are listed in a table named catalog_list
that has the following contents:

+-----------+-------------+--------------------------+
| last_name | first_name | street |
+-----------+-------------+--------------------------+
Isaacson	Jim	515 Fordam St., Apt. 917
Baxter	Wallace	57 3rd Ave.
McTavish	Taylor	432 River Run
Pinter	Marlene	9 Sunset Trail
BAXTER	WALLACE	57 3rd Ave.
Brown	Bartholomew	432 River Run
Pinter	Marlene	9 Sunset Trail
Baxter	Wallace	57 3rd Ave., Apt 102
+-----------+-------------+--------------------------+

Suppose that you define “duplicate” using the last_name and
first_name columns. That is, recipients with the same name are
assumed to be the same person. The following statements characterize the
table and assess the existence and extent of duplicate values:

The total number of rows in the table:

mysql> SELECT COUNT(*) AS rows FROM catalog_list;
+------+
| rows |
+------+
| 8 |
+------+

The number of distinct names:

mysql> SELECT COUNT(DISTINCT last_name, first_name) AS
'distinct names'
 -> FROM catalog_list;
+----------------+
| distinct names |
+----------------+
| 5 |
+----------------+

The number of rows containing duplicated names:

mysql> SELECT COUNT(*) - COUNT(DISTINCT last_name, first_name)
 -> AS 'duplicate names'
 -> FROM catalog_list;
+-----------------+
| duplicate names |
+-----------------+
| 3 |
+-----------------+

The fraction of the rows that contain unique or nonunique names:

mysql> SELECT COUNT(DISTINCT last_name, first_name) / COUNT(*)
 -> AS 'unique',
 -> 1 - (COUNT(DISTINCT last_name, first_name) / COUNT(*))
 -> AS 'nonunique'
 -> FROM catalog_list;
+--------+-----------+
| unique | nonunique |
+--------+-----------+
| 0.6250 | 0.3750 |
+--------+-----------+

Those statements help you characterize the extent of duplicates, but they
don’t show you which values are duplicated. To see the duplicated names in
the catalog_list table, use a summary statement that displays the
nonunique values along with the counts:

mysql> SELECT COUNT(*), last_name, first_name
 -> FROM catalog_list
 -> GROUP BY last_name, first_name
 -> HAVING COUNT(*) > 1;

+----------+-----------+------------+
| COUNT(*) | last_name | first_name |
+----------+-----------+------------+
| 3 | Baxter | Wallace |
| 2 | Pinter | Marlene |
+----------+-----------+------------+

The statement includes a HAVING clause that restricts the output to include
only those names that occur more than once. In general, to identify sets of
values that are duplicated, do the following:

1. Determine which columns contain the values that may be duplicated.
2. List those columns in the column selection list, along with
COUNT(*).

3. List the columns in the GROUP BY clause as well.

4. Add a HAVING clause that eliminates unique values by requiring
group counts to be greater than one.

Queries constructed that way have the following form:

SELECT COUNT(*), column_list
FROM tbl_name
GROUP BY column_list
HAVING COUNT(*) > 1;

It’s easy to generate duplicate-finding queries like that within a program,
given database and table names and a nonempty set of column names. For
example, here is a make_dup_count_query() Perl function that
generates the proper query for finding and counting duplicated values in the
specified columns:

sub make_dup_count_query
{
my ($db_name, $tbl_name, @col_name) = @_;

 return "SELECT COUNT(*)," . join (",", @col_name)
 . "\nFROM $db_name.$tbl_name"
 . "\nGROUP BY " . join (",", @col_name)
 . "\nHAVING COUNT(*) > 1";
}

make_dup_count_query() returns the query as a string. If you invoke
it like this:

$str = make_dup_count_query ("cookbook", "catalog_list",
 "last_name", "first_name");

the resulting value of $str is as follows:

SELECT COUNT(*),last_name,first_name
FROM cookbook.catalog_list
GROUP BY last_name,first_name
HAVING COUNT(*) > 1;

What you do with the query string is up to you. You can execute it from
within the script that creates it, pass it to another program, or write it to a
file for execution later. The dups directory of the recipes distribution
contains a script named dup_count.pl that you can use to try the
function (as well as some translations into other languages). Recipe 18.5
discusses the use of make_dup_count_query() to implement a
duplicate-removal technique.
Summary techniques are useful for assessing the existence of duplicates,
how often they occur, and displaying which values are duplicated. But if
duplicates are determined using only a subset of a table’s columns, a
summary in itself cannot display the entire content of the rows that contain
the duplicate values. (For example, the summaries shown thus far display
counts of duplicated names in the catalog_list table or the names
themselves but don’t show the addresses associated with those names.) To
see the original rows containing the duplicate names, join the summary
information to the table from which it’s generated. The following example
shows how to do this to display the catalog_list rows that contain
duplicated names. The summary is written to a temporary table, which then
is joined to the catalog_list table to produce the rows that match those
names:

mysql> CREATE TABLE tmp
 -> SELECT COUNT(*) AS count, last_name, first_name FROM

catalog_list
 -> GROUP BY last_name, first_name HAVING count > 1;
mysql> SELECT catalog_list.*
 -> FROM tmp INNER JOIN catalog_list USING (last_name,
first_name)
 -> ORDER BY last_name, first_name;

+-----------+------------+----------------------+
| last_name | first_name | street |
+-----------+------------+----------------------+
Baxter	Wallace	57 3rd Ave.
BAXTER	WALLACE	57 3rd Ave.
Baxter	Wallace	57 3rd Ave., Apt 102
Pinter	Marlene	9 Sunset Trail
Pinter	Marlene	9 Sunset Trail
+-----------+------------+----------------------+

DUPLICATE IDENTIFICATION AND STRING CASE SENSITIVITY
For strings that have a case-insensitive collation, values that differ only in lettercase are
considered the same for comparison purposes. To treat them as distinct values, compare them
using a case-sensitive or binary collation. Recipe 7.7 shows how to do this.

18.5 Eliminating Duplicates from a Table

Problem
You want to remove duplicate rows from a table, leaving only unique rows.

Solution
Select the unique rows from the table into a second table, then use that table
to replace the original one. Or use DELETE…LIMIT n to remove all but
one instance of a specific set of duplicate rows.

Discussion

Recipe 18.1 discusses how to prevent duplicates from being added to a table
by creating it with a unique index. However, if you forget to include the
index when you create a table, you may discover later that it contains
duplicates and that it’s necessary to apply some sort of duplicate-removal
technique. The catalog_list table used earlier is an example of this
because it contains several instances in which the same person appears
multiple times:

mysql> SELECT * FROM catalog_list ORDER BY last_name, first_name;
+-----------+-------------+--------------------------+
| last_name | first_name | street |
+-----------+-------------+--------------------------+
Baxter	Wallace	57 3rd Ave.
BAXTER	WALLACE	57 3rd Ave.
Baxter	Wallace	57 3rd Ave., Apt 102
Brown	Bartholomew	432 River Run
Isaacson	Jim	515 Fordam St., Apt. 917
McTavish	Taylor	432 River Run
Pinter	Marlene	9 Sunset Trail
Pinter	Marlene	9 Sunset Trail
+-----------+-------------+--------------------------+

To eliminate duplicates, you can use one of these two options:
Select the table’s unique rows into another table, then use that table to
replace the original one. This works when “duplicate” means “the entire
row is the same as another.”
To remove duplicates for a specific set of duplicate rows, use
DELETE…LIMIT n to remove all but one row.

This recipe discusses each duplicate-removal method. When deciding upon
which method to choose for your circumstance, consider these questions:

Does the method require the table to have a unique index?
If the columns in which duplicate values occur may contain NULL, will
the method remove duplicate NULL values?

Does the method prevent duplicates from occurring in the future?

Removing duplicates using table replacement

If a row is considered to duplicate another only if the entire row is the same,
one way to eliminate duplicates from a table is to select its unique rows into
a new table that has the same structure, and then replace the original table
with the new one:

1. Create a new table that has the same structure as the original one.
CREATE TABLE…LIKE is useful for this (see Recipe 6.1):

mysql> CREATE TABLE tmp LIKE catalog_list;

2. Use INSERT INTO…SELECT DISTINCT to select the unique rows
from the original table into the new one:

mysql> INSERT INTO tmp SELECT DISTINCT * FROM catalog_list;

Select rows from the tmp table to verify that the new table contains
no duplicates:

mysql> SELECT * FROM tmp ORDER BY last_name, first_name;
+-----------+-------------+--------------------------+
| last_name | first_name | street |
+-----------+-------------+--------------------------+
Baxter	Wallace	57 3rd Ave.
Baxter	Wallace	57 3rd Ave., Apt 102
Brown	Bartholomew	432 River Run
Isaacson	Jim	515 Fordam St., Apt. 917
McTavish	Taylor	432 River Run
Pinter	Marlene	9 Sunset Trail
+-----------+-------------+--------------------------+

3. After creating the new tmp table that contains unique rows, use it to
replace the original catalog_list table:

mysql> DROP TABLE catalog_list;
mysql> RENAME TABLE tmp TO catalog_list;

The effective result of this procedure is that catalog_list no longer
contains duplicates.

This table-replacement method works in the absence of an index (although
it might be slow for large tables). For tables that contain duplicate NULL
values, it removes those duplicates. It does not prevent the occurrence of
duplicates in the future.
This method requires rows to be completely identical to be considered
duplicates. Thus, it treats as distinct those rows for Wallace Baxter that have
slightly different street values.

If duplicates are defined only with respect to a subset of the columns in the
table, create a new table that has a unique index for those columns, select
rows into it using INSERT IGNORE, and replace the original table with the
new one:

mysql> CREATE TABLE tmp LIKE catalog_list;
mysql> ALTER TABLE tmp ADD PRIMARY KEY (last_name, first_name);
mysql> INSERT IGNORE INTO tmp SELECT * FROM catalog_list;
mysql> SELECT * FROM tmp ORDER BY last_name, first_name;
+-----------+-------------+--------------------------+
| last_name | first_name | street |
+-----------+-------------+--------------------------+
Baxter	Wallace	57 3rd Ave.
Brown	Bartholomew	432 River Run
Isaacson	Jim	515 Fordam St., Apt. 917
McTavish	Taylor	432 River Run
Pinter	Marlene	9 Sunset Trail
+-----------+-------------+--------------------------+
mysql> DROP TABLE catalog_list;
mysql> RENAME TABLE tmp TO catalog_list;

The unique index prevents rows with duplicate key values from being
inserted into tmp, and IGNORE tells MySQL not to stop with an error if a
duplicate is found. One shortcoming of this method is that if the indexed
columns can contain NULL values, you must use a UNIQUE index rather
than a PRIMARY KEY, in which case the index will not remove duplicate
NULL keys. (UNIQUE indexes permit multiple NULL values.) This method
does prevent occurrence of duplicates in the future.

Removing duplicates of a particular row

You can use LIMIT to restrict the effect of a DELETE statement to a subset
of the rows that it otherwise would delete. This makes the statement
applicable to removing duplicate rows. Suppose that the original unindexed
catalog_list table contains duplicates:

mysql> SELECT COUNT(*), last_name, first_name
 -> FROM catalog_list
 -> GROUP BY last_name, first_name
 -> HAVING COUNT(*) > 1;
+----------+-----------+------------+
| COUNT(*) | last_name | first_name |
+----------+-----------+------------+
| 3 | Baxter | Wallace |
| 2 | Pinter | Marlene |
+----------+-----------+------------+

To remove the extra instances of each name, do this:

mysql> DELETE FROM catalog_list WHERE last_name = 'Baxter'
 -> AND first_name = 'Wallace' LIMIT 2;
mysql> DELETE FROM catalog_list WHERE last_name = 'Pinter'
 -> AND first_name = 'Marlene' LIMIT 1;
mysql> SELECT * FROM catalog_list;
+-----------+-------------+--------------------------+
| last_name | first_name | street |
+-----------+-------------+--------------------------+
Isaacson	Jim	515 Fordam St., Apt. 917
McTavish	Taylor	432 River Run
Brown	Bartholomew	432 River Run
Pinter	Marlene	9 Sunset Trail
Baxter	Wallace	57 3rd Ave., Apt 102
+-----------+-------------+--------------------------+

This technique works in the absence of a unique index, and it eliminates
duplicate NULL values. It’s handy for removing duplicates only for a
specific set of rows within a table. However, if there are many different sets
of duplicates to remove, this is not a procedure you’d want to carry out by
hand. The process can be automated by using the techniques discussed
earlier in Recipe 18.4 for determining which values are duplicated. There,
we wrote a make_dup_count_query() function to generate the
statement needed to count the number of duplicate values in a given set of
columns in a table. The result of that statement can be used to generate a set

of DELETE…LIMIT n statements that remove duplicate rows and leave
only unique rows. The dups directory of the recipes distribution contains
code that shows how to generate these statements.
In general, using DELETE…LIMIT n is likely to be slower than removing
duplicates by using a second table or by adding a unique index. Those
methods keep the data on the server side and let the server do all the work.
DELETE…LIMIT n involves a lot of client-server interaction because it
uses a SELECT statement to retrieve information about duplicates, followed
by several DELETE statements to remove instances of duplicated rows.
Also, this technique does not prevent duplicates from occurring in the
future.

Chapter 19. Working with JSON

19.0 Introduction
Relational databases have proven to be effective for decades. They prevent
duplicates and misses of data and enable fast access to stored values.
However, business continually invents new scenarios in which data needs to
be more flexible than the relational model allows.
For example, let’s consider a record for a user who can access subscription-
only digital content and leave comments. For such a user, having only basic
information—their name, email address, and password—is enough to get
started. However, once the users start exploring more options (for example,
requiring delivery), they may need their mailing address to be stored. The
mailing address could be different from the billing address. The user may
want to add a social network account or a few of them.
One way of storing flexible data in the relational database is to store
additional pieces of data in the referenced table that shares details for each
user. We discussed this technique in Recipes 16.5 and 16.6.
However, this technique may be not the best in the following situations:

When only a few items in the main table have details in the referenced table
If you still need to know about these details, when you query the
required fields in the main table, you will need to join it with the
referencing table every time. This will complicate queries and affect
performance.

When most of the specific details could be missed
Details such as a user’s district or building number are necessary only
for users who requested physical delivery of items. For everyone else,
these fields could be empty, but you still need to reserve space in the
database for those empty fields. This adds significant cost once the
database grows.

When you may not know which additional data you need in the future
You may need to add additional details to the data collections based on
your needs. Appending such details in the relational model means
creating new tables and columns to the existent table. This requires
schema redesign and maintenance windows to implement the changes.
This is not always possible or space/cost effective.

To resolve these issues, flexible data structures, such as JSON, are the best
fit. MySQL allows you to store JSON values in text fields using string data
types. Since version 5.7, MySQL also supports JSON data types and
functions that allow you to manipulate JSON values in an effective manner.
MySQL combines the advantages of both SQL and NoSQL worlds.

19.1 Choosing the Right Data Type

Problem
You want to store JSON values and don’t know which data type to choose.

Solution
Use the JSON data type.

Discussion
JSON data can be stored in any text or binary column. JSON functions will
work without issues, but the special JSON data type has numerous
advantages, particularly the following:

Optimized performance
JSON data is converted into a format that allows quick lookup for
values in the document.

Partial updates

Updates to JSON elements happen in place, without the need to rewrite
a full document.

Automatic data validation
When a value is inserted into a column of JSON data type, MySQL
automatically validates it and produces an error if the document is
invalid JSON.

The following will create a table with a JSON author column:

CREATE TABLE book_authors (
 id INT NOT NULL AUTO_INCREMENT,
 author JSON NOT NULL,
 PRIMARY KEY (id)
);

See Also
For additional information about the JSON data type, see “The JSON Data
Type” in the MySQL Reference Manual.

19.2 Inserting JSON Values

Problem
You want to store JSON documents in MySQL.

Solution
Use regular INSERT statements.

Discussion
JSON is not different from other data types. Use regular INSERT
statements to add your documents into the tables:

mysql> INSERT INTO `book_authors` VALUES
 -> (1,'{"id": 1, "name": "Paul",

https://oreil.ly/PVl8K

 '> "books": [
 '> "Software Portability with imake: Practical
Software Engineering",
 '> "Mysql: The Definitive Guide to Using,
Programming, ↩
 and Administering Mysql 4 (Developer\'s
Library)",
 '> "MySQL Certification Study Guide",
 '> "MySQL (OTHER NEW RIDERS)",
 '> "MySQL Cookbook",
 '> "MySQL 5.0 Certification Study Guide",
 '> "Using csh & tcsh: Type Less, Accomplish
More ↩
 (Nutshell Handbooks)",
 '> "MySQL (Developer\'s Library)"],
 '> "lastname": "DuBois"}'),
 -> (2,'{"id": 2, "name": "Alkin",
 '> "books": ["MySQL Cookbook"],
 '> "lastname": "Tezuysal"}'),
 -> (3,'{"id": 3, "name": "Sveta",
 '> "books": ["MySQL Troubleshooting", "MySQL
Cookbook"],
 '> "lastname": "Smirnova"}');
Query OK, 3 rows affected (0,01 sec)
Records: 3 Duplicates: 0 Warnings: 0

19.3 Validating JSON

Problem
You want to ensure that a given string is a valid JSON.

Solution
Use the JSON data type to perform automatic validation. Use the
JSON_VALID function to validate strings. Use the JSON Schema to define
the schema for the JSON documents.

Discussion
The JSON_VALID function checks if a given document is valid JSON:

mysql> SELECT JSON_VALID('"name": "Sveta"');
+-------------------------------+
| JSON_VALID('"name": "Sveta"') |
+-------------------------------+
| 0 |
+-------------------------------+
1 row in set (0,00 sec)

mysql> SELECT JSON_VALID('{"name": "Sveta"}');
+---------------------------------+
| JSON_VALID('{"name": "Sveta"}') |
+---------------------------------+
| 1 |
+---------------------------------+
1 row in set (0,00 sec)

If a column definition is a JSON data type, MySQL will not allow you to
insert invalid values. Additionally, an error message will locate the first
error, so you can fix it faster:

mysql> INSERT INTO book_authors(author)
 -> VALUES ('{"name": "Sveta" "lastname": "Smirnova"');
ERROR 3140 (22032): Invalid JSON text: "Missing a comma or '}'
after an object↩
member." at position 17 in value for column
'book_authors.author'.

If you want to validate a JSON document and also want it to satisfy a
schema, use the JSON_SCHEMA_VALID function. This function supports
the JSON Schema as described in Draft 4 of the JSON Schema
specification. To use it, you need to define a schema first and compare the
JSON value with it.
The JSON_SCHEMA_VALIDATION_REPORT function not only checks a
given document against the schema but also reports which particular part of
the schema is violated.
For the book_authors table, we can define a schema with name and
lastname as required fields and an array of book titles as optional books
element. We can use the following code for the schema:

{
"id": "http://www.oreilly.com/mysqlcookbook",

https://oreil.ly/Qwi4k

"$schema": "http://json-schema.org/draft-04/schema#",
"description": "Schema for the table book_authors",
"type": "object",
"properties": {
 "name": {"type": "string"},
 "lastname": {"type": "string"},
 "books": {"type": "array"}
},
"required":["name", "lastname"]
}

Unique identifier of the schema.

JSON schema specification. Should always be http://json-
schema.org/draft-04/schema#.

Description of the schema.

Type of the root element.

List of properties. Each of the properties should be described. They
should have a defined type and can specify other validations, such as
minimum and maximum.

List of required fields.
If we assign just the defined schema to a variable, say, @schema, we can
check JSON data against this schema:

mysql> SET @schema = '{
 '> "id": "http://www.oreilly.com/mysqlcookbook",
 '> "$schema": "http://json-schema.org/draft-04/schema#",
 '> "description": "Schema for the table book_authors",
 '> "type": "object",
 '> "properties": {
 '> "name": {"type": "string"},
 '> "lastname": {"type": "string"},
 '> "books": {"type": "array"}
 '> },
 '> "required":["name", "lastname"]
 '> }';
Query OK, 0 rows affected (0,00 sec)

mysql> SELECT JSON_SCHEMA_VALIDATION_REPORT(@schema,
 -> '{"name": "Sveta"}') AS 'Valid?'\G

*************************** 1. row ***************************
Valid?: {"valid": false, "reason": "The JSON document location
'#' failed requirement ↩
'required' at JSON Schema location '#'", "schema-location": "#",
↩
"document-location": "#", "schema-failed-keyword": "required"}
1 row in set (0,00 sec)

In this case, validation failed, because the document contains only the
name field and does not contain another required field, lastname:

mysql> SELECT JSON_SCHEMA_VALIDATION_REPORT(@schema,
 -> '{"name": "Sveta", "lastname": "Smirnova"}') AS 'Valid?';
+-----------------+
| Valid? |
+-----------------+
| {"valid": true} |
+-----------------+
1 row in set (0,00 sec)

In this case, the document is valid, because it contains all required fields.
The books field is optional and not required:

mysql> SELECT JSON_SCHEMA_VALIDATION_REPORT(@schema,
 -> '{"name": "Sveta", "lastname": "Smirnova",
 -> "books": "MySQL Cookbook"}') AS 'Valid?'\G
*************************** 1. row ***************************
Valid?: {"valid": false, "reason": "The JSON document location
'#/books' failed ↩
requirement 'type' at JSON Schema location '#/properties/books'",
↩
"schema-location": "#/properties/books", "document-location":
"#/books", ↩
"schema-failed-keyword": "type"}
1 row in set (0,00 sec)

In this case, the document is not valid, because the books member has a
string type and not an array as defined in the schema:

mysql> SELECT JSON_SCHEMA_VALIDATION_REPORT(@schema,
 -> '{"name": "Sveta", "lastname": "Smirnova",
 -> "books": ["MySQL Troubleshooting", "MySQL Cookbook"]}') AS
'Valid?';
+-----------------+

| Valid? |
+-----------------+
| {"valid": true} |
+-----------------+
1 row in set (0,00 sec)

This document fixes the type error for the books element and thus is valid:

mysql> SELECT JSON_SCHEMA_VALID(@schema, '{"name": "Sveta",
"lastname": "Smirnova",
 -> "vehicles": ["Honda CRF 250L"]}') AS 'Valid 1?',
 -> JSON_SCHEMA_VALID(@schema, '{"name": "Alkin", "lastname":
"Tezuysal",
 -> "vehicles": "boat"}') AS 'Valid 2?';
+----------+----------+
| Valid 1? | Valid 2? |
+----------+----------+
| 1 | 1 |
+----------+----------+
1 row in set (0,00 sec)

These documents are also valid, because there is no requirement for the
vehicles property: it may exist or it may not exist and can be of any
type.
If you want to automatically validate a JSON field in a table against a
defined schema, use CHECK constraints:

ALTER TABLE book_authors
ADD CONSTRAINT CHECK(JSON_SCHEMA_VALID('
{"id": "http://www.oreilly.com/mysqlcookbook",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Schema for the table book_authors",
 "type": "object",
 "properties": {
 "name": {"type": "string"},
 "lastname": {"type": "string"},
 "books": {"type": "array"}},
 "required":["name", "lastname"]} ',
 author));

19.4 Formatting JSON Values

Problem
You want to print JSON in a nice format.

Solution
Use the JSON_PRETTY function.

Discussion
By default, JSON is printed as a long string that can be hard to read. If you
want MySQL to print it in human-readable format, use the JSON_PRETTY
function:

mysql> SELECT JSON_PRETTY(author) FROM book_authors\G
*************************** 1. row ***************************
JSON_PRETTY(author): {
 "id": 1,
 "name": "Paul",
 "books": [
 "Software Portability with imake: Practical Software
Engineering",
 "Mysql: The Definitive Guide to Using, Programming, ↩
 and Administering Mysql 4 (Developer's Library)",
 "MySQL Certification Study Guide",
 "MySQL (OTHER NEW RIDERS)",
 "MySQL Cookbook",
 "MySQL 5.0 Certification Study Guide",
 "Using csh & tcsh: Type Less, Accomplish More (Nutshell
Handbooks)",
 "MySQL (Developer's Library)"
],
 "lastname": "DuBois"
}
*************************** 2. row ***************************
JSON_PRETTY(author): {
 "id": 2,
 "name": "Alkin",
 "books": [
 "MySQL Cookbook"
],
 "lastname": "Tezuysal"
}
*************************** 3. row ***************************
JSON_PRETTY(author): {
 "id": 3,

 "name": "Sveta",
 "books": [
 "MySQL Troubleshooting",
 "MySQL Cookbook"
],
 "lastname": "Smirnova"
}
3 rows in set (0,00 sec)

19.5 Extracting Values from JSON

Problem
You want to extract values from the JSON document.

Solution
Use the JSON_EXTRACT function or the operators -> and ->>.

Discussion
JSON by itself is no use if you cannot extract values from the documents.
JSON in MySQL supports the JSON path that can be used to point to the
specific element in JSON. The root element of the JSON document is
represented by a $ sign. Object members are accessed by the . operator,
and array members are accessed by an index, enclosed in square brackets.
Indexes start from zero. You can refer to multiple array elements with the
keyword to (e.g. $.[3 to 5]. The last keyword is a synonym of the
last element in the array.
The wildcard * represents either all values of all object members if used
after a dot, .*, or all array elements if enclosed in the square brackets,
[*].

The [prefix]**suffix expression represents all paths, beginning with
the prefix and ending with the suffix. Note that while the suffix
part is required, prefix is optional. In other words, a JSON path
expression should not end with a double asterisk sign.

To access JSON elements, use the JSON_EXTRACT function.

For example, to select names of the authors, use the following SQL:

mysql> SELECT JSON_EXTRACT(author, '$.name') AS author FROM
book_authors;
+---------+
| author |
+---------+
| "Paul" |
| "Alkin" |
| "Sveta" |
+---------+
3 rows in set (0,00 sec)

To remove quotes from the values, use the JSON_UNQUOTE function.

mysql> SELECT JSON_UNQUOTE(JSON_EXTRACT(author, '$.name')) AS
author FROM book_authors;
+--------+
| author |
+--------+
| Paul |
| Alkin |
| Sveta |
+--------+
3 rows in set (0,00 sec)

The -> operator is an alias of the JSON_EXTRACT function.

mysql> SELECT author->'$.name' AS author FROM book_authors;
+---------+
| author |
+---------+
| "Paul" |
| "Alkin" |
| "Sveta" |
+---------+
3 rows in set (0,00 sec)

The ->> operator is an alias of
JSON_UNQUOTE(JSON_EXTRACT(...)):

mysql> SELECT author->>'$.name' AS author FROM book_authors;
+--------+
| author |
+--------+
| Paul |
| Alkin |
| Sveta |
+--------+
3 rows in set (0,00 sec)

To extract the first and last books by the authors, use the 0 and last array
indexes, respectively:

mysql> SELECT CONCAT(author->>'$.name', ' ', author-
>>'$.lastname') AS author,
 -> author->>'$.books[0]' AS `First Book`,
 -> author->>'$.books[last]' AS `Last Book` FROM
book_authors\G
*************************** 1. row ***************************
 author: Paul DuBois
First Book: Software Portability with imake: Practical Software
Engineering
 Last Book: MySQL (Developer's Library)
*************************** 2. row ***************************
 author: Alkin Tezuysal
First Book: MySQL Cookbook
 Last Book: MySQL Cookbook
*************************** 3. row ***************************
 author: Sveta Smirnova
First Book: MySQL Troubleshooting
 Last Book: MySQL Cookbook
3 rows in set (0,00 sec)

The JSON path $.books[*] will return the full array of books. The same
will happen if you omit a wildcard and simply refer to the books array as
$.books. The $.* expression will return all elements of the JSON object
as an array:

mysql> SELECT author->'$.*' FROM book_authors WHERE author-
>>'$.name' = 'Sveta';
+--
-------+
| author->'$.*'
|
+--

-------+
| [3, "Sveta", ["MySQL Troubleshooting", "MySQL Cookbook"],
"Smirnova"] |
+--
-------+
1 row in set (0,00 sec)

See Also
For additional information about JSON Path, see “JSON Path Syntax” in
the MySQL Reference Manual.

19.6 Searching Inside JSON

Problem
You want to search for JSON documents containing particular values.

Solution
Use the JSON_SEARCH function.

Discussion
Accessing by key works great, but you may want to search for particular
values in JSON documents. MySQL allows you to do this. For example, to
find all authors of the book MySQL Cookbook, run the following query:

mysql> SELECT author->>'$.name' AS author FROM book_authors
 -> WHERE JSON_SEARCH(author, 'one', 'MySQL Cookbook');
+--------+
| author |
+--------+
| Paul |
| Alkin |
| Sveta |
+--------+
3 rows in set, 1 warning (0,00 sec)

https://oreil.ly/D1k9c

The JSON_SEARCH function takes a JSON document keyword, one or
all, and a search string as required arguments and returns the found path
of the element or elements that contain the searched value. It also supports
the optional escape character and JSON path arguments.
Similarly to the operator LIKE function, JSON_SEARCH supports
wildcards % and _.

Thus, to search all books with names that start with MySQL, use the
following expression:

mysql> SELECT author->>'$.name' AS author,
 -> JSON_SEARCH(author, 'all', 'MySQL%') AS books
 -> FROM book_authors\G
*************************** 1. row ***************************
author: Paul
 books: ["$.books[2]", "$.books[3]", "$.books[4]", "$.books[5]",
"$.books[7]"]
*************************** 2. row ***************************
author: Alkin
 books: "$.books[0]"
*************************** 3. row ***************************
author: Sveta
 books: ["$.books[0]", "$.books[1]"]
3 rows in set (0,00 sec)

When searching for a single match, you can use the return value of the
JSON_SEARCH function as an argument for the JSON_EXTRACT
function:

mysql> SELECT author->>'$.name' AS author,
 -> JSON_EXTRACT(author,
 -> JSON_UNQUOTE(JSON_SEARCH(author, 'one', 'MySQL%'))) AS
book
 -> FROM book_authors;
+--------+-----------------------------------+
| author | book |
+--------+-----------------------------------+
Paul	"MySQL Certification Study Guide"
Alkin	"MySQL Cookbook"
Sveta	"MySQL Troubleshooting"
+--------+-----------------------------------+
3 rows in set (0,00 sec)

19.7 Inserting New Elements into a JSON
Document

Problem
You want to insert new elements into a JSON document.

Solution
Use the JSON_INSERT, JSON_ARRAY_APPEND, and
JSON_ARRAY_INSERT functions.

Discussion
You may want to not only search inside JSON values but also modify them.
MySQL supports a number of functions that can modify JSON. The most
wonderful thing about them is that they do not replace the JSON document
as regular string functions do. Rather, they perform updates in place. This
allows you to modify JSON values effectively.
MySQL functions allow you to append, remove, and replace parts of JSON
as well as merge two or more documents into one. They all take the original
document as an argument, a path that needs to be modified, and a new
value.
To insert a new value into a JSON object, use the JSON_INSERT function.
Thus, to add information about a current author’s work, call the function as
follows:

UPDATE book_authors SET author = JSON_INSERT(author, '$.work',
'Percona')
WHERE author->>'$.name' IN ('Sveta', 'Alkin');

To add a book into the end of the book array, use the
JSON_ARRAY_APPEND function:

UPDATE book_authors SET author = JSON_ARRAY_APPEND(author,
'$.books',
'MySQL Performance Schema in Action') WHERE author->>'$.name' =
'Sveta';

This will add a new book into the end of the array:

mysql> SELECT JSON_PRETTY(author) FROM book_authors
 -> WHERE author->>'$.name' = 'Sveta'\G
*************************** 1. row ***************************
JSON_PRETTY(author): {
 "id": 3,
 "name": "Sveta",
 "work": "Percona",
 "books": [
 "MySQL Troubleshooting",
 "MySQL Cookbook",
 "MySQL Performance Schema in Action"
],
 "lastname": "Smirnova"
}
1 row in set (0,00 sec)

To add an element into a specific place, use the JSON_ARRAY_INSERT
function:

UPDATE book_authors SET author = JSON_ARRAY_INSERT(author,
'$.books[0]',
'MySQL for Absolute Beginners') WHERE author->>'$.name' =
'Alkin';

This will insert a new book into the beginning of the array:

mysql> SELECT JSON_PRETTY(author)
 -> FROM book_authors WHERE author->>'$.name' = 'Alkin'\G
*************************** 1. row ***************************
JSON_PRETTY(author): {
 "id": 2,
 "name": "Alkin",
 "work": "Percona",
 "books": [
 "MySQL for Absolute Beginners",
 "MySQL Cookbook"
],
 "lastname": "Tezuysal"

}
1 row in set (0,00 sec)

19.8 Updating JSON

Problem
You want to update a JSON value.

Solution
Use the JSON_REPLACE and JSON_SET functions.

Discussion
While we were working on this book, Alkin changed jobs, so the content of
the table needs to be updated. The JSON_REPLACE function replaces a
given path with the new value:

UPDATE book_authors SET author = JSON_REPLACE(author, '$.work',
'PlanetScale')
WHERE author->>'$.name' = 'Alkin';

However, the JSON_REPLACE function will do nothing if a record that
needs to be replaced does not exist in the document:

mysql> UPDATE book_authors SET author = JSON_REPLACE(author,
'$.work', 'Oracle')
 -> WHERE author->>'$.name' = 'Paul';
Query OK, 0 rows affected (0,00 sec)
Rows matched: 1 Changed: 0 Warnings: 0

mysql> SELECT author->>'$.work' FROM book_authors WHERE author-
>>'$.name' = 'Paul';
+-------------------+
| author->>'$.work' |
+-------------------+
| NULL |
+-------------------+
1 row in set (0,00 sec)

To resolve this problem, use the JSON_SET function to update the
document if the path exists or to insert a new value if the path does not
exist:

mysql> UPDATE book_authors SET author = JSON_SET(author,
'$.work', 'MySQL')
 -> WHERE author->>'$.name' = 'Paul';
Query OK, 1 row affected (0,01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT author->>'$.work' FROM book_authors WHERE author-
>>'$.name' = 'Paul';
+-------------------+
| author->>'$.work' |
+-------------------+
| MySQL |
+-------------------+
1 row in set (0,00 sec)

mysql> UPDATE book_authors SET author = JSON_SET(author,
'$.work', 'Oracle')
 -> WHERE author->>'$.name' = 'Paul';
Query OK, 1 row affected (0,00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT author->>'$.work' FROM book_authors WHERE author-
>>'$.name' = 'Paul';
+-------------------+
| author->>'$.work' |
+-------------------+
| Oracle |
+-------------------+
1 row in set (0,00 sec)

19.9 Removing Elements from JSON

Problem
You want to remove elements from a JSON document.

Solution
Use the JSON_REMOVE function.

Discussion
The JSON_REMOVE function removes specified elements from JSON.

For example, to remove unpublished books from the book_authors
table, use the following code:

UPDATE book_authors SET author = JSON_REMOVE(author,
'$.books[0]')
WHERE author->>'$.name' = 'Alkin';
UPDATE book_authors SET author = JSON_REMOVE(author,
'$.books[last]')
WHERE author->>'$.name' = 'Sveta';

19.10 Merging Two or More JSON Documents
into One

Problem
You want to combine two or more JSON documents into one.

Solution
Use the family of JSON_MERGE_* functions.

Discussion
Two functions, JSON_MERGE_PATCH and JSON_MERGE_PRESERVE,
are available for combining multiple JSON documents into one.
JSON_MERGE_PATCH removes duplicates when merging two documents,
whereas JSON_MERGE_PRESERVE keeps them. Both functions take two
or more arguments that should be valid JSON text.
For example, in this recipe we will store values of the author column in
the book_authors table into user-defined variables: one for each author.
Additionally, we will store arrays of books for Sveta in a sveta_books
variable:

SELECT author INTO @paul FROM book_authors WHERE author-
>>'$.name'='Paul';
SELECT author INTO @sveta FROM book_authors WHERE author-
>>'$.name'='Sveta';
SELECT author INTO @alkin FROM book_authors WHERE author-
>>'$.name'='Alkin';
SELECT author->>'$.books' INTO @sveta_books FROM book_authors
 WHERE author->>'$.name'='Sveta';

JSON_MERGE_PRESERVE combines documents, provided by its
arguments, into a single object. You can use this function to add new
elements to your objects or arrays. Thus, to add an array of countries where
the author has lived, you can just provide an object containing such an array
as an argument:

mysql> SELECT JSON_PRETTY(JSON_MERGE_PRESERVE(@sveta,
 -> '{"places lived": ["Russia", "Turkey"]}'))\G
*************************** 1. row ***************************
JSON_PRETTY(JSON_MERGE_PRESERVE(@sveta, '{"places lived":
["Russia", "Turkey"]}')): {
 "id": 3,
 "name": "Sveta",
 "work": "Percona",
 "books": [
 "MySQL Troubleshooting",
 "MySQL Cookbook"
],
 "lastname": "Smirnova",
 "places lived": [
 "Russia",
 "Turkey"
]
}
1 row in set (0,00 sec)

To add a new book into the books array, pass it as a part of the books
array in the object as a second argument:

mysql> SELECT JSON_PRETTY(JSON_MERGE_PRESERVE(@sveta,
 -> '{"books": ["MySQL Performance Schema in Action"]}'))\G
*************************** 1. row ***************************
JSON_PRETTY(JSON_MERGE_PRESERVE(@sveta, ↩
'{"books": ["MySQL Performance Schema in Action"]}')): {
 "id": 3,
 "name": "Sveta",

 "work": "Percona",
 "books": [
 "MySQL Troubleshooting",
 "MySQL Cookbook",
 "MySQL Performance Schema in Action"
],
 "lastname": "Smirnova"
}
1 row in set (0,00 sec)

The content of the books array in the second argument will be added to the
end of the array with the same name in the first argument.
If two objects have scalar values with the same key, they will be merged
into an array:

mysql> SELECT JSON_PRETTY(JSON_MERGE_PRESERVE(@paul, @sveta,
@alkin)) AS authors\G
*************************** 1. row ***************************
authors: {
 "id": [
 1,
 3,
 2
],
 "name": [
 "Paul",
 "Sveta",
 "Alkin"
],
 "work": [
 "Oracle",
 "Percona",
 "PlanetScale"
],
 "books": [
 "Software Portability with imake: Practical Software
Engineering",
 "Mysql: The Definitive Guide to Using, Programming, ↩
 and Administering Mysql 4 (Developer's Library)",
 "MySQL Certification Study Guide",
 "MySQL (OTHER NEW RIDERS)",
 "MySQL Cookbook",
 "MySQL 5.0 Certification Study Guide",
 "Using csh & tcsh: Type Less, Accomplish More (Nutshell
Handbooks)",
 "MySQL (Developer's Library)",
 "MySQL Troubleshooting",

 "MySQL Cookbook",
 "MySQL Cookbook"
],
 "lastname": [
 "DuBois",
 "Smirnova",
 "Tezuysal"
]
}
1 row in set (0,00 sec)

NOTE
Note that the JSON_MERGE_PRESERVE function does not try to handle duplicates, so the book
title MySQL Cookbook repeats in the resulting array three times.

The JSON_MERGE_PATCH function, instead, removes duplicates in favor
of its latest argument. The same combination of merging three authors will
just return the one, specified as the last argument:

mysql> SELECT JSON_PRETTY(JSON_MERGE_PATCH(@paul, @sveta,
@alkin)) AS authors\G
*************************** 1. row ***************************
authors: {
 "id": 2,
 "name": "Alkin",
 "work": "PlanetScale",
 "books": [
 "MySQL Cookbook"
],
 "lastname": "Tezuysal"
}
1 row in set (0,00 sec)

This feature could be used to remove unneeded elements from JSON. For
example, if we decide that it doesn’t matter which company the author
works for, we can remove the work element by passing it as an object with
the value null:

mysql> SELECT JSON_PRETTY(JSON_MERGE_PATCH(@sveta, '{"work":
null}'))\G
*************************** 1. row ***************************

JSON_PRETTY(JSON_MERGE_PATCH(@sveta, '{"work": null}')): {
 "id": 3,
 "name": "Sveta",
 "books": [
 "MySQL Troubleshooting",
 "MySQL Cookbook"
],
 "lastname": "Smirnova"
}
1 row in set (0,00 sec)

When the latest document of the function is not an object,
JSON_MERGE_PRESERVE will add it as the latest element of an array. For
example, to add a new book to the array of books by Sveta, you can use
following code:

mysql> SELECT JSON_PRETTY(JSON_MERGE_PRESERVE(@sveta_books,
 -> '"MySQL Performance Schema in Action"')) AS 'Books by
Sveta'\G
*************************** 1. row ***************************
Books by Sveta: [
 "MySQL Troubleshooting",
 "MySQL Cookbook",
 "MySQL Performance Schema in Action"
]
1 row in set (0,00 sec)

JSON_MERGE_PATCH, instead, will replace the elements in the original
document with the new one:

mysql> SELECT JSON_PRETTY(JSON_MERGE_PATCH(@sveta_books,
 -> '"MySQL Performance Schema in Action"')) AS 'Books by
Sveta';
+--------------------------------------+
| Books by Sveta |
+--------------------------------------+
| "MySQL Performance Schema in Action" |
+--------------------------------------+
1 row in set (0,00 sec)

19.11 Creating JSON from Relational Data

Problem
You have relational data and want to create JSON from it.

Solution
Use the JSON_OBJECT and JSON_ARRAY functions and their aggregate
variants JSON_OBJECTAGG and JSON_ARRAYAGG.

Discussion
It can be useful to create JSON out of relational data. MySQL provides the
JSON_OBJECT function that combines pairs of values into a JSON object:

mysql> SELECT JSON_PRETTY(
 -> JSON_OBJECT("string", "Some String", "number", 42, "null",
NULL)) AS my_object\G
*************************** 1. row ***************************
my_object: {
 "null": null,
 "number": 42,
 "string": "Some String"
}
1 row in set (0,00 sec)

The JSON_ARRAY function creates a JSON array from its arguments:

mysql> SELECT JSON_PRETTY(JSON_ARRAY("one", "two", "three", 4,
5)) AS my_array\G
*************************** 1. row ***************************
my_array: [
 "one",
 "two",
 "three",
 4,
 5
]
1 row in set (0,00 sec)

You can combine both functions to make nesting objects and arrays:

mysql> SELECT JSON_PRETTY(JSON_OBJECT("Example", "Nesting object
and array",

 -> "Human", JSON_OBJECT("name", "Sveta", "lastname",
"Smirnova"),
 -> "Numbers", JSON_ARRAY("one", "two", "three"))) AS
my_object\G
*************************** 1. row ***************************
my_object: {
 "Human": {
 "name": "Sveta",
 "lastname": "Smirnova"
 },
 "Example": "Nesting object and array",
 "Numbers": [
 "one",
 "two",
 "three"
]
}
1 row in set (0,00 sec)

The JSON_OBJECTAGG and JSON_ARRAYAGG functions are aggregate
versions of JSON_OBJECT and JSON_ARRAY that allow you to create
JSON objects and arrays out of data, returned by GROUP BY queries.

The cookbook database has a movies_actors table that contains a list
of movies and actors that starred in them. The table has a few rows for each
movie and a few others for each actor.
If you want to have a JSON object that will list a movie and all the actors
who starred in that movie in an array, combine the JSON_OBJECT and
JSON_ARRAYAGG functions:

mysql> SELECT JSON_PRETTY(JSON_OBJECT('Movie', movie,
 -> 'Starred', JSON_ARRAYAGG(actor))) AS starred
 -> FROM movies_actors GROUP BY movie\G
*************************** 1. row ***************************
starred: {
 "Movie": "Kingdom of Heaven",
 "Starred": [
 "Liam Neeson",
 "Orlando Bloom"
]
}
*************************** 2. row ***************************
starred: {
 "Movie": "Red",
 "Starred": [

 "Helen Mirren",
 "Bruce Willis"
]
}
*************************** 3. row ***************************
starred: {
 "Movie": "The Fellowship of the Ring",
 "Starred": [
 "Ian McKellen",
 "Ian Holm",
 "Orlando Bloom",
 "Elijah Wood"
]
}
*************************** 4. row ***************************
starred: {
 "Movie": "The Fifth Element",
 "Starred": [
 "Bruce Willis",
 "Gary Oldman",
 "Ian Holm"
]
}
*************************** 5. row ***************************
starred: {
 "Movie": "The Phantom Menace",
 "Starred": [
 "Ewan McGregor",
 "Liam Neeson"
]
}
*************************** 6. row ***************************
starred: {
 "Movie": "Unknown",
 "Starred": [
 "Diane Kruger",
 "Liam Neeson"
]
}
6 rows in set (0,00 sec)

The JSON_OBJECTAGG function can take table values in one column as
member names and values in another column as their arguments:

mysql> SELECT JSON_PRETTY(JSON_OBJECTAGG(name, website)) AS
websites
 -> FROM book_vendor\G
*************************** 1. row ***************************

websites: {
 "Amazon.com": "www.amazon.com",
 "Barnes & Noble": "www.barnesandnoble.com",
 "O'Reilly Media": "www.oreilly.com"
}
1 row in set (0,00 sec)

19.12 Converting JSON into Relational
Format

Problem
You have JSON data and want to work with it the same way as you do with
relational structure data.

Solution
Use the JSON_TABLE function.

Discussion
In the previous recipe, we converted relational data into JSON. You may
need to do the opposite: convert JSON into relational format. In this case,
the JSON_TABLE function will help.

The JSON_TABLE function takes a JSON document and a list of columns
with paths as its arguments. It returns a table as a result.
For example, for the following document:

{
 "null": null,
 "number": 42,
 "string": "Some String"
}

JSON_TABLE can be called as follows:

mysql> SELECT *
 -> FROM JSON_TABLE(
 -> '{"null": null, "number": 42, "string": "Some String"}',

 -> '$'
 -> COLUMNS(
 -> number INT PATH '$.number',
 -> string VARCHAR(255) PATH '$.string' ERROR ON ERROR
 ->)) AS jt;
+--------+-------------+
| number | string |
+--------+-------------+
| 42 | Some String |
+--------+-------------+
1 row in set (0,00 sec)

Start the query by selecting everything from the resulting table.

The JSON_TABLE function can be used only in the FROM clause.

The first argument to the function is a JSON document. In this example,
the function takes a string. If you want to pass a column name into
another table, you need to specify this table prior to the JSON_TABLE
call:

SELECT * FROM mytable, JSON_TABLE(mytable.mycolumn...

A path that will be used as a document root. In this example, we’re
using the whole document, but you can simplify expressions for the
columns if you specify the path to the part of the JSON document here.

Definition of columns.

The number column has a INT type and default error handling: the
column is set to NULL in case an error happens. We use JSON path
$.number to set a value for this column.

For the column string, we decided to raise an error; therefore, we
used the ERROR ON ERROR clause.

Any function in the FROM clause should have an alias, so we used jt as
an alias.

To call the JSON_TABLE function on an existing table, add it to the query
prior to calling the function. In practice, perform a CROSS JOIN of two
tables. The COLUMNS clause also supports nested paths, so you can expand
arrays into multiple rows.
The author column in the book_authors table contains a list of books
in the books array. To expand each row into its own row, use the NESTED
PATH clause:

mysql> SELECT jt.* FROM book_authors ba,
 -> JSON_TABLE(ba.author,
 -> '$' COLUMNS (
 -> name VARCHAR(255) PATH '$.name',
 -> lastname VARCHAR(255) PATH '$.lastname',
 -> NESTED PATH '$.books[*]' COLUMNS (
 -> book VARCHAR(255) PATH '$')
 ->)) AS jt;
+-------+----------+---
--------------------+
| name | lastname | book
|
+-------+----------+---
--------------------+
| Paul | DuBois | Software Portability with imake: Practical
Software Engineering |
| Paul | DuBois | Mysql: The Definitive Guide to Using,
Programming, ↩
 and Administering Mysql 4 (Developer's
Library) |
| Paul | DuBois | MySQL Certification Study Guide
|
| Paul | DuBois | MySQL (OTHER NEW RIDERS)
|
| Paul | DuBois | MySQL Cookbook
|
| Paul | DuBois | MySQL 5.0 Certification Study Guide
|
| Paul | DuBois | Using csh & tcsh: Type Less, Accomplish More
↩
 (Nutshell Handbooks)
|
| Paul | DuBois | MySQL (Developer's Library)
|

| Alkin | Tezuysal | MySQL Cookbook
|
| Sveta | Smirnova | MySQL Troubleshooting
|
| Sveta | Smirnova | MySQL Cookbook
|
+-------+----------+---
--------------------+
11 rows in set (0,01 sec)

To use a column in the existing table, put the table name before the
JSON_TABLE call.

The NESTED PATH clause expands the following path pattern into
several columns. In our case, the path is $.books[*] that points to
each element of the books array.

Define the nested column as any other column. Note that PATH should
be relative to the NESTED PATH.

See Also
For additional information about the JSON_TABLE function, see “JSON
Table Functions” in the MySQL Reference Manual.

19.13 Investigating JSON

Problem
You want to know details about your JSON data structure, such as how
deep the value is, how many children a particular element has, and so on.

Solution
Use JSON attribute functions.

Discussion

https://oreil.ly/sy4WB

The JSON_LENGTH function returns a number of elements in the JSON
document or the path, if specified. For scalars, it is always 1, and for objects
and arrays, it is the number of elements. You can use this function to
perform such tasks as calculating the number of books written by a
particular author:

mysql> SELECT CONCAT(author->>'$.name', ' ', author-
>>'$.lastname') AS 'author',
 -> JSON_LENGTH(author->>'$.books') AS 'Number of Books' FROM
book_authors;
+----------------+-----------------+
| author | Number of Books |
+----------------+-----------------+
| Paul DuBois | 8 |
| Alkin Tezuysal | 1 |
| Sveta Smirnova | 2 |
+----------------+-----------------+
3 rows in set (0,01 sec)

The JSON_DEPTH function returns the maximum depth of the JSON
document. It returns one for a scalar, empty object, or empty array. For
objects and arrays with inner elements, it counts all nested levels. For the
author column in the book_authors table, it returns three:

mysql> SELECT JSON_DEPTH(author) FROM book_authors WHERE author-
>>'$.name' = 'Sveta';
+--------------------+
| JSON_DEPTH(author) |
+--------------------+
| 3 |
+--------------------+
1 row in set (0,00 sec)

To understand why this is, let’s examine an example value in detail:

{
 "id": 3,
 "name": "Sveta",
 "work": "Percona",
 "books": [
 "MySQL Troubleshooting",
 "MySQL Cookbook"
],

 "lastname": "Smirnova"
}

Level one: the object that contains all the elements.

Level two: the object element.

Level three: the element of the nested array.
The JSON_DEPTH function is useful when you need to understand how
complex your JSON data is.
The JSON_STORAGE_SIZE function returns the number of bytes that the
JSON data takes. It is useful to plan storage use for your data:

mysql> SELECT JSON_STORAGE_SIZE(author) FROM book_authors;
+---------------------------+
| JSON_STORAGE_SIZE(author) |
+---------------------------+
| 475 |
| 144 |
| 171 |
+---------------------------+
3 rows in set (0,00 sec)

The JSON_TYPE function returns the type of the JSON element. Thus, for
the author column in the book_authors table, the types are as shown:

mysql> SELECT JSON_TYPE(author), JSON_TYPE(author->'$.id'),
 -> JSON_TYPE(author->'$.name'), JSON_TYPE(author->'$.books')
 -> FROM book_authors WHERE author->>'$.name' = 'Sveta'\G
*************************** 1. row ***************************
 JSON_TYPE(author): OBJECT
 JSON_TYPE(author->'$.id'): INTEGER
 JSON_TYPE(author->'$.name'): STRING
JSON_TYPE(author->'$.books'): ARRAY
1 row in set (0,00 sec)

WARNING
Note that we used the -> operator instead of ->> to preserve quotes in scalar values.

19.14 Working with JSON in MySQL as a
Document Store

Problem
You want to work with JSON in MySQL in the same way as NoSQL
databases do.

Solution
Use X DevAPI. The following clients and connectors support X DevAPI
and can work with JSON as a Document Store:

MySQL Shell in JavaScript and Python mode
Connector/C++
Connector/J
Connector/Node.js
Connector/NET
Connector/Python

Discussion
We’ll use MySQL Shell for the examples in this recipe. We assume that you
are connected to the MySQL server and thus have the default objects
available. See Recipe 2.1 for instructions on how to connect to the MySQL
server via MySQL Shell.
MySQL Document Store is a collection, stored in a table, defined as
follows:

CREATE TABLE `MyCollection` (
 `doc` json DEFAULT NULL,
 `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(
 json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL,
 `_json_schema` json GENERATED ALWAYS AS
(_utf8mb4'{"type":"object"}') VIRTUAL,
 PRIMARY KEY (`_id`),
 CONSTRAINT

`$val_strict_2190F99D7C6BE98E2C1EFE4E110B46A3D43C9751`
 CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT
ENFORCED */
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci;

where doc is a JSON column, storing the document. _id is a unique
identifier, generated by extracting the value of the _id member, and the
optional _json_schema is a schema that you can enforce when creating
a collection. See Recipe 2.9 for the details and an example.
X DevAPI will create such a table when you call the
createCollection method:

 MySQL cookbook JS >
session.getDefaultSchema().createCollection('MyCollection')
<Collection:MyCollection>

TIP
We use syntax that MySQL Shell in JavaScript mode understands for examples in this recipe.
Syntax for different languages differs slightly. Refer to your implementation documentation for
details.

Once the collection is created, you can insert documents into it and update,
remove, and search them.
It is handy to store a collection object in a variable:

MySQL cookbook JS > MyCollection = session.getDefaultSchema().
 -> getCollection('MyCollection')
<Collection:MyCollection>

The Collection class in X DevAPI supports four basic CRUD (Create,
Read, Update, Delete) operations:

add

find

modify

remove

We already showed them in action when we discussed MySQL Shell in
Recipes 2.9 and 2.10. In this recipe, we’ll cover details we didn’t cover
there.

Adding documents to the collection
To add documents into the collection, use the add method, which accepts
either a JSON object or an array of JSON objects, or a mysqlx.expr as
an argument. The following code snippet demonstrates all three flavors of
the syntax:

 MySQL cookbook JS > MyCollection.add({"document": "one"}).
 -> add([{"document": "two"}, {"document":
"three"}]).
 -> add(mysqlx.expr('{"document": "four"}'))
 ->
Query OK, 4 items affected (0.0083 sec)

Records: 4 Duplicates: 0 Warnings: 0

Searching for documents
To search for documents, use the find method. If called without
arguments, it will return a list of all documents in the collection:

 MySQL cookbook JS > MyCollection.find()
{
 "_id": "000060d5ab750000000000000012",
 "document": "one"
}
{
 "_id": "000060d5ab750000000000000013",
 "document": "two"
}
{
 "_id": "000060d5ab750000000000000014",
 "document": "three"
}
{
 "_id": "000060d5ab750000000000000015",
 "document": "four"
}
4 documents in set (0.0007 sec)

Each of the documents contains an automatically generated _id that is also
a primary key for the collection.
The find method narrows a result set by using search conditions, limiting
the number of the documents, and grouping, sorting, and modifying the
resulting values. These are basic methods, available to modify the result of
any SQL SELECT operation. However, it is not possible to join two
collections like you can do with SQL tables.
To search for a particular document, pass a condition as an argument of the
find method. You can use the LIKE operator and others to perform
creative comparisons:

 MySQL cookbook JS > MyCollection.find("document LIKE 't%'")
{
 "_id": "000060d5ab750000000000000013",
 "document": "two"
}
{
 "_id": "000060d5ab750000000000000014",
 "document": "three"
}
2 documents in set (0.0009 sec)

To modify the result, pass the expression to the fields method:

 MySQL cookbook JS > MyCollection.find("document LIKE 't%'").
 -> fields(mysqlx.expr('{"Document":
upper(document)}'))
 ->
{
 "Document": "TWO"
}
{
 "Document": "THREE"
}
2 documents in set (0.0009 sec)

To group documents, use the groupBy method, and narrow the result with
the having method. To illustrate how they work, we’ll use the
CollectionLimbs collection:

 MySQL cookbook JS > limbs =
session.getDefaultSchema().getCollection('CollectionLimbs')
<Collection:CollectionLimbs>

 MySQL cookbook JS > limbs.find().fields('arms',
'COUNT(thing)').groupBy('arms')
{
 "arms": 2,
 "COUNT(thing)": 3
}
{
 "arms": 0,
 "COUNT(thing)": 5
}
{
 "arms": 10,
 "COUNT(thing)": 1
}
{
 "arms": 1,
 "COUNT(thing)": 1
}
{
 "arms": null,
 "COUNT(thing)": 1
}
5 documents in set (0.0010 sec)

The preceding code prints the number of things with a specific number of
arms. To limit this list to only things that have both arms and legs, we can
use the having method:

 MySQL cookbook JS > limbs.find().fields('arms',
'COUNT(thing)').
 -> groupBy('arms').having('MIN(legs) > 0')
{
 "arms": 2,
 "COUNT(thing)": 3
}
1 document in set (0.0006 sec)

To print the three things with the highest number of legs, use the sort
method with the keywords DESC and limit:

 MySQL cookbook JS > limbs.find().sort('legs DESC').limit(3)
{

 "_id": "000060d5ab75000000000000001a",
 "arms": 0,
 "legs": 99,
 "thing": "centipede"
}
{
 "_id": "000060d5ab750000000000000017",
 "arms": 0,
 "legs": 6,
 "thing": "insect"
}
{
 "_id": "000060d5ab75000000000000001b",
 "arms": 0,
 "legs": 4,
 "thing": "table"
}
3 documents in set (0.0006 sec)

You may also bind values if you pass the parameter name after a colon sign
in the find method and pass values in the bind method. You may bind as
many arguments as you want:

 MySQL cookbook JS > limbs.find('legs = :legs').bind('legs', 4)
{
 "_id": "000060d5ab75000000000000001b",
 "arms": 0,
 "legs": 4,
 "thing": "table"
}
{
 "_id": "000060d5ab75000000000000001c",
 "arms": 2,
 "legs": 4,
 "thing": "armchair"
}
2 documents in set (0.0008 sec)

 MySQL cookbook JS > limbs.find('legs = :legs and arms =
:arms').
 -> bind('legs', 4).bind('arms', 2)
{
 "_id": "000060d5ab75000000000000001c",
 "arms": 2,
 "legs": 4,
 "thing": "armchair"
}
1 document in set (0.0005 sec)

Modifying documents
To modify documents in the collection, use the modify method. It accepts
a search condition and allows you to bind parameters similarly to the find
method. To modify found elements, use the set and unset methods to set
or unset values of the object member. Use the arrayInsert,
arrayAppend, and arrayDelete methods to modify arrays, and use
the patch method to merge JSON documents.

In our examples, we’ll use the MyCollection collection:

 MySQL cookbook JS > MyCollection.find('document = "one"')
{
 "_id": "000060d5ab750000000000000012",
 "document": "one"
}
1 document in set (0.0005 sec)
 MySQL cookbook JS > MyCollection.modify('document = "one"').
 -> set('array', [2, 3, 4])
Query OK, 1 item affected (0.0054 sec)

Rows matched: 1 Changed: 1 Warnings: 0
 MySQL cookbook JS > MyCollection.find('document = "one"')
{
 "_id": "000060d5ab750000000000000012",
 "array": [
 2,
 3,
 4
],
 "document": "one"
}
1 document in set (0.0005 sec)
 MySQL cookbook JS > MyCollection.modify('document =
"one"').arrayAppend('array', 5)
Query OK, 1 item affected (0.0073 sec)

Rows matched: 1 Changed: 1 Warnings: 0
 MySQL cookbook JS > MyCollection.find('document = "one"')
{
 "_id": "000060d5ab750000000000000012",
 "array": [
 2,
 3,
 4,
 5
],

 "document": "one"
}
1 document in set (0.0007 sec)
 MySQL cookbook JS > MyCollection.modify('document = "one"').
 -> arrayInsert('array[0]', 1)
Query OK, 1 item affected (0.0072 sec)

Rows matched: 1 Changed: 1 Warnings: 0
 MySQL cookbook JS > MyCollection.find('document = "one"')
{
 "_id": "000060d5ab750000000000000012",
 "array": [
 1,
 2,
 3,
 4,
 5
],
 "document": "one"
}
1 document in set (0.0008 sec)
 MySQL cookbook JS > MyCollection.modify('document =
"one"').arrayDelete('array[2]')
Query OK, 1 item affected (0.0059 sec)

Rows matched: 1 Changed: 1 Warnings: 0
 MySQL cookbook JS > MyCollection.find('document = "one"')
{
 "_id": "000060d5ab750000000000000012",
 "array": [
 1,
 2,
 4,
 5
],
 "document": "one"
}
1 document in set (0.0009 sec)
 MySQL cookbook JS > MyCollection.modify('document =
"one"').unset('array')
Query OK, 1 item affected (0.0080 sec)

Rows matched: 1 Changed: 1 Warnings: 0
 MySQL cookbook JS > MyCollection.find('document = "one"')
{
 "_id": "000060d5ab750000000000000012",
 "document": "one"
}
1 document in set (0.0007 sec)

 MySQL cookbook JS > MyCollection.modify('document = "one"').
 -> patch({'number': 42, 'array': [1,2,3]}).
 -> patch({'array': [4,5]})
Query OK, 1 item affected (0.0063 sec)

Rows matched: 1 Changed: 1 Warnings: 0
 MySQL cookbook JS > MyCollection.find('document = "one"')
{
 "_id": "000060d5ab750000000000000012",
 "array": [
 4,
 5
],
 "number": 42,
 "document": "one"
}
1 document in set (0.0007 sec)

We’ll experiment with this document from the collection.

The set method adds or changes an element in the object.

The arrayAppend method adds a new element to the end of the array.

For the arrayInsert method, you can specify the position in the
array where you want to add the new element.

The arrayDelete method removes an element from the specified
position.

The unset method removes an element from the object.

The patch method works similarly to the JSON function
JSON_MERGE_PATCH. In our case, it first added two elements,
number and array, to the original document, then replaced the
content of the array element with the content of the element with the
same name in the object, passed as a parameter to the second invocation
of the patch method.

Removing documents and collections
To remove documents, use the remove method:

MyCollection.remove('document = :number').bind('number', 'one')

To drop a collection, use the dropCollection method in your API:

session.getSchema('cookbook').dropCollection('MyCollection')

See Also
For additional information about X DevAPI, see the X DevAPI Reference
Manual.

https://oreil.ly/OJM8Z

Chapter 20. Performing
Transactions

20.0 Introduction
The MySQL server can handle multiple clients at the same time because it
is multithreaded. To deal with contention among clients, the server performs
any necessary locking so that two clients cannot modify the same data at
once. However, as the server executes SQL statements, it’s very possible
that successive statements received from a given client will be interleaved
with statements from other clients. If a client executes multiple statements
that are dependent on one another, the fact that other clients may be
updating tables in between those statements can cause difficulties.
Statement failures can be problematic, too, if a multiple-statement operation
does not run to completion. Suppose that a flight table contains
information about airline flight schedules, and you want to update the row
for Flight 578 by choosing a pilot from among those available. You might
do so using three statements as follows:

SET @p_val = (SELECT pilot_id FROM pilot WHERE available = 'yes'
LIMIT 1);
UPDATE pilot SET available = 'no' WHERE pilot_id = @p_val;
UPDATE flight SET pilot_id = @p_val WHERE flight_id = 578;

The first statement chooses an available pilot, the second marks the pilot as
unavailable, and the third assigns the pilot to the flight. That’s
straightforward enough in principle, but in practice there are significant
difficulties:

Concurrency issues
If two clients want to schedule pilots, it’s possible for both to run the
initial SELECT query and retrieve the same pilot ID number before

either has a chance to set the pilot’s status to unavailable. If that
happens, the same pilot is scheduled for two flights at once.

Integrity issues
All three statements must execute successfully as a unit. For example, if
the SELECT and the first UPDATE run successfully, but the second
UPDATE fails, the pilot’s status is set to unavailable without the pilot
being assigned a flight. The database becomes inconsistent.

To prevent concurrency and integrity problems in these types of situations,
transactions are helpful. A transaction groups a set of statements and
guarantees the following properties:

No other client can update the data used in the transaction while the
transaction is in progress; it’s as though you have the server all to
yourself. For example, other clients cannot modify the pilot or flight
records while you’re booking a pilot for a flight. Transactions solve
concurrency problems arising from the multiple-client nature of the
MySQL server. In effect, transactions serialize access to a shared
resource across multiple-statement operations.
Statements grouped within a transaction are committed (take effect) as a
unit, but only if they all succeed. If an error occurs, any actions that
occurred prior to the error are rolled back, leaving the relevant tables
unaffected as though none of the statements had been executed. This
keeps the database from becoming inconsistent. For example, if an
update to the flights table fails, rollback causes the change to the
pilots table to be undone, leaving the pilot still available. Rollback
frees you from having to figure out how to undo a partially completed
operation yourself.

This chapter shows the syntax for the SQL statements that begin and end
transactions. It also describes how to implement transactional operations
from within programs, using error detection to determine whether to
commit or roll back.

Scripts related to the examples shown here are located in the transactions
directory of the recipes distribution.

20.1 Choosing a Transactional Storage
Engine

Problem
You want to use transactions.

Solution
To use transactions, you must use a transaction-safe engine. Check your
MySQL server to determine which transactional storage engines it supports.

Discussion
MySQL supports several storage engines. Currently, the transactional
engines, shipped with the standard distribution, include InnoDB and NDB.
To see which your MySQL server supports, use this statement:

mysql> SELECT ENGINE FROM INFORMATION_SCHEMA.ENGINES
 -> WHERE SUPPORT IN ('YES','DEFAULT') AND TRANSACTIONS='YES';
+--------+
| ENGINE |
+--------+
| InnoDB |
+--------+

If MySQL Cluster is enabled, you’ll also see a line that says
ndbcluster.

Transactional engines are those that have a TRANSACTIONS value of YES;
those actually usable have a SUPPORT value of YES or DEFAULT.

After determining which transactional storage engines are available, to
create a table that uses a given engine, add an ENGINE = tbl_engine

clause to your CREATE TABLE statement:

CREATE TABLE t (i INT) ENGINE = InnoDB;

If you need to modify an existing application to perform transactions, but it
uses nontransactional tables, you can alter the tables to use a transactional
storage engine. For example, MyISAM tables are nontransactional, and
trying to use them for transactions will yield incorrect results because they
do not support rollback. In this case, you can use ALTER TABLE to convert
the tables to a transactional type. Suppose that t is a MyISAM table. To
make it an InnoDB table, do this:

ALTER TABLE t ENGINE = InnoDB;

One thing to consider before altering a table is that changing it to use a
transactional storage engine may affect its behavior in other ways. For
example, the MyISAM engine provides more flexible handling of
AUTO_INCREMENT columns than do other storage engines. If you rely on
MyISAM-only sequence features, changing the storage engine will cause
problems.

20.2 Performing Transactions Using SQL

Problem
A set of statements must succeed or fail as a unit—that is, you require a
transaction.

Solution
Manipulate MySQL’s auto-commit mode to enable multiple-statement
transactions, and then commit or roll back the statements depending on
whether they succeed or fail.

Discussion
This recipe describes the SQL statements that control transactional behavior
in MySQL. The immediately following recipes discuss how to perform
transactions from within programs. Some APIs require that you implement
transactions by executing the SQL statements discussed in this recipe;
others provide a special mechanism that enables transaction management
without writing SQL directly. However, even in the latter case, the API
mechanism maps program operations onto transactional SQL statements, so
reading this recipe will give you a better understanding of what the API
does on your behalf.
MySQL normally operates in auto-commit mode, which commits the effect
of each statement as soon as it executes. (In effect, each statement is its own
transaction.) To perform a transaction, you must disable auto-commit mode,
execute the statements that make up the transaction, and then either commit
or roll back your changes. In MySQL, you can do this two ways:

Execute a START TRANSACTION (or BEGIN) statement to suspend
auto-commit mode, then execute the statements that make up the
transaction. If the statements succeed, record their effect in the database
and terminate the transaction by executing a COMMIT statement:

mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;
mysql> START TRANSACTION;
mysql> INSERT INTO t (i) VALUES(1);
mysql> INSERT INTO t (i) VALUES(2);
mysql> COMMIT;
mysql> SELECT * FROM t;
+------+
| i |
+------+
| 1 |
| 2 |
+------+

If an error occurs, don’t use COMMIT. Instead, cancel the transaction by
executing a ROLLBACK statement. In the following example, t remains
empty after the transaction because the effects of the INSERT
statements are rolled back:

mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;
mysql> START TRANSACTION;
mysql> INSERT INTO t (i) VALUES(1);
mysql> INSERT INTO t (x) VALUES(2);
ERROR 1054 (42S22): Unknown column 'x' in 'field list'
mysql> ROLLBACK;
mysql> SELECT * FROM t;
Empty set (0.00 sec)

Another way to group statements is to turn off auto-commit mode
explicitly by setting the autocommit session variable to 0. After that,
each statement you execute becomes part of the current transaction. To
end the transaction and begin the next one, execute a COMMIT or
ROLLBACK statement:

mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;
mysql> SET autocommit = 0;
mysql> INSERT INTO t (i) VALUES(1);
mysql> INSERT INTO t (i) VALUES(2);
mysql> COMMIT;
mysql> SELECT * FROM t;
+------+
| i |
+------+
| 1 |
| 2 |
+------+

To turn auto-commit mode back on, use this statement:

mysql> SET autocommit = 1;

WARNING
Transactions have their limits because not all statements can be part of a transaction. For example,
if you execute a DROP DATABASE statement, don’t expect to restore the database by executing a
ROLLBACK.

20.3 Performing Transactions from Within
Programs

Problem
You’re writing a program that must implement transactional operations.

Solution
Use the transaction abstraction provided by your language API, if it has
such a thing. If it doesn’t, use the API’s usual statement-execution
mechanism to execute the transactional SQL statements directly.

Discussion
To perform transactional processing from within a program, use your API
language to detect errors and take appropriate action. This recipe provides
general background on doing this. The next recipes provide language-
specific details for the MySQL APIs for Perl, Ruby, PHP, Python, Go, and
Java.
Every MySQL API supports transactions, even if only in the sense that you
can explicitly execute transaction-related SQL statements such as START
TRANSACTION and COMMIT. However, some APIs also provide a
transaction abstraction that enables control over transactional behavior
without working directly with SQL. That approach hides the details and
provides better portability to other database engines that have different
underlying transaction SQL syntax. An API abstraction is available for each
language that we use in this book.
The next few recipes each implement the same example to illustrate how to
perform program-based transactions. They use a money table containing
the following initial rows that show how much money two people have:

+------+------+
| name | amt |
+------+------+

| Eve | 10 |
| Ida | 0 |
+------+------+

The sample transaction is a simple financial transfer that uses two UPDATE
statements to give six dollars of Eve’s money to Ida:

UPDATE money SET amt = amt - 6 WHERE name = 'Eve';
UPDATE money SET amt = amt + 6 WHERE name = 'Ida';

The intended result is that the table should look like this:

+------+------+
| name | amt |
+------+------+
| Eve | 4 |
| Ida | 6 |
+------+------+

It’s necessary to execute both statements within a transaction to ensure that
both of them take effect at once. Without a transaction, Eve’s money
disappears without being credited to Ida if the second statement fails. By
using a transaction, the table is left unchanged if statement failure occurs.
The sample programs for each language are located in the transactions
directory of the recipes distribution. If you compare them, you’ll see that
they all employ a similar framework for performing transactional
processing:

The transaction statements are grouped within a control structure, along
with a commit operation.
If the status of the control structure indicates that it did not execute
successfully to completion, the transaction is rolled back.

That logic can be expressed as follows, where block represents the control
structure used to group statements:

block:
 statement 1
 statement 2

 ...
 statement n
 commit
if the block failed:
 roll back

If the statements in the block succeed, you reach the end of the block and
perform a commit. Otherwise, occurrence of an error raises an exception
that triggers execution of the error-handling code where you roll back the
transaction.
The benefit of structuring your code as just described is that it minimizes
the number of tests needed to determine whether to roll back. The
alternative—checking the result of each statement within the transaction
and rolling back on individual statement errors—quickly turns your code
into an unreadable mess.
A subtle point to be aware of when rolling back within languages that raise
exceptions is that it may be possible for the rollback itself to fail, causing
another exception to be raised. If you don’t deal with that, your program
itself may terminate. To handle this, execute the rollback within another
block that has an empty exception handler. The sample programs do this as
necessary.
Those sample programs that disable auto-commit mode explicitly when
performing a transaction enable auto-commit afterward. In applications that
perform all database processing in transactional fashion, it’s unnecessary to
do this. Just disable auto-commit mode once after you connect to the
database server, and leave it off.

CHECKING HOW API TRANSACTION ABSTRACTIONS MAP ONTO SQL
STATEMENTS

For APIs that provide a transaction abstraction, you can see how the interface maps onto the
underlying SQL statements: enable the general query log for your MySQL server, then watch
the log to see what statements the API executes when you run a transactional program. For
instructions on enabling the log, see Recipe 22.3.

20.4 Performing Transactions in Perl
Programs

Problem
You want to perform a transaction in a Perl DBI script.

Solution
Use the standard DBI transaction support mechanism.

Discussion
The Perl DBI transaction mechanism is based on explicit manipulation of
auto-commit mode:

1. Turn on the RaiseError attribute if it’s not enabled, and disable
PrintError if it’s on. You want errors to raise exceptions without
printing anything, and leaving PrintError enabled can interfere
with failure detection in some cases.

2. Disable the AutoCommit attribute so that a commit will be done
only when you say so.

3. Execute the statements that make up the transaction within an eval
block so that errors raise an exception and terminate the block. The
last thing in the block should be a call to commit(), which commits
the transaction if all its statements completed successfully.

4. After the eval executes, check the $@ variable. If $@ contains the
empty string, the transaction succeeded. Otherwise, the eval will
have failed due to the occurrence of some error, and $@ will contain
an error message. Invoke rollback() to cancel the transaction. To
display an error message, print $@ before calling rollback().

5. If desired, restore the original values of the RaiseError and
PrintError attributes.

Because it can be messy to change and restore the error-handling and auto-
commit attributes if an application performs multiple transactions, let’s put
the code to begin and end a transaction into convenience functions that
handle the processing that occurs before and after the eval:

sub transaction_init
{
my $dbh = shift;
my $attr_ref = {}; # create hash in which to save attributes

 $attr_ref->{RaiseError} = $dbh->{RaiseError};
 $attr_ref->{PrintError} = $dbh->{PrintError};
 $attr_ref->{AutoCommit} = $dbh->{AutoCommit};
 $dbh->{RaiseError} = 1; # raise exception if an error occurs
 $dbh->{PrintError} = 0; # don't print an error message
 $dbh->{AutoCommit} = 0; # disable auto-commit
 return $attr_ref; # return attributes to caller
}

sub transaction_finish
{
my ($dbh, $attr_ref, $error) = @_;

 if ($error) # an error occurred
 {
 print "Transaction failed, rolling back. Error
was:\n$error\n";
 # roll back within eval to prevent rollback
 # failure from terminating the script
 eval { $dbh->rollback (); };
 }
 # restore error-handling and auto-commit attributes
 $dbh->{AutoCommit} = $attr_ref->{AutoCommit};
 $dbh->{PrintError} = $attr_ref->{PrintError};
 $dbh->{RaiseError} = $attr_ref->{RaiseError};
}

By using those two functions, our sample transaction can be performed
easily as follows:

$ref = transaction_init ($dbh);
eval
{
 # move some money from one person to the other
 $dbh->do ("UPDATE money SET amt = amt - 6 WHERE name = 'Eve'");
 $dbh->do ("UPDATE money SET amt = amt + 6 WHERE name = 'Ida'");

 # all statements succeeded; commit transaction
 $dbh->commit ();
};
transaction_finish ($dbh, $ref, $@);

In Perl DBI, an alternative to manipulating the AutoCommit attribute
manually is to begin a transaction by invoking begin_work(). This
method disables AutoCommit and causes it to be enabled again
automatically when you invoke commit() or rollback() later.

20.5 Performing Transactions in Ruby
Programs

Problem
You want to perform a transaction in a Ruby Mysql2 script.

Solution
Send transaction management statements, such as START
TRANSACTIONS, BEGIN, COMMIT, and ROLLBACK, as regular queries.

Discussion
The Ruby Mysql2 module does not have built-in functions for the
transaction support. Instead, it expects its users to run transaction
management statements as regular queries.
To start transaction, execute client.query("START
TRANSACTION"), then execute required updates, and finish the block
with client.query("COMMIT").

Put your transaction into a begin...rescue block, so you can call
ROLLBACK if something goes wrong:

begin
 client.query("START TRANSACTION")

 client.query("UPDATE money SET amt = amt - 6 WHERE name =
'Eve'")
 client.query("UPDATE money SET amt = amt + 6 WHERE name =
'Ida'")
 client.query("COMMIT")
rescue Mysql2::Error => e
 puts "Transaction failed, rolling back. Error was:"
 puts "#{e.errno}: #{e.message}"
 begin # empty exception handler in case rollback
fails
 client.query("ROLLBACK")
 rescue
 end
end

20.6 Performing Transactions in PHP
Programs

Problem
You want to perform a transaction in a PHP script.

Solution
Use the standard PDO transaction support mechanism.

Discussion
The PDO extension supports a transaction abstraction that can be used to
perform transactions. To begin a transaction, use the
beginTransaction() method. Then, after executing your statements,
invoke either commit() or rollback() to commit or roll back the
transaction. The following code illustrates this. It uses exceptions to detect
transaction failure, so it assumes that exceptions are enabled for PDO
errors:

try
{
 $dbh->beginTransaction ();
 $dbh->exec ("UPDATE money SET amt = amt - 6 WHERE name =

'Eve'");
 $dbh->exec ("UPDATE money SET amt = amt + 6 WHERE name =
'Ida'");
 $dbh->commit ();
}
catch (Exception $e)
{
 print ("Transaction failed, rolling back. Error was:\n");
 print ($e->getMessage () . "\n");
 # empty exception handler in case rollback fails
 try
 {
 $dbh->rollback ();
 }
 catch (Exception $e2) { }
}

20.7 Performing Transactions in Python
Programs

Problem
You want to perform a transaction in a Python DB API script.

Solution
Use the standard DB API transaction support mechanism.

Discussion
The Python DB API abstraction provides transaction processing control
through connection object methods. The DB API specification indicates
that database connections should begin with auto-commit mode disabled.
Therefore, when you open a connection to the database server,
Connector/Python disables auto-commit mode, which implicitly begins a
transaction. End each transaction with either commit() or rollback().
The commit() call occurs within a try statement, and the rollback()
occurs within the except clause to cancel the transaction if an error
occurs:

try:
 cursor = conn.cursor()
 # move some money from one person to the other
 cursor.execute("UPDATE money SET amt = amt - 6 WHERE name =
'Eve'")
 cursor.execute("UPDATE money SET amt = amt + 6 WHERE name =
'Ida'")
 cursor.close()
 conn.commit()
except mysql.connector.Error as e:
 print("Transaction failed, rolling back. Error was:")
 print(e)
 try: # empty exception handler in case rollback fails
 conn.rollback()
 except:
 pass

20.8 Performing Transactions in Go
Programs

Problem
You want to perform a transaction in a Go program.

Solution
Use the standard transaction support mechanism, provided by the
database/sql package.

Discussion
The Go sql interface supports a transaction abstraction that could be used
to perform transactions. To begin a transaction, use the DB.Begin()
function. Then, after executing your statements, invoke either
Tx.Commit() or Tx.Rollback() to commit or roll back the
transaction. The following code illustrates this.

var queries = []string{
 "UPDATE money SET amt = amt - 6 WHERE name = 'Eve'",
 "UPDATE money SET amt = amt + 6 WHERE name = 'Ida'",

}

tx, err := db.Begin()
if err != nil {
 log.Fatal(err)
}

for _, query := range queries {
 _, err := tx.Exec(query)
 if err != nil {
 fmt.Printf("Transaction failed, rolling back.\nError was:
%s\n",
 err.Error())
 if txerr := tx.Rollback(); txerr != nil {
 fmt.Println("Rollback failed")
 log.Fatal(txerr)
 }
 }
}

if err := tx.Commit(); err != nil {
 log.Fatal(err)
}

20.9 Using Context-Aware Functions to
Handle Transactions in Go

Problem
You want to roll back transactions automatically in your Go program.

Solution
The Go-MySQL-Driver supports context cancellation. This means that you
can cancel database operations, such as running a query, if you cancel the
context.

Discussion
To use the package context with SQL, you need to create the object of the
Context type first, then pass it to the database function. Function names

https://pkg.go.dev/context

of the sql interface that support context are similar to ones that do not, but
have the prefix Context. For example, the Query() function does not
support Context, whereas the QueryContext() function does.

The following example uses Context to handle database transactions.
You will find code for it in the transaction_context.go file in the
transactions directory of the recipes distribution:

// transaction_context.go: simple transaction demonstration
// with use of Context

// By default, this creates an InnoDB table. If you specify a
storage
// engine on the command line, that will be used instead.
Normally,
// this should be a transaction-safe engine that is supported by
your
// server. However, you can pass a nontransactional storage
engine
// to verify that rollback doesn't work properly for such
engines.

// The script uses a table named "money" and drops it if
necessary.
// Change the name if you have a valuable table with that name.
:-)
package main

import (
 "log"
 "fmt"
 "flag"
 "context"
 "database/sql"
 "github.com/svetasmirnova/mysqlcookbook/recipes/lib"
)

func initTable(ctx context.Context, db *sql.DB, tblEngine string)
(error) {
 queries := [4]string {
 "DROP TABLE IF EXISTS money",
 "CREATE TABLE money (name CHAR(5), amt INT, PRIMARY
KEY(name)) ENGINE = " + tblEngine,
 "INSERT INTO money (name, amt) VALUES('Eve', 10)",
 "INSERT INTO money (name, amt) VALUES('Ida', 0)",
 }

 for _, query := range queries {
 _, err = db.ExecContext(ctx, query)
 if err != nil {
 fmt.Println("Cannot initialize test table")
 fmt.Printf("Error: %s\n", err.Error())
 return err
 }
 }

 return nil
}

func displayTable(ctx context.Context, db *sql.DB) (error) {
 rows, err := db.QueryContext(ctx, "SELECT name, amt FROM
money")
 if err != nil {
 return err
 }
 defer rows.Close()

 for rows.Next() {
 var (
 name string
 amt int32
)
 if err := rows.Scan(&name, &amt); err != nil {
 fmt.Println("Cannot display contents of test table")
 fmt.Printf("Error: %s\n", err.Error())
 return err
 }

 fmt.Printf("%s has $%d\n", name, amt)
 }

 return nil
}

func runTransaction(ctx context.Context,
 db *sql.DB, queries []string) (error) {
 tx, err := db.BeginTx(ctx, nil)
 if err != nil {
 return err
 }

 for _, query := range queries {
 _, err := tx.ExecContext(ctx, query)
 if err != nil {
 fmt.Printf("Transaction failed, rolling back.\nError was:
%s\n",
 err.Error())

 if txerr := tx.Rollback(); err != nil {
 return txerr
 }
 return err
 }
 }

 if err := tx.Commit(); err != nil {
 return err
 }

 return nil
}

func main() {
 db, err := cookbook.Connect()
 if err != nil {
 log.Fatal(err)
 }
 defer db.Close()

 var tblEngine string = "InnoDB"
 flag.Parse()
 values := flag.Args()
 if len(values) > 0 {
 tblEngine = values[0]
 }
 fmt.Printf("Using storage engine %s to test transactions\n",
tblEngine)

 ctx, cancel := context.WithCancel(context.Background())
 defer cancel()

 fmt.Println("----------")
 fmt.Println("This transaction should succeed.")
 fmt.Println("Table contents before transaction:")

 if err := initTable(ctx, db, tblEngine); err != nil {
 log.Fatal(err)
 }

 if err = displayTable(ctx, db); err != nil {
 log.Fatal(err)
 }

 var trx = []string{
 "UPDATE money SET amt = amt - 6 WHERE name = 'Eve'",
 "UPDATE money SET amt = amt + 6 WHERE name = 'Ida'",
 }

 if err = runTransaction(ctx, db, trx); err != nil {
 log.Fatal(err)
 }

 fmt.Println("Table contents after transaction:")
 if err = displayTable(ctx, db); err != nil {
 log.Fatal(err)
 }

 fmt.Println("----------")
 fmt.Println("This transaction should fail.")
 fmt.Println("Table contents before transaction:")

 if err := initTable(ctx, db, tblEngine); err != nil {
 log.Fatal(err)
 }

 if err = displayTable(ctx, db); err != nil {
 log.Fatal(err)
 }

 trx = []string{
 "UPDATE money SET amt = amt - 6 WHERE name = 'Eve'",
 "UPDATE money SET xamt = amt + 6 WHERE name = 'Ida'",
 }

 if err = runTransaction(ctx, db, trx); err != nil {
 log.Fatal(err)
 }

 fmt.Println("Table contents after transaction:")
 if err = displayTable(ctx, db); err != nil {
 log.Fatal(err)
 }
}

Import statement for the context support.

Our user-defined functions take context.Context as a parameter.

To execute statements that do not return a result set, use the context-
aware function ExecContext().

To execute queries that do return a result set, use the context-aware
function QueryContext().

To start a transaction that will automatically roll back if context is
canceled, use the context-aware function BeginTx().

To execute a statement that could be canceled inside the transaction, use
the context-aware function Tx.ExecContext().

Before using context, you need to create it. In our example, we created a
cancellable context. The context.WithCancel() function takes
parent context as a parameter and returns just-created context, and a
cancel() function. We deferred its call to the end of the main()
function execution. You have options to call the cancel() function in
any appropriate place in the code. You may prefer to use
context.WithDeadline() or context.WithTimeout(), so
your SQL execution code will be canceled if runs longer than a certain
amount of time.

20.10 Performing Transactions in Java
Programs

Problem
You want to perform a transaction in a JDBC application.

Solution
Use the standard JDBC transaction support mechanism.

Discussion
To perform transactions in Java, use your Connection object to turn off
auto-commit mode. Then, after executing your statements, use the object’s
commit() method to commit the transaction or rollback() to cancel
it. Typically, you execute the statements for the transaction in a try block,
with commit() at the end of the block. To handle failures, invoke
rollback() in the corresponding exception handler:

try
{
 conn.setAutoCommit (false);
 Statement s = conn.createStatement ();
 // move some money from one person to the other
 s.executeUpdate ("UPDATE money SET amt = amt - 6 WHERE name =
'Eve'");
 s.executeUpdate ("UPDATE money SET amt = amt + 6 WHERE name =
'Ida'");
 s.close ();
 conn.commit ();
 conn.setAutoCommit (true);
}
catch (SQLException e)
{
 System.err.println ("Transaction failed, rolling back. Error
was:");
 Cookbook.printErrorMessage (e);
 // empty exception handler in case rollback fails
 try
 {
 conn.rollback ();
 conn.setAutoCommit (true);
 }
 catch (Exception e2) { }
}

Chapter 21. Query Performance

21.0 Introduction
Indexes are utilized to find rows quickly if they are created and used as
intended. Here are the main reasons to use indexes:

Utilize a WHERE clause in a SELECT statement to efficiently find rows.

Find the best query execution plan by the index’s uniqueness of values
stored in a given column, known as cardinality, and the least number of
rows returned.
Enable the join operations between different tables.

Indexes are vital to efficiently scanning and searching for values in tables.
Without them, MySQL would need to read all of the rows in a given table
when performing a query. Due to different table sizes, MySQL has to bring
all the data read from the table to memory, and it can sort, filter, and return
values only of the selected data. This operation may require additional
resources to copy data to a new temporary table to perform sort operations.
Indexes are crucial to query performance; hence, nonindexed tables are a
considerable overhead to a database unless they are small reference tables.
For fast query performance, a primary key for each table representing one
or more columns is required. While using the InnoDB storage engine, the
table’s data is physically ordered to do fast lookups and sorts using primary
key columns. The ideal table design uses a covering index where the query
results are computed using index columns. Most of the indexes used by
MySQL are stored in B-trees, which allow fast data access due to reduced
data access time.
If the table is big in data size and does not have any keys, creating an extra
field like table_name_id as a primary key can bring a considerable
benefit in setting unique pointers doing join operations. InnoDB tables
always have a clustered index representing a primary key, if not already

created by a user. A clustered index is a table where the data and the rows
are stored in the table’s order on the key values in one direction.

NOTE
If no WHERE clause is used in a query, it’s a full table scan for MySQL optimizer. For example:

SELECT * FROM customer;

This does not change whether the index exists or not for the customer table.

The following are some key terms you’ll need to know before getting
started with index strategies:

Table scan
A table scan reads all rows in the given table while performing a query.
A developer should avoid full table scans as much as possible, including
doing COUNT(*) operations.

Tree traversal
Tree traversal is a method that indexes use to access data in hops. The
goal of the index is to make minimum hops via traversal to fetch data.
The fewer the number of leaf nodes, the faster the index traversal.

Leaf nodes
Leaf nodes are part of the B-tree index structure. They maintain the
changes in the index as data changes and establish a doubly linked list
to connect index leaf nodes.

B-tree structure
B-tree is a self-balancing tree data structure that keeps data sorted and
allows searches, sequential access, insertions, and deletions in
logarithmic time. The B-tree is a generalization of a binary search tree
in that a node can have more than two children.

While the B-tree index is commonly used among MySQL storage
engines, different kinds of data structures are used for hash indexes.
Hash indexes have different characteristics and their own use cases.
Consult “Comparison of B-Tree and Hash Indexes” in the MySQL
Reference Manual for further details.

WARNING
While indexes help you retrieve rows faster, over-creating or keeping unused indexes is a burden
to the database’s I/O operation. Every index leaf page (the lowest level of the index where all of
the keys for the index appear in sorted order) must be maintained for all
UPDATE/INSERT/DELETE operations, hence creating extra overhead.

21.1 Creating Indexes

Problem
Your query is very slow to respond.

Solution
Create an index on your column to retrieve just the rows you are seeking.

Discussion
Tables without indexes are just logbook data written randomly with no
reference to look up. As a result, most of the queries to such tables are slow.
The exception applies only to reference tables with a limited number of
rows depending on schema design.
MySQL recommends giving each table a primary key column with NOT
NULL characteristic for each row.

We have a table called top_names from Names_2010Census.csv
data:

https://oreil.ly/1uHLc

mysql> CREATE TABLE `top_names` (
 `top_name` varchar(25) DEFAULT NULL,
 `name_rank` smallint DEFAULT NULL,
 `name_count` int DEFAULT NULL,
 `prop100k` decimal(8,2) DEFAULT NULL,
 `cum_prop100k` decimal(8,2) DEFAULT NULL,
 `pctwhite` decimal(5,2) DEFAULT NULL,
 `pctblack` decimal(5,2) DEFAULT NULL,
 `pctapi` decimal(5,2) DEFAULT NULL,
 `pctaian` decimal(5,2) DEFAULT NULL,
 `pct2prace` decimal(5,2) DEFAULT NULL,
 `pcthispanic` decimal(5,2) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci;

And you load the data:

mysql> LOAD DATA LOCAL INFILE 'Names_2010Census.csv' into table
top_names
 -> FIELDS TERMINATED BY ',' ENCLOSED BY '"' LINES TERMINATED
BY '\n';
Query OK, 162255 rows affected, 65535 warnings (0.93 sec)
Records: 162255 Deleted: 0 Skipped: 0 Warnings: 444813

Now that we have created and loaded our table, we can proceed with the
following query:

mysql> SELECT names_id,top_name,name_rank
 -> FROM top_names WHERE top_name = "BROWN";
+----------+----------+-----------+
| names_id | top_name | name_rank |
+----------+----------+-----------+
| 5 | BROWN | 4 |
+----------+----------+-----------+
1 row in set (0.04 sec)

As you can see here, MySQL has to do a full table scan to find any rows in
this table outside of its PRIMARY KEY:

mysql> EXPLAIN SELECT names_id,top_name,name_rank
 -> FROM top_names WHERE top_name = "BROWN"\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names

 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 161533
 filtered: 10.00
 Extra: Using where
1 row in set, 1 warning (0.01 sec)

Our sample query seeks a string match on the top_name field; hence,
having an index on this type of data will increase query performance. First,
we create an index to meet the WHERE clause of this query:

mysql> CREATE INDEX idx_names ON top_names(top_name);

Query OK, 0 rows affected (0.28 sec)
Records: 0 Duplicates: 0 Warnings: 0

We then check if the optimizer has chosen this new index for the same
query:

mysql> EXPLAIN SELECT names_id,top_name,name_rank
-> FROM top_names WHERE top_name = "BROWN"\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: ref
possible_keys: idx_names
 key: idx_names
 key_len: 103
 ref: const
 rows: 1
 filtered: 100.00
 Extra: NULL
1 row in set, 1 warning (0.00 sec)

Dropping indexes may be required for a few reasons. After you make sure
the index is no longer needed or needs to be re-created, you can drop it
using the following syntax:

DROP INDEX index_name ON tbl_name;

21.2 Creating a Surrogate Primary Key

Problem
A table without a primary key is not performant enough.

Solution
Add a primary key to all InnoDB tables.

Discussion
A primary key gives you a way to uniquely identify a row in a table. In case
of InnoDB, a primary key is synonymous with a clustered index: a special
index that stores row data. When an InnoDB table is created by a user
without explicitly defining a primary key, InnoDB takes the first unique
index in an index where a B-Tree structure exists in the table and makes it
the clustered index. A clustered index is also often referred to as a physical
order of the records on disk. A clustered index is a table stored in a table,
and if no unique index exists, InnoDB creates a surrogate key, called
GEN_CLUST_INDEX, on an automatically generated unique 6-bytes
identifier.
When InnoDB creates secondary indexes, it is useful to resolve queries
because it copies primary key columns to each secondary index row. If the
primary key is unnecessarily large, all secondary indexes would be large as
well. Therefore, it is very important to choose a suitable column for the
primary key.
In our example in Recipe 21.1, the natural primary key is top_name,
which takes 26 bytes. Defining top_name as a primary key will increase
the size of every row in the secondary index by 26 bytes. Therefore, we
show here a technique for creating 4-byte integer surrogate keys with the
AUTO_INCREMENT property, so it increases monotonically. It is also better

than the surrogate key that InnoDB creates explicitly, because it’s smaller,
and we have full control over its values.
Our table is comparatively small, but for large tables, this difference could
be critical. Besides space, larger indexes require more time to search
through.
This table is missing a field with a PRIMARY KEY. The best way to
include one in this table is to add an id field with AUTO INCREMENT
NOT NULL properties. Ideally, you would create this in advance of loading
any data to the table to order the table in the tablespace physically:

mysql> ALTER TABLE `top_names`
 -> ADD COLUMN `names_id` int unsigned NOT NULL
 -> AUTO_INCREMENT PRIMARY KEY FIRST;
Query OK, 0 rows affected (0.44 sec)
Records: 0 Duplicates: 0 Warnings: 0

Although the following is a complete index scan, it will use the new
PRIMARY KEY field we have created to count the number of rows in the
table:

mysql> SELECT COUNT(names_id) FROM top_names;
+-----------------+
| count(names_id) |
+-----------------+
| 162255 |
+-----------------+
1 row in set (0.04 sec)

mysql> EXPLAIN SELECT COUNT(names_id) FROM top_names\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: index
possible_keys: NULL
 key: idx_name_rank_count
 key_len: 8
 ref: NULL
 rows: 161533
 filtered: 100.00

 Extra: Using index
1 row in set, 1 warning (0.00 sec)

See Also
For additional information, see the MySQL documentation for further
details on Primary Key Optimization.

21.3 Maintaining Indexes

Problem
You want to know if existing indexes are effective for your queries and drop
those that are not.

Solution
Learn basic index operations.

Discussion
To better control your data, use indexes efficiently by studying the data and
access types of your schema. To continue our example from the previous
recipe, we’ll examine existing indexes for the top_names table:

mysql> SHOW INDEXES FROM top_names \G
*************************** 1. row ***************************
 Table: top_names
 Non_unique: 0
 Key_name: PRIMARY
 Seq_in_index: 1
 Column_name: names_id
 Collation: A
 Cardinality: 161807
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
Index_comment:

https://oreil.ly/D2yzr

 Visible: YES
 Expression: NULL
*************************** 2. row ***************************
 Table: top_names
 Non_unique: 1
 Key_name: idx_names
 Seq_in_index: 1
 Column_name: top_name
 Collation: A
 Cardinality: 161708
 Sub_part: NULL
 Packed: NULL
 Null: YES
 Index_type: BTREE
 Comment:
Index_comment:
 Visible: YES
 Expression: NULL
2 rows in set (0.00 sec)

Here, what matters most is the cardinality of the index. Indexes are
better utilized if the column has many different values. So, in short, indexes
are inefficient on Boolean and redundant values.
In our case, the cardinality of the idx_names index is close to the
cardinality of the primary key. This shows that the index has good
selectivity. Actually, this index could also be unique, which we can
confirm by querying the number of distinct values in this column:

mysql> SELECT COUNT(DISTINCT top_name), COUNT(*) FROM top_names;
+--------------------------+----------+
| count(distinct top_name) | count(*) |
+--------------------------+----------+
| 162254 | 162254 |
+--------------------------+----------+
1 row in set (0,18 sec)

Since we’ve already created an index on the top_name column, we can
drop that index, then create a new, unique one. First, to drop the index,
execute the following command:

mysql> DROP INDEX idx_names ON top_names;
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

Alternatively, ALTER TABLE syntax can also be used:

ALTER TABLE tbl_name DROP INDEX name;

To create a unique index, specify the keyword UNIQUE for the CREATE
INDEX command:

CREATE UNIQUE INDEX idx_names ON top_names(top_name);

You can rename an existing index created on the table:

mysql> ALTER TABLE top_names RENAME
 -> INDEX idx_names to idx_top_name, ALGORITHM=INPLACE,
LOCK=NONE;

WARNING
Not all index operations are in place; some index operations will cause table rebuild, which may
negatively impact the server’s performance for large data sizes. Care must be taken before
executing DDL operations. DDL (Data Definition Language) implies changing the structure of a
table definition, known as the database schema. For further details, please consult the MySQL
Documentation.

21.4 Deciding When a Query Can Use an
Index

Problem
Your table has an index, but queries are still slow.

Solution
Check the query plan using EXPLAIN to make sure the right index has
been used.

https://oreil.ly/j1Mkj

Discussion
Indexes are part of query plans to access data faster by using the shortest
possible path. When MySQL optimizer makes a decision, it considers
indexes, cardinality, number of rows, and more. Here’s an example of a
query where an index exists for a column but MySQL can’t utilize it:

mysql> EXPLAIN SELECT name_rank,top_name,name_count FROM
top_names
 -> WHERE name_rank < 10 ORDER BY name_count\G
 *************************** 1. row

 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 161604
 filtered: 33.33
 Extra: Using where; Using filesort
1 row in set, 1 warning (0.00 sec)

From the Explain plan output, we have no index that matches the key
criteria of the query. There are indexes on this table, and it looks like we’ll
need another index on the name_rank field:

mysql> CREATE INDEX idx_name_rank ON top_names(name_rank);
 Query OK, 0 rows affected (0.16 sec)
Records: 0 Duplicates: 0 Warnings: 0

Check the query plan again after creating the new index:

mysql> EXPLAIN SELECT name_rank,top_name,name_count FROM
top_names
 -> WHERE name_rank < 10 ORDER BY name_count\G
 *************************** 1. row

 id: 1
 select_type: SIMPLE
 table: top_names

 partitions: NULL
 type: range
possible_keys: idx_name_rank
 key: idx_name_rank
 key_len: 3
 ref: NULL
 rows: 11
 filtered: 100.00
 Extra: Using index condition; Using filesort
1 row in set, 1 warning (0.00 sec)

Our query is seeking for a name_rank that is less than 10 from the
top_names table. Without the newly created idx_name_rank on the
name_rank column, the optimizer has to evaluate all 161,604 rows in the
table to filter 11 rows in return. With the index in place, it accesses just
those 11 rows.

21.5 Deciding the Order for Multiple Column
Indexes

Problem
You want to speed up your multiple column query.

Solution
Use a covering index with multiple columns.

Discussion
The best query performance can be achieved if query results are computed
entirely from the index pages without reading the actual table data. A
covering index is a solution for queries referencing more than one column.
This type of index contains the required data; hence, it does not need to
execute additional reads on the table.
In the following example, we have a query that requires having a filter on
one column (name_rank) and sort by another column (name_count):

mysql> SELECT name_rank,top_name,name_count FROM top_names
 -> WHERE name_rank < 10 ORDER BY name_count\G

We’ll create an index on the columns that we think are required for the
optimizer to choose the fastest path:

mysql> CREATE INDEX idx_name_rank_count ON
top_names(name_count,name_rank);
Query OK, 0 rows affected (0.18 sec)
Records: 0 Duplicates: 0 Warnings: 0

In this case, MySQL cannot use the index against the following query, and
it ends up needing to do a full table scan again. The reason is that despite
having both columns of the query in the filter, the index is ordered in
reverse:

mysql> EXPLAIN SELECT name_rank,top_name,name_count FROM
top_names
 -> WHERE name_rank < 10 ORDER BY name_count\G
 *************************** 1. row

 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 161604
 filtered: 33.33
 Extra: Using where; Using filesort
1 row in set, 1 warning (0.00 sec)

To demonstrate why the order of index columns matters, let’s look at the
following example.
For KEY `idx_name_rank_count`
(`name_rank`,`name_count`), first drop the previous index in
reverse order and create a new one:

mysql> DROP INDEX idx_name_rank_count ON top_names;
Query OK, 0 rows affected (0.01 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> CREATE INDEX idx_name_rank_count ON
top_names(name_rank,name_count);
Query OK, 0 rows affected (0.15 sec)
Records: 0 Duplicates: 0 Warnings: 0

We have created a covering index for both columns our SELECT statement
proposes on the name_rank and name_count filters:

mysql> EXPLAIN SELECT name_rank,top_name,name_count FROM
top_names
 -> WHERE name_rank < 10 ORDER BY name_count\G
 *************************** 1. row

 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: range
possible_keys: idx_name_rank_count
 key: idx_name_rank_count
 key_len: 3
 ref: NULL
 rows: 11
 filtered: 100.00
 Extra: Using index condition; Using filesort
1 row in set, 1 warning (0.00 sec)

As you can see from the EXPLAIN output, the optimizer chooses
idx_name_rank_count for this query with a new covering index.

21.6 Using Ascending and Descending
Indexes

Problem
You want to scan your data in ascending or descending order without a
performance penalty.

Solution
Use ascending and descending indexes.

Discussion
MySQL can scan indexes in reverse order with a performance penalty due
to index pages being physically ordered. To create a matching index for the
ORDER BY clause, use DESC for descending and ASC for ascending index
types.
The ideal query performance results from avoiding scanning an index
backward. It’s also a combination of sorting and filtering with the DESC
indexes. When MySQL optimizer chooses a query plan, it evaluates if it can
take advantage of these when the query needs descending order.
Remember, descending indexes are supported for the InnoDB storage
engine, and there are some limitations to its use.
Also, descending indexes have the following properties:

They are supported by all data types.
The DISTINCT clause can use any index with a matching column.

They can be used for MIN()/MAX() optimization when not used in
conjunction with the GROUP BY clause.

They are only limited to BTREE and HASH indexes.

They are not supported for FULLTEXT or SPATIAL index types.

The following example starts with creating a covering index for our desired
sorting for fields:

CREATE INDEX idx_desc_01 ON top_names(top_name, prop100k ASC,
cum_prop100K DESC);

mysql> SELECT top_name,prop100k,cum_prop100k FROM top_names
 -> ORDER BY `top_name`,`prop100k`,`cum_prop100k` DESC LIMIT
10;
+----------+----------+--------------+
| top_name | prop100k | cum_prop100k |

+----------+----------+--------------+
NULL	2.43	60231.65
AAB	0.05	88770.96
AABERG	0.16	82003.18
AABY	0.07	86239.41
AADLAND	0.13	83329.35
AAFEDT	0.05	88567.34
AAGAARD	0.10	84574.52
AAGARD	0.12	83769.42
AAGESEN	0.06	87383.27
AAKER	0.12	83574.66
+----------+----------+--------------+
10 rows in set (0.00 sec)

After creating the covering index for all ORDER BY clauses, optimizer
columns choose the idx_desc_01. This is particularly good for index
optimization and sorting:

mysql> EXPLAIN SELECT top_name,prop100k,cum_prop100k FROM
top_names
 -> ORDER BY `top_name`,`prop100k`,`cum_prop100k` DESC LIMIT
10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: index
possible_keys: NULL
 key: idx_desc_01
 key_len: 113
 ref: NULL
 rows: 10
 filtered: 100.00
 Extra: Using index
1 row in set, 1 warning (0.00 sec)

When we do SELECT * FROM top_names, instead of specifying
column order by the top_name field, it uses the previously created index,
and by default, it is in ascending order:

mysql> EXPLAIN SELECT * FROM top_names ORDER BY top_name ASC
LIMIT 10 \G
*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: index
possible_keys: NULL
 key: idx_top_name
 key_len: 103
 ref: NULL
 rows: 10
 filtered: 100.00
 Extra: NULL
1 row in set, 1 warning (0.00 sec)

To demonstrate the use of descending indexes, we’ll create a new index and
use DESC to apply it:

mysql> CREATE INDEX idx_desc_02 ON top_names(top_name DESC,
prop100k, cum_prop100K);
Query OK, 0 rows affected (0.38 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> EXPLAIN SELECT * FROM top_names ORDER BY top_name DESC
LIMIT 10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: index
possible_keys: NULL
 key: idx_desc_02
 key_len: 113
 ref: NULL
 rows: 10
 filtered: 100.00
 Extra: NULL
1 row in set, 1 warning (0.00 sec)

Again, we’ll use top_name with another column, prop100k, to illustrate
the use of the DESC index on the top_name column:

mysql> EXPLAIN SELECT top_name FROM top_names
 -> ORDER BY top_name DESC,prop100k ASC LIMIT 10 \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE

 table: top_names
 partitions: NULL
 type: index
possible_keys: NULL
 key: idx_desc_02
 key_len: 113
 ref: NULL
 rows: 10
 filtered: 100.00
 Extra: Using index
1 row in set, 1 warning (0.00 sec)

NOTE
Order matters, as MySQL uses the leftmost order rule for the indexes compared to the ORDER BY
clause. Changing the order of columns in the composite index will change the behavior of the
query result. Also, be careful using SELECT * FROM when sorting by multiple fields, as * will
use the column order from the table definition, which may end up with different fields than the
ORDER BY clause intends.

21.7 Using Function-Based Indexes

Problem
You need to search or sort by an expression, but MySQL calculates the
result of the expression for each row and therefore cannot use indexes.
Performance of the query is poor.

Solution
Use functional indexes.

Discussion
Some types of information are more easily analyzed using not the original
values but an expression computed from them. For example, the size
column in the mail table stores size in bytes that is hard to interpret on
first glance. It would be much easier to work with by using kilobytes (KB)

instead. However, you may not want to lose the precision that storage in
bytes provides.
You can have both precision and usability if you store data in bytes and use
expressions to query the table. For example, to find messages that are larger
than 100 KB, use the following query:

mysql> SELECT t, srcuser, srchost, size, ROUND(size/1024) AS
size_KB
 -> FROM mail WHERE ROUND(size/1024) > 100;
+---------------------+---------+---------+---------+---------+
| t | srcuser | srchost | size | size_KB |
+---------------------+---------+---------+---------+---------+
2014-05-12 12:48:13	tricia	mars	194925	190
2014-05-14 17:03:01	tricia	saturn	2394482	2338
2014-05-15 10:25:52	gene	mars	998532	975
+---------------------+---------+---------+---------+---------+
3 rows in set (0.00 sec)

However, MySQL won’t be able to use an index on the size column to
resolve this query, because it calculates an expression for each row. To
resolve this issue, use function-based indexes.
The syntax of the function-based index is as follows:

CREATE INDEX index_name ON table_name ((expression));

Mind the double brackets: if you omit one pair, MySQL will think you’re
passing a column name instead of the expression and will return an error.
Let’s create an index on ROUND(size/1024) and check if MySQL will
use it to resolve the query:

mysql> CREATE INDEX size_KB ON mail ((ROUND(size/1024)));
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> EXPLAIN SELECT t, srcuser, srchost, size,
ROUND(size/1024) AS size_KB
 -> FROM mail WHERE ROUND(size/1024) > 100\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE

 table: mail
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 16
 filtered: 100.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

The index will not be used to resolve the query because the ROUND function
returns data in the NEWDECIMAL type for values that have a floating point
and 100 is LONGLONG. You can examine the result if you start mysql
client with the --column-type-info option:

$ unbuffer mysql --column-type-info -e "SELECT ROUND(10.5)" |
grep Type
Type: NEWDECIMAL
$ unbuffer mysql --column-type-info -e "SELECT 100" | grep Type
Type: LONGLONG

TIP
We need to use the unbuffer command, because mysql buffers the --column-type-info
result, and it cannot be piped to grep otherwise.

To clarify, to force MySQL to use the index, you need to compare the result
of the expression with a floating-point value:

mysql> EXPLAIN SELECT t, srcuser, srchost, size, ROUND(size/1024)
AS size_KB
 -> FROM mail WHERE ROUND(size/1024) > 100.0\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: mail
 partitions: NULL
 type: range
possible_keys: size_KB
 key: size_KB

 key_len: 10
 ref: NULL
 rows: 3
 filtered: 100.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

Alternatively, cast the result of the ROUND function to the integer value
when creating the index. This also forces MySQL to use the index to
resolve the query:

mysql> DROP INDEX size_KB ON mail;
Query OK, 0 rows affected (0.01 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> CREATE INDEX size_KB ON mail ((CAST(ROUND(size/1024) AS
SIGNED)));
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> EXPLAIN SELECT t, srcuser, srchost, size, ROUND(size/1024)
AS size_KB
 -> FROM mail WHERE ROUND(size/1024) > 100\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: mail
 partitions: NULL
 type: range
possible_keys: size_KB
 key: size_KB
 key_len: 9
 ref: NULL
 rows: 3
 filtered: 100.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

21.8 Using Indexes on Generated Columns
with JSON Data

Problem

You want to perform a search inside JSON data, but it is slow.

Solution
Use a generated column, created from an expression that searches for a
JSON value and an index on this column.

Discussion
In this recipe, we’ll discuss a book_authors table:

CREATE TABLE `book_authors` (
 `id` int NOT NULL AUTO_INCREMENT,
 `author` json NOT NULL,
 PRIMARY KEY (`id`)
);

The table contains book records per author in the JSON column:

mysql> SELECT * FROM book_authors\G
*************************** 1. row ***************************
 id: 1
 author: {"id": 1, "name": "Paul", ↩
 "books": [↩
 "Software Portability with imake: Practical Software
Engineering", ↩
 "Mysql: The Definitive Guide to Using, Programming,
↩
 and Administering Mysql 4 (Developer's Library)", ↩
 "MYSQL Certification Study Guide", ↩
 "MySQL (OTHER NEW RIDERS)", ↩
 "MySQL Cookbook", ↩
 "MySQL 5.0 Certification Study Guide", ↩
 "Using csh & tcsh: Type Less, Accomplish More
(Nutshell Handbooks)", ↩
 "MySQL (Developer's Library)"], ↩
 "lastname": "DuBois"}
lastname: "DuBois"
*************************** 2. row ***************************
 id: 2
 author: {"id": 2, "name": "Alkin", "books": ["MySQL
Cookbook"],↩
 "lastname": "Tezuysal"}
lastname: "Tezuysal"

*************************** 3. row ***************************
 id: 3
 author: {"id": 3, "name": "Sveta", ↩
 "books": ["MySQL Troubleshooting", "MySQL Cookbook"],
↩
 "lastname": "Smirnova"}
lastname: "Smirnova"
3 rows in set (0,00 sec)

If you want to search for a specific author, you may consider searching by
their name and last name.
The CREATE INDEX command creates an index on a column in the table.
JSON data stored in a single column, therefore any index created with the
simple CREATE INDEX command, would index the whole JSON
document while you may need to search only part of it.
Moreover, the CREATE INDEX command will fail for the JSON column:

mysql> CREATE INDEX author_name ON book_authors(author);
ERROR 3152 (42000): JSON column 'author' supports indexing only ↩
via generated columns on a specified JSON path.

A solution for this issue would be using a generated column and creating an
index on it. Values in generated columns are created using an expression
defined at the time of column creation:

ALTER TABLE book_authors ADD COLUMN lastname VARCHAR(255)
GENERATED ALWAYS AS(JSON_UNQUOTE(JSON_EXTRACT(author,
'$.lastname')));

In this example, we created a column, generated from the expression
JSON_EXTRACT(author, '$.lastname'). We can also use the ->
and ->> operators to extract the JSON value:

ALTER TABLE book_authors ADD COLUMN name VARCHAR(255)
GENERATED ALWAYS AS (author->>'$.name');

We used the JSON_UNQUOTE function and the ->> operator in our
expressions to remove trailing quotes in the authors’ names if they exist.

Two new columns, name and lastname, do not take any space and are
generated each time a query accesses the table.

TIP
If you want to improve the performance of your SELECT queries at the cost of additional storage
and slowness at the write time, define generated columns with the keyword STORED. In this case,
the expression would be executed only once: when values used in the expression are inserted or
modified and then physically stored on the disk.

Now we can create an index on our new generated columns:

CREATE INDEX author_name ON book_authors(lastname, name);

To access data using the newly created index, refer to the new columns as
you do any other column:

mysql> SELECT author->'$.books' FROM book_authors
 -> WHERE name = 'Sveta' AND lastname='Smirnova';
+---+
| author->'$.books' |
+---+
| ["MySQL Troubleshooting", "MySQL Cookbook"] |
+---+
1 row in set (0,00 sec)

EXPLAIN confirms that the new index has been used:

mysql> EXPLAIN SELECT author->'$.books' FROM book_authors
 -> WHERE name = 'Sveta' AND lastname='Smirnova'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: book_authors
 partitions: NULL
 type: ref
possible_keys: author_name
 key: author_name
 key_len: 2046
 ref: const,const
 rows: 1

 filtered: 100.00
 Extra: NULL
1 row in set, 1 warning (0,00 sec)

See Also
For additional information about using JSON in MySQL, see Chapter 19.

21.9 Using Full Text Indexes

Problem
You want to take advantage of a keyword search, but queries on text fields
are slow.

Solution
Use FULLTEXT indexes for full-text searches.

Discussion
MySQL supports FULLTEXT indexes on popular storage engines such as
InnoDB and MyISAM. Although neither of the storage engines were
originally designed to index large text operations, you can still use them to
comb performance for specific queries.
FULLTEXT indexes have two other conditions:

1. They can be used only for CHAR, VARCHAR, or TEXT columns.

2. They can be used only when there is a MATCH() or AGAINST()
clause in a SELECT statement.

In MySQL, the MATCH() function performs a full-text search by accepting
a comma-separated list of columns, where AGAINST() takes a string to
search.

NOTE
A FULLTEXT index can be used with a combination of B-tree indexes on the same column, as
their purposes are different. FULLTEXT is for finding keywords versus matching values in the
field.

FULLTEXT text searches also have three different modes:

Natural language mode (default) is the search mode for simple phrases.

SELECT top_name,name_rank FROM top_names WHERE MATCH(top_name)
 AGAINST("ANDREW" IN NATURAL LANGUAGE MODE) \G

Boolean mode is for using Boolean operators in search mode. Recall that
the strategy discussed in Recipe 7.17 makes similar use of operators
here:

SELECT top_name,name_rank FROM top_names WHERE MATCH(top_name)
 AGAINST("+ANDREW +ANDY -ANN" IN BOOLEAN MODE) \G

Query expansion mode is the search mode for similar or related values in
a search expression. In short, this mode will return relevant matches
against a searched keyword:

SELECT top_name,name_rank FROM top_names WHERE MATCH(top_name)
 AGAINST("ANDY" WITH QUERY EXPANSION) \G

The InnoDB storage engine can take advantage of the following
optimizations:

Queries that return only the ID field of the search rank. Search rank is
defined as relevance rank as a measure to show how good a match is.
Queries that sort the matching rows in descending order.

The optimizer will not choose the fulltext index on the top_name
column. For more information, see Recipe 7.10. This type of query is very

efficient given the data type we have in this example with indexed unique
string values in the top_name column:

mysql> EXPLAIN SELECT top_name,name_rank FROM top_names
 -> WHERE top_name="ANDREW" \G
 *************************** 1. row

 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: ref
possible_keys: idx_top_name,idx_desc_01,idx_desc_02
 key: idx_top_name
 key_len: 103
 ref: const
 rows: 1
 filtered: 100.00
 Extra: NULL
1 row in set, 1 warning (0.00 sec)

mysql> CREATE FULLTEXT INDEX idx_fulltext ON top_names(top_name);
 Query OK, 0 rows affected, 1 warning (1.94 sec)
 Records: 0 Duplicates: 0 Warnings: 1

mysql> EXPLAIN SELECT top_name,name_rank FROM top_names
 -> WHERE top_name="ANDREW" \G
 *************************** 1. row

 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: ref
possible_keys: idx_top_name,idx_desc_01,idx_desc_02,idx_fulltext
 key: idx_top_name
 key_len: 103
 ref: const
 rows: 1
 filtered: 100.00
 Extra: NULL
1 row in set, 1 warning (0.00 sec)

Now, if we try a pattern match against the same column, we will be able to
utilize a full text index for the given column:

mysql> EXPLAIN SELECT top_name,name_rank FROM top_names
 -> MATCH(top_name) AGAINST("ANDREW") \G
 *************************** 1. row

 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: fulltext
possible_keys: idx_fulltext
 key: idx_fulltext
 key_len: 0
 ref: const
 rows: 1
 filtered: 100.00
 Extra: Using where; Ft_hints: sorted
1 row in set, 1 warning (0.01 sec)

In this case, we can see that MySQL chooses to use the FULLTEXT index.
Although it’s useful to have FULLTEXT index availability in MySQL, it
comes with many restrictions. Please refer to the MySQL documentation
for further details about Full-Text Restrictions.

NOTE
Despite the availability of full-text indexes in the InnoDB storage engine, there may be better
alternatives in the market to take this off of MySQL’s workload and put it on another optimized
storage system.

21.10 Utilizing Spatial Indexes and
Geographical Data

Problem
You want to store and query geographic coordinates effectively.

Solution
Use MySQL’s improved Spatial Reference System.

https://oreil.ly/rc0vb

Discussion
MySQL 8 contains all Spatial Reference System (SRS) identifications from
the European Petroleum Survey Group (EPSG) agency. These SRS
identifications are stored with a unique name and spatial reference
identification (SRID) in information_schema.

These systems represent different variations of geographic data references.
You can query details of these from information_schema:

mysql> SELECT * FROM
INFORMATION_SCHEMA.ST_SPATIAL_REFERENCE_SYSTEMS
 -> WHERE SRS_ID=4326 OR SRS_ID=3857 ORDER BY SRS_ID DESC\G
 *************************** 1. row

 SRS_NAME: WGS 84
 SRS_ID: 4326
 ORGANIZATION: EPSG
ORGANIZATION_COORDSYS_ID: 4326
 DEFINITION: GEOGCS["WGS 84",DATUM["World Geodetic
System 1984",
 SPHEROID["WGS
84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],

AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","
8901"]],

UNIT["degree",0.017453292519943278,AUTHORITY["EPSG","9122"]],

AXIS["Lat",NORTH],AXIS["Lon",EAST],AUTHORITY["EPSG","4326"]]
 DESCRIPTION: NULL
*************************** 2. row ***************************
 SRS_NAME: WGS 84 / Pseudo-Mercator
 SRS_ID: 3857
 ORGANIZATION: EPSG
ORGANIZATION_COORDSYS_ID: 3857
 DEFINITION: PROJCS["WGS 84 / Pseudo-
Mercator",GEOGCS["WGS 84",
 DATUM["World Geodetic System 1984",SPHEROID["WGS
84",6378137,

298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]]
,

PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",

0.017453292519943278,AUTHORITY["EPSG","9122"]],AXIS["Lat",NORTH]

,AXIS["Lon",EAST],AUTHORITY["EPSG","4326"]],PROJECTION["Popular
 Visualization Pseudo
Mercator",AUTHORITY["EPSG","1024"]],
 PARAMETER["Latitude of natural
origin",0,AUTHORITY["EPSG","8801"]],
 PARAMETER["Longitude of natural
origin",0,AUTHORITY["EPSG","8802"]],
 PARAMETER["False
easting",0,AUTHORITY["EPSG","8806"]],↩
 PARAMETER["False northing",

0,AUTHORITY["EPSG","8807"]],UNIT["metre",1,AUTHORITY["EPSG","9001
"]],↩
 AXIS["X",EAST],
 AXIS["Y",NORTH],AUTHORITY["EPSG","3857"]]
 DESCRIPTION: NULL
2 rows in set (0.00 sec)

SRS_ID 4326 represents the widespread web map projections used in
Google Maps, OpenStreetMap, etc., whereas 4326 represents the GPS
coordinates used for tracking locations.
Let’s say we have point-of-interest data that we keep in our database. We’ll
create a table and load sample data to it using SRID 4326:

mysql> CREATE TABLE poi
 -> (poi_id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY
KEY,
 -> position POINT NOT NULL SRID 4326, name VARCHAR(200));
Query OK, 0 rows affected (0.02 sec)

mysql> INSERT INTO poi VALUES (1, ST_GeomFromText('POINT(41.0211
29.0041)', 4326),
 -> 'Maiden\'s Tower');
Query OK, 1 row affected (0.00 sec)
msyql> INSERT INTO poi VALUES (2, ST_GeomFromText('POINT(41.0256
28.9742)', 4326),
 -> 'Galata Tower');
Query OK, 1 row affected (0.00 sec)

Now we’ll create an index on the geometry column:

mysql> CREATE SPATIAL INDEX position ON poi (position);
Query OK, 0 rows affected (0.01 sec)
Records: 0 Duplicates: 0 Warnings: 0

We’ll demonstrate how to measure the distance between these two points of
interest:

mysql> SELECT ST_AsText(position) FROM poi WHERE poi_id = 1 INTO
@tower1;
Query OK, 1 row affected (0.00 sec)
mysql> SELECT ST_AsText(position) FROM poi WHERE poi_id = 2 INTO
@tower2;
Query OK, 1 row affected (0.00 sec)
mysql> SELECT ST_Distance(ST_GeomFromText(@tower1, 4326),
 -> ST_GeomFromText(@tower2, 4326)) AS distance;
+--------------------+
| distance |
+--------------------+
| 2563.9276036976544 |
+--------------------+
1 row in set (0.00 sec)

This is a representation of a straight line between these two points of
interest. Of course, this isn’t a car route–planning example; this is more like
a bird’s flight from point A to B in meters.
Let’s check what MySQL used as query optimization:

mysql> EXPLAIN SELECT ST_Distance(ST_GeomFromText(@tower1, 4326),
-> ST_GeomFromText(@tower2, 4326)) AS dist \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: NULL
 partitions: NULL
 type: NULL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 filtered: NULL
 Extra: No tables used
1 row in set, 1 warning (0.00 sec)

Since the ST_Distance function doesn’t use a table to calculate the
distance between these two locations, it doesn’t use a table in the query;
hence, there’s no index optimization allowed.

You can further improve on the distance calculation about what Earth’s
spherical shape should be using ST_Distance_Sphere, which will
result in slightly different results:

mysql> SELECT ST_Distance_Sphere(ST_GeomFromText(@tower1, 4326),
 -> ST_GeomFromText(@tower2, 4326)) AS dist;
+--------------------+
| dist |
+--------------------+
| 2557.7412439442496 |
+--------------------+
1 row in set (0.00 sec)

Let’s say we have a polygon around Istanbul for covering our target search
area. The required polygon coordinates can be generated via another
application:

mysql> SET @poly := ST_GeomFromText ('POLYGON((
41.104897239651905 28.876082545638166,
 -> 41.05727989444261 29.183699733138166,
 -> 40.90384226781947 29.137007838606916,
 -> 40.94119778455447 28.865096217513166,
 -> 41.104897239651905 28.876082545638166))', 4326);

This time we’ll search points of interest using the ST_Within function
from that polygon area. There are many functions built in to MySQL’s
spatial reference implementation. For details, please refer to MySQL
documentation’s “Spatial Analysis Functions”.
Spatial functions can be grouped into a few categories:

Creating geometries in various formats
Converting geometries between formats
Accessing qualitative and quantitative properties of geometry
Describing relations between two geometries
Creating new geometries from existing ones

These functions allow developers to get faster access to the data and better
utilize spatial analysis within MySQL.

https://oreil.ly/kse0R

In the following query, we’re utilizing both ST_AsText and ST_Within
functions at the same time:

mysql> SELECT poi_id, name, ST_AsText(`position`)
 -> AS `towers` FROM poi WHERE ST_Within(`position`, @poly) ;
+--------+----------------+------------------------+
| poi_id | name | towers |
+--------+----------------+------------------------+
| 1 | Maiden's Tower | POINT(41.0211 29.0041) |
| 2 | Galata Tower | POINT(41.0256 28.9742) |
+--------+----------------+------------------------+
2 rows in set (0.00 sec)

Check whether the spatial index is used or not:

mysql> EXPLAIN SELECT poi_id, name,
 -> ST_AsText(`position`) AS `towers` FROM poi WHERE
ST_Within(`position`, @poly) \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: poi
 partitions: NULL
 type: range
possible_keys: position
 key: position
 key_len: 34
 ref: NULL
 rows: 2
 filtered: 100.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

21.11 Creating and Using Histograms

Problem
You want to join two or more tables, but MySQL’s optimizer does not
choose the right query plan.

Solution

Use optimizer histograms to aid decision making.

Discussion
Indexes are helpful for resolving query plans, but they don’t always create
the best query execution plan. This applies to situations when the optimizer
needs to identify the order in which to join two or more tables.
Assume you have two tables. One stores product categories in a shop, and
another stores sales data. The number of categories is small, but the number
of sold items is huge. You may have a dozen categories and millions of sold
items. When you join the two tables, MySQL has to decide which table to
query first. If, however, MySQL queries the large table first, the query
would be effective because it only processes a small number of sold items
that satisfy the search condition. On the other hand, you may need items
from the single category while the condition you used to select from the
larger table returns many rows from all categories. In this case, you will
have to discard all returned rows not belonging to the selected category.
Such a query would run faster if you select from the small table first.
A solution to this issue is to have a combined index that takes a category ID
and condition in the larger table. But this solution may not work for
complicated queries when such a combined index is not applicable to the
combination of the WHERE condition and JOIN clause.

Another issue with indexes is that they operate by cardinality: the number
of unique values in the index. But when data distribution is not even, the
optimizer can make false conclusions when it uses only cardinality. Assume
you have one million items with a certain characteristic and 10 items with
another characteristic. If the optimizer decides to select data that satisfy the
first condition, the query would take much more time than if it first selects
items that satisfy the second condition. Unfortunately it isn’t possible to
make the correct conclusion using information about cardinality only.
To resolve this issue, MySQL 8.0 introduces optimizer histograms. These
are a lightweight data structures that store information about how many
unique values exist in each data bucket.

To illustrate how optimizer histograms work, let’s consider a table of six
rows:

mysql> CREATE TABLE histograms(f1 INT);
Query OK, 0 rows affected (0,03 sec)

mysql> INSERT INTO histograms VALUES(1),(2),(2),(3),(3),(3);
Query OK, 6 rows affected (0,00 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT f1, COUNT(f1) FROM histograms GROUP BY f1;
+------+-----------+
| f1 | COUNT(f1) |
+------+-----------+
1	1
2	2
3	3
+------+-----------+
3 rows in set (0,00 sec)

As you can see, the table contains one row with the value 1, two rows with
the value 2, and three rows with the value 3.
If we run EXPLAIN on queries, selecting different rows in this table, we’ll
notice that the number of rows filtered from the result is the same no matter
which value we’re looking for:

mysql> \P grep filtered
PAGER set to 'grep filtered'
mysql> EXPLAIN SELECT * FROM histograms WHERE f1=1\G
 filtered: 16.67
1 row in set, 1 warning (0,00 sec)

mysql> EXPLAIN SELECT * FROM histograms WHERE f1=2\G
 filtered: 16.67
1 row in set, 1 warning (0,00 sec)

mysql> EXPLAIN SELECT * FROM histograms WHERE f1=3\G
 filtered: 16.67
1 row in set, 1 warning (0,00 sec)

The number of filtered rows shows how many rows would be filtered from
the retrieved result. Since our table does not have indexes, MySQL first
retrieves all the rows from the table, then filters those that satisfy the

condition. Without any hint, the optimizer thinks that MySQL will leave
only one row from the result no matter which condition we use.
Let’s create a histogram and check if it changes anything:

mysql> ANALYZE TABLE histograms UPDATE HISTOGRAM ON f1\G
*************************** 1. row ***************************
 Table: cookbook.histograms
 Op: histogram
Msg_type: status
Msg_text: Histogram statistics created for column 'f1'.
1 row in set (0,01 sec)

Histograms are stored in the data dictionary column_statistics table
and can be examined by querying the COLUMN_STATISTICS table in the
Information Schema:

mysql> SELECT * FROM information_schema.column_statistics
 -> WHERE table_name='histograms'\G
*************************** 1. row ***************************
SCHEMA_NAME: cookbook
 TABLE_NAME: histograms
COLUMN_NAME: f1
 HISTOGRAM: {"buckets": [[1, 0.16666666666666666], [2, 0.5], [3,
1.0]],
 "data-type": "int",
 "null-values": 0.0,
 "collation-id": 8,
 "last-updated": "2021-05-23 17:29:46.595599",
 "sampling-rate": 1.0,
 "histogram-type": "singleton",
 "number-of-buckets-specified": 100}
1 row in set (0,00 sec)

Three buckets contain information about data ranges. Value 1 takes 1/6 of
the table (one row out of six), values 1 and 2 both take a half (0.5) of the
table, and together with value 3 they fill the table. The number of items in
each bucket stored is a fraction of one. The number-of-buckets-
specified field contains the number of buckets specified at the
histogram-creation time. The default value is 100, but you’re free to specify
any number between 1 and 1,024. If the number of unique elements in the
column exceeds the number of buckets, histogram-type will change

from singleton to equi-height, and each bucket can contain a range
of values instead of only one in case of singleton.

Histograms affect the value for the filtered field in the EXPLAIN
output.
In the following example, values for the filtered rows correct and reflect the
content of the table. If we search value 1, five of six table rows are
predicted to be removed from the result set, which is correct. For value 2,
only two rows (33.33%) would be left in the result, and in the case of value
3, half of the table will be filtered:

mysql> \P grep filtered
PAGER set to 'grep filtered'
mysql> EXPLAIN SELECT * FROM histograms WHERE f1=1\G
 filtered: 16.67
1 row in set, 1 warning (0,00 sec)

mysql> EXPLAIN SELECT * FROM histograms WHERE f1=2\G
 filtered: 33.33
1 row in set, 1 warning (0,00 sec)

mysql> EXPLAIN SELECT * FROM histograms WHERE f1=3\G
 filtered: 50.00
1 row in set, 1 warning (0,00 sec)

Histograms do not help to access data: they are statistical only, not a
physical structure like indexes. They, instead, affect the query execution
plan and, particularly, the order of the tables joined. For example, if we
decide to join the histograms table with itself, the order will be different
depending on the condition:

mysql> \P grep -B 3 table
PAGER set to 'grep -B 3 table'
mysql> EXPLAIN SELECT * FROM histograms h1 JOIN histograms h2
 -> WHERE h1.f1=1 and h2.f1=3\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: h1
--
*************************** 2. row ***************************
 id: 1

 select_type: SIMPLE
 table: h2
2 rows in set, 1 warning (0,00 sec)

mysql> EXPLAIN SELECT * FROM histograms h1 JOIN histograms h2
 -> WHERE h1.f1=3 and h2.f1=1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: h2
--
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: h1
2 rows in set, 1 warning (0,00 sec)

The true power of histograms is demonstrated in large tables. The
companion GitHub repository has data for two tables: goods_shops and
goods_characteristics. They are created without histograms by
default while having indexes:

CREATE TABLE `goods_shops` (
 `id` int NOT NULL AUTO_INCREMENT,
 `good_id` varchar(30) DEFAULT NULL,
 `location` varchar(30) DEFAULT NULL,
 `delivery_options` varchar(30) DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `good_id` (`good_id`,`location`,`delivery_options`),
 KEY `location` (`location`,`delivery_options`)
);

CREATE TABLE `goods_characteristics` (
 `id` int NOT NULL AUTO_INCREMENT,
 `good_id` varchar(30) DEFAULT NULL,
 `size` int DEFAULT NULL,
 `manufacturer` varchar(30) DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `good_id` (`good_id`,`size`,`manufacturer`),
 KEY `size` (`size`,`manufacturer`)
);

If we want to find the number of laptops with a screen size that is less than
13 inches; is manufactured by Lenovo, Dell, Toshiba, Samsung, or Acer;

https://oreil.ly/56ZRl

and is available by Premium or Urgent delivery in Moscow or Kiev, we can
use the following query:

mysql> SELECT COUNT(*) FROM goods_shops
 -> JOIN goods_characteristics USING (good_id)
 -> WHERE size < 13 AND manufacturer
 -> IN ('Lenovo', 'Dell', 'Toshiba', 'Samsung', 'Acer')
 -> AND (location IN ('Moscow', 'Kiev')
 -> OR delivery_options IN ('Premium', 'Urgent'));
+----------+
| count(*) |
+----------+
| 816640 |
+----------+
1 row in set (6 min 31,75 sec)

The query took over six minutes, which is quite long for two tables of less
than half a million rows. The reason for this is that the goods_shops
table contains just a few rows that satisfy the condition for the shop location
and delivery options, while the goods_characteristics table has
many more rows that satisfy the laptop size and manufacturer conditions. In
such a situation, it’s better to select data from the goods_shops table
first; however, the optimizer may create a different query execution plan:

mysql> EXPLAIN SELECT COUNT(*) FROM goods_shops JOIN
goods_characteristics
 -> USING(good_id) WHERE size < 13 AND
 -> manufacturer IN ('Lenovo', 'Dell', 'Toshiba', 'Samsung',
'Acer') AND
 -> (location IN ('Moscow', 'Kiev') OR delivery_options IN
('Premium', 'Urgent'))\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: goods_characteristics
 partitions: NULL
 type: index
possible_keys: good_id,size
 key: good_id
 key_len: 251
 ref: NULL
 rows: 137026
 filtered: 25.00
 Extra: Using where; Using index
*************************** 2. row ***************************

 id: 1
 select_type: SIMPLE
 table: goods_shops
 partitions: NULL
 type: ref
possible_keys: good_id,location
 key: good_id
 key_len: 123
 ref: cookbook.goods_characteristics.good_id
 rows: 66422
 filtered: 36.00
 Extra: Using where; Using index
2 rows in set, 1 warning (0,00 sec)

Indexes would not help here, because they use cardinality that is the same
for any value in the indexed column. Here is where histograms can show
their power:

mysql> ANALYZE TABLE goods_shops UPDATE HISTOGRAM ON location,
delivery_options\G
*************************** 1. row ***************************
 Table: cookbook.goods_shops
 Op: histogram
Msg_type: status
Msg_text: Histogram statistics created for column
'delivery_options'.
*************************** 2. row ***************************
 Table: cookbook.goods_shops
 Op: histogram
Msg_type: status
Msg_text: Histogram statistics created for column 'location'.
2 rows in set (0,24 sec)

mysql> SELECT COUNT(*) FROM goods_shops JOIN
goods_characteristics
 -> USING(good_id) WHERE size < 13 AND
 -> manufacturer IN ('Lenovo', 'Dell', 'Toshiba', 'Samsung',
'Acer') AND
 -> (location IN ('Moscow', 'Kiev') OR delivery_options IN
('Premium', 'Urgent'));
+----------+
| COUNT(*) |
+----------+
| 816640 |
+----------+
1 row in set (1,42 sec)

mysql> EXPLAIN SELECT COUNT(*) FROM goods_shops JOIN

goods_characteristics
 -> USING(good_id) WHERE size < 13 AND
 -> manufacturer IN ('Lenovo', 'Dell', 'Toshiba', 'Samsung',
'Acer') AND
 -> (location IN ('Moscow', 'Kiev') OR delivery_options IN
('Premium', 'Urgent'))\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: goods_shops
 partitions: NULL
 type: index
possible_keys: good_id,location
 key: good_id
 key_len: 369
 ref: NULL
 rows: 66422
 filtered: 0.09
 Extra: Using where; Using index
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: goods_characteristics
 partitions: NULL
 type: ref
possible_keys: good_id,size
 key: good_id
 key_len: 123
 ref: cookbook.goods_shops.good_id
 rows: 137026
 filtered: 25.00
 Extra: Using where; Using index
2 rows in set, 1 warning (0,00 sec)

Once a histogram is created, the optimizer joins tables in the effective order,
and the query takes slightly more than one second instead of six minutes, as
in the previous run.

See Also
For additional information about using histograms in MySQL, see “Billion
Goods in Few Categories: How Histograms Save a Life?”.

21.12 Writing Performant Queries

https://oreil.ly/xXGdH

Problem
You want to write efficient queries.

Solution
Study how MySQL accesses data, and adjust your queries to help MySQL
perform its job faster.

Discussion
As we’ve seen in this chapter, there are many iterations of index
implementation in MySQL. While we take advantage of these index types,
we also need to know how MySQL accesses data. The optimizer is a very
advanced part of MySQL but still does not always make correct decisions.
When it doesn’t choose the right path, we’ll end up with poor query
performance, which may lead to degraded service or outage in our
applications at production. The best way to write performant queries is to
know how MySQL accesses data.
The other point here is being at scale is different than using the application
in a monolith environment. As the concurrency increases with data size, the
decision optimizer will choose the fastest data route that will be more
complex to handle.
MySQL uses a cost-based model to estimate the cost of various operations
during query execution in the following order:

1. Find the optimal method.
2. Check if the access method is useful.
3. Estimate the cost of using the access method.
4. Select the lowest-cost access method possible.

Here’s the order of query execution that MySQL chooses:
1. Table scan
2. Index scan

3. Index lookup
4. Range scan
5. Index merge
6. Loose index scan

The following are some known reasons for slow index lookups for those
still using an index with poor performance outcomes:

Low cardinality
When data is not diverse enough to identify a fast traversal, MySQL
will end up doing a full table scan.

Large datasets
Returning large datasets often causes problems. Even if they are
correctly filtered, they may be useless, as your application can’t process
them fast enough. Only target data that are needed in your query, and
filter the rest out.

Multiple index traversal
If you have a query hitting multiple indexes, the extra I/O operation
hopping through pages will lead to slow query performance.

Nonleading column lookup
If you do not use the leading column for a covering index, a covering
index cannot be used.

Data type mismatch
Indexes cannot help if data types don’t match when querying columns.

Character set collation mismatch
Data access should be unified around the character set and collation of
the query.

Suffix lookup
Looking for a suffix will degrade performance significantly.

Index as argument
Using an indexed column as an argument will not efficiently use the
index.

Stale statistics
MySQL updates statistics based on the index cardinality. This helps the
optimizer to make decisions for the fastest path possible.

MySQL bug
It’s rare but possible. A MySQL bug can cause slow index lookups.

Query types
When designing the application, it’s useful to recognize common query
patterns and when they can be applied and when they can’t.

Point select
One of the fastest methods to access your data is to do a point select
targeting indexed column directly. In this case, the optimizer already
knows the page that your data sits on if the index exists in that column:

mysql> SELECT names_id,top_name,name_rank FROM top_names
 -> WHERE names_id=699 \G
*************************** 1. row ***************************
 names_id: 699
 top_name: KOCH
name_rank: 698
1 row in set (0.00 sec)

In this case, the names_id column is the primary key column of the
table, so the access is straight to that page’s path by the optimizer.

Range select
This type of SELECT is for when you need a range of rows from your
dataset. MySQL can still use an index to access the data directly using
the index on the same column as the WHERE clause of the query. This
type of access method uses a single index or subset of values from an

index or indexes. The range index is also known for using single or
multipart index utilization. In the following example, the optimizer uses
comparison on the name_rank field with < and > operators. Also, for
all index types, AND or OR combinations will be a range condition. For
MySQL, the fastest lookup is the primary key. Remember, this is also
the physical order of the table:

mysql> EXPLAIN SELECT names_id,top_name,name_rank FROM
top_names
 -> WHERE names_id>800 AND names_id < 900 \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: range
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 99
 filtered: 100.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

Covering indexes
Covering indexes are indexes that can be used to resolve the query
without accessing rows’ data. To make sure other supporting indexes
cover your query, we can use secondary indexes. An index should be
leftmost first, and each additional field should be in a composite key. A
query should not access columns that do not exist in the index (see
Recipe 21.5).
In the following example, the index is used to resolve the query
condition without accessing that table data, but in the end, the table data
is accessed, because we asked for the top_name column that doesn’t
exist in the index. The Using index condition statement in the
Extra field of the EXPLAIN output confirms that:

mysql> EXPLAIN SELECT name_rank,top_name,name_count
 -> FROM top_names WHERE name_rank < 10 ORDER BY name_count\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: range
possible_keys: idx_name_rank_count
 key: idx_name_rank_count
 key_len: 3
 ref: NULL
 rows: 10
 filtered: 100.00
 Extra: Using index condition; Using filesort
1 row in set, 1 warning (0.00 sec)

This query uses a covering index. The Using index statement
confirms that. A primary key is already part of the covering index;
hence, there’s no need to include names_id in the covering index:

mysql> EXPLAIN SELECT names_id, name_rank, name_count FROM
top_names
 -> WHERE name_rank < 10 ORDER BY name_count\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: range
possible_keys: idx_name_rank_count
 key: idx_name_rank_count
 key_len: 3
 ref: NULL
 rows: 10
 filtered: 100.00
 Extra: Using where; Using index; Using filesort
1 row in set, 1 warning (0,00 sec)

Data type matching
Data types are also crucial for using indexes efficiently. Using numerics
for numeric comparison is essential for the optimizer. The following
query is an example of how MySQL doesn’t like this data type

conversion when it comes to names_id—an INTEGER field with a
string value in it. This is the warning message we get:

mysql> EXPLAIN SELECT names_id,top_name,name_rank FROM
 -> top_names WHERE names_id= '123 names' \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: const
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 1
 filtered: 100.00
 Extra: NULL
1 row in set, 1 warning (0,00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1292
Message: Truncated incorrect DOUBLE value: '123 names'
*************************** 2. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select '123' AS `names_id`,'WALLACE'
AS `top_name`, ↩
 '123' AS `name_rank` from `cookbook`.`top_names`
where true
2 rows in set (0,00 sec)

While the query may return results, MySQL has to perform a job to
convert the string into a number and thus loses precision.

Negative conditions
Often, the most efficient indexes can’t be used for these types of
queries. The reason is that MySQL has to select all rows from the table
or index, then filter those that aren’t in the list.
Avoid negative clauses if possible, as they are inefficient:

IS NOT

IS NOT NULL

NOT IN

NOT LIKE

mysql> EXPLAIN SELECT names_id,name_rank, top_name FROM
 -> top_names WHERE top_name NOT IN
("LARA","ILAYDA","ASLIHAN") \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: ALL
possible_keys:
idx_top_name,idx_desc_01,idx_desc_02,idx_fulltext
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 161533
 filtered: 100.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

ORDER BY operations
Sorting operations can be expensive as the dataset grows, especially if
the query cannot use the index to resolve ORDER BY:

mysql> EXPLAIN SELECT names_id,name_rank, top_name FROM
 -> top_names WHERE name_rank > 15000 ORDER BY top_name \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 161533
 filtered: 33.33
 Extra: Using where; Using filesort
1 row in set, 1 warning (0.00 sec)

The same applies to LIMIT operations. These type of queries usually
return a small set of data with a high cost:

mysql> EXPLAIN SELECT names_id,name_rank, top_name FROM
top_names WHERE
 -> name_rank > 15000 ORDER BY name_rank LIMIT 10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 161533
 filtered: 33.33
 Extra: Using where; Using filesort
1 row in set, 1 warning (0.00 sec)

The preceding query selects a large number of rows and then discards
most of them.

JOINs
Join operations are an original way of combining or referencing data
from two or more tables. While SQL joins serve a particular purpose,
they can create a cartesian product on query results if not used properly.
Using INNER joins to filter only the intersection of tables in the
SELECT statement is highly advised versus using LEFT JOINs. Using
INNER JOINs is not always possible to ensure compliance with the
required business logic. In those cases, targeting indexed fields will still
benefit the query execution time:

SELECT a.col_a, a.col_b, b.col_a FROM table_a a
INNER JOIN table_b b
ON a.key = b.key;

TIP
In MySQL, JOIN is synonymous with INNER JOIN.

Help the optimizer choose the best possible path to access your data by
creating correct indexes and writing efficient queries. This type of approach
will improve your throughput overall. Add only the indexes you need, and
don’t over-index tables. Avoiding duplicate indexes is another best practice
to achieve performant queries. Identify if the same indexes in your table
may cause a slow-down on both reads and writes.

Chapter 22. Server
Administration

22.0 Introduction
This chapter covers how to perform operations involved in administering a
MySQL server:

General server configuration
The plug-in interface
Controlling server logging
Configuring storage engines

The chapter doesn’t cover managing MySQL user accounts. That is an
administrative task and is covered in Chapter 24.

NOTE
Many of the techniques shown here require administrative access, such as the ability to modify
tables in the mysql system database or use statements that require the SUPER privilege. For this
reason, to carry out the operations described here, you’ll likely need to connect to the server as
root rather than as cbuser.

22.1 Configuring the Server

Problem
You want to change the server settings and also verify that your changes
took effect.

Solution

To change settings, specify them at server startup or at runtime. To verify
the changes, examine the relevant system variables at runtime.

Discussion
The MySQL server places many configuration parameters under your
control. For example, resources that require memory can be adjusted up or
down to tailor resource usage. A heavily used server requires more
memory; a lightly used one, less. You can set command options and system
variables at server startup, and many system variables are settable at
runtime as well. You can also examine your settings at runtime to verify
that the configuration is as you intend.

Configuration control at server startup
To configure the server at startup time, specify options on the command line
or in an option file. The latter is usually preferable because you can specify
settings once and they’ll apply at each startup. (For background on using
command-line options and option files, see Recipe 1.4.)
Command option names typically use dashes, whereas system variable
names use underscores. However, the server is more permissive at startup
and recognizes command options and system variables written using dashes
or underscores interchangeably. For example, sql_mode and sql-mode
are equivalent on the command line or in an option file. This differs from
runtime, when references to system variables must be written using
underscores.
To specify server parameters in an option file, list them in the [mysqld]
group of a file the server reads. To illustrate, here are some parameters you
might set:

The default character set is utf8mb4 starting from MySQL 8.0. This
character set comes with utf8mb4_0900_ai_ci as the default
collation.
The default SQL mode is STRICT_TRANS_TABLES (after MySQL
5.7). To be more permissive by default, remove strict SQL mode, which

is not recommended.
The event scheduler is enabled by default after MySQL 8.0. If you plan
to use scheduled events (see Recipe 11.5), you must enable it on prior
releases.
For InnoDB engine, buffer pool size defaults to 128 MB, which is not
sufficient beyond development and testing. Consider increasing to a size
for running the dataset in memory.
Time zone is set to SYSTEM unless specified at startup. If you aren’t
intending to use SYSTEM time zone, you need to set it at startup by
setting --timezone= time zone_ name.

To implement these configuration ideas, write the [mysqld] group in
your option file like this:

[mysqld]
character_set_server=utf8mb4
sql_mode=STRICT_TRANS_TABLES
event_scheduler=1
innodb_buffer_pool_size=512M

Those are just suggestions; adjust the server configuration for your own
requirements. For information about plug-in and logging options in
particular, see Recipes 22.2 and 23.0.

Configuration control and verification at runtime
After the server starts, you can make runtime adjustments by changing
system variables using the SET statement:

SET GLOBAL var_name = value;

That statement sets the global value of var_name; that is, the value that
applies to all clients by default. Changes to the global value at runtime
require the SUPER privilege. Many system variables also have a session
value, which is the value specific to a particular client session. The session
value of a given variable is initialized from the global value when the client

connects, but the client can change it thereafter. For example, the database
administrator (DBA) might set the max connections at server startup:

[mysqld]
max_connections=1000

That sets the global value. A DBA with the SUPER privilege can change
the global value at runtime:

SET GLOBAL max_connections = 1000;

Each client that connects subsequently has its session variable initialized to
the same value but can change the value as it likes. A DBA may increase
this value for troubleshooting connectivity issues:

SET SESSION max_connections = 1000;

A SET statement that includes no GLOBAL or SESSION modifier changes
the session value, if there is one.
After MySQL 8.0, you can set and persist global variables. Many of the
global variables are dynamic and can be set at runtime. A PERSIST clause
will help set this value permanently even if the server is restarted without
saving to the configuration file:

SET PERSISTS max_connections = 1000;

SET PERSISTS_ONLY max_connections = 1000;

mysql> SELECT @@GLOBAL.max_connections;
+--------------------------+
| @@GLOBAL.max_connections |
+--------------------------+
| 1000 |
+--------------------------+

To reset persisted values, use the following:

RESET PERSIST;

RESET PERSIST max_connections;

There is alternative syntax for writing system variable references:

SET @@GLOBAL.var_name = value;
SET @@SESSION.var_name = value;

The @@ syntax is more flexible. It can be used in statements other than SET,
enabling you to retrieve or examine individual system variables:

mysql> SELECT @@GLOBAL.max_connections;
+--------------------------+
| @@GLOBAL.max_connections |
+--------------------------+
| 1000 |
+--------------------------+

References to system variables using @@ syntax with no GLOBAL. or
SESSION. modifier access the session value if there is one, or the global
value otherwise.
Other ways to access system variables include the SHOW VARIABLES
statement and selecting from the INFORMATION_SCHEMA
GLOBAL_VARIABLES and SESSION_VARIABLES tables.

If a setting exists only as a command option with no corresponding system
variable, you cannot check its value at runtime. Fortunately, such options
are rare. Nowadays, most new settings are created as system variables that
can be examined at runtime.

22.2 Managing the Plug-In Interface

Problem
You want to exploit the capabilities offered by certain server plug-ins.

Solution

Learn how to control the plug-in interface.

Discussion
MySQL supports the use of plug-ins that extend server capabilities. There
are plug-ins that implement storage engines, authentication methods,
password policy, PERFORMANCE_SCHEMA tables, and more. The server
enables you to specify which plug-ins to use so that you can load just those
you want, with no memory or processing overhead incurred for plug-ins
you don’t want.
This section provides the general background on controlling which plug-ins
the server loads. Discussion elsewhere describes specific plug-ins and what
they can do for you, including the authentication plug-ins (see Recipe 24.1)
and validate_ pass word (see Recipes 24.3 and 24.4).

The examples here refer to plug-in files using the .so (“shared object”)
filename suffix. If the suffix differs on your system, adjust the names
accordingly (for example, use .dll on Windows). If you don’t know the
name of a given plug-in file, look in the directory named by the
plugin_dir system variable, which is where the server expects to find
plug-in files. For example:

mysql> SELECT @@plugin_dir;
+------------------------------+
| @@plugin_dir |
+------------------------------+
| /usr/local/mysql/lib/plugin/ |
+------------------------------+

To see which plug-ins are installed, use SHOW PLUGINS or query the
INFORMA TION_ SCHEMA PLUGINS table.

NOTE
Some plug-ins are built in, need not be enabled explicitly, and cannot be disabled. The
mysql_native_password and sha256_password authentication plug-ins fall into this
category.

Plug-in control at server startup
To install a plug-in only for a given server invocation, use the --plugin-
load-add option at server startup, naming the file that contains the plug-
in. To name multiple plug-ins as the option value, separate them with
semicolons. Alternatively, use the option multiple times, with each instance
naming a single plug-in. That makes it easy to enable or disable individual
plug-ins by using the # character to selectively comment the corresponding
lines:

[mysqld]
plugin-load-add=caching_sha2_password.so
plugin-load-add=adt_null.so
#plugin-load-add=semisync_master.so
#plugin-load-add=semisync_slave.so

The --plugin-load-add option was introduced in MySQL 5.6. In
MySQL 8.0, you can use a single --plugin-load option that names all
the plug-ins to be loaded in a semicolon-separated list:

[mysqld]
plugin-load=validate_password.so;caching_sha2_password.so

Clearly, for dealing with more than one plug-in, --plugin-load-add is
superior for ease of administration.

Plug-in control at runtime
To install a plug-in at runtime and make it persistent, use INSTALL
PLUGIN. The server loads the plug-in (which becomes available
immediately) and registers it in the mysql.plugin system table to cause
it to load automatically for subsequent restarts. For example:

INSTALL PLUGIN caching_sha2_password SONAME
'caching_sha2_password.so';

The SONAME (“shared object name”) clause specifies the file that contains
the plug-in.
To disable a plug-in at runtime, use UNINSTALL PLUGIN. The server
unloads the plug-in and removes its registration from the mysql.plugin
table:

UNINSTALL PLUGIN caching_sha2_password;

INSTALL PLUGIN and UNINSTALL PLUGIN require the INSERT and
DELETE privilege, respectively, for the mysql.plugin table.

22.3 Controlling Server Logging

Problem
You want to take advantage of log information the server can provide.

Solution
Learn the server options that control logging.

Discussion
The MySQL server can produce several logs:

The error log
The error log contains information about problems or exceptional
conditions the server encounters. This is useful information for
debugging. In particular, if the server exits, check the error log for the
reason. For example, if an exit occurs immediately after startup, it’s
likely that some setting in the server option file is misspelled or was set
to an invalid value. The error log will contain a message to that effect.

The general query log
The general query log indicates when each client connected and
disconnected and what SQL statements it executed. This tells you how
much and what activity each client is engaged in.

The slow query log
The slow query log records statements that took a long time to execute
(see the MySQL Reference Manual for the meaning of “a long time”
because it can be influenced by several options). Queries that appear
repeatedly in this log may be bottlenecks worth investigating to see
whether they can be made more efficient.

The binary log
The binary log contains a record of data changes made by the server. To
set up replication, you must enable the binary log on the source server:
it serves as the storage medium for changes to be sent to replica servers.
The binary log is also used, together with backup files, during data
recovery operations.

Each log serves a different purpose, and most can be turned on at your
discretion, enabling you to use those that suit your administrative
requirements. Each log can be written to a file, and some can be written to
other destinations. The error log can be sent to your terminal or to the
syslog facility. The general and slow query logs can be written to a file,
to a table in the mysql database, or both.

To control server logging, add lines to your server option file that specify
the desired types of logging. (Some settings can also be changed at
runtime.) For example, the following lines in a server option file send the
error log to the err.log file in the data directory, enable writing the general
query and slow query logs to tables in the mysql database, and enable
writing the binary log to the /var/mysql-logs directory using files having
names beginning with binlog:

[mysqld]
log_error=err.log

https://oreil.ly/u0ta9

log_output=TABLE
general_log=1
slow_query_log=1
log-bin=/var/mysql-logs/binlog

For filenames in options that produce log output to files, logfiles are written
under the data directory unless specified using full pathnames. The usual
reason to use full pathnames is to write logfiles to a filesystem different
from the one containing the data directory, which is a useful technique for
dividing disk space use and I/O activity among physical devices.
The rest of this section provides details specific to controlling individual
logs. The examples show the lines to include in your server option file to
produce specific logging behavior. For some ideas about using the logs for
diagnostic or activity assessment purposes, see Recipe 22.6.

WARNING
For any log that you enable, see also Recipes 22.4 and 22.5 for log maintenance techniques. Logs
increase in size over time, so you’ll want to have a plan for managing them.

The error log
The error log cannot be disabled, but you can control where it’s written. By
default, on Unix, the error output goes to your terminal or to
host_name.err in the data directory if you start the server using
mysqld_safe. On Windows, the default is host_name.err in the data
directory. To specify the error log filename, set the log_error system
variable.
Examples:

Write the error log to the err.log file in the data directory:

[mysqld]
log_error=err.log

As of MySQL 5.7.2, you can influence the amount of error log output by
setting the log_error_verbosity system variable. Permitted
values range from 1 (errors only) to 3 (errors, warnings, notes; the
default). To see errors only, do this:

[mysqld]
log_error=err.log
log_error_verbosity=1

On Unix, if you start the server using mysqld_safe, it’s possible to
redirect the error log to the syslog facility:

[mysqld_safe]
syslog

The general query and slow query logs
Several system variables control the general query and slow query logs.
Each variable can be set at server startup or changed at runtime:

log_output controls the log destinations. The value is FILE (log to
files, the default), TABLE (log to tables), NONE (disable logging), or a
comma-separated combination of values, in any order. NONE overrides
any other value. If the value is NONE, other settings for these logs have
no effect. Destination control applies to the general query and slow
query logs together; you cannot write one to a file and the other to a
table.
general_log and slow_query_log enable or disable the
respective logs. By default, each log is disabled. If you enable either of
them, the server writes the log to the destinations specified by
log_output, unless that variable is NONE.

general_log_file and slow_query_log_file specify log
filenames. The default names are host_name.log and host_name-
slow.log; however, these settings have no effect unless log_output
specifies FILE logging.

Examples:

Write the general query log to the query.log file in the data directory:

[mysqld]
log_output=FILE
general_log=1
general_log_file=query.log

Write the general and slow query logs to tables in the mysql database
(the table names are general_log and slow_log and cannot be
changed):

[mysqld]
log_output=TABLE
general_log=1
slow_query_log=1

Write the general query log to a file named query.log and to the
general_log table:

[mysqld]
log_output=FILE,TABLE
general_log=1
general_log_file=query.log

The binary log
Prior to MySQL 8, binary logging was disabled by default. To enable the
binary log, use the --log-bin option, optionally specifying the logfile
basename as the option value. To disable binary logging in MySQL 8.0, you
can use the --skip-log-bin option or the --disable-log-bin
option. The default basename is binlog. The value for this option is a
basename because the server creates binary logfiles in numbered sequence,
automatically adding to the basename suffixes of .000001, .000002, and so
forth. The server advances to the next file in the sequence when it starts,
when the logs are flushed, and when the current file reaches the maximum
logfile size (controlled by the max_binlog_size system variable). In
MySQL 8.0, expire_logs_days is deprecated and replaced with
binlog_expire_logs_seconds. To have the server expire logfiles

for you, set the binlog_expire_logs_seconds system variable to
the age in seconds at which files become eligible for removal. The default
value for binlog_expire_logs_seconds is 30 days (30 * 24 * 60 * 60
seconds). To disable automatic purging of binary logs, set
binlog_expire_logs_seconds to 0.
Examples:

Enable the binary log, writing numbered files in the data directory
having names beginning with binlog. Additionally, expire logfiles after a
week:

[mysqld]
max_binlog_size=4G
binlog_expire_logs_seconds=604800

The binary log is an essential component for the MySQL server, and the
administrator needs to approach it carefully. Binary logs contain events for
all data changes and hence are used for the following areas:

Replication setup
Point-in-time recovery
Debugging a specific event

22.4 Rotating or Expiring Logfiles

Problem
Files used for logging grow indefinitely unless managed.

Solution
Available strategies for managing log files include rotating a logfile through
a set of names and expiring files by age. But different strategies apply to
different logs, so consider the log type before choosing a strategy.

Discussion
Logfile rotation is a technique that renames a logfile through a series of one
or more names. This maintains the file for a certain number of rotations, at
which point it reaches the end of the sequence and its contents are discarded
by being overwritten. Rotation can be applied to the error log, general query
log, or slow query log.
Logfile expiration removes files when they reach a certain age. This
technique applies to the binary log.
Both log management methods rely on log flushing to make sure that the
current logfile has been closed properly. When you flush the logs, the server
closes and reopens whichever of the files it is writing. If you rename the
error, general query, or slow query logfile first, the server closes the current
file and reopens a new one using the original name; this is what enables
rotation of the current file while the server runs. The server also closes the
current binary logfile and opens a new one with the next number in the
sequence.
To flush the server logs, execute a FLUSH LOGS statement or use the
mysqladmin flush-logs command. (Log flushing requires the
RELOAD privilege.) The following discussion shows maintenance
operations as performed at the command line, so it uses mysqladmin. The
examples use mv as the file renaming command, which is applicable on
Unix. On Windows, use rename instead.

Rotating the error, general query, or slow query log
To maintain a single file in a log rotation, rename the current logfile and
flush the logs. Suppose that the error logfile is named err.log in the data
directory. To rotate it, change location to the data directory, then execute
these commands:

$ mv err.log err.log.old
$ mysqladmin flush-logs

When you flush the logs, the server opens a new err.log file. You can
remove err.log.old at your leisure. To maintain an archive copy, include it in
your filesystem backups before removing it.
To maintain a set of multiple rotated files, it’s convenient to use a sequence
of numbered suffixes. For example, to maintain a set of three old general
query logfiles, do this:

$ mv query.log.2 query.log.3
$ mv query.log.1 query.log.2
$ mv query.log query.log.1
$ mysqladmin flush-logs

The first few times you execute the command sequence, the initial
commands are unneeded until the respective query.log.N files exist.

Successive executions of that command sequence rotate query.log through
the names query.log.1, query.log.2, and query.log.3; then query.log.3 is
overwritten and its contents lost. To maintain an archive copy, include the
rotated files in your filesystem backups before removing them.

Rotating the binary log
The server creates binary logfiles in numbered sequence. To expire them,
you need only arrange that it removes files when they’re old enough.
Several factors affect how many files the server creates and maintains:

The frequency of server restarts and log flushing operations: one new
file is generated each time either of those occurs.
The size to which files can grow: larger sizes lead to fewer files. To
control this size, set the max_binlog_size system variable.

How old files are permitted to become: longer expiration times lead to
more files. To control this age, set the
binlog_expire_logs_seconds system variable. The server
makes expiration checks at server startup and when it opens a new
binary logfile.

The following settings enable the binary log, set the maximum file size to
4GB, and expire files after four days:

[mysqld]
log-bin=binlog
max_binlog_size=4G
binlog_expire_logs_seconds=4

You can also remove binary logfiles manually with the PURGE BINARY
LOGS statement. For example, to remove all files up to and including the
one named binlog.001028, do this:

PURGE BINARY LOGS TO 'binlog.001028';

If your server is a replication source, don’t be too aggressive about
removing binary logfiles. No file should be removed until you’re certain its
contents have been completely transmitted to all replicas.

Automating logfile rotation
To make it easier to perform a rotation operation, put the commands that
implement it in a file to create a shell script. To perform the rotation
automatically, arrange to execute the script from a job scheduler such as
cron. The script will need to access connection parameters that enable it to
connect to the server to flush the logs, using an account that has the
RELOAD privilege. One strategy is to put the parameters in an option file
and pass the file to mysqladmin using a --defaults-
file=file_name option, for example:

#!/bin/sh
mv err.log err.log.old
mysqladmin --defaults-file=/usr/local/mysql/data/flush-opts.cnf
flush-logs

22.5 Rotating Log Tables or Expiring Log
Table Rows

Problem
Tables used for logging grow indefinitely unless managed.

Solution
Rotate the tables or expire rows within them.

Discussion
Recipe 22.4 discussed rotation and expiration of logfiles. Analogous
techniques apply to log tables:

To rotate a log table, rename it and open a new table with the original
name.
To expire log table contents, remove rows older than a certain age.

The examples here demonstrate how to implement these methods using the
general query log table, mysql.general_log. The same methods apply
to the slow query log table, mysql.slow_log, or to any other table
containing rows that have a timestamp.
To employ log table rotation, create an empty copy of the original table to
serve as the new table (see Recipe 6.1), then rename the original table and
rename the new one to take its place:

DROP TABLE IF EXISTS mysql.general_log_old,
mysql.general_log_new;
CREATE TABLE mysql.general_log_new LIKE mysql.general_log;
RENAME TABLE mysql.general_log TO mysql.general_log_old,
 mysql.general_log_new TO mysql.general_log;

To employ log row expiration, you can either empty the table completely or
selectively:

To empty a log table completely, truncate it:

TRUNCATE TABLE mysql.general_log;

To expire a table selectively, removing only rows older than a given age,
you must know the name of the column that indicates row-creation time:

DELETE FROM mysql.general_log WHERE event_time < NOW() -
INTERVAL 1 WEEK;

For automatic expiration, the statements for any of the techniques just
described can be executed within a scheduled event (see Recipe 11.5), for
example:

CREATE EVENT expire_general_log
 ON SCHEDULE EVERY 1 WEEK
 DO DELETE FROM mysql.general_log
 WHERE event_time < NOW() - INTERVAL 1 WEEK;

22.6 Configuring Storage Engines

Problem
You want to make sure the engine of your choice is configured properly.

Solution
Understand and configure each storage engine according to its use case.

Discussion
MySQL comes with several storage engines by default, such as MyISAM
and InnoDB. MySQL 8.0 and onward use InnoDB as the default database
engine. Along with this popular storage engine, there are some others you
might want to explore. Each of these storage engine will use shared
resources as well as dedicated resources from the operating system. Care
must be taken not to give too many resources while mixing and matching:

InnoDB
Supports transactions and row-level locking with full ACID (atomicity,
consistency, isolation, durability) compliancy engine.

MyISAM
Table-level locking and simple engine.

MyRocks
LSM-based B-tree key/value storage engine.1

CSV
Comma-separated values engine.

Blackhole
All writes are sent to /dev/null no data storage engine.

Memory
Optimized for in-memory workload storage engine.

Archive
Write-only engine for archival data in compressed format storage
engine.

WARNING
Using multiple storage engines at the same time can cause issues and may lead to data loss if used
in the same transaction. Also, be careful about the compatibility of your application and tooling
around it.

As each of the previously mentioned engines store data differently, we must
configure them accordingly. InnoDB utilizes redo and undo log spaces for
modified data. This allows both recovery and point-in-time restore with
minimal data loss in the event of hardware or server failures. MyRocks is
another advanced storage engine that writes to recovery log Write Ahead
Log (WAL) first and supports rollback for each transaction. MyISAM and
CSV-type storage engines write directly to datafiles. While it’s easier to
make binary backups and transport them, these engines will not support
rollback operations.

To check the default storage engine using MySQL 8.0, do the following:

mysql> SELECT @@default_storage_engine;
+--------------------------+
| @@default_storage_engine |
+--------------------------+
| InnoDB |
+--------------------------+

We can see the table storage engine type by checking the schema definition:

mysql> SHOW CREATE TABLE limbs\G
 Table: limbs
Create Table: CREATE TABLE `limbs` (
 `thing` varchar(20) DEFAULT NULL,
 `legs` int DEFAULT NULL,
 `arms` int DEFAULT NULL,
 PRIMARY KEY(thing)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci

If you want to change the storage engine type after you’ve created the table,
issue an ALTER statement:

mysql> ALTER TABLE cookbook.limbs ENGINE=MYISAM;
Query OK, 11 rows affected (0.16 sec)
Records: 11 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE limbs\G
*************************** 1. row ***************************
 Table: limbs
Create Table: CREATE TABLE `limbs` (
 `thing` varchar(20) DEFAULT NULL,
 `legs` int DEFAULT NULL,
 `arms` int DEFAULT NULL,
 PRIMARY KEY(thing)
) ENGINE=MyISAM DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

NOTE
While you can swap between storage engines after a table has been created and data loaded, the
ALTER TABLE operation locks for all storage engines. For large datasets, consider utilizing online
schema change utilities such as pt-online-schema-change or gh-ost. These tools allow schema
migrations to complete without creating a metadata lock, and apply changes in a controlled way.

Other storage engine settings can be checked as follows:

mysql> SHOW GLOBAL VARIABLES LIKE "%engine%" ;
+---------------------------------+---------------+
| Variable_name | Value |
+---------------------------------+---------------+
default_storage_engine	InnoDB
default_tmp_storage_engine	InnoDB
disabled_storage_engines	
internal_tmp_mem_storage_engine	TempTable
secondary_engine_cost_threshold	100000.000000
+---------------------------------+---------------+

The third-party storage engine via Percona and MariaDB is designed to handle write-intensive
workloads with space-saving benefits.

1

https://oreil.ly/pNiVP
https://github.com/github/gh-ost

Chapter 23. Monitoring the
MySQL Server

23.0 Introduction
This chapter covers how to monitor the MySQL server using various
command-line tools:

The mysqladmin interface

System variables
Status variables
Information and Performance Schemas
Storage engines diagnostics
Logfiles

This chapter doesn’t cover managing administrative tasks. Instead, it focuses
on the server’s observability. Administrators or developers should evaluate
outcomes from various command-line tools on the MySQL server carefully
before taking action and modifying configuration changes listed in
Chapter 22. Rather, this chapter discusses what you can find out, and how,
by surveying the types of information available and how to use that
information to answer questions. The purpose is not so much to consider
specific monitoring problems, but to illustrate your options so you can begin
to answer your questions, whatever they are. In the case of reactive
monitoring on an issue, follow one of the following options:

1. Determine which of the available information sources pertain to the
problem at hand.

2. Choose an approach for using the information: Are you asking a one-
time question? If so, maybe a few interactive queries are sufficient. If
you’re trying to solve an issue that may recur or for which you need
continuous monitoring, a program-oriented approach is better. Will a

script written entirely in SQL do the job, or do you need to write a
program that queries the server and performs additional manipulation
of the information obtained? (This is typical for operations that cannot
be done in pure SQL, that have special output formatting requirements,
and so forth.) If a task must run periodically, you may need to set up a
scheduled event or cron job. For browser display, write a web script.

NOTE
Some of the techniques shown here require administrative access, such as accessing log files in
operating system MySQL or using statements that require the SUPER privilege. For this reason, to
carry out the operations described here, you’ll likely need to connect to the server as root rather
than as cbuser, or grant SUPER to cbuser. MySQL installation created a “root'@'localhost”
superuser account that has all privileges the database user has.

23.1 Why Monitor the MySQL Server?

Problem
You want to monitor the server to capture its state, which allows you to
verify or change settings explained in Chapter 22. Knowing the state of the
MySQL server’s wait events and status counters reveals so much
information about the server limits. Wait events are performance indicators
of the server. Monitoring can be utilized in two different areas. The most
common reasons for monitoring are troubleshooting errors, crashes, and
failures. The others may include better utilization of the hardware layer used
for available resources such as memory, I/O subsystem, CPU utilization, and
network bandwidth. Due to hardware limitations, MySQL can suffer
significant degradation in performance; hence, hardware plays an important
role in database operations.

Solution

To monitor the MySQL server, use the built-in functionality of MySQL
client with the power of other built-in tools like mysqladmin.

Discussion
As your MySQL server runs, you want to learn if the underlying hardware is
performing well for your needs.

Operating System
Before getting into MySQL-specific monitoring and troubleshooting, it’s
recommended that you verify Operating System (OS) vitals accordingly.
Four main categories—memory, input/output (I/O), CPU, and network
resources—can have a major impact on MySQL’s operational behavior.

Memory utilization
The memory utilization of mysqld can be checked via the OS command line.
It’s essential to have a dedicated MySQL host for each server; hence, there’s
no race for OS resources, including memory. The rule of thumb is to have up
to 80% of your memory allocated for a dedicated MySQL server, but you
must check your workload and data size to calculate the memory needed:

$ sudo pmap $(pidof mysqld) |grep total
 total 1292476K

You can confirm this via the sys schema using mysql client:

mysql> USE sys
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> SELECT * FROM memory_global_total;
+-----------------+
| total_allocated |
+-----------------+
| 476.81 MiB |
+-----------------+
1 row in set (0.00 sec)

Also watch out for virtual memory utilization, and make sure your host OS
is not swapping in the first place:

$ free -m
 total used free shared
buff/cache available
Mem: 1993 453 755 5
784 1382
Swap: 979 0 979

$ cat /proc/$(pidof mysqld)/status | grep Swap
VmSwap: 0 kB

The following OS configuration regarding memory utilization is crucial to
MySQL’s memory allocation. Make sure these have been configured
accordingly:

Swappiness
This is the concept of allowing physical memory to be moved to a swap
area by the kernel. It’s recommended to set this value to 1 and hence
allow the kernel to perform the minimum amount of swapping:

$ sudo sysctl vm.swappiness=1
vm.swappiness = 1

Non-uniform memory access (NUMA)
This is the concept of balancing memory between each CPU core.
MySQL 8 supports enabling NUMA interleaved mode when multiple
cores are available. This value is OFF by default. Enabling NUMA to
interleave the mode operating system allows allocated memory to be
balanced among the CPU cores for better utilization:

mysql> SHOW GLOBAL VARIABLES LIKE "innodb_numa_interleave";
+------------------------+-------+
| Variable_name | Value |
+------------------------+-------+
| innodb_numa_interleave | ON |
+------------------------+-------+
1 row in set (0.00 sec)

https://oreil.ly/AjD80

OOM killer
In Linux systems, MySQL generally has a concept called out of memory
killer controlled by the kernel. This is to prevent possible runaway
processes in operating systems to avoid race conditions and a server
crash. Since MySQL and its optimized memory buffers are memory
hogs, the operating system may often kill the mysqld process to avert a
system-wide crash if not adjusted. As we mentioned earlier, we can
control how much memory MySQL should allocate from the operating
system. Still, if OOM kicks in, it’s possible to configure on the system
level or disable it altogether (not recommended):

$ pidof mysqld
25046
$ sudo cat /proc/25046/oom_score
34
$ sudo echo -100 > /proc/24633/oom_score_adj
$ sudo cat /proc/24633/oom_score
0

File system cache
Operating systems use caches for all memory operations, whereas
MySQL has its own optimized caches, including the InnoDB Buffer
Pool. Since there is no need to cache data twice, we opt out of using the
file system cache by setting innodb_flush_method to O_DIRECT; in
addition, its value needs to be changed at startup:

mysql> SHOW GLOBAL VARIABLES LIKE "innodb_flush_method";
+---------------------+-------+
| Variable_name | Value |
+---------------------+-------+
| innodb_flush_method | fsync |
+---------------------+-------+
1 row in set (0.00 sec)

WARNING
While the O_DIRECT flush method works with most installations, it does not work well with
all storages subsystems. You may need to test it before setting this value.

I/O utilization
I/O performance is vital for the MySQL database. The data that is read from
database (aka SELECT statements) and is written back to data (UPDATE,
INSERT, DELETE statements) causes input/output operation to happen to
disks (aka physical storage). Depending on the available buffers’ sizes, all
the data processed within buffers will eventually be flushed to a disk, which
is a very costly operation in terms of data transfer. Although the data is
cached, it has to be flushed to the disk regularly. Also, large datasets that
don’t fit in the memory will have to be read from disks. In modern hardware,
Solid State Disks (SSD) offer better performance, but it’s beneficial to know
where the underlying bottlenecks are. You can use iotop to observe the I/O
impact per process on the system; hence, you can drill down into each
method for a specific operation.

NOTE
You can use the iotop utility interactively to monitor I/O operations. In this example, we see disk
activity for one of the MySQL threads.

$ sudo iotop --only
Total DISK READ : 2.93 M/s | Total DISK WRITE : 9.24 M/s
Actual DISK READ: 2.93 M/s | Actual DISK WRITE: 12.01 M/s
TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND
10692 be/4 vagrant 0.00 B/s 0.00 B/s 0.00 % 56.11 % mysqld --
defaults-file=/home/sandboxes
~-socket=/tmp/mysql_sandbox8021.sock --port=8021
10684 be/4 vagrant 0.00 B/s 0.00 B/s 0.00 % 53.33 % mysqld --
defaults-file=/home/sandboxes
~-socket=/tmp/mysql_sandbox8021.sock --port=8021
10688 be/4 vagrant 0.00 B/s 6.96 M/s 0.00 % 30.12 % mysqld --
defaults-file=/home/sandboxes
~-socket=/tmp/mysql_sandbox8021.sock --port=8021
10685 be/4 vagrant 0.00 B/s 0.00 B/s 0.00 % 26.89 % mysqld --

defaults-file=/home/sandboxes
~-socket=/tmp/mysql_sandbox8021.sock --port=8021
 ...

In the meantime, we can check the process list from the MySQL command-
line interface to see what’s taking priority over other threads:

mysql> SELECT THREAD_OS_ID, PROCESSLIST_ID, PROCESSLIST_USER,
 -> PROCESSLIST_DB, PROCESSLIST_COMMAND
 -> FROM performance_schema.threads WHERE PROCESSLIST_COMMAND
IS NOT NULL;
+-------+-----+----------+--------------------+---------+
| TOSID | PID | PUSR | PDB | PCMD |
+-------+-----+----------+--------------------+---------+
1964	5	NULL	NULL	Sleep
1968	7	NULL	NULL	Daemon
1971	8	msandbox	performance_schema	Query
2003	9	root	test	Execute
2002	10	root	test	Execute
2004	11	root	test	Execute
2001	12	root	test	Execute
2000	13	root	test	Execute
+-------+-----+----------+--------------------+---------+
8 rows in set (0.00 sec)

We can pinpoint the process id to identify details about the query for this
example:

mysql> EXPLAIN FOR CONNECTION 10\G
*************************** 1. row ***************************
 id: 1
 select_type: INSERT
 table: sbtest25
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 filtered: NULL
 Extra: NULL
1 row in set (0.00 sec)

We can also gather further information about this thread from
performance_schema by querying

table_io_waits_summary_by_table, which aggregates all table
I/O wait events, as generated by the wait/io/table/sql/handler
instrument.
The table_io_waits_summary_by_table table has the following
columns to indicate how the table aggregates events: OBJECT_TYPE,
OBJECT_SCHEMA, and OBJECT_NAME. These columns have the same
meaning as in the events_waits_current table. They identify the
table to which the row applies. This table also contains information about
the following groups:

COUNT_*

How many times a user requested reads/writes/waits from this table.

SUM_*

How many reads/writes in total requests from this table.

MIN_*/MAX_*/AVG_*

Minimum, maximum, and average values for this table:

 mysql> SELECT * FROM
performance_schema.table_io_waits_summary_by_table
 -> WHERE object_schema='test' AND object_name='sbtest25'\G
*************************** 1. row ***************************
 OBJECT_TYPE: TABLE
 OBJECT_SCHEMA: test
 OBJECT_NAME: sbtest25
 COUNT_STAR: 3200367
 SUM_TIMER_WAIT: 1970633326256
 MIN_TIMER_WAIT: 1505980
 AVG_TIMER_WAIT: 615412
 MAX_TIMER_WAIT: 2759234856
 COUNT_READ: 3200367
 SUM_TIMER_READ: 1970633326256
 MIN_TIMER_READ: 1505980
 AVG_TIMER_READ: 615412
 MAX_TIMER_READ: 2759234856
 COUNT_WRITE: 0
 SUM_TIMER_WRITE: 0
 MIN_TIMER_WRITE: 0
 AVG_TIMER_WRITE: 0
 MAX_TIMER_WRITE: 0
 COUNT_FETCH: 3200367

 SUM_TIMER_FETCH: 1970633326256
 MIN_TIMER_FETCH: 1505980
 AVG_TIMER_FETCH: 615412
 MAX_TIMER_FETCH: 2759234856
 COUNT_INSERT: 0
...

This table is also used by the schema_table_statistics% views in
sys schema. (For further reading, please refer to the documentation at
“table_io_waits_summary_by_table”):

mysql> SELECT * FROM sys.schema_table_statistics
 -> WHERE table_schema="test" AND table_name="sbtest23"\G
*************************** 1. row ***************************
 table_schema: test
 table_name: sbtest23
 total_latency: 14.46 s
 rows_fetched: 8389964
 fetch_latency: 14.46 s
 rows_inserted: 0
 insert_latency: 0 ps
 rows_updated: 0
 update_latency: 0 ps
 rows_deleted: 0
 delete_latency: 0 ps
 io_read_requests: 3006
 io_read: 46.97 MiB
 io_read_latency: 19.48 ms
io_write_requests: 737
 io_write: 11.61 MiB
 io_write_latency: 21.09 ms
 io_misc_requests: 284
 io_misc_latency: 1.72 s
1 row in set (0.01 sec)

Network utilization
The network is also a very important part of database configuration. Often,
test and development systems run on local configuration, which omits
network hops between the nodes. If MySQL is running on a dedicated host,
all requests to the database will be coming via the application layer or proxy
server. Since monitoring requires continuous data flow, it’s better to utilize a
tool that has at least 30 days’ worth of time-series, historical data to analyze.

https://oreil.ly/58LW4

For this, we highly recommend Percona Monitoring and Management
(PMM) for monitoring network utilization, as shown in Figure 23-1.

Figure 23-1. Percona Monitoring and Management—MySQL instance summary

23.2 Discovering Sources of MySQL
Monitoring Information

Problem
You want to check how the server is operating with the available resources.

Solution
Let the server tell you about itself using built-in utilities.

Discussion
As your MySQL server runs, you’ll have questions about aspects of its
operation or performance. Or maybe it’s not running and you want to know
why.

https://oreil.ly/PtQg0

To find out what information sources are available so that you can evaluate
which are applicable and how usable they are for particular questions, here
are a few built-in utilities and information resources to check:

System variables tell you how the server is configured. (Recipe 22.1
covers how to check these values.)
Status variables provide information about operations the server is
performing, such as the number of statements executed, number of disk
accesses, memory use, or cache efficiency. Status information can help
indicate when configuration changes are needed, such as increasing the
size of a too-small buffer to improve performance, or decreasing the size
of an underused resource to reduce the server’s memory footprint.
The Performance Schema is designed for monitoring and provides a
wealth of measurements, from high-level information such as which
clients are connected, down to fine-grained information, such as which
locks a statement holds or which files it has open. The Performance
Schema is enabled by default since MySQL 5.7. To use the Performance
Schema in prior versions, you must enable it. To enable it explicitly at
server startup, use this configuration setting:

[mysqld]
performance_schema=1

Performance Schema focuses on the performance data of the
MySQL server and can be used similarly for highly specific or complex
queries, including joins. It also helps to clarify everything at runtime:

mysql> SELECT EVENT_NAME, COUNT_STAR
 -> FROM
performance_schema.events_waits_summary_global_by_event_name
 -> ORDER BY COUNT_STAR DESC LIMIT 10;
+---------------------------------------+------------+
| EVENT_NAME | COUNT_STAR |
+---------------------------------------+------------+
wait/io/file/innodb/innodb_log_file	6439
wait/io/file/innodb/innodb_data_file	5994
idle	5309
wait/io/table/sql/handler	3263
wait/io/file/innodb/innodb_dblwr_file	1356

wait/io/file/sql/binlog	798
wait/lock/table/sql/handler	683
wait/io/file/innodb/innodb_temp_file	471
wait/io/file/sql/io_cache	203
wait/io/file/sql/binlog_index	75
+---------------------------------------+------------+
10 rows in set (0.16 sec)

Sys schema is a unique schema that does not contain physical tables but
contains views and stored routines over Performance Schema
tables. Performance Schema provides memory instrumentation
information that can be accessed much more easily by using views in sys
schema. For memory usage, it is much easier to use sys schema;
therefore, we recommend using five views that provide memory
allocation details:

mysql> SHOW TABLES like "memory%";
+-----------------------------------+
| Tables_in_sys (memory%) |
+-----------------------------------+
| memory_by_host_by_current_bytes |
| memory_by_thread_by_current_bytes |
| memory_by_user_by_current_bytes |
| memory_global_by_current_bytes |
| memory_global_total |
+-----------------------------------+
5 rows in set (0.00 sec)

SHOW statements and tables in the PERFORMANCE_SCHEMA database
provide information ranging from processes running in the server to
active storage engines and plug-ins to system and status variables. In
many cases, these two sources provide the same or similar information
but in different display formats. (For example, the SHOW PLUGINS
statement and the PLUGINS table are related.) Familiarity with both
sources helps you choose which is more usable in a given situation:
— For interactive use, SHOW is often more convenient because it
involves less typing than PERFORMANCE_SCHEMA queries. Compare
these two statements, which produce the same result:

SHOW GLOBAL STATUS LIKE 'Threads_connected';

SELECT VARIABLE_VALUE FROM PERFORMANCE_SCHEMA.GLOBAL_STATUS
WHERE VARIABLE_NAME = 'Threads_connected';

— INFORMATION_SCHEMA queries use SELECT, which is more
expressive than SHOW and can be used for highly specific or complex
queries, including joins:

SELECT t.table_schema, t.table_name, c.column_name
 FROM information_schema.tables t,
 information_schema.columns c
 WHERE t.table_schema = c.table_schema
 AND t.table_name = c.table_name
 AND t.engine='InnoDB';

— SHOW output cannot be saved using only SQL. Should you require
further processing of a PERFORMANCE_SCHEMA query result, you can
use INSERT INTO…SELECT to save the results in a table for further
analysis (see Recipe 6.2). To obtain an individual value, assign a scalar
subquery result to a variable:

mysql> SET @queries =
 -> (SELECT VARIABLE_VALUE FROM
PERFORMANCE_SCHEMA.GLOBAL_STATUS
 -> WHERE VARIABLE_NAME = 'Queries');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @queries;
+----------+
| @queries |
+----------+
| 5338 |
+----------+
1 row in set (0.00 sec)

Some storage engines make information available about themselves.
InnoDB, for example, has its own system and status variables. It also
provides its own INFORMATION_SCHEMA tables and a set of InnoDB
Monitors. The INFORMATION_SCHEMA tables provide more structured
information and are thus more amenable to analysis using SQL, if they
contain the information you want. To see which InnoDB-related tables
are available, use this statement:

SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'innodb%';

The Monitors produce unstructured output. You can eyeball it, but for
programmatic use, you must parse or extract the information somehow.
In some cases, a simple grep command might suffice:

$ mysql -E -e "SHOW ENGINE INNODB STATUS" | grep "Free buffers"
Free buffers 4733

Server logs provide several types of information. Here are some
suggestions for using them:
— The error log alerts you to severe problems the server encounters. It’s
most suited to visual inspection because messages can originate from
anywhere in the server, and there is no fixed format to aid programmatic
analysis. It’s often only the last part of the file that’s of interest anyway,
because you typically check this file to find the reason for the most recent
problems. These problems may include a corrupted table causing a crash
or may even be related to mysql_upgrade not being run, causing
further issues.
— The general query log indicates what queries clients are running. It
can aid in assessing the nature of the server’s workload. It is the only log
that captures everything; hence, care must be taken when enabling this
log. Depending on the server’s activity, it may fill up disk space quickly
and cause very heavy I/O, making things worse while monitoring
MySQL. A suggestion is to enable it online when needed and disable
afterward.
— The slow log contains queries that may be inefficient. It can help you
find candidates for optimization.
The server is able to write the general query and slow query logs to files,
tables, or both. Log tables facilitate analysis better than the files; they are
more structured and hence are subject to analysis using SQL statements.
The contents are also easier to interpret. Each query row in the
general_log table shows the user associated with it. With the logfile,
users are named only on connection lines. To identify a user’s queries,

you must extract the connection ID from the connection line and look for
subsequent query lines with the same ID.
In addition, log tables are managed by the CSV storage engine, so the
table datafiles are written in comma-separated values format. Look in the
mysql directory under the server’s data directory for files named
general_log.CSV and slow_log.CSV. You can process them with tools
that read CSV files.
To get information from a log, it must be enabled (see Recipe 22.3 for
instructions).
The EXPLAIN statement can be useful for checking long-running
queries. Although EXPLAIN is most often used to see execution plans for
prospective queries, MySQL 5.7.2 and up has the capability of using
EXPLAIN to examine queries currently executing in other sessions. If a
query seems to be stuck, this may help you understand why. Use SHOW
PROCESSLIST or the INFORMATION_SCHEMA PROCESSLIST table
to determine the connection ID of the session running the problem query,
then point EXPLAIN at it:

EXPLAIN FOR CONNECTION connection_id;

EXPLAIN can produce output in tabular, tree, or JSON format. The latter
can be parsed and manipulated by standard JSON modules in your
programming language of choice.

23.3 Checking Server Uptime and Progress

Problem
You want to know if the server is running, and if so, how long it has been
up.

Solution

Use mysqladmin and MySQL CLI utilities to find out if it’s up.

Discussion
To tell whether the server is running, just try connecting to it. If the
connection succeeds or you get an error that’s from the server itself, the
server is up. mysqladmin ping is a good choice here for interactive use
or from within shell scripts. This result indicates the server is running,
although you should be alerted by the monitoring system that the server is
down:

$ mysqladmin ping
mysqld is alive

This connection attempt fails, but the server itself returns the second error
message, so it’s not down:

$ mysqladmin -u baduser ping
mysqladmin: connect to server at '127.0.0.1' failed
error: 'Access denied for user 'baduser'@'localhost' (using
password: YES)'

This result indicates a complete connection failure; the server is down:

$ mysqladmin ping
mysqladmin: connect to server at '127.0.0.1' failed
error: 'Can't connect to MySQL server on '127.0.0.1' (61)'

If the server is not up, check the error log to find out why.
If the server is up, its uptime (in seconds) can be determined multiple ways:

Use mysqladmin status:

$ mysqladmin status
Uptime: 22158655 Threads: 2 Questions: 65733141 Slow
queries: 34
Opens: 6570 Flush tables: 1 Open tables: 95 Queries per
second
avg: 2.966

A disadvantage of this approach for programmatic use is that you must
parse the output to extract the value of interest.
Examine the Uptime status variable:

mysql> SHOW GLOBAL STATUS LIKE 'Uptime';
+---------------+---------+
| Variable_name | Value |
+---------------+---------+
| Uptime | 1640724 |
+---------------+---------+
1 row in set (0.00 sec)

Use the built-in CLI command to show the status of the current
connection:

mysql> \status
...
Uptime: 18 days 23 hours 45 min 43 sec
...

A server not running is obviously a cause for concern. But there may be
issues even if it is running. If you frequently find that server uptime resets in
the absence of scheduled restarts, something may be causing the server to
exit, and you should investigate. Again, check the error log to see why.
As your MySQL server runs, you’ll have questions about aspects of its
operation or performance. Or maybe it’s not running and you want to know
why.

23.4 Troubleshooting Server Start Problems

Problem
The server quits shortly after it’s started, and you want to know what caused
it and what you can do about it.

Solution

Check the error log for details.

Discussion
If the server stops shortly after you start it, a likely cause is a
misconfiguration in the server options file. The error log helps you here. But
don’t be misled by mere warnings, which do not signify that the server quit.
For example, the following message means only that
innodb_ft_min_token_size needs to be corrected to make the warning go
away:

2022-02-17T15:05:25.482596Z 0 [Warning] [MY-013746]
 [Server] A deprecated TLS version TLSv1.1 is enabled for
channel
 mysql_main 2022-02-17T15:05:25.487543Z 0 [Warning] [MY-
010068]
 [Server] CA certificate ca.pem is self-signed.

Instead, check for [ERROR] lines, such as this:

2022-02-17T15:05:25.495461Z 0 [ERROR] [MY-000067]
 [Server] unknown variable 'innodb_ft_min_toke_size=2'.

As you can see, the server is complaining about a typo in
innodb_ft_min_token_size that is preventing it from starting properly.
Other server start problems include the following:

Misconfiguration of my.cnf variables
Multiple configuration files
Missing operating system permissions
Incorrect path setting
Over-allocating available memory
Missing mysql_upgrade step after version upgrade

NOTE
As of version 8.0.16, mysql_upgrade is not needed anymore. But when upgrading to any
version prior to 8.0.16, you must run this utility.

23.5 Determining the IO Utilization of the
MySQL Server

Problem
You want to know the number of queries hitting the MySQL server.

Solution
Check utilization status variables for details.

Discussion
This question might be prompted by simple curiosity, or there might be a
performance issue. Monitoring statement execution over time and
summarizing the results can reveal patterns, such as a time of day or day of
the week when activity is cumbersome. Perhaps several report generators are
configured to start at the same time. Staggering them will help your server
by spreading the load. It is crucial to capture baseline data to compare
several reads for a given period.
In programmatic context, you might write a long-running application that
probes the server periodically for the Queries and Uptime values to
determine a running display of statement-execution activity. To avoid
reconnecting each time you issue the statements, ask the server for its
session timeout period, and probe it at intervals shorter than that value. To
get the session timeout value (in seconds), use this statement:

SELECT @@wait_timeout;

The default value is 28,800 (eight hours). If it’s configured to a value shorter
than your desired probe interval, set it higher:

SET wait_timeout = seconds;

The preceding discussion uses Queries, which indicates the total number
of statements executed. Options for more fine-grained analysis are available.
The server maintains a set of Com_xxx status variables that count
executions of particular statements. For example, Com_insert and
Com_update count INSERT and UPDATE statements, respectively:

 mysql> SHOW GLOBAL STATUS LIKE "Com_select";
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Com_select | 100 |
+---------------+-------+
1 row in set (0.00 sec)

mysql> SHOW GLOBAL STATUS LIKE "Com_insert";
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Com_insert | 3922 |
+---------------+-------+
1 row in set (0.00 sec)

After MySQL version 5.7, some of the instruments in
information_schema migrated to performance_schema; hence,
querying performance_schema was advised for such monitoring.

NOTE
Since the Performance Schema has comprehensive details about events, it no longer has Com Stats
values.

mysql> SELECT EVENT_NAME, COUNT_STAR
 -> FROM
performance_schema.events_statements_summary_global_by_event_name
 -> WHERE EVENT_NAME LIKE 'statement/sql/%';

+---+------------+
| EVENT_NAME | COUNT_STAR |
+---+------------+
| statement/sql/select | 106 |
...

You also may want to calculate the InnoDB Buffer Pool Cache hit ratio to
determine how many requests to InnoDB could be resolved without disk
access.
To answer this question, use status variable information:

mysql> SHOW GLOBAL STATUS LIKE 'innodb_buffer_pool_read%s';
+----------------------------------+----------+
| Variable_name | Value |
+----------------------------------+----------+
| Innodb_buffer_pool_read_requests | 50350973 |
| Innodb_buffer_pool_reads | 1622447 |
+----------------------------------+----------+
2 rows in set (0.00 sec)

The Innodb_buffer_pool_read_requests status variable holds
the value of how many times SQL queries requested data from the InnoDB
Buffer Pool. This value could also be understood as a number of queries to
InnoDB. The Innodb_buffer_pool_reads variable holds the metric
on how many such queries were resolved from the InnoDB Buffer Pool
without touching tablespace files on the disk.
SHOW GLOBAL STATUS counts the number of queries since server
startup, but it’s a variable value. If you wait for a certain amount of time and
rerun the same query, you’ll have a hit ratio:

mysql> SHOW GLOBAL STATUS LIKE 'innodb_buffer_pool_read%s';↩
SELECT SLEEP(60); SHOW GLOBAL STATUS LIKE
'innodb_buffer_pool_read%s';
+----------------------------------+----------+
| Variable_name | Value |
+----------------------------------+----------+
| Innodb_buffer_pool_read_requests | 51504330 |
| Innodb_buffer_pool_reads | 1830647 |
+----------------------------------+----------+
2 rows in set (0.00 sec)

+-----------+

| sleep(60) |
+-----------+
| 0 |
+-----------+
1 row in set (1 min 0.00 sec)

+----------------------------------+----------+
| Variable_name | Value |
+----------------------------------+----------+
| Innodb_buffer_pool_read_requests | 53626254 |
| Innodb_buffer_pool_reads | 2214763 |
+----------------------------------+----------+
2 rows in set (0.00 sec)

In this example, InnoDB received 53626254 – 51504330 =
2121924 requests for data and was able to resolve 2214763 –
1830647 = 384116 requests using the buffer only. Thus, the InnoDB
Buffer Pool hit ratio is 384116 / 2121924 = 0.18. This means that
the server either just started and the InnoDB Buffer Pool does not contain an
active dataset yet, or it is too small and InnoDB has to purge pages from the
buffer pool too often and then re-read them back. Ideally, the InnoDB Buffer
Pool hit ratio should be near 1.

WARNING
If you have online transaction processing (OLTP) in-memory workload, you may have 100% of
your queries in memory. The profile of the queries may change significantly, which can make hit
ratio metric surrogate. It’s insufficient to just monitor hit ratio for in-memory operations.

23.6 Determining MySQL Thread’s CPU
Utilization

Problem
You want to find the process causing high CPU utilization on your server.

Solution

Use the THREAD_OS_ID value to correlate with the Performance Schema’s
threads table.

Discussion
The CPU utilization of the process is somewhat problematic in finding
slowness caused by an individual query. Sometimes this can be a runaway
job or a running process for a large dataset. You may see this type of
behavior on month-ends where a query or a job runs only once a month to
process quarterly or statistical computation. The threads table contains
information about each thread created after server start as well as whether
the thread is historical (if instrumented, see “Pre-Filtering by Thread”):

mysql> DESC performance_schema.threads;
+---------------------+------------------+------+-----+---------+-
------+
| Field | Type | Null | Key | Default |
Extra |
+---------------------+------------------+------+-----+---------+-
------+
| THREAD_ID | bigint unsigned | NO | PRI | NULL |
|
| NAME | varchar(128) | NO | MUL | NULL |
|
| TYPE | varchar(10) | NO | | NULL |
|
| PROCESSLIST_ID | bigint unsigned | YES | MUL | NULL |
|
| PROCESSLIST_USER | varchar(32) | YES | MUL | NULL |
|
| PROCESSLIST_HOST | varchar(255) | YES | MUL | NULL |
|
| PROCESSLIST_DB | varchar(64) | YES | | NULL |
|
| PROCESSLIST_COMMAND | varchar(16) | YES | | NULL |
|
| PROCESSLIST_TIME | bigint | YES | | NULL |
|
| PROCESSLIST_STATE | varchar(64) | YES | | NULL |
|
| PROCESSLIST_INFO | longtext | YES | | NULL |
|
| PARENT_THREAD_ID | bigint unsigned | YES | | NULL |
|
| ROLE | varchar(64) | YES | | NULL |

https://oreil.ly/VR68x

|
| INSTRUMENTED | enum('YES','NO') | NO | | NULL |
|
| HISTORY | enum('YES','NO') | NO | | NULL |
|
| CONNECTION_TYPE | varchar(16) | YES | | NULL |
|
| THREAD_OS_ID | bigint unsigned | YES | MUL | NULL |
|
| RESOURCE_GROUP | varchar(64) | YES | MUL | NULL |
|
+---------------------+------------------+------+-----+---------+-
------+

On Linux systems, THREAD_OS_ID corresponds to the value of the
gettid() function. This value is exposed to the top or proc file system
(/proc/[pid]/task/[tid]). To help identify the related THREAD_OS_ID, there
are a few methods outside of scraping the proc file system by using built-in
command-line utilities. ps -L aux gives enough detail about the
corresponding thread that is higher CPU then others. The parent ID of
MySQL, mysqld_pid, can also be identified with pidof mysqld, in
conjunction with the ps command:

$ ps -L aux |grep -e PID -e `pidof mysqld`
USER PID LWP %CPU NLWP %MEM VSZ RSS TTY STAT
START↩ TIME COMMAND
mysql 740282 740282 0.0 68 20.9 1336272 209440 ? Rsl
2021 0:05 ↩ /usr/sbin/mysqld
mysql 740282 740285 0.0 68 20.9 1336272 209440 ? Ssl
2021 1:50 ↩ /usr/sbin/mysqld
mysql 740282 740286 0.0 68 20.9 1336272 209440 ? Ssl
2021 1:52 ↩ /usr/sbin/mysqld
mysql 740282 740287 0.0 68 20.9 1336272 209440 ? Ssl
2021 1:53 ↩ /usr/sbin/mysqld
mysql 740282 740288 0.0 68 20.9 1336272 209440 ? Ssl
2021 1:50 ↩ /usr/sbin/mysqld
....
mysql 740282 1353650 0.0 48 21.0 1336272 210456 ? Ssl
09:35 0:00 ↩ /usr/sbin/mysqld
mysql 740282 1533749 6.6 48 21.0 1336272 210456 ? Dsl
10:11 0:18 ↩ /usr/sbin/mysqld
mysql 740282 1558301 0.8 48 21.0 1336272 210456 ? Ssl
10:15 0:00 ↩ /usr/sbin/mysqld
mysql 740282 1558459 1.0 48 21.0 1336272 210456 ? Ssl
10:15 0:00 ↩ /usr/sbin/mysqld

mysql 740282 1559291 0.7 48 21.0 1336272 210456 ? Ssl
10:15 0:00 ↩ /usr/sbin/mysqld

This will give us the thread_os_id hint that we can use to figure out what it
is doing:

mysql> SELECT * from performance_schema.threads
 -> WHERE THREAD_OS_ID = 1533749 \G
mysql> SELECT * FROM performance_schema.threads where THREAD_OS_ID
= 1533749 \G
*************************** 1. row ***************************
 THREAD_ID: 213957
 NAME: thread/sql/one_connection
 TYPE: FOREGROUND
 PROCESSLIST_ID: 213905
 PROCESSLIST_USER: root
 PROCESSLIST_HOST: localhost
 PROCESSLIST_DB: mysqlslap
PROCESSLIST_COMMAND: Query
 PROCESSLIST_TIME: 0
 PROCESSLIST_STATE: waiting for handler commit
 PROCESSLIST_INFO: INSERT INTO t1 VALUES (964445884,

'DPh7kD1E6f4MMQk1ioopsoIIcoD83DD8Wu7689K6oHTAjD3Hts6lYGv8x9G0EL0k8
7q8G2ExJ
 jz2o3KhnIJBbEJYFROTpO5pNvxgyBT9nSCbNO9AiKL9QYhi0x3hL9')
 PARENT_THREAD_ID: NULL
 ROLE: NULL
 INSTRUMENTED: YES
 HISTORY: YES
 CONNECTION_TYPE: Socket
 THREAD_OS_ID: 1533749
 RESOURCE_GROUP: USR_default

The other alternative is using the pidstat command (requires sysstat
package). First, find the process id of mysqld and execute the following:

$ pidstat -t -p 740282
 Linux 5.8.0-63-generic (localhost) 01/02/2022
_x86_64_ (1 CPU)

06:57:13 PM UID TGID TID %usr %system %guest
%wait %CPU CPU
06:57:14 PM 113 740282 - 24.75 11.88 0.00
0.00 36.63 0
06:57:14 PM 113 - 740282 0.00 0.00 0.00
0.00 0.00 0

06:57:14 PM 113 - 740285 0.00 0.00 0.00
0.00 0.00 0
....
06:57:19 PM 113 - 759641 0.00 0.00 0.00
0.00 0.00 0
06:57:19 PM 113 - 839592 1.00 0.00 0.00
1.00 1.00 0
06:57:19 PM 113 - 839647 17.00 4.00 0.00
14.00 21.00 0
06:57:20 PM 113 740282 - 24.00 14.00 0.00
0.00 38.00 0
06:57:20 PM 113 - 740282 0.00 0.00 0.00
0.00 0.00 0
06:57:20 PM 113 - 740285 0.00 0.00 0.00
0.00 0.00 0

From this output, can see in our test run that thread_os_id is consuming 21%
of the CPU. To co-relate this with MySQL running threads, we follow the
Performance Schema Query:

mysql> SELECT * from performance_schema.threads
where THREAD_OS_ID = 839647 \G
*************************** 1. row ***************************
 THREAD_ID: 2326
 NAME: thread/sql/one_connection
 TYPE: FOREGROUND
 PROCESSLIST_ID: 2282
 PROCESSLIST_USER: root
 PROCESSLIST_HOST: localhost
 PROCESSLIST_DB: mysqlslap
PROCESSLIST_COMMAND: Query
 PROCESSLIST_TIME: 0
 PROCESSLIST_STATE: waiting for handler commit
 PROCESSLIST_INFO: INSERT INTO t1 VALUES
(964445884,'DPh7kD1E6f4MMQk1ioopso

IIcoD83DD8Wu7689K6oHTAjD3Hts6lYGv8x9G0EL0k87q8G2ExJjz2o3KhnIJBbEJY
FROTpO5pN
 vxgyBT9nSCbNO9AiKL9QYhi0x3hL9')
 PARENT_THREAD_ID: NULL
 ROLE: NULL
 INSTRUMENTED: YES
 HISTORY: YES
 CONNECTION_TYPE: Socket
 THREAD_OS_ID: 839647
 RESOURCE_GROUP: USR_default

See Also
For additional information about the THREADS table, please refer to the
threads table.

23.7 Determining if MySQL Has Reached Its
Connection Limits

Problem
You want to know the limits of the MySQL server handling connections.

Solution
Check the configuration parameters.

Discussion
It’s often the case that a server function is assessed using a combination of
configuration settings plus current operational status. Typically, the former
comes from system variables, whereas the latter comes from status variables.
Connection management is an example of this concept. The
max_connections system variable indicates the maximum number of
simultaneous connections the server permits, and the
threads_connected status variable shows how many clients are
currently connected. The threads_running status variable shows how
many clients are currently active. Furthermore, threads_running is a
very important value for the following reasons:

If the number of running threads increases above the number of CPU
cores, they start to compete for CPU resources.
If two threads (no matter how many threads are connected) compete for
the same row, table, or other database object, the engine-level table lock
set at the server level or metadata (MD) lock is in place.

https://oreil.ly/qCivS

Since MySQL is a single process application with multithreaded
architecture, each connection creates a thread. To monitor the maximum
connections reached, issue the following command:

mysql> SHOW GLOBAL STATUS LIKE 'Max_used_connections';
+----------------------+-------+
| Variable_name | Value |
+----------------------+-------+
| Max_used_connections | 6 |
+----------------------+-------+
1 row in set (0.00 sec)

mysql> SHOW GLOBAL STATUS LIKE 'Max_used_connections_time';
+---------------------------+---------------------+
| Variable_name | Value |
+---------------------------+---------------------+
| Max_used_connections_time | 2020-12-27 17:09:59 |
+---------------------------+---------------------+
1 row in set (0.00 sec)

mysql > SHOW GLOBAL STATUS LIKE 'threads_connected';
+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| Threads_connected | 6 |
+-------------------+-------+
1 row in set (0.00 sec)

If threads_connected is regularly close to the value of
max_connections, you might need to bump up the value of the latter. If
there is always a wide gap, you can decrease max_connections. For
further reading, “MySQL Connection Handling and Scaling” explains how
MySQL handles connections and its capabilities.
One area that also impacts performance of MySQL is Mutex and metadata
locks on highly concurrent environments. As seen previously, at some point
running threads will start competing with one another when the same
resources are requested from the database. The way InnoDB handles this is
to put an exclusive lock on a particular memory resource so that the other
thread will have to wait for it. While this is handled with the Mutex
operation in MySQL, all Data Definition Language (DDL) as known as table
structure change operations handled with metadata locks.

https://oreil.ly/ULZyr

23.8 Verifying That the Buffer Pool Is Sized
Properly

Problem
You want to know the limits of the MySQL server handling connections.

Solution
Determine storage engine memory allocation.

Discussion
The InnoDB storage engine has a data buffer. To keep physical I/O minimal,
DBA should make sure to utilize server memory efficiently. InnoDB Buffer
Pool cache improves index key lookups and data read operations; hence,
most data access will occur in memory.
To determine the cache sizes, check the relevant system variables:

mysql> SELECT @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 134217728 |
+---------------------------+
1 row in set (0.00 sec)

You can also use SHOW VARIABLES or the PERFORMANCE_SCHEMA
GLOBAL_VARIABLES table, for example:

mysql> SELECT * from performance_schema.global_variables
 -> WHERE variable_name='innodb_buffer_pool_size';
+-------------------------+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+-------------------------+----------------+
| innodb_buffer_pool_size | 134217728 |
+-------------------------+----------------+
1 row in set (0.00 sec)

The efficiency measure that determines how well the read ratio is operating
is its hit rate: the rate at which read requests from the InnoDB Buffer Pool
are satisfied from the Buffer Pool without reading data from disk. If data is
in the cache, it’s a hit; if not, it’s a miss. The hit ratio is a high correlation
but not a guaranteed metric; hence, the OLTP rate is more important. It’s
also possible to verify how well the InnoDB Buffer Pool is utilized from
data via the Performance Schema:

mysql> SELECT CONCAT(FORMAT(A.num * 100.0 / B.num,2),"%")
BufferPoolFullPct FROM
 -> (SELECT variable_value num FROM
performance_schema.GLOBAL_STATUS
 -> WHERE variable_name = 'Innodb_buffer_pool_pages_data') A,
 -> (SELECT variable_value num FROM
performance_schema.GLOBAL_STATUS
 -> WHERE variable_name = 'Innodb_buffer_pool_pages_total') B;
+-------------------+
| BufferPoolFullPct |
+-------------------+
| 23.46% |
+-------------------+
1 row in set (0.02 sec)

We can also determine memory allocation for the Buffer Pool using the sys
schema. It’s crucial to configure the Buffer Pool at startup to allocate
memory resources appropriately:

mysql> SELECT * FROM sys.memory_global_by_current_bytes
 -> WHERE event_name like 'memory/innodb_buf_buf_pool'\G
*************************** 1. row ***************************
 event_name: memory/innodb/buf_buf_pool
 current_count: 1
 current_alloc: 131.00 MiB
current_avg_alloc: 131.00 MiB
 high_count: 1
 high_alloc: 131.00 MiB
 high_avg_alloc: 131.00 MiB
1 row in set (0.00 sec)

The required information can be obtained from either SHOW STATUS or the
GLOBAL_STATUS table. However, when executing queries within a
program and saving the results, we must account for differences between

SHOW statements and selecting from performance_schema tables. The
following queries retrieve similar information, but the column headings
differ in lettercase and sometimes in name, and variable names differ in
lettercase:

mysql> SHOW GLOBAL STATUS;
+---+-------------+
| Variable_name | Value |
+---+-------------+
| Aborted_clients | 1 |
| Aborted_connects | 6 |
…
…

To enable applications to be agnostic with respect to whether the variable
information comes from SHOW or information_schema, force variable
names to a consistent lettercase and use that case in expressions that
reference the variables. It doesn’t matter which lettercase you choose as long
as you use it consistently. The following discussion uses uppercase.
Here’s a simple routine (in Ruby) that takes a database handle, fetches the
status variables, and returns them as a hash of values keyed by names:

def get_status_variables(client)
 vars = {}
 query = "SELECT VARIABLE_NAME, VARIABLE_VALUE FROM
 performance_schema.global_status"
 client.query(query).each { |row| vars[row["VARIABLE_NAME"]↩
 .upcase] = row["VARIABLE_VALUE"] }
 return vars
end

To get the information using a SHOW statement instead, replace the query
with this one:

query = "SHOW GLOBAL STATUS"

The code applies the upcase method to the variable names. That way, no
matter whether the routine uses GLOBAL_STATUS or SHOW to obtain the

information, the resulting hash has elements accessed by uppercase variable
names.
To calculate a hit rate, pass the variable hash and the names of the reads and
requests variables to this routine:

def cache_hit_rate(vars,reads_name,requests_name)
 reads = vars[reads_name].to_f
 requests = vars[requests_name].to_f
 hit_rate = requests == 0 ? 0 : 1 - (reads/requests)
 printf " Key reads: %12d (%s)\n", reads, reads_name
 printf "Key read requests: %12d (%s)\n", requests, requests_name
 printf " Hit rate: %12.4f\n", hit_rate
end

Now we’re all set. Call the routines that fetch status information, and
calculate the hit rates like this:

statvars = get_status_variables(client)
cache_hit_rate(statvars,
 "INNODB_BUFFER_POOL_READS",
 "INNODB_BUFFER_POOL_READ_REQUESTS")
cache_hit_rate(statvars,
 "KEY_READS",
 "KEY_READ_REQUESTS")

Run the script to see your server’s hit rates:

$ hitrate.rb
 Key reads: 6280 (INNODB_BUFFER_POOL_READS)
Key read requests: 70138276 (INNODB_BUFFER_POOL_READ_REQUESTS)
 Hit rate: 0.9999
 Key reads: 23269 (KEY_READS)
Key read requests: 8902674 (KEY_READ_REQUESTS)
 Hit rate: 0.9974

For tasks involving system variables, code similar to
get_status_variables() suffices. This implementation uses the
GLOBAL_VARIABLES table:

def get_system_variables(client)
 vars = {}
 query = "SELECT VARIABLE_NAME, VARIABLE_VALUE FROM

 performance_schema.global_variables"
 client.query(query).each { |row|
vars[row["VARIABLE_NAME"].upcase]↩
 = row["VARIABLE_VALUE"] }
 return vars
end

To use SHOW instead, replace the query with this one:

query = "SHOW GLOBAL VARIABLES"

23.9 Finding Information About the Storage
Engine

Problem
You want to pin specific problems with MySQL’s pluggable storage engine
architecture.

Solution
Use MySQL’s mysql client, and interact with the storage engine directly.

Discussion
Now we’re all set. Call the SHOW ENGINE command from mysql client:

mysql> help show engine
Name: 'SHOW ENGINE'
Description:
Syntax:
SHOW ENGINE engine_name {STATUS | MUTEX}

SHOW ENGINE
SHOW ENGINE displays operational information about a storage engine. It
requires the PROCESS privilege. The statement has these variants for
InnoDB:

SHOW ENGINE INNODB STATUS;
SHOW ENGINE INNODB MUTEX;

The first command, SHOW ENGINE INNODB STATUS, shows extensive
information about the InnoDB storage engine in sections. To digest this
information, it’s possible to capture the output of this command and parse it
via the command line:

mysql> SHOW ENGINE INNODB STATUS\G
*************************** 1. row ***************************
 Type: InnoDB
 Name:
Status:
=====================================
2020-10-28 23:43:12 0x70000d0ae000 INNODB MONITOR OUTPUT
=====================================
Per second averages calculated from the last 6 seconds

BACKGROUND THREAD

srv_master_thread loops: 34 srv_active, 0 srv_shutdown, 768286
srv_idle
srv_master_thread log flush and writes: 0

SEMAPHORES

For example, it can reach the Buffer Pool information easily with the same
command. This information is very useful when you need to acquire
information fast, accurately, and without any impact to running the server:

BUFFER POOL AND MEMORY

Total large memory allocated 137363456
Dictionary memory allocated 1539651
Buffer pool size 8191
Free buffers 6250
Database pages 1924
Old database pages 725
Modified db pages 0
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 131, not young 1806
0.00 youngs/s, 0.00 non-youngs/s
Pages read 913, created 1105, written 3138

0.00 reads/s, 0.00 creates/s, 0.00 writes/s
No buffer pool page gets since the last printout
Pages read ahead 0.00/s, evicted without access 0.00/s, Random
read ahead 0.00/s
LRU len: 1924, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]

If you are monitoring a single event, you can set the pager and repeatedly
monitor its value:

mysql> PAGER grep -i history
PAGER set to 'grep -i history'
mysql> SHOW ENGINE INNODB STATUS\G
History list length 0
1 row in set (0.00 sec)

Let’s have a look at the Mutex information on the idle system. The resulting
SHOW statement would be much longer if threads are competing for the
resources:

mysql> SHOW ENGINE INNODB MUTEX;
+--------+----------------------------+---------+
| Type | Name | Status |
+--------+----------------------------+---------+
| InnoDB | rwlock: fil0fil.cc:3206 | waits=4 |
| InnoDB | sum rwlock: buf0buf.cc:778 | waits=3 |
+--------+----------------------------+---------+
2 rows in set (0.00 sec)

As you can see in Figure 23-2, InnoDB consists of two types of structures:
In-memory and On-disk. InnoDB utilizes the host OS memory efficiently
using its internal memory management protocol. As mentioned in the
introduction of this chapter, memory utilization is an important factor in
MySQL monitoring.

Figure 23-2. The diagram shows in-memory and on-disk structures that comprise the InnoDB
storage engine architecture (adapted from © 2021, Oracle Corporation and/or its affiliates (2021);

https://oreil.ly/JEzqW)

As InnoDB is by far the most complex and most adopted storage engine in
the MySQL ecosystem, it also comes with components that can be used to

debug internals of its system. Although this is an advanced topic it’s good
know that you can add plug-ins to the MySQL server. For additional
reading, please refer to the MySQL Documentation.

23.10 Using the Error Log File to
Troubleshoot MySQL Server Crashes

Problem
The application reports, “MySQL Server has gone away” (error 2006).

Solution
There are a few possible scenarios for this very common error, including the
following:

OOM (out of memory) killer
MySQL signals
Crashing bug
Various other reasons, such as server timeout, removed system files, etc.

Sometimes, while troubleshooting, information in the error log can be
misleading. So we also advise that you check the system logs, such as
/var/log/messages.

Discussion
An error log is one of the most critical monitoring MySQL server statuses.
From startup to shutdown, it will log all events to this file. Proactively
monitoring this file will give you sufficient information about current and
past events.

https://oreil.ly/b9SBC

NOTE
The error log is tunable in MySQL 8.0 and can be fine-tuned to log and filter events by given
criteria. For details, please refer to the MySQL documentation.

Here are some pointers for monitoring and finding a solution for this error.

Server crash
The server may have disconnected while executing a large query. In this
case, the client has timed out during a long running query:

$ (echo -n "SELECT '" ; for i in `seq 1 110000` ; \
 do echo -n "1234567890" ; done ; echo -n "' a") | mysql |
wc

ERROR 2006 (HY000) at line 1: MySQL server has gone away
 0 0 0

This may be one of the few reasons to check. Often, the
max_allowed_packet size is too small for a large query like the
preceding crashing for loop:

$ mysql -e "SHOW GLOBAL VARIABLES LIKE 'max_allowed_packet'"
+--------------------+---------+
| Variable_name | Value |
+--------------------+---------+
| max_allowed_packet | 1048576 |
+--------------------+---------+
$ mysql -e "SET GLOBAL max_allowed_packet=67108864"
$ mysql -e "SHOW GLOBAL VARIABLES LIKE 'max_allowed_packet'"
+--------------------+----------+
| Variable_name | Value |
+--------------------+----------+
| max_allowed_packet | 67108864 |
+--------------------+----------+
$ (echo -n "SELECT '" ; for i in `seq 1 110000` ; do echo -n
"1234567890" ; done ; \
> echo -n "' a") | mysql | wc
 2 2 1100003

Server timeout

https://oreil.ly/RYLHT

The connection between the application and the results of the query
returning for each request has a timeout variable. One of the most common
timeout variables to monitor is wait_timeout:

$ mysql -e "SHOW GLOBAL VARIABLES LIKE 'wait_timeout'"
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| wait_timeout | 28800 |
+---------------+-------+

To demonstrate this, we’ll set the wait_timeout value to a very low four
seconds and rerun the same query:

$ mysql -e "SET GLOBAL wait_timeout=4"
$ time (echo -n "SELECT '" ; for i in `seq 1 1100000` ; do echo -
n "1234567890" ; done ; \
> echo -n "' a") | mysql | wc
ERROR 2006 (HY000) at line 1: MySQL server has gone away
 0 0 0
real 0m8.062s
user 0m7.506s
sys 0m2.581s
$ mysql -e "SHOW GLOBAL VARIABLES LIKE 'wait_timeout'"
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| wait_timeout | 4 |
+---------------+-------+

23.11 Slow Query Log File

Problem
You want to use the slow query log to identify slow queries.

Solution
Enable the slow query log and set threshold to filter queries to address them.

Discussion

MySQL can log all queries. By adjusting how slow queries are recorded, it’s
possible to capture all queries and digest them. The default slow query
logging is set to 10 seconds, which means any query taking longer than 10
seconds is shown only in the log file.
You can control the behavior of the slow query log using a number of
variables:

mysql> SHOW GLOBAL VARIABLES LIKE '%slow%';
+---------------------------+-------------------------------------
--+
| Variable_name | Value
|
+---------------------------+-------------------------------------
--+
| log_slow_admin_statements | OFF
|
| log_slow_extra | OFF
|
| log_slow_slave_statements | OFF
|
| slow_launch_time | 2
|
| slow_query_log | OFF
|
| slow_query_log_file | /usr/local/mysql/data/askdba-
slow.log |
+---------------------------+-------------------------------------
--+
6 rows in set (0.01 sec)

The most essential among them is slow_query_log, which enables or
disables slow query logging. It is OFF by default.

The slow query log threshold is controlled with the long_query_time
variable. You can start tuning your queries that are logged with the default
threshold and then decrease it in steps. Finally, set long_query_time to
0 to log all the queries.

Logging all the queries
It is common practice to run a slow query log with long_query_time set
to 0. This way you will have information about the performance of all the

queries. Then you can run programs such as pt-query-digest or
mysqldumpslow that can create digests of the queries.

To enable logging of all the queries, set long_query_time to 0:

mysql> SHOW GLOBAL VARIABLES LIKE 'long_query_time';
+-----------------+-----------+
| Variable_name | Value |
+-----------------+-----------+
| long_query_time | 10.000000 |
+-----------------+-----------+
1 row in set (0.00 sec)

mysql> SET GLOBAL LONG_QUERY_TIME=0;
Query OK, 0 rows affected (0.00 sec)

mysql> SET GLOBAL SLOW_QUERY_LOG=1;
Query OK, 0 rows affected (0.02 sec)

Now we’re ready to test a simple query, as it will log everything by having
long_query_time equal 0:

mysql> SELECT thing,legs,arms FROM limbs WHERE legs>=2;

$ sudo tail -f /usr/local/mysql/data/askdba-slow.log
Time: 2020-11-21T15:15:12.873279Z
User@Host: root[root] @ localhost [127.0.0.1] Id: 326
Query_time: 0.000239 Lock_time: 0.000098 Rows_sent: 6
Rows_examined: 11
SET timestamp=1605971712;
SELECT thing,legs,arms FROM limbs WHERE legs>=2;

In this example, we may see that Query_time is pretty small; that is
expected, because the table itself is small. But the number of rows that
MySQL had to examine to resolve this query (Rows_examined) is greater
(11) than the number of rows that the query sent to the client (Rows_sent:
6). This means that there is a very good chance that the query needs to be
optimized.
We can start optimizing the query by running EXPLAIN:

mysql> EXPLAIN SELECT thing,legs,arms FROM limbs WHERE legs>=2\G
*************************** 1. row ***************************

 id: 1
 select_type: SIMPLE
 table: limbs
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 11
 filtered: 33.33
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

WARNING
Setting the value of long_query_time to 0 enables you to log every single query. You need to
be careful on a busy system where your file system either can be filled or slowed down due to I/O
operation.

Don’t log into the table when setting long_query_time to 0, because the CSV storage engine
isn’t designed for working in high-concurrent environments and can affect performance.

23.12 Monitoring with the General Query Log

Problem
You want to identify what activity each client is engaged in.

Solution
Enable the general query log to investigate them.

Discussion
The MySQL general query log is proof of record for what mysqld is doing.
By enabling this log, it allows the administrator to monitor how the life of
the user connection interacts with mysqld.

mysql> SHOW GLOBAL VARIABLES LIKE 'general%';
+------------------+--
-------+
| Variable_name | Value
|
+------------------+--
-------+
| general_log | OFF
|
| general_log_file |
/home/vagrant/sandboxes/msb_8_0_21/data/vagrant.log |
+------------------+--
-------+
2 rows in set (0.01 sec)

WARNING
By enabling the general query log, you instruct the MySQL server to log all the queries it receives.
You need to be careful on a busy system where your file system either can be filled or slowed down
due to increased I/O operation.

To enable general_log in runtime, use the SET command:

mysql> SET GLOBAL general_log = 'ON';
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW GLOBAL VARIABLES LIKE 'general_log';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| general_log | ON |
+---------------+-------+
1 row in set (0.00 sec)
Query OK, 0 rows affected (0.00 sec)

Now we’re ready to monitor everything. This value is dynamic, and we set it
at runtime. If you want it to set it persistently at startup, see Recipe 22.1:

$ tail -f /home/vagrant/sandboxes/msb_8_0_21/data/vagrant.log
/home/vagrant/opt/mysql/8.0.21/bin/mysqld, Version: 8.0.21 (MySQL
Community Server - GPL). ↩
started with:
Tcp port: 8021 Unix socket: /tmp/mysql_sandbox8021.sock
Time Id Command Argument

2020-12-06T14:27:26.739541Z 8 Query show global
variables like "general_log"
2020-12-06T14:51:08.660453Z 8 Quit

Connect another session and run the following command while tailing the
general query log file:

mysql> SHOW PROCESSLIST \G
*************************** 1. row ***************************
 Id: 5
 User: event_scheduler
 Host: localhost
 db: NULL
Command: Daemon
 Time: 2015
 State: Waiting on empty queue
 Info: NULL
*************************** 2. row ***************************
 Id: 10
 User: msandbox
 Host: localhost
 db: NULL
Command: Query
 Time: 0
 State: starting
 Info: show processlist
2 rows in set (0.00 sec)

$ tail -f /home/vagrant/sandboxes/msb_8_0_21/data/vagrant.log
2020-12-06T14:51:45.765019Z 10 Connect msandbox@localhost
on using Socket
2020-12-06T14:51:45.765785Z 10 Query select
@@version_comment limit 1
2020-12-06T14:51:45.769113Z 10 Query select USER()
2020-12-06T14:52:29.130072Z 10 Query show processlist

NOTE
Unlike the MySQL slow query log, the general query log does not log query execution time.
Instead, it logs an end-to-end clean record of what happens for each session in sequential order.
This information may be useful for debugging MySQL crashes or figuring out what queries the
application is sending.

23.13 Using the Binary Log to Identify
Changes

Problem
You want to track data changes for a given period.

Solution
Enable the binary log to investigate them.

Discussion
MySQL can log all data changes to a binary log format, which has three
purposes:

Configuring primary and replica setup. By enabling this feature, we can
set up MySQL-replicated topology, explained in Chapter 3.
Point-in-time recovery after a full physical backup is performed.
Troubleshooting or investigating an event for a specific time period.

The binary log is enabled by setting --log-bin at startup. Setting this
value allows MySQL to track data changes to a binary log file. This logfile
contains a set of sequential log files along with an index file.

To read binary logs, we must use the --verbose or -v option by using the
mysqlbinlog command.

$ /usr/bin/mysqlbinlog binlog.000003 -v |more
#210208 19:39:03 server id 1 end_log_pos 517272 CRC32 0x043a9ff4
↩
 Write_rows: table id 112 flags: STMT_END_F
INSERT INTO `test`.`sbtest1`
SET
@1=1
@2=21417
@3='83868641912-28773972837-60736120486-75162659906-
27563526494-↩
 20381887404-41576422241-93426793964-56405065102-

33518432330'
@4='67847967377-48000963322-62604785301-91415491898-
96926520291'

NOTE
To see a statement representation of row events, use the --verbose (-v) option. To see metadata
of columns, specify --verbose twice: --verbose --verbose or -vv. To suppress the
output of row events, specify the --base64-output=DECODE-ROWS option.

To give a specific start time, do the following:

 /usr/bin/mysqlbinlog --start-datetime="2020-11-29 10:50:32"
 binlog.000003 -v |more

To filter a specific data manipulation language (DML) type, do the
following:

 $ /usr/bin/mysqlbinlog --start-datetime="2020-11-29 10:50:32"
binlog.000003 \
 > -v| grep -i -e "update" -e "insert"
 > -e "delete" -e "drop" -e "alter" |cut -c1-100 | tr '[A-Z]'
'[a-z]'
 > | sed -e "s/\t/ /g;s/\`//g;s/(.*$//;s/ set .*$//;s/ as
.*$//"
 > | sed -e "s/ where .*$//" | sort | uniq -c | sort -nr

 50000 ### insert into test.sbtest9
 50000 ### insert into test.sbtest9
 50000 ### insert into test.sbtest8
 50000 ### insert into test.sbtest7
 ...

Chapter 24. Security

24.0 Introduction
This chapter covers the following security-related topics:

The mysql.user table that contains MySQL account information

Statements for managing MySQL user accounts
Password-strength checking and policy
Password expiration
Finding and removing anonymous accounts and accounts that permit
connections from many hosts

If you like, you can skip over the initial section that describes the
mysql.user table, but we think you’ll find that reading it will help you
better understand later sections, which often discuss how SQL operations
map onto underlying changes in that table.
Scripts shown in this chapter are located in the routines directory of the
recipes distribution.

NOTE
Whether you use the MySQL 5.7 or 8.0 release series, it’s best to use a recent version within the
series. Changes to the authentication system that occurred in early development versions that may
produce results that differ from the descriptions here.

TIP
Many of the techniques shown here require administrative access, such as the ability to modify
tables in the mysql system database or use statements that require the privileges that allow you to
administer the MySQL server. For this reason, to carry out the operations described here, connect
to the server as root rather than as cbuser.

24.1 Understanding the mysql.user Table
MySQL stores user account information in tables in the mysql system
database. The user table is the most important because it contains account
names and credentials. To see its structure, use this statement:

SHOW CREATE TABLE mysql.user;

The user table columns that concern us here specify account names and
authentication information:

The User and Host columns identify the account. MySQL account
names comprise a combination of username and hostname values. For
example, in the user table row for a 'cbuser'@'localhost'
account, the User and Host column values are cbuser and
localhost, respectively. For a
'myuser'@'myhost.example.com' account, those columns are
myuser and myhost.example.com.

The plugin and authentication_string columns store
authentication credentials. MySQL does not store literal passwords in
the user system table because that is insecure. Instead, the server
computes a hash value from the password and stores the hash string.
— The plugin column indicates which authentication plug-in the
server uses to check credentials for clients that attempt to use the
account. Different plug-ins implement password hashing methods of
varying encryption strength. Table 24-1 shows the plug-ins this chapter
discusses.

Table 24-1. Authentication plug-ins

Plug-in Authentication method
mysql_native_passwor
d

Native password
 hashing

sha256_password SHA-256 password hashing (from MySQL 5.6.6 to
 MySQL 8.0)

Plug-in Authentication method

caching_sha2_passwor
d

 SHA-256 password hashing with server-side
caching (MySQL 5.7 or later)

— MySQL Enterprise, the commercial version of MySQL, includes
additional plug-ins for authenticating using pluggable authentication
module (PAM) or Windows credentials. These enable the use of
passwords external to MySQL, such as Unix login passwords or native
Windows services.
— The authentication_string column represents a hashed
password in the format required by the respective plug-in. For example,
sha256_ pass word uses authentication_string to store
SHA-256 password hash values, which are cryptographically superior to
native hashing, used by the mysql_native_password plug-in. An
empty authentication_string value means “no password,”
which is insecure.

Before MySQL 5.7.2, the server permits the plugin value to be empty. As
of MySQL 5.7.2, the plugin column must be nonempty, and the server
disables any empty plug-in account until a nonempty plug-in is assigned.

24.2 Managing User Accounts

Problem
You are responsible for setting up accounts on your MySQL server.

Solution
Learn to use the account-management SQL statements.

Discussion

It’s possible to modify the grant tables in the mysql database directly with
SQL statements such as INSERT or UPDATE, but the MySQL account-
management statements are more convenient. This section describes their
use and covers these topics:

Creating accounts (CREATE USER, SET PASSWORD ALTER USER)

Assigning and checking privileges (GRANT, REVOKE, SHOW GRANTS)

Removing and renaming accounts (DROP USER, RENAME USER)

Creating accounts
To create an account, use the CREATE USER statement, which creates a
row in the mysql.user table. But before you do so, decide these three
things:

The account name, expressed in 'user_name'@'host_name'
format naming the user and the host from which the user will connect
The account password
The authentication plug-in the server should execute when clients
attempt to use the account

Authentication plug-ins use hashing to encrypt passwords for storage and
transmission. MySQL has several built-in plug-ins from which to choose:

mysql_native_password implements the default password
hashing method before version 8.0.
sha256_password authenticates using SHA-256 password hash
values, which are cryptographically more secure than hashes generated
by mysql_ native_ pass word. This plug-in is available as of
MySQL 5.6.6 and is deprecated in version 8.0 in favor of its improved
version, caching_sha2_password. It provides security beyond that
afforded by mysql_native_password, but additional setup is
required to use it. (Clients must connect using SSL or provide an RSA
certificate.)

caching_sha2_password is similar to sha256_password but
uses caching on the server side for better performance. This is the
default authentication plug-in since MySQL 8.0.

The CREATE USER statement is commonly used in one of these forms:

CREATE USER 'user_name'@'host_name' IDENTIFIED BY 'password';
CREATE USER 'user_name'@'host_name' IDENTIFIED WITH 'auth_plugin'
BY 'auth_string';

The first syntax creates the account and sets its password with a single
statement. It also assigns an authentication plug-in implicitly to the plug-in
named by the --default-authentication-plugin setting (which
is caching_sha2_password, unless you change it at server startup).

To assign privileges to the new account, which has none initially, use the
GRANT statement described later in this section.

CREATE USER fails if the account already exists.

Assigning and checking privileges
Suppose that you have just created an account named
'user1'@'localhost'. You can assign privileges to it with GRANT,
remove privileges from it with REVOKE, and check its privileges with
SHOW GRANTS.

GRANT has this syntax:

GRANT privileges ON scope TO account;

Here, account names the account to be granted the privileges,
privileges indicates what they are, and scope indicates the privilege
scope, or level at which they apply. The privileges value can be ALL
(or ALL PRIVILEGES) to specify all privileges available at the given
level, or a comma-separated list of one or more privilege names such as
SELECT or CREATE. (For a full discussion of available privileges and
GRANT syntax not shown here, see the MySQL Reference Manual.)

https://oreil.ly/SD8cF

The following examples illustrate the syntax for granting privileges at each
level:

Granting privileges globally enables the account to perform
administrative operations or operations on any database:

GRANT FILE ON *.* TO 'user1'@'localhost';
GRANT CREATE TEMPORARY TABLES, LOCK TABLES ON *.* TO
'user1'@'localhost';

Granting privileges at the database level enables the account to perform
operations on objects within the named database:

GRANT ALL ON cookbook.* TO 'user1'@'localhost';

Granting privileges at the table level enables the account to perform
operations on the named table:

GRANT SELECT ON mysql.user TO 'user1'@'localhost';

Granting privileges at the column level enables the account to perform
operations on the named table column:

GRANT SELECT(User,Host), UPDATE(password_expired)
ON mysql.user TO 'user1'@'localhost';

Granting privileges at the procedure level enables the account to perform
operations on the named stored procedure:

GRANT EXECUTE ON PROCEDURE cookbook.exec_stmt TO
'user1'@'localhost';

Use FUNCTION rather than PROCEDURE if the routine is a stored
function.

To verify the privilege assignments, use SHOW GRANTS:

mysql> SHOW GRANTS FOR 'user1'@'localhost';
+--

----------+
| Grants for user1@localhost
|
+--
----------+
| GRANT FILE, CREATE TEMPORARY TABLES, LOCK TABLES
|
| ON *.* TO 'user1'@'localhost'
|
| GRANT ALL PRIVILEGES ON `cookbook`.* TO 'user1'@'localhost'
|
| GRANT SELECT, SELECT (User, Host), UPDATE (password_expired)
|
| ON `mysql`.`user` TO 'user1'@'localhost'
|
| GRANT EXECUTE ON PROCEDURE `cookbook`.`exec_stmt` TO
'user1'@'localhost' |
+--
----------+

To see your own privileges, omit the FOR clause.

REVOKE syntax is generally similar to GRANT but uses FROM rather than
TO:

REVOKE privileges ON scope FROM account;

Thus, to remove the privileges just granted to 'user1'@'localhost',
use these REVOKE statements (and SHOW GRANTS to verify that they were
removed):

mysql> REVOKE FILE ON *.* FROM 'user1'@'localhost';
mysql> REVOKE CREATE TEMPORARY TABLES, LOCK TABLES
 -> ON *.* FROM 'user1'@'localhost';
mysql> REVOKE ALL ON cookbook.* FROM 'user1'@'localhost';
mysql> REVOKE SELECT ON mysql.user FROM 'user1'@'localhost';
mysql> REVOKE SELECT(User,Host), UPDATE(password_expired)
 -> ON mysql.user FROM 'user1'@'localhost';
mysql> REVOKE EXECUTE ON PROCEDURE cookbook.exec_stmt
 -> FROM 'user1'@'localhost';
mysql> SHOW GRANTS FOR 'user1'@'localhost';
+---+
| Grants for user1@localhost |
+---+
| GRANT USAGE ON *.* TO 'user1'@'localhost' |
+---+

Removing accounts
To get rid of an account, use the DROP USER statement:

DROP USER 'user1'@'localhost';

The statement removes all rows associated with the account in all grant
tables; you need not use REVOKE to remove its privileges first. An error
occurs if the account does not exist.

Renaming accounts
To change an account name, use RENAME USER, specifying the current and
new names:

RENAME USER 'currentuser'@'localhost' TO 'newuser'@'localhost';

An error occurs if the current account does not exist or the new account
already exists.

24.3 Implementing a Password Policy

Problem
You want to ensure that MySQL accounts do not use weak passwords.

Solution
Use the validate_password plug-in to implement a password policy.
New passwords must satisfy the policy, whether those chosen by the DBA
for new accounts or by existing users changing their password.

Discussion
This technique requires the validate_password plug-in to be enabled.
For plug-in installation instructions, see Recipe 22.2.

When validate_password is enabled, it exposes a set of system
variables that enable you to configure it. These are the default values:

mysql> SHOW VARIABLES LIKE 'validate_password%';
+--------------------------------------+--------+
| Variable_name | Value |
+--------------------------------------+--------+
validate_password_dictionary_file	
validate_password_length	8
validate_password_mixed_case_count	1
validate_password_number_count	1
validate_password_policy	MEDIUM
validate_password_special_char_count	1
+--------------------------------------+--------+

Suppose that you want to implement a policy that enforces these
requirements for passwords:

At least 10 characters long
Contains uppercase and lowercase characters
Contains at least two digits
Contains at least one special (nonalphanumeric) character

To put that policy in place, start the server with options that enable the plug-
in, and set the values of the system variables that configure the policy
requirements. For example, put these lines in your server option file:

[mysqld]
plugin-load-add=validate_password.so
validate_password_length=10
validate_password_mixed_case_count=1
validate_password_number_count=2
validate_password_special_char_count=1

After starting the server, verify the settings:

mysql> SHOW VARIABLES LIKE 'validate_password%';
+--------------------------------------+--------+
| Variable_name | Value |
+--------------------------------------+--------+
| validate_password_dictionary_file | |
| validate_password_length | 10 |

validate_password_mixed_case_count	1
validate_password_number_count	2
validate_password_policy	MEDIUM
validate_password_special_char_count	1
+--------------------------------------+--------+

Now the validate_password plug-in prevents assigning passwords
too weak for the policy:

mysql> SET PASSWORD = 'weak-password';
ERROR 1819 (HY000): Your password does not satisfy the current
policy requirements
mysql> SET PASSWORD = 'Str0ng-Pa33w@rd';
Query OK, 0 rows affected (0.00 sec)

The preceding instructions leave the validate_password_policy
system variable set to its default value (MEDIUM), but you can change it to
control how the server tests passwords:

MEDIUM enables tests for password length and the number of numeric,
uppercase/lowercase, and special characters.
To be less rigorous, set the policy to LOW, which enables only the length
test. To also permit shorter passwords, decrease the required length
(validate_password_length).

To be more rigorous, set the policy to STRONG, which is like MEDIUM
but also enables you to have passwords checked against a dictionary file,
to prevent use of passwords that match any word in the file.
Comparisons are not case sensitive.
To use a dictionary file, set the value of
validate_password_dictionary_file to the filename at
server startup. The file should contain lowercase words, one per line.
MySQL distributions include a dictionary.txt file in the share directory
that you can use, and Unix systems often have a /usr/share/dict/words
file.

Putting a password policy in place has no effect on existing passwords. To
require users to choose a new password that satisfies the policy, expire their

current password (see Recipe 24.5).

24.4 Checking Password Strength

Problem
You want to assign or change a password but verify first that it’s not weak.

Solution
Use the VALIDATE_PASSWORD_STRENGTH() function.

Discussion
The validate_password plug-in not only implements policy for new
passwords, but it also provides a SQL function,
VALIDATE_PASSWORD_STRENGTH(), that enables strength testing of
prospective passwords. Uses for this function include the following:

An administrator wants to check passwords to be assigned to new
accounts.
An individual user wants to choose a new password but seeks assurance
in advance about how strong it is.

To use VALIDATE_PASSWORD_STRENGTH(), the
validate_password plug-in must be enabled. For plug-in installation
instructions, see Recipe 22.2.
VALIDATE_PASSWORD_STRENGTH() returns a value from 0 (weak) to
100 (strong):

mysql> SELECT VALIDATE_PASSWORD_STRENGTH('abc') ;
+-----------------------------------+
| VALIDATE_PASSWORD_STRENGTH('abc') |
+-----------------------------------+
| 0 |
+-----------------------------------+
mysql> SELECT VALIDATE_PASSWORD_STRENGTH('weak-password');

+---+
| VALIDATE_PASSWORD_STRENGTH('weak-password') |
+---+
| 50 |
+---+
mysql> SELECT VALIDATE_PASSWORD_STRENGTH('Str0ng-Pa33w@rd');
+---+
| VALIDATE_PASSWORD_STRENGTH('Str0ng-Pa33w@rd') |
+---+
| 100 |
+---+

24.5 Expiring Passwords

Problem
You want users to pick a new MySQL password.

Solution
The ALTER USER statement expires passwords.

Discussion
MySQL 5.6.7 and up provides an ALTER USER statement that enables an
administrator to expire an account’s password:

ALTER USER 'cbuser'@'localhost' PASSWORD EXPIRE;

Here are some uses for password expiration:
You can implement a policy that new users must select a new password
when first connecting: immediately expire the password for each new
account you create.
If you impose a stricter policy on acceptable passwords (see Recipe
24.3), you can expire all existing passwords to require each user to
choose a new one that meets the more stringent requirements.

ALTER USER affects a single account. It works by setting the
password_expired column to Y for the appropriate mysql.user
row. To “cheat” and expire passwords for all nonanonymous accounts at
once, do this (anonymous users cannot reset their password, so expiring
those would have the same effect as removing these accounts from the
MySQL system):

UPDATE mysql.user SET password_expired = 'Y' WHERE User <> '';
FLUSH PRIVILEGES;

Alternatively, to affect all accounts but avoid modifying the grant tables
directly, use a stored procedure that loops through all accounts and executes
ALTER USER for each:

CREATE PROCEDURE expire_all_passwords()
BEGIN
 DECLARE done BOOLEAN DEFAULT FALSE;
 DECLARE account TEXT;
 DECLARE cur CURSOR FOR
 SELECT CONCAT(QUOTE(User),'@',QUOTE(Host)) AS account
 FROM mysql.user WHERE User <> '';
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

 OPEN cur;
 expire_loop: LOOP
 FETCH cur INTO account;
 IF done THEN
 LEAVE expire_loop;
 END IF;
 CALL exec_stmt(CONCAT('ALTER USER ',account,' PASSWORD
EXPIRE'));
 END LOOP;
 CLOSE cur;
END;

The procedure requires the exec_stmt() helper routine (see Recipe
11.6). Scripts to create these routines are located in the routines directory of
the recipes distribution.

24.6 Assigning Yourself a New Password

Problem
You want to change your password.

Solution
Use ALTER USER or SET PASSWORD statements.

Discussion
To assign yourself a new password, use the SET PASSWORD statement:

SET PASSWORD = 'my-new-password';

SET PASSWORD permits a FOR clause that enables you to specify which
account gets the new password:

SET PASSWORD FOR 'user_name'@'host_name' = 'my-new-password';

This latter syntax is primarily for DBAs because it requires the UPDATE
privilege for the mysql database.

Alternatively, use the ALTER USER statement:

ALTER USER 'user_name'@'host_name' IDENTIFIED BY 'my-new-
password';

If you want to use the ALTER USER statement to assign yourself a
password, you can check your account name first by running the
CURRENT_USER function:

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| cbuser@% |
+----------------+
1 row in set (0.00 sec)

To check the strength of a password you’re considering, use the
VALIDATE_PASSWORD_STRENGTH() function (see Recipe 24.4).

24.7 Resetting an Expired Password

Problem
You cannot use MySQL because your DBA expired your password.

Solution
Assign yourself a new password.

Discussion
If the MySQL administrator has expired your password, MySQL will let
you connect but not do much of anything else:

$ mysql --user=cbuser --password
Enter password: ******
mysql> SELECT CURRENT_USER();
ERROR 1820 (HY000): You must SET PASSWORD before executing this
statement

If you see that message, reset your password so that you can work normally
again:

mysql> SET PASSWORD = 'my-new-password';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT CURRENT_USER(); -- now you can work again
+------------------+
| CURRENT_USER() |
+------------------+
| cbuser@localhost |
+------------------+
1 row in set (0.00 sec)

Technically, MySQL does not require a new password to replace an expired
password, so you can assign yourself your current password to unexpire it.
The exception is that if the password policy has become more restrictive
and your current password no longer satisfies it, a stronger password must
be chosen.
For more information about changing your password, see Recipe 24.6.

24.8 Finding and Removing Anonymous
Accounts

Problem
You want to ensure that your MySQL server can be used only by accounts
associated with specific usernames.

Solution
Identify and remove anonymous accounts.

Discussion
An “anonymous” account is one that has an empty user part in the account
name, such as ''@'localhost'. An empty user matches any name
because the purpose of an anonymous account is to permit anyone who
knows its password to connect from the named host (localhost in this
case). This is a convenience because the DBA need not set up individual
accounts for separate users. But there are security implications as well:

Such accounts often are given no password, enabling their use with no
authentication at all.
You cannot associate database activity with specific users (for example,
by checking the server query log or examining SHOW PROCESSLIST
output), making it more difficult to tell who is doing what.

If the preceding points persuade you that anonymous accounts are not a
good thing, use the following instructions to identify and remove them:

1. The User column is empty in the mysql.user rows for
anonymous accounts, so you can identify them like this:

mysql> SELECT User, Host FROM mysql.user WHERE User = '';
+------+---------------+
| User | Host |
+------+---------------+
| | %.example.com |
| | localhost |
+------+---------------+

2. The SELECT output shows two anonymous accounts. Remove each
using a DROP USER statement with the corresponding account name:

mysql> DROP USER ''@'localhost';
mysql> DROP USER ''@'%.example.com';

24.9 Modifying “Any Host” and “Many Host”
Accounts

Problem
You want to ensure that MySQL accounts cannot be used from an overly
broad set of hosts.

Solution
Find and fix accounts containing % or _ in the host part.

Discussion
The host part of MySQL account names can contain the SQL pattern
characters % and _ (see Recipe 7.10). These names match client connection
attempts from any host that matches the pattern. For example, the account

'user1'@'%' permits user1 to connect from any host whatsoever, and
'user2'@'%.example.com' permits user2 to connect from any host
in the example.com domain.

Patterns in the host part of account names provide a convenience that
enables a DBA to create an account that permits connections from multiple
hosts. They correspondingly increase security risks by increasing the
number of hosts from which intruders can attempt to connect. If you
consider this a concern, identify the accounts and either remove them or
change the host part to be more specific.
There are several ways to find accounts with % or _ in the host part. Here
are two:

WHERE Host LIKE '%\%%' OR Host LIKE '%_%';
WHERE Host REGEXP '[%_]';

The LIKE expression is more complex because we must look for each
pattern character separately and escape it to search for literal instances. The
REGEXP expression requires no escaping because those characters are not
special in regular expressions, and a character class permits both to be
found with a single pattern. So let’s use that expression:

1. Identify pattern-host accounts in the mysql.user table like this:

mysql> SELECT User, Host FROM mysql.user WHERE Host REGEXP
'[%_]';
+-------+---------------+
| User | Host |
+-------+---------------+
user1	%
user2	%.example.com
user3	_.example.com
+-------+---------------+

2. To remove an identified account, use DROP USER:

mysql> DROP USER 'user1'@'%';
mysql> DROP USER 'user3'@'_.example.com';

Alternatively, rename an account to make the host part more specific:

mysql> RENAME USER 'user2'@'%.example.com' TO
'user2'@'host17.example.com';

24.10 Using TLS (SSL)

Problem
You want to encrypt traffic between MySQL client and the server.

Solution
Use Transport Layer Security (TLS) protocol.

Discussion
MySQL does not use anything in addition to the standard Transmission
Control Protocol (TCP) to encrypt traffic between the client and the server.
Therefore, if someone wants to read data, sent in either direction, they can
easily do it with help of tcpdump and similar tools. Any sensitive
information, such as user passwords or stored credit card numbers, could be
exposed. To prevent this, MySQL supports TLS protocol to secure
communications.

NOTE
Modern versions of MySQL use TLS protocol to encrypt traffic between the client and the server.
However, due to historical reasons, configuration options and the Reference Manual often refer to
TLS as SSL (Secure Socket Layer) even though the latter is not used anymore, because its
encryption is weak. In this book, we use the term TLS in the text whenever possible.

To secure traffic between the MySQL client and the server, you need the
following:

On the server

The ssl option enabled. This is the default value, and you only need
to ensure that it isn’t disabled in the configuration file.
The Certificate Authority (CA) file that could be used to verify
certificates. It could be a single file, specified by the ssl_ca
option, or a path to a directory containing multiple such files,
specified by the ssl_capath option.

The public key certificate file, specified by the ssl_cert option.
This certificate will be sent to the client to authenticate against the
client’s CA.
The private key, specified by the option ssl_key.

On the client
For the ssl-mode option, specify one of the following values:

PREFERRED

To establish an encrypted connection if the server supports TLS
and fail back to the unencrypted if it does not. This is the default
value.

REQUIRED

To establish an encrypted connection if the server supports TLS
and fail connection attempt if it does not.

VERIFY_CA

Performs the same check as REQUIRED and additionally verifies
the server CA file against the configured CA certificates.

VERIFY_IDENTITY

Performs the same check as VERIFY_CA and additionally
performs host name verification. That said, the server certificate
should have the client’s host name either in the "Subject
Alternative Name" or the "Common Name" fields.

The DISABLED value disables TLS connections and should not be
used if you want to encrypt client-server traffic.
The CA file that could be used to verify certificates. It could be a
single file, specified by the option ssl_ca, or a path to a directory
containing multiple such files, specified by the ssl_capath
option.
The public key certificate file, specified by the ssl_cert option.
This certificate will be sent to the server to authenticate against the
server’s CA.
The private key, specified by the ssl_key option.

NOTE
The CA, certificate, and key files should be in PEM (Privacy Enhanced Mail) format.

If the MySQL server started with the ssl option enabled, but with empty
values for other encryption-related options, it will search for the TLS keys
and certificates in the data directory. If found, they will be used. Otherwise,
TLS support will be disabled.
Once you have all of these prerequisites, you can test the TLS connection:

$ mysql
mysql> \s

../bin/mysql Ver 8.0.21 for Linux on x86_64 (Source
distribution)

Connection id: 534
Current database:
Current user: root@localhost
SSL: Cipher in use is TLS_AES_256_GCM_SHA384
...
mysql> SHOW VARIABLES LIKE 'have_ssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_ssl | YES |

+---------------+-------+
1 row in set (0.01 sec)

MySQL supports options to further restrict TLS connections, such as ssl-
cipher, which requires you to use only specified ciphers. Consult
“Configuring MySQL to Use Encrypted Connections” in the MySQL
Reference Manual for further details.

Creating self-signed certificates
MySQL distribution includes a mysql_ssl_rsa_setup command that
can create self-signed keys and certificates. It invokes the openssl
command and can be used as follows:

$ mysql_ssl_rsa_setup --datadir=./data
Ignoring -days; not generating a certificate
Generating a RSA private key
...
.............+++++
..............+++++
writing new private key to 'ca-key.pem'

Ignoring -days; not generating a certificate
Generating a RSA private key
....................................+++++
...+++++
writing new private key to 'server-key.pem'

Ignoring -days; not generating a certificate
Generating a RSA private key
...
.............+++++
.....................................+++++
writing new private key to 'client-key.pem'

Upon completion, it creates in the data directory files as listed in Table 24-
2.

Table 24-2. Files created by mysql_ssl_rsa_setup

File Description
ca.pem Self-signed CA

https://oreil.ly/6gpwk

File Description
ca-
key.pem

CA private key

server-
cert.pe
m

Server certificate

server-
key.pem

Server key

client-
cert.pe
m

Client certificate

client-
key.pem

Client key

private
_key.pe
m

RSA private key to use over unencrypted connection for accounts, authenticated
by either sha256_password or caching_sha2_password plug-ins

public_
key.pem

RSA public key to use over unencrypted connection for accounts, authenticated
by either sha256_password or caching_sha2_password plug-ins

Keys and certificates, created by the mysql_ssl_rsa_setup, are very
basic and do not contain fields such as "Common Name". If you want to
add these custom values to your TLS files, you need to create them
manually. We don’t include instructions on how to do so in the book,
because there is plenty of documentation available online, including
“Creating SSL and RSA Certificates and Keys” in the MySQL Reference
Manual. Alternatively, you may perform a test run of the
mysql_ssl_rsa_setup command with the --verbose option that
will print the openssl commands it executes. You will only need to repeat
them with custom options.

TIP
If you simply want to test how MySQL TLS connections work and do not want to create any new
keys and certificates, you can use standard keys and certificates from the MySQL Test Suite,
located inside the mysql-test/std_data directory of your MySQL installation.

https://oreil.ly/OlL70
https://oreil.ly/eke58

24.11 Using Roles

Problem
You want to grant the same set of privileges to different users but do not
want them to share the same user account.

Solution
Use roles.

Discussion
When MySQL installation is used by multiple people, you may need to give
similar privileges to some of them. For example, application users may
need access to tables in their application database, while administrators may
need to execute administrative commands. When you have a single
application user or single database administrator, you can simply create two
user accounts. But when your organization and MySQL usage grows, you
may need to allow different people to perform the same tasks.
You may resolve such a problem by sharing a single user account between
different people. But this is insecure for various reasons, including when a
user leaves the company and should lose access to the database. Or, if
someone from the group leaks their access credentials, all the database
users are compromised.
Another solution is to duplicate privilege lists for individual user accounts.
While it is more secure, it becomes error-prone when you need to add or
remove a privilege. Doing it manually for dozens of users may easily lead
to mistakes.
To resolve these drawbacks, MySQL 8.0 introduced roles that are,
practically, the named collections of privileges.
You can create a role like any other user account. You just do not need to
specify access credentials for it:

mysql> CREATE ROLE cookbook, admin;
Query OK, 0 rows affected (0.00 sec)

In the preceding listing, we created a role cookbook that will have access
to the cookbook database and an admin role that will be used for the
database administration.
The next step is to assign privileges to our new roles:

mysql> GRANT SELECT, INSERT, UPDATE, DELETE, EXECUTE ON
cookbook.* TO 'cookbook';
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT GROUP_REPLICATION_ADMIN, PERSIST_RO_VARIABLES_ADMIN,
 -> REPLICATION_SLAVE_ADMIN, RESOURCE_GROUP_ADMIN,
 -> ROLE_ADMIN, SYSTEM_VARIABLES_ADMIN, SYSTEM_USER,
 -> RELOAD, SHUTDOWN ON *.* to 'admin';
Query OK, 0 rows affected (0.01 sec)

Once roles are set up, we can assign them to different users. For example, to
give access to the cookbook database to users cbuser, sveta, and
alkin, use these commands:

mysql> GRANT cookbook TO cbuser;
Query OK, 0 rows affected (0.01 sec)

mysql> GRANT cookbook TO sveta;
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT cookbook TO alkin;
Query OK, 0 rows affected (0.00 sec)

To grant administrator access to users paul and amelia, use the
commands:

mysql> GRANT admin TO paul;
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT admin TO amelia;
Query OK, 0 rows affected (0.01 sec)

Revoking role access is as easy as granting it:

mysql> REVOKE cookbook FROM sveta;
Query OK, 0 rows affected (0.01 sec)

See Also
MySQL supports other operations with roles, such as setting the default role
for the newly added users or activating and deactivating roles. For
additional information about roles in MySQL, see Using Roles in the
MySQL Reference Manual.

24.12 Using Views to Secure Data Access

Problem
You want to give users access only to certain query results but do not want
them to see the actual data stored in the tables.

Solution
Use views.

Discussion
You may want certain users to be able to get access to the query results but
want to cover real data stored in the tables. For example, the statistical
department may want to know the number of patients in the hospital, their
gender and age distribution, and how this data correlates to the recovery
rate, but the department shouldn’t have access to actual patient data, such as
their names or ID numbers, or be able to correlate their identity and
diagnosis.
To achieve this goal, you can create a view querying for certain data and
grant specific users access only to this view.
Consider a patients table:

https://oreil.ly/RrtZC

mysql> SHOW CREATE TABLE patients\G
*************************** 1. row ***************************
 Table: patients
Create Table: CREATE TABLE `patients` (
 `id` int NOT NULL AUTO_INCREMENT,
 `national_id` char(32) DEFAULT NULL,
 `name` varchar(255) DEFAULT NULL,
 `surname` varchar(255) DEFAULT NULL,
 `gender` enum('F','M') DEFAULT NULL,
 `age` tinyint unsigned DEFAULT NULL,
 `additional_data` json DEFAULT NULL,
 `diagnosis` varchar(255) DEFAULT NULL,
 `result` enum('R','N','D') DEFAULT NULL ↩
 COMMENT 'R=Recovered, N=Not Recovered, D=Dead',
 `date_arrived` date NOT NULL,
 `date_departed` date DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=21 DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

If you want to give the statistical department access to this data, you may
want to give access to the gender, age, diagnosis, and result
columns but restrict access to national_id, name, surname, and
additional_data. You also may want to let them know how many
days a patient spent in the hospital and in which month and year they
arrived but do not want to let them explore actual arriving and departing
dates. In other words, you want to restrict access to date_arrived and
date_departed but still provide data that could be calculated based on
the values stored in these columns.
You can do this by creating a view:

mysql> CREATE VIEW patients_statistics AS
 -> SELECT age, gender, diagnosis, result,
 -> datediff(date_departed, date_arrived) as
recovered_time,
 -> MONTH(date_arrived) AS month_arrived,
 -> YEAR(date_arrived) AS year_arrived
 -> FROM patients;
Query OK, 0 rows affected (0.03 sec)

Then create a user for the statistics department that has read-only access to
this view and does not have access to the underlying table:

mysql> CREATE USER statistics;
Query OK, 0 rows affected (0.03 sec)

mysql> GRANT SELECT ON cookbook.patients_statistics TO
statistics;
Query OK, 0 rows affected (0.02 sec)

Now the statistics department can log in and run analytical queries, such as
finding the most frequent diagnosis, or how many patients with such a
diagnosis arrived per month:

mysql cookbook -A -ustatistics
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 17
...
mysql> SELECT diagnosis, AVG(recovered_time) AS
recovered_time_avg, COUNT(*) AS cases
 -> FROM patients_statistics WHERE year_arrived='2020'
 -> GROUP BY diagnosis ORDER BY cases DESC;
+---------------+--------------------+-------+
| diagnosis | recovered_time_avg | cases |
+---------------+--------------------+-------+
Data Phobia	24.8333	6
Diabetes	10.0000	4
Asthma	10.3333	3
Arthritis	22.0000	3
Appendicitis	5.5000	2
Breast Cancer	75.0000	2
+---------------+--------------------+-------+
6 rows in set (0.00 sec)

mysql> SELECT diagnosis, month_arrived, COUNT(*) AS month_cases
 -> FROM patients_statistics WHERE diagnosis='Data Phobia' AND
year_arrived='2020'
 -> GROUP BY diagnosis, month_arrived ORDER BY month_arrived;
+--------------+---------------+-------------+
| diagnosis | month_arrived | month_cases |
+--------------+---------------+-------------+
Data Phobia	4	1
Data Phobia	9	2
Data Phobia	10	2
Data Phobia	11	1
+--------------+---------------+-------------+
4 rows in set (0.00 sec)

But they would not be able to access the table data directly:

mysql> SELECT * FROM patients;
ERROR 1142 (42000): SELECT command denied to user
'statistics'@'localhost' ↩
 for table 'patients'

mysql> SELECT diagnosis, result, date_arrived FROM patients;
ERROR 1142 (42000): SELECT command denied to user
'statistics'@'localhost' ↩
 for table 'patients'

NOTE
Views support the SQL SECURITY clause, allowing you to specify security context when
executing a view. This clause is discussed in detail in Recipe 24.13.

See Also
For additional information about using views, see Recipe 5.7.

24.13 Using Stored Routines to Secure Data
Modifications

Problem
You want to let users modify their personal data but want to prevent them
from accessing similar data for others.

Solution
Use stored routines.

Discussion
You may want to let users view and change their own personal information.
For example, patients may marry and change their surnames or decide to

add new additional information about themselves, such as address, weight,
and so on. But you do not want them to see similar information for other
patients. In this case, restricting access only on the column level wouldn’t
work.
Stored routines support the SQL SECURITY clause that allows you to
specify if you want to execute the routine with access privileges for the
DEFINER, the user that created the procedure, or the INVOKER, the user
that is currently executing the procedure.
In our case, we do not want to grant the INVOKER any privilege that allows
them to access data stored in the sensitive columns. Therefore, we need to
grant such privileges to the DEFINER of the procedure and specify the
argument SQL SECURITY DEFINER.

TIP
The default value for SQL SECURITY is DEFINER; therefore, this clause could be omitted.

To illustrate this, let’s take the patients table from the previous recipe.
But now we’ll access only columns containing sensitive data:

mysql> SHOW CREATE TABLE patients\G
*************************** 1. row ***************************
 Table: patients
Create Table: CREATE TABLE `patients` (
 ...
 `national_id` char(32) DEFAULT NULL,
 `name` varchar(255) DEFAULT NULL,
 `surname` varchar(255) DEFAULT NULL,
 ...
 `additional_data` json DEFAULT NULL,
 ...

First, let’s prepare a user that will be a DEFINER for our procedure. We do
not want this account to be used by anyone except the stored routine, so
first let’s install the mysql_no_login authentication plug-in:

mysql> INSTALL PLUGIN mysql_no_login SONAME 'mysql_no_login.so';
Query OK, 0 rows affected (0.01 sec)

Then let’s create the user account and grant it access to the patients
table:

mysql> CREATE USER sp_access IDENTIFIED WITH mysql_no_login;
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT SELECT, UPDATE ON cookbook.patients TO sp_access;
Query OK, 0 rows affected (0.01 sec)

Now let’s create a procedure that will return sensitive data for a patient,
identified by national_id:

mysql> delimiter $$
mysql> CREATE DEFINER='sp_access'@'%' PROCEDURE
get_patient_data(IN nat_id CHAR(32))
 -> SQL SECURITY DEFINER
 -> BEGIN
 -> SELECT name, surname, gender, age, additional_data
 -> FROM patients WHERE national_id=nat_id;
 -> END
 -> $$
Query OK, 0 rows affected (0.01 sec)

mysql> delimiter ;

And a procedure that will update the record:

mysql> delimiter $$
mysql> CREATE DEFINER='sp_access'@'%' PROCEDURE
update_patient_data(
 -> IN nat_id
CHAR(32),
 -> IN new_name
varchar(255),
 -> IN new_surname
varchar(255),
 -> IN
new_additional_data JSON)
 -> SQL SECURITY DEFINER
 -> BEGIN
 -> UPDATE patients
 -> SET name=COALESCE(new_name, name),

 -> surname=COALESCE(new_surname, surname),
 ->
additional_data=JSON_MERGE_PATCH(COALESCE(additional_data, '{}'),
 ->
COALESCE(new_additional_data, '{}'))
 -> WHERE national_id=nat_id;
 -> END
 -> $$
Query OK, 0 rows affected (0.01 sec)

mysql> delimiter ;

Then, add privileges to execute these procedures to our DEFINER:

mysql> GRANT EXECUTE ON PROCEDURE cookbook.get_patient_data TO
sp_access;
Query OK, 0 rows affected (0.01 sec)

mysql> GRANT EXECUTE ON PROCEDURE cookbook.update_patient_data TO
sp_access;
Query OK, 0 rows affected (0.00 sec)

Finally, let’s create a user that will use these procedures without any
additional privileges:

mysql> CREATE USER patient;
Query OK, 0 rows affected (0.01 sec)

mysql> GRANT EXECUTE ON PROCEDURE cookbook.get_patient_data TO
patient;
Query OK, 0 rows affected (0.02 sec)

mysql> GRANT EXECUTE ON PROCEDURE cookbook.update_patient_data TO
patient;
Query OK, 0 rows affected (0.01 sec)

Now let’s log in as this user and check how our procedures work:

mysql> SHOW GRANTS;
+--
--------------+
| Grants for patient@%
|
+--
--------------+
| GRANT USAGE ON *.* TO `patient`@`%`

|
| GRANT EXECUTE ON PROCEDURE `cookbook`.`get_patient_data` TO
`patient`@`%` |
| GRANT EXECUTE ON PROCEDURE `cookbook`.`update_patient_data` TO
`patient`@`%` |
+--
--------------+
3 rows in set (0.00 sec)

mysql> CALL update_patient_data('89AR642465', NULL, 'Johnson',
 -> ' {"Height": 165, "Weight": 55, "Hair color": "Blonde"}');
Query OK, 1 row affected (0.00 sec)

mysql> CALL get_patient_data('89AR642465')\G
*************************** 1. row ***************************
 name: Mary
 surname: Johnson
 gender: F
 age: 24
additional_data: {"Height": 165, "Weight": 55, "Hair color":
"Blonde"}
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

As you can see, we can change details for the specific patient, identifying
them by a national ID, while having no access to the data of other patients.

See Also
For additional information about stored routines, see Chapter 11.

Index

Symbols

" (double quote)
escaping in command line arguments, Notes on Invoking Shell
Commands
escaping in data values, Discussion
identifier quoting if ANSI_QUOTES, Discussion, Discussion
importing data, Problem
shell command arguments, Notes on Invoking Shell Commands
writing string literals, Problem

$ (dollar sign)
JSON root element, Discussion
prompt, Discussion
regexp end of string, Discussion, Discussion

% (percent)
formatting for date and time values, Discussion
hostname containing, Problem
matching sequence of characters, Filtering on the replica, Discussion

' (single quote)
escaping in data values, Discussion
exporting data, Exporting using the SELECT...INTO OUTFILE
statement
importing CSV files, Problem
writing string literals, Problem

() parentheses

function-based indexes, Discussion
regexp pattern matches, Discussion

* (asterisk)
COUNT rows including NULLs, Discussion, Discussion
JSON all values, Discussion
regexp pattern matching, Discussion, Discussion

matching empty string, Discussion

SELECT all columns, Discussion

+ (plus) regexp pattern matching, Discussion, Discussion
avoiding empty string match, Discussion

- (dash)
option file underscores and, Specifying connection parameters using
option files, Configuration control at server startup
single versus double, Discussion

-> (JSON_EXTRACT()), Discussion
->> (JSON_UNQUOTE()), Discussion
. (dot)

JSON object members, Discussion
regexp matching single character, Discussion, Discussion

/ (slash) pathname separator, Specifying connection parameters using
option files
/dev/null, Discussion

Blackhole “storage” engine, Discussion

/dev/random for seed, Discussion
/var/log/messages system log, Solution
:= as variable assignment operator, Discussion
; (semicolon)

end of SQL statement, Discussion, Discussion

multiple SQL statements executed, Discussion
none in API SQL statements, SQL statement categories
\G for vertical output, Discussion, Discussion
\g synonym, Discussion, Discussion

redefining mysql terminator for BEGIN...END, Problem

< (left angle bracket) to redirect input, Discussion, Discussion
<=> for NULL comparison, Problem
= (equal sign)

spaces around, Specifying connection parameters using option files
variable assignment operator, Discussion

:= synonym, Discussion

> (right angle bracket) redirecting output, Exporting using the mysql client
program
? (question mark) optional regexp element, Discussion
@ (at sign)

account names, Discussion, Creating accounts
anonymous accounts, Discussion
hostnames with pattern characters, Discussion

variable assignment, Discussion

@@ (double at sign)
examples of use

buffer pool size, Discussion
data directory, Discussion
global variable read, Configuration control and verification at runtime
GTID, Discussion
mysqlx_socket value, Discussion
plugin_dir system variable, Discussion
Ruby, Ruby

session and global specified, Discussion, Discussion
showing default storage engine, Discussion

sql_mode, Discussion, Specifying the datafile location, Problem
writing or reading system variables, Configuration control and
verification at runtime

no GLOBAL. or SESSION. modifier, Configuration control and
verification at runtime

[] (square brackets)
regexp pattern matching, Discussion, Discussion, Discussion, Discussion

JSON array members, Discussion
POSIX character classes, Discussion
[^] not version, Discussion, Discussion

\ (backslash)
escape sequences, Discussion

LOAD DATA escape sequences, Discussion

escaping double quotes, Notes on Invoking Shell Commands
escaping identifier quoted strings, Discussion
escaping in data values, Discussion
line-continuation character in Unix, Notes on Invoking Shell Commands
literal matches of characters, Using SHOW COLUMNS to get table
structure information, Discussion
option file pathnames, Specifying connection parameters using option
files
Windows pathname separator, Specifying the datafile location

LOAD DATA pathnames, Specifying the datafile location

\! for system command, Discussion
\. for source command, Discussion
\0 for ASCII NUL, Discussion, Discussion
\1, \2, ... in regexp pattern matches, Discussion

\b for backspace, Discussion
\c for \connect command, Discussion-See Also
\d for regexp digit character, Discussion, Discussion
\D for regexp nondigit character, Discussion
\g at end of SQL statement, Discussion, Discussion
\G for vertical output, Discussion, Discussion
\n for linefeed or newline, Discussion

line-ending sequence in files, File Formats, Discussion

\n for nopager to reset pager, Discussion
\r for carriage return, Discussion

line-ending sequence in files, File Formats, Discussion

\R to customize mysql prompt, Problem
\S for regexp nonwhitespace character, Discussion, Discussion
\s for regexp whitespace character, Discussion, Discussion
\t for tab, Discussion
\W for regexp nonword character, Discussion
\w for regexp word character, Discussion, Discussion
^ (caret)

line-continuation in Windows, Notes on Invoking Shell Commands
regexp beginning of string, Discussion, Discussion
regexp empty and nonempty values, Discussion

_ (underscore)
character set for string literal, Discussion
hostname containing, Problem
option file dashes interchangeable, Specifying connection parameters
using option files, Configuration control at server startup
pattern matching single character, Filtering on the replica, Discussion

` (backtick)

around identifier in SQL statement, Discussion
GROUP BY identifier quoting, Discussion
line-continuation in PowerShell, Notes on Invoking Shell Commands
SQL injection attack prevention, Discussion

{ } (curly braces)
multiline code, Discussion
regexp pattern matching, Discussion, Discussion

| (pipe) output as input, Discussion, Discussion
| (vertical bar) regexp pattern matching, Discussion, Discussion, Discussion

A

access denied error
built-in report privileges, Discussion
importing data, Specifying the datafile location
invoking mysql, Problem

access privileges (see privileges)
access to option files by other users, Protecting option files from other users
accounts (see user account for MySQL)
add() to Python mode collections, Discussion
add_or_replace_one() in Python mode collections, Discussion
adjacent words in specific order, Problem
Admin API, Discussion

automated replication setup, Problem

administration of server (see server administration)
administrative privileges

CREATE USER and GRANT, Discussion
mysqladmin, Discussion
security, Introduction

server administration, Introduction
server monitoring, Introduction
server shutdown, Discussion
SUPER privileges, Configuration control and verification at runtime

AGAINST(), Problem
age calculations, Problem
aggregate functions

descriptive statistics calculations, Problem
JSON object and array functions, Problem
NULL values ignored, Discussion
query result rows numbered, Problem
summary values via, Introduction

(see also summaries)
caution: nonsummary columns, Discussion

WHERE clause not allowing, Discussion

aliases for tables, Discussion
aliasing column names in results, Problem

benefits for programming, Discussion
DATE_FORMAT() results, Discussion
expressions for sorting, Discussion
GROUP BY referring to, Discussion

identifier quoting in backticks, Discussion

HAVING referring to, Discussion
join output column names, Problem
restrictions on, Discussion
saving query results to a table, Discussion
UNION using, Discussion

ALTER EVENT to disable or enable, Discussion

ALTER TABLE
adding AUTO_INCREMENT column, Problem
changing storage engine, Solution, Discussion, Discussion
column names in results, Discussion
dropping column to renumber sequence, Discussion
foreign keys added, Discussion
general tablespaces to individual, Discussion
index renamed, Discussion
query results saved as a table, Discussion
resetting sequence counter, Problem
tablespace discarded, Discussion

ALTER USER
changing your password, Problem
expiring passwords, Problem

Amazon review data for download, Amazon Review Data (2018),
Discussion

script to load data, Discussion

anonymous account management, Problem
ANSI_QUOTES, Discussion, Discussion
APIs

about book use, MySQL APIs Used in This Book
recipes distribution, Recipe Source Code and Data, Introduction

about object orientation, MySQL Client API Architecture
architecture of, MySQL Client API Architecture

portability of SQL code, MySQL Client API Architecture

AUTO_INCREMENT values via, Using API-specific methods to obtain
AUTO_INCREMENT values
character set for client connections, Discussion

connecting to MySQL server, Introduction, Problem-Java
disconnecting from, Discussion
obtaining connection parameters, Problem-Java

creating tables via scripts
about recipes distribution, Recipe Source Code and Data, Introduction
recipes distribution script files, Discussion

date calculations, Date or date-and-time interval calculation using basic
units
error handling by scripts, Introduction, Problem-Java

Go connection script, Go, Go
Java connection script, Java, Java
Perl connection script, Perl, Perl
PHP connection script, PHP, PHP
Python connection script, Python, Python
Ruby connection script, Ruby, Ruby

executing SQL, Introduction, Problem-Java
categories of SQL statements, Discussion, SQL statement categories
error handling, SQL statement categories
no SQL statement terminators, SQL statement categories

languages supported by MySQL, MySQL APIs Used in This Book,
Introduction

MySQL Shell, Introduction
recipes distribution on GitHub, Recipe Source Code and Data,
Introduction

library file writing, Introduction, Problem-Java
data validation tests, Problem
Go, Go
location of library file, Choosing a library-file installation location
Perl, Perl

PHP, PHP
Python, Python
recipes distribution lib directory, Introduction, Discussion
Ruby, Ruby
test harness, Discussion

metadata
listing databases or tables, Discussion
matched versus changed, Discussion
number of rows changed by SQL, Solution
result set metadata obtained, Problem
server and database metadata, Discussion
server version, Discussion

NULL data values, Introduction, Problem-Java
identifying in result sets, Problem-Java

persistent connections and temporary tables, Discussion
resetting the profile table, Problem
special character handling, Introduction
special characters in data values, Problem-Java
special characters in identifiers, Problem

quoted string with same quote character, Discussion

test data via Python, Problem-See Also
transactions, Problem

APIs mapped onto SQL, Discussion

architecture of APIs, MySQL Client API Architecture
portability of SQL code, MySQL Client API Architecture

architecture of InnoDB storage engine, SHOW ENGINE
Archive storage engine, Discussion
arrays

card deck–shuffling algorithm, Discussion
JSON array from relational data, Problem
JSON array members accessed, Discussion
JSON new array members, Problem
PHP associative arrays, Construct a hash from the entire lookup table
result-set metadata

Go, Go
Perl, Perl

AS to specify column name alias, Discussion
alias benefits in programming, Discussion

ASCII NUL (\0), Discussion, Discussion
ASCII() to convert string format, Problem
asterisk (*)

COUNT rows including NULLs, Discussion, Discussion
JSON all values, Discussion
regexp pattern matching, Discussion, Discussion

matching empty string, Discussion

SELECT all columns, Discussion

asynchronous API of X protocol, Introduction
at sign (@)

account names, Discussion, Creating accounts
anonymous accounts, Discussion
hostnames with pattern characters, Discussion

variable assignment, Discussion

authentication
caching_sha2_password plug-in, Discussion
database access, Discussion

(see also privileges)

mysql.user table, Understanding the mysql.user Table
anonymous accounts, Discussion

replication user, Discussion

auto-commit mode of MySQL, Solution
auto-vertical-output, Discussion
autocommit session variable, Discussion
AUTO_INCREMENT column

counting with, Problem
custom increment values, Problem
data type for, Problem

extending range of sequence, Problem

deleting rows, Problem
renumbering an existing sequence, Problem
reusing values at top of sequence, Problem

duplicate rows prevented, Discussion
extending range of, Problem
id column, Discussion, Problem
LAST_INSERT_ID() value, Discussion, Discussion
managing multiple simultaneously, Problem
renumbering an existing, Problem

particular order, Problem

retrieving values, Problem
APIs, Using API-specific methods to obtain AUTO_INCREMENT
values
server-side versus client-side, Server-side and client-side sequence
value retrieval compared

sequences via, Problem
emptying table, resetting counter, Discussion

repeating sequences, Problem
sequencing an unsequenced table, Problem

storage engines and, Discussion, Discussion
tables associated via, Problem

AVG(), Problem

B

B (batch) option for output, Producing tabular or tab-delimited output
B-tree indexes, Introduction

FULLTEXT index on same column, Discussion
hash indexes versus, Introduction

backslash (\)
escape sequences, Discussion

LOAD DATA escape sequences, Discussion

escaping double quotes, Notes on Invoking Shell Commands
escaping identifier quoted strings, Discussion
escaping in data values, Discussion
line-continuation character in Unix, Notes on Invoking Shell Commands
literal matches of characters, Using SHOW COLUMNS to get table
structure information, Discussion
option file pathnames, Specifying connection parameters using option
files
Windows pathname separator, Specifying the datafile location

LOAD DATA pathnames, Specifying the datafile location

\! for system command, Discussion
\. for source command, Discussion
\0 for ASCII NUL, Discussion, Discussion
\1, \2, ... in regexp pattern matches, Discussion

\b for backspace, Discussion
\g at end of SQL statement, Discussion, Discussion
\G for vertical output, Discussion, Discussion
\n for linefeed or newline, Discussion

line-ending sequence in files, File Formats, Discussion

\n for nopager to reset pager, Discussion
\P for pager command, Discussion
\r for carriage return, Discussion

line-ending sequence in files, File Formats, Discussion

\R to customize mysql prompt, Problem
\t for tab, Discussion

backspace (\b), Discussion
backtick (`)

around identifier in SQL statement, Discussion
GROUP BY identifier quoting, Discussion
line-continuation in PowerShell, Notes on Invoking Shell Commands
SQL injection attack prevention, Discussion

backups
backup server via replication, Introduction
binary versus logical, Discussion
cp for binary backups, Discussion
MySQL backup tools, Discussion
mysqldump for, Discussion

backing up server for replication, Discussion
mysql client to load dump, Discussion, Discussion
renaming database, Discussion

replication server, Discussion
multisource replication, Discussion

table copying via, Problem

Basic Multilingual Plane (BMP), String Properties
batch (B) option for output, Producing tabular or tab-delimited output
batch mode in mysql

about mysql, Introduction
(see also scripts)

creating tables
about recipes distribution, Recipe Source Code and Data, Introduction
recipes distribution script files, Discussion

distributing SQL via script files, Discussion
executing SQL from file, Discussion
output format default, Discussion, Producing tabular or tab-delimited
output

BEGIN...END block, Introduction
redefining mysql ; terminator, Problem

BIN() for binary format conversion, Problem
binary collations, String Properties

comparisons, String Properties

binary log files
configuring, The binary log
configuring format, Problem

format of replica binary log, Discussion

enabling, Discussion
GTIDs, Introduction, Discussion
point-in-time recovery, Filtering on the source server, Discussion
position via SHOW MASTER STATUS, Solution

stopping writes for in-use future source, Discussion

reading, Troubleshooting Group Replication, Discussion

record of data changes, Discussion, Problem
recording prevented by filters, Discussion
rotating, Rotating the binary log
source replication server, Introduction, Discussion

binary output as hexadecimal notation, Discussion
BINARY string data type, Discussion
binary strings, String Properties, Discussion

bit operations, Discussion
comparisons, String Properties, Problem, Discussion, Discussion

case sensitivity controlled, Discussion
sorting of binary strings, Discussion

hexadecimal notation treated as, Discussion
UUID converted to binary, Discussion

binlog-do-db configuration option, Filtering on the source server
binlog-ignore-db, Filtering on the source server

binlog_rows_query_log_events, Introduction
binlog_transaction_dependency_tracking, Discussion, Discussion
bit operations, Discussion
BIT_COUNT(), Discussion
BIT_LENGTH() to convert string format, Problem
BIT_OR(), Discussion
Blackhole “storage” engine, Discussion
BLOB string data type, Discussion
book GitHub repository, The MySQL Cookbook Companion GitHub
Repository

email address for problems with code examples, Using Code Examples
web page for errata, examples, and information, How to Contact Us

Boolean-mode full-text searches, Problem

C

ca-key.pem, Creating self-signed certificates
ca.pem, Creating self-signed certificates
caching_sha2_password plug-in, Discussion
calendar operations

date values (see date values)
number of holidays, Discussion
number of Sundays, Discussion
sorting by calendar day, Sorting by calendar day
time values (see time values)

CALL to invoke stored programs, Introduction, Discussion
Camel-case syntax, Discussion
candidate keys, Problem
candidate-detail lists and summaries, Problem
card deck–shuffling algorithm, Discussion
cardinality of index, Discussion, Discussion
caret (^)

line-continuation in Windows, Notes on Invoking Shell Commands
regexp beginning of string, Discussion, Discussion
regexp empty and nonempty values, Discussion

carriage return (\r), Discussion
line-ending sequence in files, File Formats, Discussion

Cartesian products, Discussion
case conversion for strings, Problem
case sensitivity

collation name ending, String Properties
duplicate identification, Discussion
keywords, Discussion

regular expressions, Discussion
sorting strings, Problem
user variable names, Discussion

central tendency, Discussion
certificates

Certificate Authority (CA) file, Discussion
creating self-signed, Creating self-signed certificates
public key certificate file, Discussion

CHANGE MASTER, Discussion
CHANGE REPLICATION FILTER, Discussion
CHANGE REPLICATION SOURCE, Solution

replication user credential security, Problem
TLS for replication security, Problem
two or more source servers, Problem

changing your password, Problem
CHAR string data type, Discussion
CHAR() to convert string format, Problem
character classes in regexp, Discussion

POSIX character classes, Discussion

character sets for nonbinary strings, String Properties
changing, Problem
checking, Problem
client connection, Problem

some cannot be used as connection character sets, Discussion

default (MySQL 8), String Properties
listing character sets and collations, Problem
multibyte characters determination, String Properties
table columns, Discussion

Unicode, String Properties

CHARSET(), Problem
charting frequency distributions, Discussion
CHAR_LENGTH(), String Properties
CHECK constraints, Problem

listing defined CHECK constraints, Problem

checking if server is up, Problem
“MySQL Server has gone away”, Problem

chmod command
library file access privileges, Setting library-file access privileges
protecting option files, Protecting option files from other users

Classic MySQL protocol, Introduction
import_table requiring, Discussion

CLASSPATH environment variable, Choosing a library-file installation
location, Java
clear screen via cls parameter

nocls to not clear screen, Discussion

client for MySQL, Obtaining MySQL and Related Software, Introduction
timeout of client, Server crash

client-cert.pem, Creating self-signed certificates
client-key.pem, Creating self-signed certificates
client-server architecture of MySQL, Introduction
cloning a table, Problem
Cluster (InnoDB) managed by Admin API, Discussion

automating Group Replication, InnoDB Cluster

clustered index, Discussion
cmdline.pdf

environment variables, Choosing a library-file installation location

running programs, Introduction, Perl, Ruby, Python, Java

cmdline.pl, Perl
COALESCE(), Discussion
COLLATE to change collation, Problem
collation of strings

changing, Problem
checking, Problem
COLLATE example, String Properties
comparisons, String Properties
duplicate identification and case sensitivity, Discussion
listing character sets and collations, Problem
sort order affected by, String Properties

listing character sets and collations, Problem

table columns, Discussion
_ci, _cs, _bin for case sensitivity and binary, String Properties

COLLATION(), Problem
collections

about, Discussion
schema validation, Discussion

CookbookCollection object, Solution-Discussion
JavaScript mode Document Store, Problem
Python mode Document Store, Problem

column definitions accessed, Problem
column headings suppressed in output, Suppressing column headings in
query output
column names aliased in results, Problem

alias restrictions, Discussion
benefits for programming, Discussion

DATE_FORMAT() results, Discussion
expression for original name, Discussion
expressions for sorting, Discussion
GROUP BY identifier quoting in backticks, Discussion
GROUP BY referring to aliases, Discussion
HAVING referring to aliases, Discussion
join output column names, Problem
UNION using, Discussion

columns specified in SELECT, Problem
column order, Discussion

columns with date and timestamps, Problem
comma-separated values (see CSV)
command line

cmdline.pdf, Introduction
dba global object, Discussion
executing SQL statements directly, Discussion

reading from script file, Discussion

invoking commands overview, Notes on Invoking Shell Commands
line-continuation characters, Notes on Invoking Shell Commands

invoking mysql
command not found, Problem
specifying command options, Problem

json/array for passing data, Discussion
mixing option file parameters and, Mixing command-line and option-file
parameters
MySQL Shell client, Introduction
parameters in short or long form, Getting parameters from the command
line

process list, I/O utilization
processing arguments to obtain parameters, Getting parameters from the
command line
running MySQL Shell utilities, Discussion
security issues, Discussion
server configuration, Configuration control at server startup
“Executing Programs from the Command Line” document

GitHub repository, MySQL Cookbook Companion Documents
PATH variable, Discussion

command not found, Problem
command options

default values, Discussion
invoking mysql, Problem
MySQL Shell output formatting, Solution
mysqldump, Discussion
single versus double dash, Discussion
vertical output for session, Discussion

comments in option files, Specifying connection parameters using option
files
COMMIT, Discussion
commit()

Perl transactions, Discussion
Python mode table modifications, Discussion

Common Table Expressions (CTEs)
data from MIN or MAX rows, Discussion
Formula 1 fractional seconds example, Discussion
query results joined, Using CTEs
recursive CTEs, Discussion

sequence generation, Problem
summaries from temporary result sets, Problem

comparison operators
binary string comparisons, String Properties, Problem, Discussion,
Discussion

case sensitivity controlled, Discussion
sorting of binary strings, Discussion

date values, Problem
dates to calendar days, Comparing dates to calendar days

NULL values
<=>, Discussion
IFNULL(), Discussion, Discussion
IS NULL or IS NOT NULL, Problem
ISNULL(), Discussion
programming, Problem

string values, Problem
regexp patterns equivalent to substring comparisons, Discussion
SQL patterns equivalent to substring comparisons, Discussion

time values, Comparing times to one another

CONCAT(), Discussion
date and time values synthesized, Problem

ISO date format, Problem

email address format produced, Discussion

concurrency in transactions, Introduction
condition handlers

about error handling, Discussion
benign errors ignored, Problem
No More Rows conditions, Solution

sales tax example, Discussion

configuration files
global configuration file mysqlshrc, Discussion
library file installation location, Choosing a library-file installation
location
option files (see option files)
personal configuration file, Discussion
replication

binary log enabled, Discussion
GTID-based replication, Solution, Discussion
server_id, Discussion

\connect command (\c), Discussion-See Also
connect.go, Go
Connect.java, Java
connect.php, PHP
connect.pl, Perl
connect.py, Python
connect.rb, Ruby
connection limits of MySQL server, Problem

buffer pool sizing, Problem

connection objects (conn)
Java, Java
Python, Python

connection parameters
character set, Problem
command line, Discussion
Go connection script, Go
Java connection script, Java

obtaining via script, Problem-Java
parameters from command line, Getting parameters from the command
line
security issues, Discussion

option file, Specifying connection parameters using option files
mysql_config_editor for credential security, Specifying connection
parameters using option files

Perl connection script, Perl
PHP connection script, PHP
Python connection script, Python
Ruby connection script, Ruby

context cancellation support of Go, Go
CONTINUE handler for NOT FOUND, Discussion
CONV() to convert between numeric bases, Problem
CONVERT() to change character set, Problem
CONVERT_TZ() for time zones, Problem
cookbook database, Introduction

creating, Problem, Problem
PRIMARY KEY clause, Discussion
rows inserted, Problem
tables created, Problem

user account privileges, Discussion-See Also

cookbook.py module, Discussion
CookbookCollection object, Solution-Discussion
CookbookCollectionModule.js, Discussion
cookbook_utils.py library module file, Discussion

regexp date patterns, Discussion, Discussion
regexp time patterns, Discussion

trim_whitespace(), Discussion
year from two digits to four, Discussion

copying database to another MySQL server, Discussion
correlation coefficients, Problem, Discussion
COUNT()

displaying results in groups, Discussion
DISTINCT for unique values, Discussion, Introduction

repetitiveness of a set of values, Discussion

missing values counted, Problem
non-NULL values versus rows, Discussion, Discussion
summarizing with, Problem

covering index, Problem
cp for binary backups, Discussion
CPU monitoring

high-utilization process on server, Problem
thread-filtering documentation, Discussion

monitoring the operating system, Operating System
non-uniform memory access (NUMA), Memory utilization

CREATE DATABASE, Problem
renaming database, Discussion

CREATE EVENT, Discussion
about events, Introduction

(see also events)

log maintenance, Discussion

CREATE FUNCTION, Discussion
about stored functions, Introduction

(see also stored functions)

READS clause, Discussion

RETURN statement, Discussion
RETURNS clause, Discussion

CREATE INDEX, Problem
CREATE PROCEDURE

about stored procedures, Introduction
(see also stored procedures)

about stored programs, Introduction
BEGIN...END compound statement, Introduction
redefining mysql ; terminator, Problem

IN parameters, Problem
INOUT parameters, Problem
OUT parameters, Problem

CREATE TABLE, Problem
column names in results, Discussion
CREATE TEMPORARY TABLE, Problem

caveats, Discussion
same name hides permanent, Discussion
same table names do not clash, Discussion
summary results via, Discussion, Discussion, Discussion

LIKE to clone existing structure, Problem
LIKE to clone existing table structure, Removing duplicates using table
replacement
mysqldump output file containing, Discussion
saving results of query to a table, Solution
scripts in recipes distribution, Recipe Source Code and Data,
Introduction, Discussion, Discussion, Introduction
transaction engine specified, Discussion

(see also transactions)

CREATE TEMPORARY TABLE, Problem
caveats, Discussion
same name hides permanent, Discussion
same table names do not clash, Discussion
summary results via, Discussion, Discussion, Discussion

CREATE USER, Solution-See Also, Creating accounts
administrative privileges needed, Discussion
GRANT, Solution-See Also

replication user, Discussion

replication user, Discussion

CREATE VIEW
summaries simplified, Problem
table access simplified, Discussion

createCollection, Discussion
credit card number regexp patterns, Discussion
cron jobs in batch mode

batch mode in mysql, Introduction

CSV (comma separated values) files
about file format, File Formats
exporting, Specifying the output column delimiter, Exporting using the
SELECT...INTO OUTFILE statement
importing, Problem
MySQL Shell utility, Discussion
read_csv() (pandas), Names and genders

CSV storage engine, Discussion
log table management, Discussion

CTEs (see Common Table Expressions)
Ctrl-C to terminate running query, Discussion

Ctrl-D (Unix) to terminate mysql session, Discussion
cumulative sums, Problem
cumulative values to relative values, Problem
CURDATE(), Problem

extracting components, Decomposing dates or times using component-
extraction functions

curly braces ({ })
multiline code, Discussion
regexp pattern matching, Discussion, Discussion

current date and time, Problem
extracting components, Decomposing dates or times using component-
extraction functions

CURRENT_USER(), Discussion
CURTIME(), Problem

extracting components, Decomposing dates or times using component-
extraction functions

custom_sequences.sql, Discussion
cvt_date.py, Discussion
cvt_file.pl utility, Specifying the output column delimiter, File Formats,
Discussion, Discussion

D

dash (-)
option file underscores and, Specifying connection parameters using
option files, Configuration control at server startup
single versus double, Discussion

data
access security via stored routines, Problem
access security via views, Problem

incomplete
counting missing values, Problem
frequency distribution range of categories, Discussion

JSON data type, Problem
(see also JSON data format)

reformatting (see reformatting data)
special characters, Problem-Java
test data via Python data science modules, Problem-See Also
tracking changes, Problem
transferring to and from MySQL, Introduction

exporting data (see exporting data)
importing data (see importing data)
source code in recipes distribution, Introduction

validating (see validating data)

data dictionary holding table definitions, Discussion
data source name (DSN) in Perl connection script, Perl
database handles

Perl ($dbh), Perl, Perl, Discussion
PHP ($dbh), PHP
Python connection objects (conn), Python
Ruby (client), Ruby

databases
APIs selecting, Problem-Java

Go connection script, Go
Java connection script, Java
Perl connection script, Perl
PHP connection script, PHP
Python connection script, Python

Ruby connection script, Ruby

automated operations via events, Problem
backing up via mysqldump, Discussion
CHECK constraints, Problem

listing defined CHECK constraints, Problem

checking if database exists, Problem
cookbook database, Introduction
copying to another MySQL server, Discussion
creating, Problem

PRIMARY KEY clause, Discussion
rows inserted, Problem
table data from program output, Discussion
tables created, Problem
tables created via scripts, Discussion

foreign keys preventing mismatches, Discussion
JSON data structure versus, Introduction

(see also JSON data format)

listing databases hosted by server, Problem
listing tables in a database, Problem
metadata, Introduction

default database name, Discussion

prompt showing current default, Discussion
renaming databases, Discussion
user account privileges, Discussion-See Also
views listed or checked for existence, Problem

DATE data type, Discussion
(see also date values)

date showing in prompt, Discussion

date values
about capabilities, Introduction
about scripts in recipes distribution, Introduction
age calculations, Problem
combining components, Problem
converting basic units (days, seconds), Problem
current date determined, Problem

extracting components, Decomposing dates or times using component-
extraction functions

data type to use, Problem
date of any given weekday, Problem
date processing utility, Solution
day of week for a date, Problem
extracting part of, Problem
format of date, Problem

date processing utility, Solution
ISO to non-ISO, Problem
non-ISO to ISO, Problem
year from two digits to four, Problem

interval calculations, Problem
interval or span, Date or date-and-time interval calculation using basic
units

ISO format for, Problem
exporting to non-ISO, Problem
reformatting to, Problem

patterns with nonstring values, Discussion
regexp patterns for, Problem, See Also
row insertion and last modification timestamps, Problem

NULL values not allowed, Discussion, Discussion

selecting rows based on, Problem
calendar days, Comparing dates to calendar days

sorting by, Problem
calendar day, Sorting by calendar day
day of week, Sorting by day of week

sum of, Problem
summaries grouped by date, Problem
synthesizing a date value, Problem

ISO format for, Problem

validity checking of subparts, Problem

DATE() extracting date component, Decomposing dates or times using
component-extraction functions
DATEDIFF(), Calculating intervals with temporal-difference functions
DATETIME data type, Discussion

daily summaries, Discussion
DEFAULT CURRENT_TIME STAMP, Problem
fractional seconds, Problem
ON UPDATE CURRENT_TIME STAMP, Problem
row creation and last modification timestamps, Problem

DATE_FORMAT(), Problem
combining components, Problem
exporting dates to non-ISO formats, Discussion
extracting part of a date value, Decomposing dates or times using
formatting functions

day of week for a date, Problem
day of week sorted on, Sorting by day of week

DAYNAME(), Decomposing dates or times using component-extraction
functions, Problem
DAYOFMONTH()

extracting component from date value, Decomposing dates or times using
component-extraction functions
number of days in a month, Solution
pattern matching with nonstring values, Discussion

DAYOFWEEK(), Decomposing dates or times using component-extraction
functions

Sunday as first day, Discussion

DAYOFYEAR(), Decomposing dates or times using component-extraction
functions
dba global object of DBA class, Discussion

command line, Discussion

DDL (Data Definition Language) operations caution, Discussion
documentation online, Discussion

debugging InnoDB storage engine, SHOW ENGINE
decimal values converted between octal and hexadecimal, Problem
delayed copying to replica, Introduction
DELETE

about SQL statement categories, SQL statement categories
duplicate rows eliminated, Problem
rows with AUTO_INCREMENT column, Problem

renumbering an existing sequence, Problem
reusing values at top of sequence, Problem

“unattached” rows removed, Problem

delete()
JavaScript mode table queries, Discussion
Python mode table queries, Discussion

delimiter command, Discussion
redefining mysql ; terminator for BEGIN...END, Problem

delimiter for output columns, Specifying the output column delimiter
DENSE_RANK(), Discussion
deploying a sandbox instance, Discussion

stopping instance, Discussion

DESCRIBE, SQL statement categories
descriptive statistics calculations, Problem
/dev/null, Discussion

Blackhole “storage” engine, Discussion

/dev/random for seed, Discussion
dictionaries

data validation lookup table into, Construct a hash from the entire lookup
table, Remember already-seen values to avoid database lookups
Python connection script, Python

DISTINCT for unique values, Introduction, Problem
HAVING instead, Problem
remove duplicate rows, Problem

distributing SQL via script files, Discussion
division by zero error, Discussion
Document Store

JavaScript mode collections, Problem
JSON and X DevAPI, Problem
Python mode collections, Problem

documentation online for MySQL
B-tree versus hash indexes, Introduction
Boolean full-text operators, Discussion

date and time value component extraction, Decomposing dates or times
using component-extraction functions, Decomposing dates or times using
component-extraction functions
date and time values, Introduction, Discussion
DDL operations, Discussion
encryption, Discussion
error log configuration, Discussion
full-text index restrictions, Discussion
I/O utilization, I/O utilization
JSON data type, See Also
JSON Path syntax, See Also
memory usage, Discussion
mysql prompt customization, Discussion
prepared SQL statements, Discussion
roles, See Also
SELECT statements, Introduction
server plug-ins, SHOW ENGINE
sql_mode, Discussion
stored program error handling, Discussion
stored routines, triggers, and events, Introduction
time zones, Discussion
TO_DAYS() and Gregorian calendar, Converting between dates and days
window functions, See Also

dollar sign ($)
JSON root element, Discussion
prompt, Discussion
regexp end of string, Discussion, Discussion

domain socket file (Unix), Discussion

domain-order sort of hostnames, Problem
dot (.)

JSON object members, Discussion
regexp matching single character, Discussion, Discussion

dotted quad IP values (see IP addresses)
double at sign (@@)

examples of use
buffer pool size, Discussion
data directory, Discussion
global variable read, Configuration control and verification at runtime
GTID, Discussion
mysqlx_socket value, Discussion
plugin_dir system variable, Discussion
Ruby, Ruby
session and global specified, Discussion, Discussion
showing default storage engine, Discussion

sql_mode, Discussion, Specifying the datafile location, Problem
writing or reading system variables, Configuration control and
verification at runtime

no GLOBAL. or SESSION. modifier, Configuration control and
verification at runtime

double quote (")
escaping in command line arguments, Notes on Invoking Shell
Commands
escaping in data values, Discussion
identifier quoting if ANSI_QUOTES, Discussion, Discussion
importing data, Problem
shell command arguments, Notes on Invoking Shell Commands
writing string literals, Problem

DROP a column to renumber sequence, Discussion
DROP EVENT to stop, Discussion
DROP INDEX, Discussion

benign errors ignored, Discussion
unused indexes should be dropped, Introduction

DROP TABLE
mysqldump output file containing, Discussion
scripts for creating tables containing, Discussion
SQL injection, Discussion

DROP USER, Removing accounts
anonymous accounts, Discussion
hostnames containing pattern characters, Discussion

duplicates handled
about, Introduction
counting duplicates, Problem
duplicate key values on import, Problem
duplicate rows in results removed, Problem
eliminating from table, Problem
identifying duplicates, Problem
loading rows into table, Problem
more than one unique key in table, Problem

ON DUPLICATE KEY UPDATE, Discussion

NULL values occurring multiple times, Discussion
preventing duplicates from occurring, Problem
strings with case-insensitive collation, Discussion
UNION clause

ALL to not remove duplicates, Discussion
DISTINCT default removing duplicates, Discussion

unique identifiers via UUID(), Discussion

dup_count.pl, Discussion
dynamic variables

binlog_transaction_dependency_tracking, Discussion
server_id, Discussion
SET PERSIST since MySQL v8, Discussion

E

e (execute) option, Discussion
E (vertical) option, Discussion
email address validity

regexp pattern matching, Problem
patterns online, Discussion

specification in RFC, Discussion
trigger for, Discussion

encrypted replication setup, Problem
encryption of network traffic, Problem
ENUM values

CONCAT(), Discussion
data validation using table metadata, Solution

for loop, Discussion

ENUM column members determined, Problem
sorting, Problem
US state codes, Discussion

environment variables
CLASSPATH for Java scripting, Java, Java
CLASSPATH for library location, Choosing a library-file installation
location

GOPATH for library location, Choosing a library-file installation
location, Go
JAVA_HOME, Java
library file installation location, Choosing a library-file installation
location
MYSQL_PS1 to customize prompt, Discussion
PATH, Problem
PERL5LIB, Choosing a library-file installation location, Perl
PYTHONPATH for library location, Choosing a library-file installation
location, Python
RUBYLIB for library location, Choosing a library-file installation
location, Ruby
security issues, Discussion
setting environment variables link, MySQL Cookbook Companion
Documents
setting for programming examples, Assumptions

equal sign (=)
spaces around, Specifying connection parameters using option files
variable assignment operator, Discussion

:= synonym, Discussion

errors
access denied

built-in report privileges, Discussion
importing data, Specifying the datafile location
invoking mysql, Problem

API script connection error, Discussion
API scripts handling, Introduction, Problem-Java, SQL statement
categories

Go connection script, Go, Go

Java connection script, Java, Java
Perl connection script, Perl, Perl
PHP connection script, PHP, PHP
Python connection script, Python, Python
Ruby connection script, Ruby, Ruby
SQL statements, SQL statement categories

command not found, Problem
condition handlers for stored programs, Discussion

(see also condition handlers)

CREATE USER on existing account, Creating accounts
division by zero, Discussion
dropping a user that does not exist, Removing accounts
duplicate row in table, Problem
ERROR 2006 “MySQL Server has gone away”, Problem
error log, Discussion, The error log

configuration documentation, Discussion
monitoring the server, Discussion
rotating, Rotating the error, general query, or slow query log
server crash troubleshooting, Problem
server startup problems, Problem

foreign key constraint, Discussion
importing data

access denied, Specifying the datafile location
data file and loaded database differ, Problem
duplicate key values, Problem

import_table requiring Classic protocol, Discussion
invalid use of group function, Discussion
invoking mysql

access denied, Problem
command not found, Problem

local_infile error, Discussion
“MySQL Server has gone away”, Problem
No Data condition of stored function, Discussion
password expired, Discussion
Perl

access denied, Perl
RaiseError, Perl
use warnings, Perl

raising own errors, Problem
renaming user accounts, Renaming accounts
result consisted of more than one row, Discussion
semisynchronous replication failing back to asynchronous, Discussion
SHOW WARNINGS command, Discussion
stored routine GET DIAGNOSTICS, Problem
Unknown column, Discussion
unknown option, Specifying connection parameters using option files

escaping special characters, Problem-Java
escape sequences, Discussion

hex constants, Discussion

LOAD DATA escape sequences, Discussion
quoted strings, Discussion

events
about, Introduction
ALTER EVENT to disable or enable, Discussion
checking status of scheduler, Discussion

enabling scheduler, Discussion

DROP EVENT to stop, Discussion
listing, Problem
log maintenance, Discussion
privileges

enabling scheduler, Discussion
EVENT privilege, Introduction

scheduling automatic database operations, Problem
cooperating events, Discussion

execute (e) option, Discussion
execute()

Java SQL statement execution, Java, Java
result-set-produced Boolean, Java

not needed interactively, Discussion
Perl SQL statement execution, Perl, Perl

result-set metadata available, Perl
row count returned, Perl

PHP SQL statement execution, PHP, PHP
result-set metadata available, PHP
row count returned, PHP

Python SQL statement execution, Python, Python
Ruby returning row counts, Ruby
sql() or runSQL() methods, Discussion

“Executing Programs from the Command Line” document
GitHub repository, MySQL Cookbook Companion Documents
PATH variable, Discussion

executing SQL statements
directly from command line, Discussion
interactively, Problem

output format default, Discussion, Producing tabular or tab-delimited
output

read from a file or program, Problem-Discussion
scripting, Introduction, Problem-Java

exit command to terminate mysql session, Discussion
EXPLAIN

about SQL statement categories, SQL statement categories
checking long-running queries, Discussion
connection ID via SHOW PROCESSLIST, Discussion
query plan for index suitability, Solution
verify FULLTEXT index used, Discussion

exporting data, Problem
about, Introduction

file formats, File Formats
general issues, General Import and Export Issues
source code in recipes distribution, Introduction

CSV format, Exporting using the SELECT...INTO OUTFILE statement
dates to non-ISO format, Problem
file location, Exporting using the SELECT...INTO OUTFILE statement
FILE privilege to write outfile, Exporting using the SELECT...INTO
OUTFILE statement, Exporting using the mysql client program
JSON file format, Problem
mysql_to_text.pl utility, Exporting using the mysql client program
NULL as string “NULL”, Exporting using the mysql client program,
Discussion
postprocessing filter, Exporting using the mysql client program
SQL format, Problem
tab-delimited, linefeed-terminated default, Problem

XML format, Problem

exportTable() utility, Discussion
external programs from mysql prompt, Problem
EXTRACT() date and time components, Decomposing dates or times using
component-extraction functions

F

FIELD() for custom sort orders, Problem
FILE privilege

exporting, Exporting using the SELECT...INTO OUTFILE statement,
Exporting using the mysql client program
importing, Specifying the datafile location

file system cache, Memory utilization
files

batch mode in mysql, Introduction
(see also scripts)

executing SQL from a file, Problem-Discussion
html output to web browser, Producing HTML or XML output
mysqldump output redirected, Discussion
saving output to (see redirecting output)

filtering and processing output, Problem
postprocessing filter of export, Exporting using the mysql client program

filters preventing binary log file recording, Discussion
find()

JavaScript mode collections, Discussion
Python mode collections, Discussion

finish() making metadata unavailable, Perl

FLOOR() for integers, Converting between times and seconds, Date or
date-and-time interval calculation using basic units
FLUSH TABLES

copying via sdi file, Discussion
copying via transportable tablespaces, Discussion

flushing log files, Discussion
for loops

data file check, Problem
enumeration members, Discussion
execute() method, Discussion, Discussion

foreign keys
adding to table, Discussion
constraints providing integrity checks, Discussion
error handling with GET DIAGNOSTICS, Discussion
identifying table as parent, Problem
referential integrity preventing mismatches, Discussion

Formula 1 fractional seconds example, Discussion
fractional seconds in time values, Problem

Formula 1 example, Discussion

frequency distributions, Problem
charting, Discussion
randomness of RAND(), Discussion

FROM_DAYS(), Solution
FROM_UNIXTIME(), Solution
full-text searches

Amazon review data for download, Amazon Review Data (2018),
Discussion

script to load data, Discussion

EXPLAIN to verify, Discussion
FULLTEXT index, Problem, Problem

B-tree index on same column, Discussion

modes
Boolean mode, Discussion
natural language mode, Discussion
query expansion mode, Discussion

non-FULLTEXT column regular indexes, Discussion
phrase searches, Problem
requiring or prohibiting specific words, Problem
short words return no rows, Problem

G

games-behind in team standings, Problem
general query log, Discussion, The general query and slow query logs

enabling, Discussion
log table rotation, Discussion
monitoring client activity, Problem
monitoring the server, Discussion
rotating, Rotating the error, general query, or slow query log

generated column index, Problem
generate_patients_data JavaScript code, Putting it all together
geographic data and spatial indexes, Problem
GET DIAGNOSTICS to log all stored routine errors, Problem
getCurrentSchema() (JavaScript), Discussion
getDefaultSchema()

JavaScript mode table querying, Discussion

getTable() (JavaScript), Problem

get_collection() (Python), Discussion
get_current_schema() (Python), Discussion
get_schema() (Python), Discussion
get_table() (Python), Discussion
GitHub repository for MySQL

Amazon review data for download, Amazon Review Data (2018),
Discussion

script to load data, Discussion

appendices from previous editions, MySQL Cookbook Companion
Documents
“Executing Programs from the Command Line” document, MySQL
Cookbook Companion Documents
large tables for histograms, Discussion
recipes distribution, Recipe Source Code and Data

(see also recipes distribution)

global objects, Discussion
dba object of DBA class, Discussion

command line, Discussion

util object of MySQL Shell, Problem

global transaction identifiers (GTIDs)
about, Introduction, Discussion
replica set up using, Problem

configuration options, Solution, Discussion

SHOW MASTER STATUS for GTIDs, Discussion
source replication server binary log files, Introduction, Discussion

global variables
server_uuid, Discussion
time_zone, Problem, Solution

Go-MySQL-Driver API support, MySQL APIs Used in This Book,
Introduction

about scripting requirements, Go
AUTO_INCREMENT value, Using API-specific methods to obtain
AUTO_INCREMENT values
character set for client connections, Discussion
context cancellation support, Go
download links, Go Support
error handling, Go, Problem, Go, Go
library file writing, Go

library path, Choosing a library-file installation location, Go

map to check input values, Construct a hash from the entire lookup table
metadata

result set metadata retrieved, Go
row count of matched versus changed, Go

NULL values identified in result sets, Problem, Go
option files for connection parameters, Getting parameters from option
files, Go
scripts

connecting to server, Problem, Go
executing SQL statements, Problem-SQL statement categories, Go

special characters and NULL in data values, Problem-Using a quoting
function, Go
special characters in identifiers, Problem
transactions, Problem

context-aware functions, Problem

GOPATH environment variable, Choosing a library-file installation
location, Go
GRANT, Solution-See Also, Assigning and checking privileges

replication user, Discussion
roles, Problem

Gregorian calendar and TO_DAYS(), Converting between dates and days,
Date or date-and-time interval calculation using basic units
GROUP BY clause

date categories, Problem
descriptive statistics per subgroups, Problem
expression results for groupings, Problem
summary for each subgroup, Problem
time categories, Problem
WITH ROLLUP, Discussion

Group Communication Engine, Discussion
Group Replication plug-in, Problem

existent data, Discussion
writing on multiple nodes, Discussion

GTIDs (see global transaction identifiers)
gtid_executed variable, Discussion
guess_table.pl, Problem

H

H (html) option for output, Producing HTML or XML output
Handler_* session status variable, Discussion
handles

Java connection objects (conn), Java
Perl

database handles ($dbh), Perl, Perl, Discussion
statement handles ($sth), Perl, Perl

PHP database handles ($dbh), PHP

Python connection objects (conn), Python
Ruby database handles (client), Ruby

hashes
B-tree versus hash indexes, Introduction
lookup table for data validation, Construct a hash from the entire lookup
table
Perl result-set metadata, Perl

HAVING clause, Problem
COUNT() determining if values unique, Problem

help command (mysql), Discussion
permitted option-file locations, Specifying connection parameters using
option files

help options for all MySQL Shell commands, Discussion
HEX() for hexadecimal format conversion, Problem
hexadecimal notation

binary output as, Discussion
converting between ASCII and BIT, Problem
converting between decimal and octal, Problem
format specifiers, Discussion
treated as binary strings, Discussion
writing string literals, Discussion

histograms for optimizing, Problem
large table data for, Discussion

host as URI parameter, Discussion
hostname

% (percent) character within, Problem
_ (underscore) character within, Problem
command options for invoking mysql, Problem

granting database privileges, Discussion
localhost, Discussion

API connection scripts, Discussion
database privileges, Discussion
default host, Discussion, Perl
IP address, Discussion, Discussion

prompt showing hostname, Discussion
sorting in domain order, Problem

hot standby, Introduction
HOUR(), Decomposing dates or times using component-extraction
functions
how old someone is, Problem
html (H) option for output, Producing HTML or XML output
HTML output, Producing HTML or XML output

web browser opened to read, Producing HTML or XML output

I

id column in table, Discussion
AUTO_INCREMENT, Discussion, Problem

(see also AUTO_INCREMENT column)

custom sequence as, Problem
duplicate rows prevented, Discussion
multiple tables in query, Discussion
retrieving column values, Problem
saving query results to a table, Discussion

identifiers containing special characters, Problem
IFNULL(), Discussion, Discussion
importing data, Problem

about, Introduction
file formats, File Formats
general issues, General Import and Export Issues
source code in recipes distribution, Introduction

column input order specified, Problem
converting imported data via cvt_file.pl, File Formats
CSV files, Problem
datafile and loaded database differ, Problem
datafile columns skipped deliberately, Problem
datafile lines skipped deliberately, Problem
datafile location, Specifying the datafile location
date values from non-ISO to ISO, Problem
delimiters for columns and lines specified, Problem
duplicate key values, Problem
errors

access denied, Specifying the datafile location
data file and loaded database differ, Problem
duplicate key values, Problem

FILE privilege for datafile, Specifying the datafile location
JSON documents, Problem

extracting values, Problem

JSON format, Problem
LOCAL data loading disabled by default, Discussion, Specifying the
datafile location
MongoDB, Problem
NULL values, Problem
preprocessing values before inserting, Problem
quotes and special characters, Problem

SQL data, Problem
tab-delimited, linefeed-terminated default, File Formats, Discussion,
Discussion

delimiters specified, Problem

XML format, Problem

importJson utility
JSON format, Problem
MongoDB format, Problem

import_table() utility, Discussion
indexes

about, Introduction
not too many, Introduction

ascending and descending, Problem
AUTO_INCREMENT columns, Discussion
cardinality of index, Discussion, Discussion
clustered index, Discussion
covering index, Problem
dropping, Discussion
duplicate key values handled, Problem
duplicate rows prevented, Problem
FULLTEXT index, Problem, Problem

B-tree index on same column, Discussion
Boolean mode, Discussion
natural language mode, Discussion
non-FULLTEXT column regular indexes, Discussion
query expansion mode, Discussion
short words return no rows, Problem

function-based, Problem

generated columns, Problem
INSERT INTO...SELECT does not copy, Discussion
joins and, Discussion
JSON data, Problem
maintaining, Problem

not too many, Introduction
renaming, Discussion

more than one unique key in table, Problem
multiple column queries, Problem
NULLs permitted, Discussion
optimizer histograms, Problem
primary key created for slow queries, Problem

primary key optimization, Problem

query plans, Solution
query results saved as a table, Discussion
query slow with index, Solution
spatial indexes and geographic data, Problem
WHERE clause indexed column, Comparing dates to one another

INET_ATON(), Discussion, Problem
INFORMATION_SCHEMA

character sets and their collations listed, Problem
listing databases or tables in database, Discussion
metadata source for portability, Introduction
plug-ins installed, Problem, Discussion
results depend on privileges, Introduction
stored routines listed, Problem
table CHECK constraints listed, Problem
table column definitions, Solution

table engines, Discussion, Discussion
table identified as parent via foreign key, Problem
table in system or general tablespaces, Discussion
transaction storage engine support, Discussion
triggers listed, Problem
views listed or checked for existence, Problem

inner joins, Introduction, Discussion
InnoDB buffer pool, Memory utilization
InnoDB Buffer Pool

architecture of storage engine, SHOW ENGINE
SHOW ENGINE INNODB STATUS, SHOW ENGINE
sizing properly, Problem

InnoDB Cluster managed by Admin API, Discussion
automating Group Replication, InnoDB Cluster

InnoDB ReplicaSet managed by Admin API, Discussion
automating replication setup, Discussion

InnoDB storage engine
about, Discussion

query performance, Introduction

about primary keys, Discussion
architecture, SHOW ENGINE
auto-generated primary key, Discussion
buffer pool sizing, Problem
configuration, Problem
copying tables via transportable tablespaces, Problem
debugging with plug-in Components, SHOW ENGINE
full-text searches, Discussion, Discussion, Discussion
Group Replication plug-in, Discussion

identifying table as parent via foreign key, Discussion
monitoring, Discussion
primary keys, Discussion
SHOW ENGINE

INNODB MUTEX, SHOW ENGINE
INNODB STATUS, Discussion, SHOW ENGINE

transaction support, Discussion

input redirected to execute SQL, Problem-Discussion
input-testing logic into BEFORE INSERT trigger, Problem
input/output monitoring (see I/O (input/output) monitoring)
INSERT INTO

about SQL statement categories, SQL statement categories
adding table rows, Problem
copying rows from existing table, Solution

duplicates removed, Removing duplicates using table replacement

duplicate rows prevented, Problem, Problem
(see also duplicates handled)

IGNORE, Problem
JSON data, Problem
ON DUPLICATE KEY UPDATE, Problem

two or more unique keys, Discussion

saving results of query to a table, Solution
indexes not copied from source table, Discussion

tables created via scripts, Discussion
timestamping row creation, Problem
user-defined variables, Discussion

insert()
JavaScript mode table queries, Discussion

Python mode table queries, Discussion

INSTALL PLUGIN, Plug-in control at runtime
integrity in transactions, Introduction
interactively executing SQL statements, Problem

directly from command line, Discussion
mysqlsh -i option, Discussion
output format default, Discussion, Producing tabular or tab-delimited
output

INTERVAL, Date or date-and-time interval calculation using basic units,
Solution
intervals calculated for dates and times, Problem

age calculations, Problem
interval or span, Date or date-and-time interval calculation using basic
units
summing date and time values, Problem

introducers for character sets, Discussion
I/O (input/output) monitoring, I/O utilization

connection limits, Problem
buffer pool sizing, Problem

iotop utility, I/O utilization
monitoring the operating system, Operating System
number of queries hitting server, Problem

iotop utility, I/O utilization
IP addresses

localhost, Discussion, Discussion
sorted numerically, Problem
strings, Discussion

INET_ATON() to numeric, Discussion, Problem

IPv6 and IPv4 network addresses as strings, Discussion
IS NULL comparison operator, Problem
ISNULL(), Discussion
ISO format for date values, Problem, Problem, Discussion

reformatting to, Problem

isoize_date.py, Discussion

J

Java Development Kit (JDK), Java Support, Java
Java MySQL Connector/J API support, MySQL APIs Used in This Book,
Introduction

about scripting requirements, Java
AUTO_INCREMENT value, Using API-specific methods to obtain
AUTO_INCREMENT values
character set for client connections, Discussion
CLASSPATH environment variable, Java, Choosing a library-file
installation location
download links, Java Support
error handling, Java, Java, Java
HashMap to check input values, Construct a hash from the entire lookup
table
Java Development Kit, Java Support, Java
javac compiler, Java
JAVA_HOME environment variable, Java
library file writing, Java

library path, Choosing a library-file installation location

metadata
listing databases or tables, Discussion
result set metadata retrieved, Java

row count of matched versus changed, Java
server and database metadata, Discussion

namespaces, Java
book packages, Java

NULL values identified in result sets, Problem, Java
option files for connection parameters, Getting parameters from option
files, Java
regular expressions package, Discussion
running Java programs link, MySQL Cookbook Companion Documents
scripts

connecting to server, Problem, Java
executing SQL statements, Problem-SQL statement categories, Java

special characters and NULL in data values, Problem-Using a quoting
function, Java
special characters in identifiers, Problem
transactions, Problem

JavaScript mode of MySQL Shell, Problem
about inheritance support, Discussion
collections, Problem
curly braces for multiline code, Discussion
deploySandboxInstance, Discussion
objects, Solution-Discussion

exporting to preload, Discussion

\source command, Problem
scripts executed at startup, Discussion

SQL session, Problem
table querying, Problem
util object, Problem

JDBC interface support, MySQL APIs Used in This Book, Introduction,
Java

download links, Java Support

JDK (Java Development Kit), Java Support, Java
JOIN

about joins, Discussion, Introduction, Discussion
scripts in recipes distribution, Introduction

aliases for tables, Discussion
candidate-detail lists and summaries, Problem
Cartesian products, Discussion
comparing table to itself, Problem
finding matches between tables, Problem-Discussion
finding mismatches between tables, Problem

“unattached” rows removed, Problem

frequency distribution range of categories, Discussion
holes in list filled or identified, Problem
indexes and joins, Discussion
inner joins, Introduction, Discussion
many-to-many relationships, Problem
multiple tables in query, Problem
one-to-many relationships, Problem
optimizer histograms, Problem
outer joins, Introduction, Discussion

LEFT JOIN, Discussion, Discussion
mismatches between tables, Problem
other ways to write, Discussion
RIGHT JOIN, Discussion

output column names referred to, Problem

parent rows with child detail rows, Problem
per-group minimum or maximum values, Problem
Python mode table queries, Discussion
query sort order control, Problem
results of multiple queries joined, Problem
self-joins, Problem

cumulative sums, Problem
running averages, Problem
successive-row differences, Problem

successive-row differences calculated, Problem
summary results via, Discussion, Discussion
table aliases, Discussion
tables from different databases, Discussion

json command-line parameter, Discussion
diagnostic information printed, Discussion

JSON data format
about, Introduction
Amazon review data, Discussion
attribute functions, Problem
data structure details, Problem
Document Store, Problem
EXPLAIN output, Discussion
exporting, Problem
extracting values from, Problem
formatting JSON values, Problem
importing, Problem
indexes for query performance, Problem
inserting into MySQL, Problem

inserting new elements into document, Problem
JSON data type, Problem
JSON Schema, Solution
merging two or more documents into one, Problem
relational data from JSON, Problem
relational data to JSON, Problem
removing elements, Problem
searching inside, Problem
updating a JSON value, Problem
validating, Problem

JSON Schema, Solution
JSON_ARRAY(), Problem
JSON_ARRAY_APPEND(), Problem
JSON_ARRAY_INSERT(), Problem
JSON_DEPTH(), Problem
JSON_EXTRACT() (->), Discussion
JSON_INSERT(), Problem
JSON_LENGTH(), Problem
JSON_MERGE functions, Problem
JSON_OBJECT(), Problem
JSON_PRETTY(), Problem
JSON_REMOVE(), Problem
JSON_REPLACE(), Problem
JSON_SCHEMA_VALID(), Discussion
JSON_SCHEMA_VALIDATION_REPORT(), Discussion
JSON_SEARCH(), Problem
JSON_SET(), Problem

JSON_STORAGE_SIZE(), Problem
JSON_TABLE(), Problem
JSON_TYPE(), Problem
JSON_UNQUOTE() (->>), Discussion
JSON_VALID(), Problem

K

Kebab-case syntax, Discussion
keyword case insensitivity, Discussion

L

languages supported by MySQL, MySQL APIs Used in This Book,
Introduction

APIs (see APIs)
error handling, Problem-Java
MySQL Shell, Introduction
recipes distribution on GitHub, Recipe Source Code and Data,
Introduction
scripting (see scripts)

LAST_DAY(), Solution
LAST_INSERT_ID()

AUTO_INCREMENT values via, Discussion
server-side versus client-side retrieval, Server-side and client-side
sequence value retrieval compared

managing multiple sequences simultaneously, Problem
saving value of, Discussion

leaf nodes, Introduction
least-squares regression line, Problem
left angle bracket (<) to redirect input, Discussion, Discussion

LEFT JOIN, Discussion
frequency distribution range of categories, Discussion
other ways to write, Discussion

LEFT(), Discussion
pattern matches similar to, Discussion, Discussion
sorting on substrings, Problem

LENGTH(), String Properties
less utility as pager, Discussion
library file writing, Introduction, Problem-Java

access privileges, Setting library-file access privileges
data validation tests, Problem
Go, Go
Java, Java
location of library file, Choosing a library-file installation location
Perl, Perl
PHP, PHP
Python, Python
recipes distribution lib directory, Introduction, Discussion
Ruby, Ruby
test harness, Discussion

LIKE
SQL pattern matching, Problem
table cloned, Problem
WHERE clause using, Discussion

LIMIT clause, Problem
ORDER BY clause with, Problem

results in different sort order, Problem

smallest or largest summary values, Problem

value from expression, Problem

line-ending sequence in files, File Formats, Discussion
tab-delimited, linefeed-terminated, File Formats, Discussion
terminators and delimiters specified, Problem

linear regressions, Problem
linefeed (\n), Discussion

line-ending sequence in files, File Formats, Discussion

literal strings, Problem
LOAD DATA, Problem

column input order specified, Problem
CSV files, Problem
datafile and loaded database differ, Problem
datafile columns skipped deliberately, Problem
datafile lines skipped deliberately, Problem
datafile location, Specifying the datafile location
date values from non-ISO to ISO, Problem
delimiters for columns and lines specified, Problem
duplicate key values, Problem
FIELDS clause, Discussion, Problem
LINES clause, Discussion
name of datafile and name of table, Specifying the datafile location
NULL values, Problem
preprocessing values before inserting, Problem
quotes and special characters, Problem
tab-delimited, linefeed-terminated default, File Formats, Discussion,
Discussion

LOAD XML, Problem
localhost, Discussion

API connection scripts, Discussion
database privileges, Discussion
default host, Discussion

Perl connection script, Perl

IP address, Discussion, Discussion

local_infile for data loading, Discussion
LOCATE() string function, Problem
log files

digests of query logs, Logging all the queries
InnoDB storage engine architecture, SHOW ENGINE
replica server relay log files, Introduction
server log files, Problem

binary log, Discussion, The binary log
error log, Discussion, The error log, Discussion, Problem, Problem
expiring log files, Problem
flushing log files, Discussion
general query log, Discussion, The general query and slow query logs,
Discussion, Problem
log maintenance needed, Discussion, Problem
monitoring the server, Discussion
rotating log files, Problem
rotation automated, Automating logfile rotation
slow query log, Discussion, The general query and slow query logs,
Discussion, Problem

source replication server binary log files, Introduction
enabling via log-bin option, Discussion
global transaction identifiers (GTIDs), Discussion
GTIDs, Introduction

triggers logging table changes, Problem
/var/log/messages system log, Solution

log tables
CSV storage engine managing, Discussion
expiring rows within, Problem
rotating, Problem

log-bin option to enable binary log, Discussion
logarithmic scale in summary results, Discussion
login account versus user account for MySQL, Discussion
log_output, The general query and slow query logs
LONGBLOB string data type, Discussion
LONGTEXT string data type, Discussion
lookup table to validate data, Problem
lookup_time.py, Discussion
LOWER() to convert string to lowercase, Problem
LPAD() for leading zeros, Discussion

M

mail table for chapter examples, Introduction, Introduction
MAKETIME(), Problem
make_date_list(), Discussion
make_date_list.pl, Discussion
many-to-many relationships, Problem
master and slave terminology, Introduction
MASTER_DELAY option, Introduction
master_info_repository variable, Introduction, Discussion
MATCH() for FULLTEXT index, Problem, Discussion, Discussion
MAX(), Problem

case sensitivity controlled, Problem
per-group maximum values, Problem
range of values, Discussion
unreliable method for last ID, Using LAST_INSERT_ID() to obtain
AUTO_INCREMENT values
value from another column, Problem

max_binlog_size, Introduction
mean, Discussion
median, Discussion
MEDIUMBLOB string data type, Discussion
MEDIUMTEXT string data type, Discussion
Memory storage engine, Discussion

changing to, Discussion

memory usage
file system cache, Memory utilization
InnoDB storage engine architecture, SHOW ENGINE
monitoring usage of mysqld, Memory utilization
non-uniform memory access (NUMA), Memory utilization
OOM killer (out of memory killer), Memory utilization
Performance Schema to monitor, Discussion
server configuration, Discussion
swappiness, Memory utilization
virtual memory, Memory utilization

metacharacters
filtering on replica, Filtering on the replica
regular expression pattern matching, Discussion
SQL pattern matching, Discussion

metadata

about, Introduction
scripts for code in recipes distribution, Introduction, Discussion

checking if database exists, Problem
checking if table exists, Problem
data validation using table metadata, Solution
ENUM column members, Problem
finish() making unavailable in Perl program, Perl
identifying table as parent via foreign key, Problem
listing databases hosted by server, Problem
listing tables in a database, Problem
number of rows affected by a statement, Problem
result set metadata retrieved, Problem

Go, Go
Java, Java
Perl, Perl
PHP, PHP
Python, Python
Ruby, Ruby

server metadata obtained, Problem
version-specific applications, Problem

SET column members, Problem
table column definitions, Problem
views listed or existence checked for, Problem

MICROSECOND(), Decomposing dates or times using component-
extraction functions
MID(), Discussion

sorting on substrings, Problem

MIN(), Problem

case sensitivity controlled, Problem
per-group minimum values, Problem
range of values, Discussion
value from another column, Problem

MINUTE() to extract part of time value, Problem
mode, Discussion
modify() Python mode collections, Discussion
monddyyy_to_iso.py, Discussion
MongoDB

importing data, Problem
mongoexport utility, Solution

monitoring MySQL server
about, Introduction

reactive monitoring, Introduction

binary log, Problem
buffer pool sizing, Problem
checking if server is up, Problem
client activity, Problem
connection limits of MySQL server, Problem

buffer pool sizing, Problem

CPU monitoring
finding high-utilization process, Problem
thread-filtering documentation, Discussion

error log for troubleshooting, Problem
general query log, Problem
number of queries hitting server, Problem
operating system, Operating System

I/O (input/output) monitoring, I/O utilization

memory utilization, Memory utilization
network resource monitoring, Network utilization

server startup problems, Problem
slow query log, Problem
sources of monitoring information, Problem
storage engine operational information, Problem
tracking data changes, Problem
why monitor, Problem

month first day, last day, length, Problem
MONTH()

extracting part of a date value, Problem
monthly summaries, Discussion
pattern matching with nonstring values, Discussion

MONTHNAME(), Decomposing dates or times using component-
extraction functions
more utility as pager, Discussion
multiline code via curly braces, Discussion
multiple replication applier threads, Problem
my.cnf or my.ini personal option file, Specifying connection parameters
using option files

event scheduler enabled, Discussion

MyISAM storage engine
about, Discussion
configuration, Problem
copying via sdi file, Problem
full-text searches, Discussion
FULLTEXT indexing, Discussion

full-text indexing engine, Discussion

REPAIR TABLE command, Discussion

mylogin.cnf file, Specifying connection parameters using option files
MyRocks storage engine, Discussion
MySQL

about, Preface
companion GitHub repository, The MySQL Cookbook Companion
GitHub Repository
distributions, MySQL
obtaining MySQL, Obtaining MySQL and Related Software
platforms supported, Version and Platform Notes
versions used in book, Version and Platform Notes

backups, Discussion
binary versus logical, Discussion
mysqldump for, Discussion, Discussion
server for replication, Discussion

case insensitivity of keywords, Discussion
client software, Obtaining MySQL and Related Software, Introduction

timeout of client, Server crash

client-server architecture, Introduction
assumptions made in book, Introduction

languages supported, MySQL APIs Used in This Book, Introduction
APIs (see APIs)
error handling, Problem-Java
MySQL Shell modes, Introduction
recipes distribution on GitHub, Recipe Source Code and Data,
Introduction
scripting (see scripts)

master and slave terminology, Introduction

memory usage via Performance Schema, Discussion
(see also memory usage)

option files, Discussion-Protecting option files from other users
plug-ins, Discussion

(see also plug-ins)

Spatial Reference System, Problem
user account, Introduction, Discussion

default values, Discussion
setting up, Problem, Problem

User Reference Manual link (see documentation online for MySQL)
writing efficient queries, Problem

(see also query performance)

mysql client program
about, Introduction
alternatives to, Introduction
Ctrl-D (Unix) to terminate session, Discussion
distributions, MySQL
error when invoking mysql, Discussion, Problem
executing SQL statements

directly from command line, Discussion
interactively, Problem
output format defaults, Discussion, Producing tabular or tab-delimited
output
read from file or program, Problem-Discussion
scripting, Introduction, Problem-Java

exit to terminate session, Discussion
exporting data (see exporting data)
help command, Discussion

option-file permitted locations, Specifying connection parameters
using option files

importing data (see importing data)
invoking, Discussion

error when invoking, Discussion, Problem
option files, Discussion-Protecting option files from other users
specifying command options, Problem

mysql> prompt, Discussion, Discussion
customizing, Problem
external programs from, Problem
resetting to default value, Discussion
user account in prompt, Discussion

option-file permitted locations, Specifying connection parameters using
option files
print-defaults parameter, Specifying connection parameters using option
files
program variables, Specifying connection parameters using option files
quit to terminate session, Discussion
semicolon terminator redefined for BEGIN...END, Problem
timeout of client, Server crash
user account default values, Discussion
User Reference Manual link, Discussion
verbosity level, Controlling mysql’s verbosity level

MySQL Enterprise Backup, Discussion
MySQL server

about, Obtaining MySQL and Related Software, Introduction
assumed to be running locally, Introduction

administration, Introduction

(see also server administration)

APIs connecting to, Introduction, Problem-Java
disconnecting from, Discussion
obtaining connection parameters script, Problem-Java

character set for client connection, Problem
checking if database exists, Problem
checking if server is up, Problem

“MySQL Server has gone away”, Problem

connecting MySQL Shell, Problem
selecting protocol, Problem

connection limits, Problem
buffer pool sizing, Problem

connection parameters when invoking mysql, Problem
copying database to, Discussion
copying tables

between servers, Problem, Copying tables between MySQL servers
within a single server, Problem

data validity via sql_mode, Discussion
executing SQL statements

directly from command line, Discussion
interactively, Problem
output format defaults, Discussion, Producing tabular or tab-delimited
output
read from file or program, Problem-Discussion
scripting, Introduction, Problem-Java

listing databases hosted by server, Problem
logging, Problem

(see also log files)

metadata, Introduction
obtaining, Problem
version-specific applications, Problem

monitoring, Introduction
(see also monitoring MySQL server)

multithreaded, Discussion
plug-ins

about, Discussion
listing installed plug-ins, Problem
plug-in interface, Discussion
plugin_dir system variable, Discussion
runtime installation, Plug-in control at runtime
server startup, Plug-in control at server startup

server startup problems, Problem
shutting down requiring privileges, Discussion
storage engine support determination, Discussion
timeout of server, Server timeout

timeout of client, Server crash

transactions, Introduction
(see also transactions)

uptime, Discussion
user account for MySQL

about, Introduction, Discussion
default values, Discussion
login account versus, Discussion
mysql.user table, Understanding the mysql.user Table

(see also user account for MySQL)

setting up, Problem, Problem

validation, server- versus client-side, Introduction
(see also validating data)

MySQL Shell
about, Introduction, Introduction
connecting to MySQL server, Problem

selecting protocol, Problem

downloading, Introduction
exit or quit session, Discussion

history lost, Discussion

exporting to JSON format, Problem
help options for all commands, Discussion
import JSON format, Problem
import MongoDB format, Problem
interactive -i option, Discussion
JavaScript mode default, Problem

collections, Problem
curly braces for multiline code, Discussion
objects, Solution-Discussion
\source command, Problem
SQL session, Problem
table querying, Problem
util object, Problem

mysqlsh command, Introduction
output format control, Problem
pandas module, Discussion
prompt customization, Discussion
protocols

Classic MySQL protocol, Introduction

X protocol, Introduction

Python mode, Problem
collections, Problem
\source command, Problem
SQL session, Problem
table querying, Problem
util object, Problem

reports, Problem
thread report on all threads, Discussion

sandbox deployment, Discussion
shell.status() command, Discussion
SQL mode, Problem

\source command, Problem
SQL session, Problem

transactions, Discussion
(see also transactions)

utilities, Problem
\? for utilities supported, Discussion
CSV export from table, Discussion

MySQL Workbench graphical interface, Introduction
mysql.user table, Understanding the mysql.user Table

anonymous accounts, Discussion

mysqladmin
checking if server is up, Problem
option file [client] group, Specifying connection parameters using option
files
server uptime, Discussion

mysqladmin for administrative privileges, Discussion

mysqlbinlog verbose option, Troubleshooting Group Replication,
Discussion
mysqld

about, Introduction
data directory, Discussion
general query log to monitor, Problem
monitoring memory usage, Memory utilization
program variables, Specifying connection parameters using option files

mysqldump
backing up databases, Discussion

backing up server for replication, Discussion
mysql client to load dump, Discussion, Discussion

command options, Discussion
CREATE TABLE information, Using SHOW CREATE TABLE to get
table structure information
exporting data in SQL format, Problem

importing SQL format, Problem

exporting data in XML format, Problem
importing XML format, Problem

my_print_defaults utility, Specifying connection parameters using option
files
option file [client] group, Specifying connection parameters using option
files
redirecting output, Discussion
renaming database, Discussion
table copying, Problem

between MySQL servers, Copying tables between MySQL servers
dropping table if exists, Discussion
triggers copied, Discussion

mysqld_safe and error log, The error log
mysqlimport command-line program, Problem

datafile location, Specifying the datafile location
delimiters for columns and lines specified, Discussion
importing CSV files, Problem
name of datafile and name of table, Specifying the datafile location
quotes and special characters, Problem

mysqlpump to export with parallel processing, Problem
mysqlsh, Introduction

about MySQL Shell, Introduction, Introduction
downloading, Introduction

connecting to MySQL server, Problem
selecting protocol, Problem

exit or quit session, Discussion
history, Discussion

exporting to JSON format, Problem
help options for all commands, Discussion
import JSON format, Problem
import MongoDB format, Problem
interactive -i option, Discussion
JavaScript mode default, Problem

collections, Problem
curly braces for multiline code, Discussion
objects, Solution-Discussion
\source command, Problem
SQL session, Problem
table querying, Problem
util object, Problem

output format control, Problem
pandas module, Discussion
prompt customization, Discussion
Python mode, Problem

collections, Problem
\source command, Problem
SQL session, Problem
table querying, Problem
util object, Problem

reports, Problem
thread report on all threads, Discussion

sandbox deployment, Discussion
shell.status() command, Discussion
SQL mode, Problem

\source command, Problem
SQL session, Problem

transactions, Discussion
(see also transactions)

utilities, Problem
\? for utilities supported, Discussion
CSV export from table, Discussion

mysqlshrc.js for scripts executed at startup, Discussion
mysqlshrc.py for scripts executed at startup, Discussion
MYSQLSH_HOME variable, Discussion
mysqlx URI scheme, Discussion
mysql_config_editor for credential security, Specifying connection
parameters using option files
MYSQL_PS1 to customize prompt, Discussion

mysql_to_excel.pl utility, Exporting using the mysql client program
mysql_to_text.pl utility, Exporting using the mysql client program
mysql_to_xml.pl utility, Exporting using the mysql client program
my_print_defaults utility, Specifying connection parameters using option
files

N

name generator for tables, Problem
name test data via Python, Problem-See Also
naming files under Windows, Specifying the datafile location
network resource monitoring, Network utilization

connection limits, Problem
buffer pool sizing, Problem

monitoring the operating system, Operating System

network traffic encryption, Problem
newline (\n), Discussion, Discussion
nocls parameter to not clear screen, Discussion
non-uniform memory access (NUMA), Memory utilization
nonbinary strings, String Properties, Discussion

character sets, String Properties
comparisons, Problem, Discussion

noncategorical data summaries, Problem
nopager (\n) to reset pager, Discussion
NoSQL

collections queried, Discussion
table queries (see SQL)

JavaScript mode Document Store, Problem
MySQL Shell, Introduction, Introduction

Python mode Document Store, Problem
X protocol for, Introduction

not
CONTINUE handler for NOT FOUND, Discussion
NOT LIKE, Problem
NOT REGEXP, Discussion

NULL not matched, Discussion

[^] regexp pattern matching, Discussion, Discussion
\D for regexp nondigit character, Discussion
\S for regexp nonwhitespace character, Discussion, Discussion
\W for regexp nonword character, Discussion

NOW(), Problem
NUL (ASCII; \0), Discussion, Discussion
NULL

about, Discussion
aggregate functions ignoring NULL values, Discussion
APIs handling, Introduction
AUTO_INCREMENT columns cannot contain, Discussion
COALESCE(), Discussion
comparison operators

<=>, Discussion
IFNULL(), Discussion, Discussion
IS NULL or IS NOT NULL, Problem
ISNULL(), Discussion
programming, Problem

COUNT of non-NULL values versus rows, Discussion, Discussion
counting missing values, Problem
date and timestamp columns not allowing, Discussion, Discussion

/dev/null, Discussion
Blackhole “storage” engine, Discussion

exporting data to file, Discussion
string “NULL”, Exporting using the mysql client program, Discussion

forced sorting to end of sort, Discussion
identifying in result sets, Problem-Java
importing data, Problem
LOAD DATA \N sequence, Discussion
NOT NULL declaration, Discussion
NULL data values, Problem-Java
PRIMARY KEY versus UNIQUE index, Discussion
regular expressions not matching, Discussion
UNIQUE indexes allowing multiple, Discussion
unknown value, Discussion, Discussion

mapping to string “Unknown”, Discussion, Discussion
user-defined variables, Discussion

NUMA (non-uniform memory access), Memory utilization
numeric data

AUTO_INCREMENT column data types, Problem
converting between decimal, octal, and hexadecimal, Problem
FLOOR() for integers, Converting between times and seconds, Date or
date-and-time interval calculation using basic units
maximum unsigned values, Discussion
patterns with nonstring values, Discussion
random number generator, Problem
regexp patterns for strings of numbers, Problem
REVERSE() dropping leading zero, Discussion

O

objects in JavaScript mode of MySQL Shell, Solution-Discussion
exporting to preload, Discussion

observability of server, Introduction
(see also monitoring MySQL server)

OCT() for octal format conversion, Problem
octal values converted between decimal and hexadecimal, Problem
one-to-many relationships, Problem
online backup tools, Discussion
online resources (see resources online)
OOM killer (out of memory killer), Memory utilization

“MySQL Server has gone away”, Problem

openssl system tool, Discussion
operating system

monitoring, Operating System
physical resource usage, Discussion
tools from mysql prompt, Discussion

optimizer histograms, Problem
large table data for, Discussion

option as URI parameter, Discussion
\option command, Discussion
option files

comments, Specifying connection parameters using option files
customizing mysql prompt, Discussion
format of, Specifying connection parameters using option files-
Specifying connection parameters using option files
invoking mysql, Discussion

connection parameters, Specifying connection parameters using option
files

localhost, Discussion

mixing command line parameters and, Mixing command-line and option-
file parameters
pathname separator character, Specifying connection parameters using
option files
personal option file, Specifying connection parameters using option files
program variables, Specifying connection parameters using option files
protecting from other users, Protecting option files from other users
scripts reading for connection parameters, Getting parameters from
option files
server configuration, Configuration control at server startup

log files, Discussion
[mysqld] group, Configuration control at server startup

unknown option error, Specifying connection parameters using option
files

options member of Shell class, Discussion
Oracle Java site, Java Support
ORDER BY clause to sort results, Problem, Problem-Discussion

case sensitivity issues, Problem
custom sort order defined, Problem
date information, Problem
displaying values, sorting on another, Problem
ENUM values, Problem
expressions for sorting, Problem
INET_ATON() for IP addresses, Discussion, Problem
joins to control sort order, Problem
LIMIT clause with, Problem

results in different sort order, Problem

RAND(), Problem, Discussion
special values to head or tail of sort, Problem
time information, Problem

out of memory killer (OOM killer), Memory utilization
“MySQL Server has gone away”, Problem

outer joins, Introduction, Discussion
LEFT JOIN, Discussion, Discussion
mismatches between tables, Problem

“unattached” rows removed, Problem

other ways to write, Discussion
RIGHT JOIN, Discussion

output
binary output as hexadecimal notation, Discussion
filtering and processing, Problem
format control, Discussion-Controlling mysql’s verbosity level

about, Problem
column headings suppressed, Suppressing column headings in query
output
comma-separated values (CSV), Specifying the output column
delimiter
HTML or XML, Producing HTML or XML output
JSON values, Problem
MySQL Shell, Problem
output column delimiter changed, Specifying the output column
delimiter
tabular or tab-delimited, Producing tabular or tab-delimited output

I/O monitoring (see I/O (input/output) monitoring)
interactive versus batch mode, Discussion, Producing tabular or tab-
delimited output

pager command (\P), Discussion
sending output nowhere, Discussion

redirecting, Problem
exporting to a file, Exporting using the mysql client program
exporting to JSON file, Problem
exporting to XML format, Discussion
mysqldump, Discussion
pager with redirection, Discussion
pipe from program, Discussion
sending output nowhere, Discussion

screen as default, Discussion
verbosity level of mysql, Controlling mysql’s verbosity level
vertical in MySQL Shell JavaScript mode, Discussion
vertical via \G, Discussion

all statements within session, Discussion

P

\P (pager command), Discussion
pager command (\P), Discussion

nopager (\n) to reset, Discussion
sending output nowhere, Discussion
sending output to a file, Discussion
set to grep Running, Discussion
SHOW ENGINE INNODB STATUS, Discussion, SHOW ENGINE

pager option, Discussion
pandas

about, Discussion
installing in MySQL Shell, Discussion

read_csv method, Names and genders

parallelization
multiple replication applier threads, Problem
replication performance, Problem

parameters for mysql command, Problem
single versus double dash before, Discussion

parent tables and child tables, Problem
candidate keys, Problem

parentheses ()
function-based indexes, Discussion
regexp pattern matches, Discussion

password
anonymous accounts without, Discussion
changing your password, Problem
command line option, Discussion

no default value, Discussion

connection parameters from command line, Getting parameters from the
command line
default for user account, Introduction
expiring, Problem

resetting an expired, Problem

policy via validate_password plug-in, Problem
pwgen system tool, Discussion
replication user credential security, Problem
resetting an expired, Problem
security

command line option, Discussion

option file plain text format, Specifying connection parameters using
option files
PHP library files, PHP
strength check, Problem

setting up user account, Discussion
database privileges, Discussion

URI parameter, Discussion

PATH environment variable
error when invoking mysql, Discussion

solution, Problem

library file location, Choosing a library-file installation location
option file separator character, Specifying connection parameters using
option files

patient test data via Python, Problem-See Also
pattern matching

about, Discussion
data validation via, Problem

Python regexp overview, Discussion
script for testing patterns, Discussion

full-text searching, Problem
short words return no rows, Problem

hostnames with % or _ within, Problem
nonstring values, Discussion
regular expressions (see regular expressions)
SQL patterns, Problem-Discussion
substrings within strings, Problem

Paxos algorithm, Discussion
pem files for TLS, Creating self-signed certificates

percent (%)
formatting for date and time values, Discussion
hostname containing, Problem
matching sequence of characters, Filtering on the replica, Discussion

Percona Monitoring and Management (PMM), Network utilization
Percona XtraBackup, Discussion
Performance Schema

built-in reports, Discussion
I/O utilization, I/O utilization
memory usage, Discussion
monitoring the server, Discussion
replication performance, Problem
replication troubleshooting, Problem, Replication tables in the
Performance Schema-Troubleshooting Group Replication
sys schema for information, Discussion
threads table, Discussion, Discussion

performance tuning
indexes, Introduction
query performance (see query performance)
triggers listed, Discussion

period (.)
JSON object members, Discussion
regexp matching single character, Discussion, Discussion

Perl DBI module API support, MySQL APIs Used in This Book,
Introduction

“0E0” return value, Perl
about scripting requirements, Perl

AUTO_INCREMENT value, Using API-specific methods to obtain
AUTO_INCREMENT values
date calculations, Date or date-and-time interval calculation using basic
units
error handling, Perl, Problem-Perl, Perl, Perl

access denied, Perl

handles
database handles ($dbh), Perl, Perl, Discussion
statement handles ($sth), Perl, Perl

hash to check input values, Construct a hash from the entire lookup table
@INC array, Perl
library file writing, Perl

library path, Choosing a library-file installation location, Perl

metadata
listing tables, Discussion
result set metadata retrieved, Perl
row count of matched versus changed, Perl
server version, Discussion

NULL values identified in result sets, Problem-Perl
option files for connection parameters, Getting parameters from option
files
running Perl programs link, MySQL Cookbook Companion Documents
scripts

connecting to server, Problem-Perl
cvt_file.pl for converting imported data, Specifying the output column
delimiter, File Formats
executing SQL statements, Problem-Perl
export utilities, Exporting using the mysql client program
Perl CPAN site for, Discussion

special characters and NULL in data values, Problem-Perl
special characters in identifiers, Problem
transactions, Problem
use strict, Perl
use warnings, Perl

PERL5LIB environment variable, Choosing a library-file installation
location, Perl
PHP PDO API support, MySQL APIs Used in This Book, Introduction

about PHP scripting, PHP
scripting requirements, PHP

AUTO_INCREMENT value, Using API-specific methods to obtain
AUTO_INCREMENT values
character set for client connections, Discussion
download links, PHP Support
error handling, PHP, Problem, PHP, PHP
input values checked via associative array, Construct a hash from the
entire lookup table
library file writing, PHP

library path, Choosing a library-file installation location, PHP

metadata
result set metadata retrieved, PHP
row count of matched versus changed, PHP

NULL values identified in result sets, Problem, PHP
option files for connection parameters, Getting parameters from option
files, PHP
running PHP programs link, MySQL Cookbook Companion Documents
scripts

connecting to server, Problem, PHP
executing SQL statements, Problem-SQL statement categories, PHP

special characters and NULL in data values, Problem-Using a quoting
function, PHP
special characters in identifiers, Problem
transactions, Problem

phpMyAdmin, Introduction
phrase searches in full-text, Problem
pipe (|)

output as input, Discussion, Discussion
regexp pattern matching, Discussion, Discussion, Discussion

placeholders in data values, Discussion
generating a list of, Using a quoting function

platforms supported by MySQL, Version and Platform Notes
plug-ins

authentication, Understanding the mysql.user Table
built in, Discussion
debugging InnoDB storage engine, SHOW ENGINE
filename suffix on plug-ins, Discussion
listing installed plug-ins in server, Problem
plug-in interface, Problem
runtime installation, Plug-in control at runtime
server startup, Plug-in control at server startup

plugin_dir system variable, Discussion
plus (+) regexp pattern matching, Discussion, Discussion

avoiding empty string match, Discussion

point-in-time recovery (PITR) via binary log files, Filtering on the source
server, Discussion, Discussion
port numbers

default 3306 for TCP/IP, Discussion

X protocol, Introduction

URI parameter, Discussion

portability
date format, Discussion
metadata, Introduction
regular expression syntax, Discussion
sequences, Introduction
SHOW versus INFORMATION_SCHEMA, Introduction
SQL code and APIs, MySQL Client API Architecture
SQL patterns, Discussion
user-defined variables, Discussion

POSIX character classes of regexp, Discussion
postprocessing filter of export, Exporting using the mysql client program
prepare() for statement handle

Go, Go
Perl, Perl, Perl, Perl
PHP, PHP

prepared SQL statements
about, Discussion
helper routines to simplify, Problem
MySQL Reference Manual link, Discussion

preprocessing data, Problem, Problem
converting imported data via cvt_file.pl, File Formats, Discussion
importing data

about, Introduction
about file formats, File Formats
about general issues, General Import and Export Issues
source code in recipes distribution, Introduction

triggers for, Problem

PRIMARY KEY clause, Discussion, Discussion
about primary keys, Discussion
about query performance, Introduction
cardinality of index, Discussion
creating, Problem

primary key optimization, Problem

duplicate rows prevented, Problem
handling duplicate key values, Problem
if already assigned, UNIQUE index, Discussion
maintaining indexes, Problem
more than one unique key in table, Problem
NULLs not permitted, Discussion
primary key optimization, Problem

print-defaults parameter to mysql, Specifying connection parameters using
option files
printing (see output)
private key for TLS, Discussion
private_key.pem, Creating self-signed certificates
privileges

built-in reports, Discussion
database access, Discussion
events, Introduction, Discussion
FILE privilege

exporting, Exporting using the SELECT...INTO OUTFILE statement,
Exporting using the mysql client program
importing, Specifying the datafile location

INFORMATION_SCHEMA results, Introduction

library files, Setting library-file access privileges
PROCESS privilege, Discussion
roles, Problem
security, Introduction

account management, Assigning and checking privileges

SELECT CURRENT_USER() for client privileges, Discussion
server administration, Introduction

runtime changes to global values, Configuration control and
verification at runtime

server monitoring, Introduction
server shutdown, Discussion
SHOW ENGINE, Problem
SHOW GRANTS, Assigning and checking privileges
stored programs, Introduction
stored routine access privileges, Setting library-file access privileges

security via, Discussion

SUPER privileges, Configuration control and verification at runtime
triggers for tables, Introduction

process list displayed, I/O utilization
PROCESS privilege, Discussion
PROCESSLIST versus thread report, Discussion
profile table for chapter examples, Introduction

resetting the profile table, Problem

profile.sql, Discussion
program variables, Specifying connection parameters using option files
programs (see APIs; scripts)
prompt command, Discussion

resetting prompt to default value, Discussion

user account in prompt, Discussion

prompt option, Problem
prompt.json file, Discussion
prompts

commands shown in text, Discussion
customizing mysql prompt, Problem

resetting prompt to default value, Discussion
user account in prompt, Discussion

external programs from, Problem
interactively executing SQL, Problem

directly from command line, Discussion
semicolon (;) at end, Discussion

MySQL Shell customization, Discussion

protocol=tcp to force TCP/IP, Discussion
protocols

Classic MySQL protocol, Introduction
import_table requiring, Discussion

MySQL Shell connected to MySQL server, Problem
URI scheme, Discussion
X protocol, Introduction

public key certificate file, Discussion
public_key.pem, Creating self-signed certificates
pwgen system tool, Discussion
Python DB API support, MySQL APIs Used in This Book, Introduction

about, Discussion
about scripting requirements, Python

connection objects, Python
database connections with auto-commit disabled, Python

AUTO_INCREMENT value, Using API-specific methods to obtain
AUTO_INCREMENT values
character set for client connections, Discussion
dictionaries, Python

data validation lookup table into, Construct a hash from the entire
lookup table, Remember already-seen values to avoid database
lookups

download links, Python Support
error handling, Python, Problem, Python, Python
library file writing, Python

data validation tests, Problem
library path, Choosing a library-file installation location, Python

metadata
result set metadata retrieved, Python
row count of matched versus changed, Python

NULL values identified in result sets, Problem, Python
Python mode (see Python mode of MySQL Shell)
regular expressions overview, Discussion

table of pattern elements, Discussion
validating data, Discussion

running Python programs link, MySQL Cookbook Companion
Documents
scripts

Amazon review data load, Discussion
connecting to server, Problem, Python
executing SQL statements, Problem-SQL statement categories, Python
library file of data validation tests, Discussion
regular expression pattern tester, Discussion

special characters and NULL in data values, Problem-Using a quoting
function, Python
special characters in identifiers, Problem
test data via data science modules, Problem-See Also
transactions, Problem

Python mode of MySQL Shell, Problem
collections, Problem
deploy_sandbox_instance, Discussion
\source command, Problem

scripts executed at startup, Discussion

SQL session, Problem
table queries, Problem
util object, Problem

PYTHONPATH environment variable, Choosing a library-file installation
location, Python

Q

QUARTER() for quarterly sales reports, Discussion
query logs, Discussion, The general query and slow query logs

digests of query logs, Logging all the queries
log table rotation, Discussion
monitoring client activity, Problem
monitoring the server, Discussion
rotating, Rotating the error, general query, or slow query log
troubleshooting with slow query log, Problem

query performance
about, Introduction

terms to know, Introduction

full-text indexes, Problem
function-based indexes, Problem
geographic data and spatial indexes, Problem
JSON data, Problem
long-running queries

EXPLAIN checking, Discussion
server crash, Server crash

maintaining indexes, Problem
multiple column queries, Problem
number of queries hitting server, Problem
optimizer histograms, Problem
primary key created for slow queries, Problem

primary key optimization, Problem

query slow with index, Solution
scanning data in ascending and descending order, Problem
stuck queries, Discussion
trouble shooting with slow query log, Problem
writing efficient queries, Problem

query plans
about, Discussion
EXPLAIN statement, Discussion
optimizer histograms, Problem
prepared statements and, Using placeholders
right index used, Solution

query report, Discussion
query result rows numbered, Problem
query results joined, Problem
query results sorted, Problem

joins to control sort order, Problem
randomized, Problem

question mark (?) optional regexp element, Discussion
quit command to terminate mysql session, Discussion
quote mark, double (")

escaping in command line arguments, Notes on Invoking Shell
Commands
escaping in data values, Discussion
identifier quoting if ANSI_QUOTES, Discussion, Discussion
importing data, Problem
shell command arguments, Notes on Invoking Shell Commands
writing string literals, Problem

quote mark, single (')
escaping in data values, Discussion
exporting data, Exporting using the SELECT...INTO OUTFILE
statement
importing CSV files, Problem
writing string literals, Problem

QUOTE() for SQL injection attack prevention, Discussion
quoting functions converting data values, Discussion, Using a quoting
function

R

RAND() for random numbers, Problem
card deck–shuffling algorithm, Discussion
how random is RAND(), Discussion
return result rows randomized, Problem
seed value sources, Discussion

selecting randomly from set of values, Problem

rand_test.py, Discussion
range of values, Discussion
RANK(), Discussion
ranks assigned to set of values, Problem
read scale, Introduction
read_csv() (pandas), Names and genders
recipes distribution from GitHub, Recipe Source Code and Data

additional languages, Recipe Source Code and Data, Introduction
batch files, Recipe Source Code and Data
cmdline.pdf, Introduction, Perl, Ruby, Python, Java

environment variables, Choosing a library-file installation location

CookbookCollection code, Discussion
cookbook_utils.py library module file, Discussion, Discussion
lib directory for library files, Introduction, Discussion

column information structures, Using INFORMATION_SCHEMA to
get table structure information, Discussion

patient name test data generator code, Data filling step-by-step
datasets for, Data filling step-by-step

scripts
APIs, Introduction
connecting to MySQL server, Perl, Ruby, PHP, Python, Go, Java
connection parameters, Getting parameters from the command line,
Getting parameters from option files
converting imported data, Specifying the output column delimiter, File
Formats, Discussion, Discussion, Discussion
datafile columns in any order, See Also, Discussion
date processing utilities, Solution, Discussion, Discussion, Discussion

date values, Introduction
duplicates counted, Discussion
events, Introduction
exporting query results, Exporting using the mysql client program
guess table structure from datafile, Discussion
hex dumpers, Discussion
importing and exporting, Introduction
joins, Introduction
metadata, Introduction, Discussion
mysql, Introduction
parsing command-line arguments, Perl
printable representations of file characters, Discussion
randomness of RAND(), Discussion
regular expression pattern tester, Discussion
routines, Introduction
security, Introduction
sequences, Introduction
statistical techniques, Introduction
strings, Introduction
table lookup for data validation, Construct a hash from the entire
lookup table
tables created, Recipe Source Code and Data, Introduction,
Discussion, Discussion, Introduction
time values, Introduction
transactions, Introduction, Discussion
triggers, Introduction
validating data, Introduction

redirecting input to execute SQL from file or program, Problem-Discussion

redirecting output, Problem
exporting to a file, Exporting using the mysql client program

JSON format, Problem
XML format, Discussion

mysqldump, Discussion
pager with redirection, Discussion
pipe from program, Discussion
sending output nowhere, Discussion

reformatting data
about, Introduction
date processing utility, Solution
non-ISO date values, Problem
source code in recipes distribution, Introduction
year values from two digits to four, Problem

REGEXP(), Problem-Discussion
regular expressions (regexp)

data validation via, Problem
Python regexp overview, Discussion
Python validating data, Discussion
script for testing patterns, Discussion

pattern matching, Problem-Discussion
overview, Discussion
broad content types matched, Problem
case sensitivity, Discussion
date strings, Problem, See Also
email address validity, Problem
multibyte character sets, Discussion
NULL values not matched, Discussion

numeric values matched, Problem
POSIX character classes, Discussion
script for testing patterns, Discussion
table of pattern elements, Discussion, Discussion, Discussion
time strings, Discussion
URL validity, Problem

rejecting bad data via BEFORE INSERT trigger, Problem
relative values from cumulative values, Problem
relay log files of replica server, Introduction
relay_log_info_repository, Discussion
remove() from collection (Python), Discussion
removing duplicate rows in results, Problem
RENAME USER, Renaming accounts
renaming database, Discussion
ReplicaSet automation via Admin API, Discussion

automating replication setup, Discussion

replicate-do-db configuration option, Filtering on the replica
replicate-ignore-db, Filtering on the replica

replication
about, Introduction

asynchronous, Discussion
master and slave terminology, Introduction
source and replica terminology, Introduction

automated replication setup, Problem
binary log format configuration, Problem
circular via chain of servers, Problem
credential security, Problem
data transfer security via TLS, Problem

Group Replication plug-in, Problem
existent data, Discussion
troubleshooting, Troubleshooting Group Replication
writing on multiple nodes, Discussion

IO and SQL threads, Discussion
troubleshooting IO thread, Troubleshooting an IO thread
troubleshooting SQL thread, Troubleshooting a SQL thread

metadata repositories
relay log status, Discussion
replication credential security, Problem
source server information, Discussion

multithreaded replica, Problem
one source, one replica, Problem

about position-based replication, Discussion
in-use position-based configuration, Problem
new position-based configuration, Problem
replica via global transaction identifiers, Problem

performance tools, Problem
replica server, Introduction

check if running, Discussion
replication filters, Problem, Filtering on the replica
start the replica, Discussion
start the replica with secure credentials, Problem
STOP REPLICA on parameter change, Filtering on the replica
update before COMMIT declared success, Problem

replication filters, Problem
replica database with different name, Problem

semisynchronous replication plug-in, Problem

failing back to asynchronous, Discussion
variables that control behavior, Discussion

source server, Introduction
metadata repositories, Discussion
replication filters, Problem

troubleshooting, Problem-Troubleshooting Group Replication
Group Replication, Troubleshooting Group Replication
IO thread, Troubleshooting an IO thread
Performance Schema, Replication tables in the Performance Schema-
Troubleshooting Group Replication
SHOW REPLICA STATUS, Discussion-SHOW REPLICA STATUS
SQL thread, Troubleshooting a SQL thread

tuning for safety and performance, Discussion
two or more source servers, Problem

replication-rewrite-db replication filter, Problem
replication_applier_status_by_worker table, Discussion
replica_parallel_type variable, Discussion
replica_parallel_workers variable, Discussion, Discussion
reports, Problem

built-in reports, Discussion
\show, Discussion

thread built-in report, Discussion

\watch, Discussion

resetting profile table, Problem
RESIGNAL command to raise error, Discussion
resources online

book web page for errata and information, How to Contact Us

companion GitHub repository, The MySQL Cookbook Companion
GitHub Repository
email address regexp patterns, Discussion
email address specifications, Discussion
MySQL distributions, MySQL
MySQL Shell download page, Introduction
MySQL User Reference Manual link

B-tree versus hash indexes, Introduction
Boolean full-text operators, Discussion
date and time value component extraction, Decomposing dates or
times using component-extraction functions, Decomposing dates or
times using component-extraction functions
date and time values, Introduction, Discussion
DDL operations, Discussion
encryption, Discussion
error log configuration, Discussion
full-text index restrictions, Discussion
I/O utilization, I/O utilization
JSON data type, See Also
JSON Path syntax, See Also
memory usage, Discussion
mysql prompt customization, Discussion
prepared SQL statements, Discussion
roles, See Also
SELECT statements, Introduction
server plug-ins, SHOW ENGINE
sql_mode, Discussion
stored program error handling, Discussion

stored routines, triggers, and events, Introduction
time zones, Discussion
window functions, See Also

Perl CPAN site, Discussion
User Reference Manual link

TO_DAYS() and Gregorian calendar, Converting between dates and
days

X DevAPI reference manual, See Also

Result consisted of more than one row error, Discussion
result set duplicate data, Introduction

(see also duplicates handled)

result set metadata, Introduction
number of rows changed by SQL, Problem

matched versus changed, Discussion

retrieving, Problem

result set row numbering, Problem
result-format command-line parameter, Solution
resultFormat configuration option, Solution
REVERSE(), Problem
REVOKE, Assigning and checking privileges
right angle bracket (>) redirecting output, Exporting using the mysql client
program
RIGHT JOIN, Discussion

other ways to write, Discussion

RIGHT(), Discussion
pattern matches similar to, Discussion, Discussion
sorting on substrings, Problem

roles for user accounts, Problem

ROLLBACK, Discussion
rollback() (JavaScript), Discussion
rolling back transactions, Discussion
root account

CREATE USER and GRANT, Discussion
mysqladmin, Discussion
security, Introduction
server administration, Introduction

rows inserted into tables, Problem
duplicates prevented, Problem, Problem

(see also duplicates handled)

tables created via scripts, Discussion
timestamping row creation, Problem

rows specified in SELECT, Problem
COUNT() for count summary, Discussion
date condition in WHERE clause, Problem
metadata

how many rows changed by SQL, Problem
matched versus changed, Discussion
result set metadata, Problem

multiple SELECTs via subqueries, Problem
portion of results, Problem
removing duplicate rows, Problem
sorting the query results, Problem
subgroup summaries for sets of rows, Problem
time condition in WHERE clause, Comparing times to one another
two or more SELECTs combined, Problem

ROW_NUMBER(), Problem

ranks assigned to set of values, Discussion

Ruby Mysql2 API support, MySQL APIs Used in This Book, Introduction
about scripting requirements, Ruby
AUTO_INCREMENT value, Using API-specific methods to obtain
AUTO_INCREMENT values
download links, Ruby Support
error handling, Ruby, Problem, Ruby, Ruby
hash for checking input values, Construct a hash from the entire lookup
table
library file writing, Ruby

library path, Choosing a library-file installation location, Ruby

metadata
current session status display, Discussion
result set metadata retrieved, Ruby
row count of matched versus changed, Ruby

NULL values identified in result sets, Problem, Ruby
option files for connection parameters, Getting parameters from option
files, Ruby
running Ruby programs link, MySQL Cookbook Companion Documents
scripts

connecting to server, Problem, Ruby
executing SQL statements, Problem-SQL statement categories, Ruby

special characters and NULL in data values, Problem-Using a quoting
function, Ruby
special characters in identifiers, Problem
transactions, Problem

Ruby Mysql2 gem, Ruby Support
required for running scripts, Ruby

RUBYLIB environment variable, Choosing a library-file installation
location, Ruby
running averages, Problem
runSQL() (JavaScript), Problem
run_SQL() (Python), Problem
Russian word sort order, Discussion

S

s (silent) option, Controlling mysql’s verbosity level
suppressing column headings, Suppressing column headings in query
output

sales tax computation via stored function, Discussion
sandbox instance via Admin API, Discussion

stopping instance, Discussion

save() (JavaScript), Discussion
scheduled events (see events)
schema

getDefaultSchema() (JavaScript), Discussion
URI parameter, Discussion
validation supported by collections, Discussion

Schema class
createCollection (JavaScript), Discussion
get_collection (Python), Discussion

scheme as URI parameter, Discussion
screen output as default, Discussion
scripts

about object orientation, MySQL Client API Architecture
Amazon reviews data script, Discussion

API architecture, MySQL Client API Architecture
(see also APIs)

api directory in recipes distribution, Introduction
batch mode in mysql, Introduction
column aliases, Discussion
connecting to MySQL server, Introduction, Problem-Java

disconnecting from, Discussion
obtaining connection parameters, Problem-Java

converting imported data via cvt_file.pl, Specifying the output column
delimiter, File Formats, Discussion

guess_table.pl to guess structure, Problem

distributing SQL, Discussion
error handling, Introduction, Problem-Java

SQL statements, SQL statement categories

executed at startup, Discussion
executing code from a file, Problem

source command for mysql, Discussion
\source command for mysqlsh, Problem

executing SQL, Introduction
categories of SQL statements, Discussion, SQL statement categories
error handling, SQL statement categories
no SQL statement terminators, SQL statement categories

executing SQL statements and retrieving results, Problem-Java
languages supported by MySQL, MySQL APIs Used in This Book,
Introduction

MySQL Shell, Introduction
recipes distribution on GitHub, Recipe Source Code and Data,
Introduction

library file writing, Introduction, Problem-Java
access privileges, Setting library-file access privileges
data validation tests, Problem
Go, Go
location of library file, Choosing a library-file installation location
Perl, Perl
PHP, PHP
Python, Python
recipes distribution lib directory, Introduction, Discussion
Ruby, Ruby
test harness, Discussion

metadata directory of recipes distribution, Introduction
NULL data values, Introduction, Problem-Java

comparisons involving NULL, Problem
identifying in result sets, Problem-Java

persistent connections and temporary tables, Discussion
recipes distribution (see recipes distribution from GitHub)
resetting the profile table, Problem
special character handling, Introduction

data values, Problem-Java
identifiers, Problem, Discussion
quoted string with same quote character, Discussion

tables created via recipes distribution scripts, Recipe Source Code and
Data, Discussion, Introduction, Introduction, Introduction
test data via Python, Problem-See Also

sdi file for copying MyISAM table, Problem
searching in JSON documents, Problem
searching in strings

Boolean-mode searches, Problem
full-text searches, Problem

Amazon review data for download, Amazon Review Data (2018),
Discussion
phrase searches, Problem
requiring or prohibiting words, Problem
script to load Amazon data, Discussion
short words return no rows, Problem

substrings searched for, Problem

SECOND(), Decomposing dates or times using component-extraction
functions
secondary indexes created, Problem
seconds resolution in time values, Problem
Seconds_Behind_Source inaccuracy, Discussion
Secure Socket Layer (SSL), Discussion
security

about administrative access required, Introduction
about MySQL version, Introduction
about scripts in recipes distribution, Introduction
certificates

Certificate Authority (CA) file, Discussion
creating self-signed, Creating self-signed certificates
public key certificate file, Discussion

connection parameters via script, Discussion
encryption of network traffic, Problem
LOCAL data loading disabled, Discussion
option files protected from other users, Protecting option files from other
users

passwords
changing your password, Problem
command line option, Discussion
expiring, Problem
option file plain text format, Specifying connection parameters using
option files
PHP library files, PHP
policy for passwords, Problem
resetting an expired, Problem
strength check, Problem

replication credential security, Problem
roles, Problem
SQL injection attack prevention, Problem-Java

about SQL injection, Discussion
prepared SQL in stored procedures, Discussion

stored routines for data security, Problem
user account management

anonymous accounts, Problem
creating user account, Problem
mysql.user table, Understanding the mysql.user Table
privileges, Assigning and checking privileges
removing accounts, Removing accounts
renaming accounts, Renaming accounts

views to secure data access, Problem

SEC_TO_TIME(), Solution
sed utility to change column delimiters, Specifying the output column
delimiter
SELECT

about, Introduction
documentation online, Introduction

about SQL statement categories, SQL statement categories
column names in results, Problem

alias benefits in programming, Discussion
alias restrictions, Discussion
choosing own names, Discussion

columns specified, Problem
all columns via asterisk (*), Discussion
all columns via TABLE, Discussion

creating database and setting up tables, Discussion
CURRENT_USER() for client privileges, Discussion
DATABASE() for default database name, Discussion
DISTINCT for unique values, Introduction, Problem
ENGINE for storage engines, Discussion
INTO OUTFILE to export to file, Problem

NULL as \N, Discussion

mail table for chapter examples, Introduction
multiple result sets via subqueries, Problem
multiple tables, Problem
result set metadata, Introduction

matched versus changed, Discussion
number of rows changed by SQL, Problem
retrieving, Problem

results assigned to variable, Problem, Discussion
results by default returned to client, Discussion
rows from multiple SELECTs combined, Problem
rows from multiple SELECTs via subqueries, Problem

rows from portion of results, Problem
LIMIT value from expression, Problem
results in different sort order, Problem

rows specified, Problem
date and time conditions, Problem
removing duplicate rows, Problem

saving query results in a table, Problem
columns in different order from source, Discussion

sorting query results, Problem
@@sql_mode

ANSI_QUOTES, Discussion

table storage engine identification, Discussion
USER() for current user, Discussion
VERSION() for server version string, Discussion
VIEW simplifying table access, Problem

select()
JavaScript mode table queries, Discussion
Python mode table queries, Discussion

self-joins, Problem
cumulative sums, Problem
running averages, Problem
successive-row differences, Problem

semicolon (;)
end of SQL statement, Discussion, Discussion

BEGIN...END blocks, Introduction
multiple SQL statements executed, Discussion
none in API SQL statements, SQL statement categories
\G for vertical output, Discussion, Discussion

\g synonym, Discussion, Discussion

redefining mysql terminator for BEGIN...END, Problem

semisynchronous replication plug-in, Problem
failing back to asynchronous, Discussion
variables that control behavior, Discussion

sequences
about, Introduction

portability, Introduction
scripts in recipes distribution, Introduction

AUTO_INCREMENT columns, Problem
emptying table, resetting counter, Discussion

counting with, Problem
custom increment values, Problem
custom sequence as id column, Problem
data type for, Problem

extending range of sequence, Problem

deleting rows without changing, Problem
renumbering an existing sequence, Problem
reusing values at top of, Problem

duplicate rows prevented, Discussion
extending range of, Problem
managing multiple simultaneously, Problem
recursive Common Table Expressions, Problem
renumbering an existing, Problem

particular order, Problem

repeating sequences generated, Problem
result set row numbering, Problem
retrieving values, Problem

APIs, Using API-specific methods to obtain AUTO_INCREMENT
values
server-side versus client-side, Server-side and client-side sequence
value retrieval compared

sequencing an unsequenced table, Problem
successive-row differences calculated, Problem
tables associated via, Problem

server administration
about, Introduction

administrative access, Introduction
SUPER access, Configuration control and verification at runtime

checking if server is up, Problem
“MySQL Server has gone away”, Problem

configuring server, Problem
runtime, Configuration control and verification at runtime
server startup, Configuration control at server startup

error log for troubleshooting, Problem
log files, Problem

binary log, Discussion, The binary log
error log, Discussion, The error log, Discussion, Problem, Solution
expiring log files, Problem
flushing log files, Discussion
general query log, Discussion, The general query and slow query logs,
Discussion
log maintenance needed, Discussion, Problem
monitoring the server, Discussion
rotating log files, Problem
rotation automated, Automating logfile rotation

slow query log, Discussion, The general query and slow query logs,
Discussion

log tables
expiring rows within, Problem
rotating, Problem

monitoring the server, Introduction
(see also monitoring MySQL server)

plug-in interface, Problem
built-in plug-ins, Discussion
filename suffix on plug-ins, Discussion
plugin_dir system variable, Discussion
runtime installation, Plug-in control at runtime
server startup, Plug-in control at server startup

server startup problems, Problem
storage engine configuration, Problem

server-cert.pem, Creating self-signed certificates
server-key.pem, Creating self-signed certificates
server_id for replication servers, Discussion
server_uuid global variable, Discussion
Session class sql() and runSQL()

JavaScript mode, Problem, Discussion
Python mode, Problem

session status Handler_* variable, Discussion
SET

assigning values for SIGNAL statement, Discussion
GLOBAL

event scheduler enabled, Discussion
general query log enabled, Discussion

global time zone, Discussion
LOCAL data loading, Discussion
server administration system variables, Configuration control and
verification at runtime

NAMES for connection character set, Problem
no GLOBAL or SESSION modifier, Configuration control and
verification at runtime
PASSWORD, Problem
PERSIST

event scheduler, Discussion
RESET PERSIST, Configuration control and verification at runtime
server administration at runtime, Configuration control and
verification at runtime
since MySQL v8, Discussion

preprocessing LOAD DATA input, Problem
SESSION versus GLOBAL, Configuration control and verification at
runtime
variable assignments, Discussion

SET columns
concatenating element to existing, Discussion
data validation using table metadata, Discussion
members determined, Problem

set() (JavaScript), Discussion
Shell class (JavaScript), Discussion
shell commands (see command line)
shell.status() command, Discussion
shortcuts (Windows), Discussion
SHOW

about SQL statement categories, SQL statement categories
CHARACTER SET, String Properties

default collations, String Properties

COLUMNS for column definitions, Solution
CREATE TABLE for table definition, Discussion, Solution, Discussion

mysql.user, Understanding the mysql.user Table
NULL values for timestamp columns, Discussion
table engine used, Discussion

ENGINE, Problem
INNODB MUTEX, SHOW ENGINE
INNODB STATUS, Discussion, SHOW ENGINE

GLOBAL STATUS, Discussion
Buffer Pool allocation, Discussion
connection limit, Discussion
monitoring the server, Discussion

GLOBAL VARIABLES
Buffer Pool allocation, Discussion
indexing engine minimum word length, Discussion
server global configuration variables, Discussion
slow query log settings, Discussion
storage engine settings, Discussion
time_zone, Discussion

GRANTS, Assigning and checking privileges
INDEXES for maintaining, Discussion
INFORMATION_SCHEMA instead, Introduction
MASTER STATUS

binary log filters, Filtering on the source server
binary log position, Solution

CHANGE REPLICATION SOURCE, Solution
File and Position values, Discussion
GTIDs, Discussion
Seconds_Behind_Source inaccuracy, Discussion
stopping writes for in-use source, Discussion

PLUGINS, Discussion
portability of command, Introduction
PROCESSLIST for connection ID, Discussion
REPLICA STATUS

replica filters, Filtering on the replica
to troubleshoot, Problem-SHOW REPLICA STATUS

SESSION STATUS, Discussion
SESSION VARIABLES, Discussion
TABLE STATUS, Discussion
VARIABLES

event_scheduler, Discussion
system variables, Configuration control and verification at runtime

WARNINGS, Discussion
LOAD DATA diagnostic information, Discussion, Problem

\show for report, Problem
thread built-in report, Discussion

help for options, Discussion

shutdown command requiring administrative privileges, Discussion
SIGNAL statement to raise own errors, Problem

warning conditions, Discussion

silent (s) option, Controlling mysql’s verbosity level
suppressing column headings, Suppressing column headings in query
output

single quote (')
escaping in data values, Discussion
exporting data, Exporting using the SELECT...INTO OUTFILE
statement
importing CSV files, Problem
writing string literals, Problem

skip-column-names option, Suppressing column headings in query output
slash (/) pathname separator, Specifying connection parameters using
option files
slave and master terminology, Introduction
slow query log, Discussion, The general query and slow query logs

enabling, Discussion
log table rotation, Discussion
monitoring queries, Problem
monitoring the server, Discussion
rotating, Rotating the error, general query, or slow query log

Snake-case syntax, Discussion
socket parameter, Discussion

URI parameter, Discussion

sorting query results
about, Introduction

as comparison, Discussion

case sensitivity issues, Problem
collation affecting sort order, String Properties

listing character sets and collations, Problem

custom sort order defined, Problem
date information, Problem

calendar day, Sorting by calendar day
day of week, Sorting by day of week

displaying values, sorting on another, Problem
ENUM values, Problem
expressions for sorting, Problem
hostnames in domain order, Problem
IP addresses in numeric order, Problem
joins to control sort order, Problem
ORDER BY, Problem, Problem-Discussion
randomizing, Problem
special values to head or tail, Problem
substrings from values, Problem

given position within string, Problem
not given position in string, Problem

time information, Problem
time of day, Sorting by time of day

source and replica terminology, Introduction
source command (\.) for mysql, Discussion

importing SQL data, Problem

\source command for mysqlsh, Problem
importing SQL data, Problem

SOURCE_DELAY option, Introduction
span of time versus interval, Date or date-and-time interval calculation
using basic units
spatial indexes and geographic data, Problem
Spatial Reference System (SRS) of MySQL, Problem
special characters

APIs handling, Introduction
data values containing, Problem-Java
identifiers containing, Problem

quoted string with same quote character, Discussion

importing data, Problem
NULL data values, Problem-Java

SQL
case insensitivity of keywords, Discussion
distributing via script files, Discussion
executing statements and retrieving results script, Problem-Java

categories of SQL statements, Discussion, SQL statement categories
error handling, SQL statement categories

exporting data in SQL format, Problem
injection attack prevention, Problem-Java

about SQL injection, Discussion
prepared SQL in stored procedures, Discussion

NULL data values, Problem-Java
script for executing statements and retrieving results, Introduction
special characters in data values, Problem-Java
statement categories, Discussion, SQL statement categories
statement terminators, Discussion, Discussion

BEGIN...END blocks, Introduction
multiple SQL statements executed, Discussion
none in API SQL statements, SQL statement categories
redefining terminator for BEGIN...END, Problem
\G for vertical output, Discussion, Discussion

table queries, Discussion
collections (see NoSQL)

transactions, Problem
writing efficient queries, Problem

(see also query performance)

X protocol, Introduction

\sql command
JavaScript mode, Problem
Python mode, Problem

SQL injection attack prevention, Problem-Java
about SQL injection, Discussion
prepared SQL in stored procedures, Discussion

SQL mode (see SQL mode of MySQL Shell; sql_mode)
SQL mode of MySQL Shell, Problem

escaping backslashes in pathnames, Specifying the datafile location
\source command, Problem
SQL session, Problem

sql()
JavaScript mode table queries, Problem
Python mode table queries, Problem, Discussion

sql_mode
--sql_mode, Discussion
\G, Discussion
data validity, Problem
SET GLOBAL at runtime, Discussion
setting backslash escape mode, Specifying the datafile location
sql-mode equivalent at server startup, Configuration control at server
startup

square brackets ([])
regexp pattern matching, Discussion, Discussion, Discussion, Discussion

JSON array members, Discussion
POSIX character classes, Discussion
[^] not version, Discussion, Discussion

ssh for copying tables, Copying tables between MySQL servers
SSL (Secure Socket Layer), Discussion
standard deviation, Discussion
START REPLICA, Discussion

replication credential security, Problem

START TRANSACTION, Discussion
startup execution of scripts, Discussion
statement handles in Perl ($sth), Perl

result set metadata retrieved, Perl

statistical techniques
correlation coefficients, Problem, Discussion
counting missing values, Problem
cumulative sums, Problem
descriptive statistics calculations, Problem

sample versus population functions, Discussion
subgroups of observations, Problem

frequency distributions, Problem
randomness of RAND(), Discussion

linear regressions, Problem
random number generation, Problem

card deck–shuffling algorithm, Discussion
how random is RAND(), Discussion
seed value sources, Discussion
selecting randomly from set of values, Problem
set of rows randomized, Problem

ranks assigned, Problem
running averages, Problem
scripts in recipes distribution, Introduction

successive-row differences calculated, Problem
team standings including games-behind, Problem

status variables
monitoring the server, Discussion
session status Handler_*, Discussion

STDDEV_POP(), Discussion
STDDEV_SAMP(), Discussion
storage engines for tables

AUTO_INCREMENT columns and, Discussion, Discussion
available storage engines, Discussion
buffer pool sizing, Problem
changing, Solution, Discussion, Discussion
configuring, Problem
identifying, Solution
InnoDB architecture, SHOW ENGINE
multiple in use, Discussion
operational information, Problem
plug-ins installed listed, Discussion
showing default, Discussion

stored functions
about, Introduction
about stored programs, Introduction

BEGIN...END compound statement, Introduction
redefining mysql ; terminator, Problem

data security, Problem
error handling, Discussion

benign errors ignored, Problem
GET DIAGNOSTICS to log all, Problem

No Data condition, Discussion
No More Rows conditions, Solution
raising own errors, Problem
sales tax example, Discussion

invoking, Discussion
listing, Problem
READS clause, Discussion
RETURN statement, Discussion

returning only a single value, Problem

RETURNS clause, Discussion
sales tax computation example, Discussion
simplifying calculations with, Problem

stored procedures
about, Introduction
about stored programs, Introduction

BEGIN...END compound statement, Introduction
redefining mysql ; terminator, Problem

data security, Problem
error handling, Discussion

benign errors ignored, Problem
GET DIAGNOSTICS to log all, Problem
No More Rows conditions, Solution
raising own errors, Problem

IN parameters, Problem
INOUT parameters, Problem
invoking, Discussion
listing, Problem
OUT parameters, Problem

prepared SQL helper function, Problem
MySQL Reference Manual link, Discussion

“returning” multiple values, Problem

stored programs
about, Introduction

database objects, Introduction
default database, Introduction

CALL to invoke, Introduction
error handling, Discussion

benign errors ignored, Problem
No More Rows conditions, Solution
raising own errors, Problem
sales tax example, Discussion

privileges, Introduction
redefining mysql ; terminator, Problem
stored functions (see stored functions)

stored routines defined, Introduction
(see also stored functions; stored procedures)

strings
about, Introduction
APIs quoting all non-NULL values as, Using a quoting function
Boolean-mode full-text searches, Problem
character sets (see character sets)
collation (see collation of strings)
combining strings into one, Problem
comparisons

binary strings versus binary collations, String Properties
string values compared, Problem

CONCAT(), Discussion
generating a unique table name, Discussion

converting between ASCII, BIT, and hexadecimal, Problem
converting lettercase, Problem
converting to dates, Discussion

ISO format for, Problem

data types, Introduction
choosing which to use, Problem

extracting a substring, Problem
full-text searches, Problem, Problem

Amazon review data for download, Amazon Review Data (2018),
Discussion
phrase searches, Problem
requiring or prohibiting words, Problem
script to load Amazon data, Discussion
short words return no rows, Problem

IP addresses as, Discussion
INET_ATON() to numeric, Discussion

length in bytes or characters, String Properties
multibyte characters determination, String Properties

LIMIT value from expression, Problem
NULL values mapped to “Unknown”, Discussion
pattern matching (see pattern matching)
properties, Introduction

binary or nonbinary, String Properties, Discussion
collation, String Properties

regexp patterns that match numbers, Problem
reversing, Problem

scripts in recipes distribution, Introduction
searching for substrings, Problem
searching long text, Problem

Amazon review data for download, Amazon Review Data (2018),
Discussion
phrase searches, Problem
requiring or prohibiting words, Problem
script to load Amazon data, Discussion
short words return no rows, Problem

server version, Discussion
sorting

case sensitivity and, Problem
collation affecting order, String Properties
IP addresses in numeric order, Problem
numeric order, Discussion
substrings given position in string, Problem
substrings of values, Problem, Problem

special characters in data values, Problem-Java
special characters in identifiers, Discussion
writing string literals, Problem

STR_TO_DATE(), Discussion
subqueries

about, Discussion, Introduction
LIMIT with results in different sort order, Problem
multiple tables in query, Problem
query results joined, Using named subqueries
SELECT list subqueries, Discussion

SUBSTRING(), Discussion

sorting on substrings, Problem
given position in string, Problem
not given position in string, Problem

substrings located within strings, Problem
substrings of values sorted on, Problem, Problem

given position within string, Problem

SUBSTRING_INDEX(), Discussion
hostname component extraction, Discussion

SUM(), Problem
summaries

about, Introduction
AVG(), Problem
candidate-detail lists and summaries, Problem
COUNT(), Problem

(see also COUNT())
whether values unique, Problem

date-based or time-based, Problem
frequency distributions, Problem

(see also statistical techniques)

grouping by expression results, Problem
logarithmic scale, Discussion
noncategorical data summaries, Problem

holes in list filled or identified, Problem
MAX(), Problem

case sensitivity controlled, Problem
value from another column, Problem

MIN(), Problem
case sensitivity controlled, Problem

value from another column, Problem

noncategorical data, Problem
only groups with certain characteristics, Problem
per-group and overall together, Problem
query log digests, Logging all the queries
repetitiveness of a set of values, Discussion
report with summary and list, Problem
smallest or largest of per-group summary values, Problem
subgroup summaries for sets of rows, Problem
SUM(), Problem
temporary result sets for, Problem
views simplifying, Problem

SUPER privileges, Configuration control and verification at runtime
swappiness, Memory utilization
sys schema

Buffer Pool allocation, Discussion
built-in reports, Discussion
memory usage, Discussion, Memory utilization
monitoring the server, Discussion

system command (\!), Discussion
system variables

about how server configured, Discussion
local_infile error, Discussion
local_infile for data loading, Discussion
time_zone, Problem, Solution

system_time_zone variable, Solution

T

t (table) option for output, Producing tabular or tab-delimited output
tab (\t), Discussion
tab character column delimiter changed, Specifying the output column
delimiter
tab-delimited or tab-separated (TSV) file format, File Formats

converting imported data via cvt_file.pl, File Formats, Discussion
export tab-delimited, linefeed-terminated, Problem
import tab-delimited, linefeed-terminated, File Formats, Discussion,
Discussion

delimiters for specified, Problem

tabbed command-line parameter, Solution
table (t) option for output, Producing tabular or tab-delimited output
Table class

JavaScript mode queries, Problem
Python mode queries, Problem

table command-line parameter, Solution
table scan, Introduction
TABLE to select all columns, Discussion
tables

aliases, Discussion
AUTO_INCREMENT column

associating tables, Problem
emptying table, resetting counter, Discussion
LAST_INSERT_ID() value, Discussion, Discussion
retrieving values, Problem

(see also AUTO_INCREMENT column)

changes logged via triggers, Problem
CHECK constraints, Problem

listing defined CHECK constraints, Problem

checking if a table exists, Problem
column names in results, Problem

(see also column names aliased)

Common Table Expressions
data from MIN or MAX rows, Discussion
Formula 1 fractional seconds, Discussion
query results joined, Using CTEs
recursive CTEs, Discussion
sequence generation, Problem
summaries from temporary result sets, Problem

copying a MyISAM table via sdi file, Problem
copying an InnoDB table via transportable tablespaces, Problem
copying via mysqldump, Problem

dropping table if exists, Discussion
triggers copied, Discussion

creating, Problem
guessing structure from data file, Problem
PRIMARY KEY clause, Discussion
rows inserted, Problem
same structure as existing table, Problem
scripts in recipes distribution, Recipe Source Code and Data,
Introduction, Discussion, Introduction
temporary tables, Problem
transaction engine specified, Discussion

(see also transactions)

data from program via pipe, Discussion
data from Python data science modules, Problem-See Also
data imported (see importing data)

DDL operations caution, Discussion
definitions

data dictionary holding, Discussion
DDL operations caution, Discussion
SHOW CREATE TABLE, Discussion
SHOW CREATE TABLE to show, Solution, Discussion

duplicate rows prevented, Problem, Problem
(see also duplicates handled)

foreign keys
adding to table, Discussion
error handling with GET DIAGNOSTICS, Discussion

generating unique names, Problem
guessing structure from datafile, Problem
id column, Discussion

AUTO_INCREMENT, Discussion, Problem
(see also AUTO_INCREMENT column)

custom sequence as, Problem
multiple tables in query, Discussion
retrieving values, Problem
saving query results to a table, Discussion

indexes for query performance, Problem
JavaScript mode queries, Problem
joins

Cartesian products, Discussion
comparing table to itself, Problem
finding matches between tables, Problem-Discussion
finding mismatches between tables, Problem
indexes and, Discussion

inner joins, Introduction, Discussion
many-to-many relationships, Problem
multiple tables in query, Problem
one-to-many relationships, Problem
outer joins, Introduction, Discussion, Problem
Python mode table queries, Discussion
self-joins, Problem
tables from different databases, Discussion
“unattached” rows removed, Problem

JSON data to relational structure, Problem
listing tables in a database, Problem
mail table for chapter examples, Introduction
metadata, Introduction

column definitions, Problem
data validation using, Solution
identifying as parent via foreign key, Problem

multiple tables in query, Problem
names as variables, Discussion
NULL data values, Problem-Java
parent tables and child tables, Problem
profile table for chapter examples, Introduction

resetting the profile table, Problem

Python mode queries, Problem
saving query results in a table, Problem
special character data values, Problem-Java
special characters in identifiers, Problem
storage engine

available storage engines, Discussion

buffer pool sizing, Problem
changing, Solution, Discussion, Discussion
configuring, Problem
identifying, Solution
InnoDB architecture, SHOW ENGINE
multiple in use, Discussion
operational information, Problem

string columns
binary and nonbinary, Discussion
CHARACTER SET and COLLATE, Discussion

temporary tables created, Problem
caveats, Discussion
query results joined, Problem
same name hides permanent, Discussion
summary results via, Discussion, Discussion

timestamping last modification, Problem
triggers (see triggers for tables)
VIEW simplifying access, Problem

tablespace
converting general to individual, Discussion
discarding, Discussion
FLUSH TABLES, Discussion
importing, Discussion
Information Schema query, Discussion
InnoDB storage engine architecture, SHOW ENGINE
InnoDB tables copied via, Problem

tabular or tab-delimited output, Producing tabular or tab-delimited output
TCP/IP

default 3306 port number, Discussion
forcing a TCP/IP connection to local server, Discussion

team standings including games-behind, Problem
temporal values (see date values; time values)
temporary tables created, Problem

caveats, Discussion
query results joined, Problem
same name hides permanent, Discussion
summary results via, Discussion, Discussion

terminators and delimiters to datafile lines, File Formats, Discussion
tab-delimited, linefeed-terminated, File Formats, Discussion
terminators and delimiters specified, Problem

terminators to SQL statements, Discussion, Discussion
BEGIN...END blocks, Introduction

redefining mysql terminator, Problem

test data via Python data science modules, Problem-See Also
test harness, Discussion
test_pat.py, Discussion
TEXT string data type, Discussion
thread built-in report, Discussion

help for options, Discussion

threads table in Performance Schema, Discussion, Discussion
TIME data type, Discussion

(see also time values)
fractional seconds, Problem

time showing in prompt, Discussion
time values, Discussion

about capabilities, Introduction

about scripts in recipes distribution, Introduction
age calculations, Problem
combining components, Problem
converting 24-hour to 12-hour format, Discussion
converting basic units (days, seconds), Problem
current time determined, Problem

extracting components, Decomposing dates or times using component-
extraction functions

data type to use, Problem
extracting part of, Problem, Converting between times and seconds
fractional seconds, Problem

Formula 1 example, Discussion

interval calculations, Problem
interval or span, Date or date-and-time interval calculation using basic
units

pattern matching for temporal data types, Discussion
regexp patterns for, Discussion
row creation and last modification timestamps, Problem
row insertion and last modification timestamps

NULL values not allowed, Discussion, Discussion

selecting rows based on, Comparing times to one another
sorting by, Problem

time of day, Sorting by time of day

sum of, Problem
summaries grouped by time, Problem
synthesizing a time value, Problem
time zones

client, Problem

converting from one to another, Problem
current date and time functions, Discussion
server, Problem

validity checking of subparts, Discussion

time zones
client time zone, Problem
converting from one to another, Problem
current date and time functions, Discussion
server time zone, Problem

TIME() component extracted, Decomposing dates or times using
component-extraction functions
TIMEDIFF(), Calculating intervals with temporal-difference functions
timeouts

client timing out, Server crash
server timing out, Server timeout

TIMESTAMP data type, Discussion
1970 through 2038 validity, Discussion, Converting between date-and-
time values and seconds
daily summaries, Discussion
DEFAULT CURRENT_TIME STAMP, Problem
fractional seconds, Problem
ON UPDATE CURRENT_TIME STAMP, Problem
renumbering sequence according to, Discussion
row creation and last modification timestamps, Problem
time zone for client, Problem
UTC_TIMESTAMP(), Problem

TIMESTAMPDIFF(), Calculating intervals with temporal-difference
functions

age calculations, Discussion

TIME_FORMAT(), Discussion
combining components, Problem
extracting part of a time value, Decomposing dates or times using
formatting functions

TIME_TO_SEC(), Solution
interval calculation, Time interval calculation using basic units

time_zone global variable, Problem, Solution
TINYBLOB string data type, Discussion
TINYTEXT string data type, Discussion
TLS (Transport Layer Security), Problem

replication data transfer security, Problem
checking if enabled, Discussion

TLS connection for caching_sha2_password, Discussion

TO_DAYS(), Solution
Gregorian calendar and later, Converting between dates and days
only dates after Gregorian calendar, Date or date-and-time interval
calculation using basic units

tr utility
postprocessing then redirecting to file, Exporting using the mysql client
program
tab column delimiters changed, Specifying the output column delimiter

transactions
about, Introduction

scripts in recipes distribution, Introduction, Discussion

commit synchronization between storage engine and filesystem,
Discussion
concurrency, Introduction
global transaction identifiers, Introduction, Discussion

replica set up using, Problem

integrity, Introduction
JavaScript mode, Discussion
mysqlbinlog verbose option, Troubleshooting Group Replication
performing

API overview, Problem
APIs mapped onto SQL, Discussion
Go, Problem
Go context-aware functions, Problem
Java, Problem
Perl programs, Problem
PHP programs, Problem
Python programs, Problem
Ruby programs, Problem
SQL, Problem

Python mode applying to both tables or none, Discussion
replica update before COMMIT success, Problem
storage engines

choosing, Problem
InnoDB supporting transactions, Discussion

table altered specifying engine, Discussion
table created specifying engine, Discussion
thread built-in report, Discussion
transaction dependency, Discussion

Transport Layer Security (TLS), Problem
transportable tablespaces to copy InnoDB tables, Problem
tree traversal, Introduction

triggers for tables
about, Introduction
AFTER triggers, Discussion
BEFORE triggers, Discussion, Problem
input-testing logic into BEFORE INSERT, Problem
listing defined triggers, Problem
logging changes to a table, Problem
mysqldump copying to dump file, Discussion
TRIGGER privilege, Introduction

trim_whitespace() utility, Discussion
TRUNCATE TABLE, Discussion
Turkish word sort order, Discussion

U

underscore (_)
character set for string literal, Discussion
hostname containing, Problem
option file dashes interchangeable, Specifying connection parameters
using option files, Configuration control at server startup
pattern matching single character, Filtering on the replica, Discussion

Unicode character sets, String Properties
some cannot be used as connection character sets, Discussion
USER() returning Unicode string, Discussion

UNION clause, Problem
ALL to not remove duplicates, Discussion
column name aliases work, Discussion
DISTINCT default removing duplicates, Discussion

unique identifiers via UUID(), Discussion

(see also duplicates handled)

Unix
1970 as start of Unix epoch, Converting between date-and-time values
and seconds
backslash as line-continuation character, Notes on Invoking Shell
Commands
Ctrl-D to terminate mysql session, Discussion
domain socket file, Discussion
output column delimiter via postprocessing, Specifying the output
column delimiter
user-specific options in .my.cnf file, Getting parameters from option files

UNIX_TIMESTAMP(), Solution
unknown option error, Specifying connection parameters using option files
UPDATE

about SQL statement categories, SQL statement categories
timestamping modifications, Problem

update()
JavaScript mode table queries, Discussion
Python mode table queries, Discussion

updating replica with delay, Introduction
UPPER() to convert string to uppercase, Problem
uptime of server, Discussion
URI for connection options, Discussion

protocol selection, Problem

URLs
preprocessing via trigger, Discussion
validity check via regexp pattern, Problem

user account for MySQL

about, Introduction, Discussion
anonymous account management, Problem
connection parameters from command line, Getting parameters from the
command line
creating, Problem, Problem
mysql.user table, Understanding the mysql.user Table

anonymous accounts, Discussion

privileges to create and modify database, Discussion-See Also
prompt showing user account, Discussion
removing accounts, Removing accounts
renaming accounts, Renaming accounts
replication user, Discussion

credential security, Problem

roles, Problem
security, Problem
SELECT USER() for current user, Discussion

user as URI parameter, Discussion
User Reference Manual link (see documentation online for MySQL)
USER() returning Unicode string, Discussion
user-defined variables, Problem

case insensitivity of names, Discussion
error if more than one row assigned, Discussion
GET DIAGNOSTICS error information, Discussion
NULL before assignment, Discussion
permitted where expressions permitted, Discussion
SELECT results assigned to, Discussion
SET statement, Discussion

username in user account, Discussion

UTC value for TIMESTAMP, Discussion
client time zone, Problem
UNIX_TIMESTAMP and time zone, Converting between date-and-time
values and seconds

UTC_DATE(), Problem
UTC_TIME(), Problem
UTC_TIMESTAMP(), Problem
utf8mb4 default character set

SET NAMES, Discussion
utf8mb4_0900_ai_ci collation, String Properties

util object of MySQL Shell, Problem
\? for utilities supported, Discussion

utilities in MySQL Shell, Problem
\? for help, Discussion

UUID()
returning Universal Unique Identifier, Discussion
unique table name generator, Discussion
UUID in human-readable format, Discussion

UUID_TO_BIN(), Discussion

V

v (verbose) option for mysql, Controlling mysql’s verbosity level
validate_password plug-in, Problem
VALIDATE_PASSWORD_STRENGTH(), Problem
validating data

about, Introduction
source code in recipes distribution, Introduction

CHECK constraints, Problem
listing defined CHECK constraints, Problem

datafile checked via input-processing loop, Problem
date subparts, Problem
JSON data, Problem
libraries of common tests, Problem

cookbook_utils.py module in distribution, Discussion, Discussion,
Discussion
Perl CPAN site, Discussion

lookup table for, Problem
pattern matching for, Problem

broad content types, Problem
credit card numbers, Discussion
date values, Problem
email addresses, Problem
numeric values, Problem
time values, Discussion
URLs, Problem
ZIP codes, Discussion

server side versus client side, Introduction
sql_mode, Problem
table metadata for, Solution
time subparts, Discussion
triggers, Problem

(see also triggers)

values()
JavaScript mode table queries, Discussion
Python mode table queries, Discussion

VARBINARY string data type, Discussion
VARCHAR string data type, Discussion

variables
autocommit session variable, Discussion
case insensitivity of names, Discussion
data types for strings, Introduction
dynamic

binlog_transaction_dependency_tracking, Discussion
server_id for replication servers, Discussion
SET PERSIST since MySQL v8, Discussion

Handler_* session status variable, Discussion
local_infile

data loading, Discussion
enabling, Discussion
error, Discussion

master_info_repository variable, Introduction, Discussion
MYSQLSH_HOME variable, Discussion
NULL before assignment, Discussion
plugin_dir system variable, Discussion
relay_log_info_repository, Discussion
replica_parallel_type variable, Discussion
replica_parallel_workers variable, Discussion, Discussion
SELECT results assigned to, Discussion
semisynchronous replication plug-in behavior, Discussion
server administration, Problem
server_uuid, Discussion
SET statement, Discussion
slow query log settings, Discussion
sql_mode

data validity, Problem

setting backslash escape mode, Specifying the datafile location
\G, Discussion

status variable Handler_*, Discussion
time_zone, Problem, Solution
user-defined variables, Problem

variance, Discussion
/var/log/messages system log, Solution
VAR_POP(), Discussion
VAR_SAMP(), Discussion
verbose (v) option for mysql, Controlling mysql’s verbosity level
verbosity level of mysql, Controlling mysql’s verbosity level
VERSION() for server version, Discussion
version-specific applications for server, Problem
vertical (E) option, Discussion
vertical bar (|) regexp pattern matching, Discussion, Discussion, Discussion
vertical command-line parameter, Solution
vertical output

MySQL Shell JavaScript mode, Discussion
\G, Discussion

all statements within session, Discussion

VIEW
data access security via, Problem
listed or checked for existence, Problem
summaries simplified with, Problem
table access simplified with, Problem

virtual memory utilization, Memory utilization

W

warnings shown, Discussion
\watch for repeated reports, Problem, Discussion
web browsers

opened to read HTML output file, Producing HTML or XML output
phpMyAdmin interface, Introduction
special characters in form input, Discussion

WEEKDAY(), Decomposing dates or times using component-extraction
functions

Monday as first day, Discussion

WHERE clause
aggregate functions not allowed, Discussion
checking whether database exists, Discussion
column aliases illegal, Discussion
date and time conditions, Problem
listing tables in a database, Discussion
rows specified in SELECT, Problem
user-defined variables, Discussion

wildcard syntax
Boolean-mode searches, Discussion
hostnames with % or _ within, Problem
JSON searches, Discussion
JSON value extraction, Discussion
replication filters on replica, Filtering on the replica
SQL pattern matching, Discussion

window functions
DENSE_RANK(), Discussion
RANK(), Discussion
ROW_NUMBER()

query result rows numbered, Problem
ranks assigned to set of values, Discussion

WINDOW keyword, Discussion

Windows
backslash as pathname separator, Specifying the datafile location

LOAD DATA pathnames, Specifying the datafile location

caret (^) line continuation character, Notes on Invoking Shell Commands
naming files, Specifying the datafile location

writing library file (see library file writing)

X

X (xml) option for output, Producing HTML or XML output
X DevAPI, Discussion

JSON as Document Store, Problem
reference manual online, See Also

X protocol, Introduction
mysqlx for, Discussion

xml (X) option for output, Producing HTML or XML output
XML format

exporting data, Problem
importing data, Problem
output, Producing HTML or XML output

Y

yank_col.pl utility, See Also
year values from two digits to four, Problem

MySQL automatically from 1970 to 2069, Discussion

YEAR()

extracting component from date value, Decomposing dates or times using
component-extraction functions
pattern matching with nonstring values, Discussion

Z

ZIP code regexp pattern matching, Discussion

About the Authors
Sveta Smirnova is principal support escalation specialist at Percona. Her
main professional interests include problem-solving, working with tricky
issues, and teaching others how to effectively deal with MySQL problems,
bugs, and gotchas. She’s the author of MySQL Troubleshooting and has
spoken at many events, including Fosdem, Percona Live, and Oracle Open
World.
Alkin Tezuysal is executive vice president of global services at
ChistaDATA, Inc. He has extensive experience in open source relational
databases, working in various sectors, and large functions. With over 25
years of industry experience, he has led global operations teams for MySQL
customers and users. He’s a known speaker at worldwide open source
database events.

Colophon
The animal on the cover of MySQL Cookbook, Fourth Edition is a green
anole (Anolis carolinensis). These common lizards can be found in the
southeastern United States, the Caribbean, and South America. Green
anoles dwell in moist, shady environments, such as inside trees and shrubs.
They subsist on small insects like crickets, roaches, moths, grubs, and
spiders.
Green anoles are slight in build, with narrow heads and long, slender tails
that can be twice as long as their bodies. The special padding on their feet
enables them to climb, cling to, and run on any surface. They range in size
from six to eight inches long. Though, as their name implies, green anoles
are usually bright green, their color can change to match their surroundings,
varying among gray-brown, brown, and green. Male anoles have pink
dewlaps that they extend when courting or protecting their territory.
Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.
The cover illustration is by Karen Montgomery, based on an antique line
engraving from Dover Pictorial Archive. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Foreword
	Preface
	Who This Book Is For
	What’s in This Book
	MySQL APIs Used in This Book
	Version and Platform Notes
	Conventions Used in This Book
	The MySQL Cookbook Companion GitHub Repository
	Obtaining MySQL and Related Software
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Using the mysql Client Program
	1.0. Introduction
	1.1. Setting Up a MySQL User Account
	1.2. Creating a Database and a Sample Table
	1.3. Finding mysql Client
	1.4. Specifying mysql Command Options
	1.5. Executing SQL Statements Interactively
	1.6. Executing SQL Statements Read from a File or Program
	1.7. Controlling mysql Output Destination and Format
	1.8. Using User-Defined Variables in SQL Statements
	1.9. Customizing a mysql Prompt
	1.10. Using External Programs
	1.11. Filtering and Processing Output

	2. Using MySQL Shell
	2.0. Introduction
	2.1. Connecting to MySQL Server with MySQL Shell
	2.2. Selecting the Protocol
	2.3. Selecting SQL, JavaScript, or Python Mode
	2.4. Running SQL Session
	2.5. Running SQL in JavaScript Mode
	2.6. Running SQL in Python Mode
	2.7. Working with Tables in JavaScript Mode
	2.8. Working with Tables in Python Mode
	2.9. Working with Collections in JavaScript Mode
	2.10. Working with Collections in Python Mode
	2.11. Controlling the Output Format
	2.12. Running Reports with MySQL Shell
	2.13. Using MySQL Shell Utilities
	2.14. Using the Admin API to Automate Replication Management
	2.15. Working with JavaScript Objects
	2.16. Filling Test Data Using Python’s Data Science Modules
	2.17. Reusing Your Scripts for MySQL Shell

	3. MySQL Replication
	3.0. Introduction
	3.1. Configuring Basic Replication Between One Source and One Replica
	3.2. Position-Based Replication in the New Installation Environment
	3.3. Setting Up a Position-Based Replica of a MySQL Installation that Is Already in Use
	3.4. Setting Up GTID-Based Replication
	3.5. Configuring a Binary Log Format
	3.6. Using Replication Filters
	3.7. Rewriting a Database on the Replica
	3.8. Using a Multithreaded Replica
	3.9. Setting Up Circular Replication
	3.10. Using Multisource Replication
	3.11. Using a Semisynchronous Replication Plug-In
	3.12. Using Group Replication
	3.13. Storing Replication Credentials Securely
	3.14. Using TLS (SSL) for Replication
	3.15. Replication Troubleshooting
	3.16. Using Processlist to Understand Replication Performance
	3.17. Setting Up Automated Replication

	4. Writing MySQL-Based Programs
	4.0. Introduction
	4.1. Connecting, Selecting a Database, and Disconnecting
	4.2. Checking for Errors
	4.3. Writing Library Files
	4.4. Executing Statements and Retrieving Results
	4.5. Handling Special Characters and NULL Values in Statements
	4.6. Handling Special Characters in Identifiers
	4.7. Identifying NULL Values in Result Sets
	4.8. Obtaining Connection Parameters
	4.9. Resetting the profile Table

	5. Selecting Data from Tables
	5.0. Introduction
	5.1. Specifying Which Columns and Rows to Select
	5.2. Naming Query Result Columns
	5.3. Sorting Query Results
	5.4. Removing Duplicate Rows
	5.5. Working with NULL Values
	5.6. Writing Comparisons Involving NULL in Programs
	5.7. Using Views to Simplify Table Access
	5.8. Selecting Data from Multiple Tables
	5.9. Selecting Rows from the Beginning, End, or Middle of Query Results
	5.10. What to Do When LIMIT and the Final Result Require a Different Sort Order
	5.11. Calculating LIMIT Values from Expressions
	5.12. Combining Two or More SELECT Results
	5.13. Selecting Results of Subqueries

	6. Table Management
	6.0. Introduction
	6.1. Cloning a Table
	6.2. Saving a Query Result in a Table
	6.3. Creating Temporary Tables
	6.4. Generating Unique Table Names
	6.5. Checking or Changing a Table Storage Engine
	6.6. Copying a Table Using mysqldump
	6.7. Copying an InnoDB Table Using Transportable Tablespaces
	6.8. Copying a MyISAM Table Using an sdi File

	7. Working with Strings
	7.0. Introduction
	7.1. String Properties
	7.2. Choosing a String Data Type
	7.3. Setting the Client Connection Character Set
	7.4. Writing String Literals
	7.5. Checking or Changing a String’s Character Set or Collation
	7.6. Converting the Lettercase of a String
	7.7. Comparing String Values
	7.8. Converting Between Decimal, Octal, and Hexadecimal Formats
	7.9. Converting Between ASCII, BIT, and Hexadecimal Formats
	7.10. Pattern Matching with SQL Patterns
	7.11. Pattern Matching with Regular Expressions
	7.12. Reversing the String Content
	7.13. Searching for Substrings
	7.14. Breaking Apart or Combining Strings
	7.15. Using Full-Text Searches
	7.16. Using a Full-Text Search with Short Words
	7.17. Requiring or Prohibiting Full-Text Search Words
	7.18. Performing Full-Text Phrase Searches

	8. Working with Dates and Times
	8.0. Introduction
	8.1. Choosing a Temporal Data Type
	8.2. Using Fractional Seconds Support
	8.3. Changing MySQL’s Date Format
	8.4. Setting the Client Time Zone
	8.5. Setting the Server Time Zone
	8.6. Shifting Temporal Values Between Time Zones
	8.7. Determining the Current Date or Time
	8.8. Using TIMESTAMP or DATETIME to Track Row-Modification Times
	8.9. Extracting Parts of Dates or Times
	8.10. Synthesizing Dates or Times from Component Values
	8.11. Converting Between Temporal Values and Basic Units
	8.12. Calculating Intervals Between Dates or Times
	8.13. Adding Date or Time Values
	8.14. Calculating Ages
	8.15. Finding the First Day, Last Day, or Length of a Month
	8.16. Finding the Day of the Week for a Date
	8.17. Finding Dates for Any Weekday of a Given Week
	8.18. Canonizing Not-Quite-ISO Date Strings
	8.19. Selecting Rows Based on Temporal Characteristics

	9. Sorting Query Results
	9.0. Introduction
	9.1. Using ORDER BY to Sort Query Results
	9.2. Using Expressions for Sorting
	9.3. Displaying One Set of Values While Sorting by Another
	9.4. Controlling Case Sensitivity of String Sorts
	9.5. Sorting in Temporal Order
	9.6. Sorting by Substrings of Column Values
	9.7. Sorting by Fixed-Length Substrings
	9.8. Sorting by Variable-Length Substrings
	9.9. Sorting Hostnames in Domain Order
	9.10. Sorting Dotted-Quad IP Values in Numeric Order
	9.11. Floating Values to the Head or Tail of the Sort Order
	9.12. Defining a Custom Sort Order
	9.13. Sorting ENUM Values

	10. Generating Summaries
	10.0. Introduction
	10.1. Summarizing with COUNT()
	10.2. Summarizing with MIN() and MAX()
	10.3. Summarizing with SUM() and AVG()
	10.4. Using DISTINCT to Eliminate Duplicates
	10.5. Creating a View to Simplify Using a Summary
	10.6. Finding Values Associated with Minimum and Maximum Values
	10.7. Controlling String Case Sensitivity for MIN() and MAX()
	10.8. Dividing a Summary into Subgroups
	10.9. Handling NULL Values with Aggregate Functions
	10.10. Selecting Only Groups with Certain Characteristics
	10.11. Using Counts to Determine Whether Values Are Unique
	10.12. Grouping by Expression Results
	10.13. Summarizing Noncategorical Data
	10.14. Finding Smallest or Largest Summary Values
	10.15. Producing Date-Based Summaries
	10.16. Working with Per-Group and Overall Summary Values Simultaneously
	10.17. Generating a Report that Includes a Summary and a List
	10.18. Generating Summaries from Temporary Result Sets

	11. Using Stored Routines, Triggers, and Scheduled Events
	11.0. Introduction
	11.1. Creating Compound-Statement Objects
	11.2. Using Stored Functions to Simplify Calculations
	11.3. Using Stored Procedures to Produce Multiple Values
	11.4. Using Triggers to Log Changes to a Table
	11.5. Using Events to Schedule Database Actions
	11.6. Writing Helper Routines for Executing Dynamic SQL
	11.7. Detecting “No More Rows” Conditions Using Condition Handlers
	11.8. Catching and Ignoring Errors with Condition Handlers
	11.9. Raising Errors and Warnings
	11.10. Logging Errors by Accessing the Diagnostic Area
	11.11. Using Triggers to Preprocess or Reject Data

	12. Working with Metadata
	12.0. Introduction
	12.1. Determining the Number of Rows Affected by a Statement
	12.2. Obtaining Result Set Metadata
	12.3. Listing or Checking the Existence of Databases or Tables
	12.4. Listing or Checking the Existence of Views
	12.5. Accessing Table Column Definitions
	12.6. Getting ENUM and SET Column Information
	12.7. Getting Server Metadata
	12.8. Writing Applications That Adapt to the MySQL Server Version
	12.9. Getting Child Tables That Reference a Specific Table via Foreign Key Constraints
	12.10. Listing Triggers
	12.11. Listing Stored Routines and Scheduled Events
	12.12. Listing Installed Plug-Ins
	12.13. Listing Character Sets and Collations
	12.14. Listing CHECK Constraints

	13. Importing and Exporting Data
	13.0. Introduction
	13.1. Importing Data with LOAD DATA and mysqlimport
	13.2. Specifying Column and Line Delimiters
	13.3. Dealing with Quotes and Special Characters
	13.4. Handling Duplicate Key Values
	13.5. Obtaining Diagnostics About Bad Input Data
	13.6. Skipping Datafile Lines
	13.7. Specifying Input Column Order
	13.8. Preprocessing Input Values Before Inserting Them
	13.9. Ignoring Datafile Columns
	13.10. Importing CSV Files
	13.11. Exporting Query Results from MySQL
	13.12. Importing and Exporting NULL Values
	13.13. Exporting Data in SQL Format
	13.14. Importing SQL Data
	13.15. Exporting Query Results as XML
	13.16. Importing XML into MySQL
	13.17. Importing Data in JSON Format
	13.18. Importing Data from MongoDB
	13.19. Exporting Data in JSON Format
	13.20. Guessing Table Structure from a Datafile

	14. Validating and Reformatting Data
	14.0. Introduction
	14.1. Using the SQL Mode to Reject Bad Input Values
	14.2. Using CHECK Constraints to Reject Invalid Values
	14.3. Using Triggers to Reject Input Values
	14.4. Writing an Input-Processing Loop
	14.5. Putting Common Tests in Libraries
	14.6. Using Pattern Matching to Validate Data
	14.7. Using Patterns to Match Broad Content Types
	14.8. Using Patterns to Match Numeric Values
	14.9. Using Patterns to Match Dates or Times
	14.10. Using Patterns to Match Email Addresses or URLs
	14.11. Using Table Metadata to Validate Data
	14.12. Using a Lookup Table to Validate Data
	14.13. Converting Two-Digit Year Values to Four-Digit Form
	14.14. Performing Validity Checking on Date or Time Subparts
	14.15. Writing Date-Processing Utilities
	14.16. Importing Non-ISO Date Values
	14.17. Exporting Dates Using Non-ISO Formats
	14.18. Preprocessing and Importing a File

	15. Generating and Using Sequences
	15.0. Introduction
	15.1. Generating a Sequence with AUTO_INCREMENT Columns
	15.2. Choosing the Data Type for a Sequence Column
	15.3. Deleting Rows Without Changing a Sequence
	15.4. Retrieving Sequence Values
	15.5. Renumbering an Existing Sequence
	15.6. Extending the Range of a Sequence Column
	15.7. Reusing Values at the Top of a Sequence
	15.8. Ensuring That Rows Are Renumbered in a Particular Order
	15.9. Sequencing an Unsequenced Table
	15.10. Managing Multiple Auto-Increment Values Simultaneously
	15.11. Using Auto-Increment Values to Associate Tables
	15.12. Using Sequence Generators as Counters
	15.13. Generating Repeating Sequences
	15.14. Using Custom Increment Values
	15.15. Using Window Functions to Number Rows in the Result Set
	15.16. Generating Series with Recursive CTEs
	15.17. Creating and Storing Custom Sequences

	16. Using Joins and Subqueries
	16.0. Introduction
	16.1. Finding Matches Between Tables
	16.2. Finding Mismatches Between Tables
	16.3. Identifying and Removing Mismatched or Unattached Rows
	16.4. Comparing a Table to Itself
	16.5. Producing Candidate-Detail Lists and Summaries
	16.6. Enumerating a Many-to-Many Relationship
	16.7. Finding Per-Group Minimum or Maximum Values
	16.8. Using a Join to Fill or Identify Holes in a List
	16.9. Using a Join to Control Query Sort Order
	16.10. Joining Results of Multiple Queries
	16.11. Referring to Join Output Column Names in Programs

	17. Statistical Techniques
	17.0. Introduction
	17.1. Calculating Descriptive Statistics
	17.2. Calculating Descriptive Statistics for Groups
	17.3. Generating Frequency Distributions
	17.4. Counting Missing Values
	17.5. Calculating Linear Regressions or Correlation Coefficients
	17.6. Generating Random Numbers
	17.7. Randomizing a Set of Rows
	17.8. Selecting Random Items from a Set of Rows
	17.9. Calculating Successive-Row Differences
	17.10. Finding Cumulative Sums and Running Averages
	17.11. Assigning Ranks
	17.12. Computing Team Standings

	18. Handling Duplicates
	18.0. Introduction
	18.1. Preventing Duplicates from Occurring in a Table
	18.2. Having More Than One Unique Key in the Table
	18.3. Dealing with Duplicates When Loading Rows into a Table
	18.4. Counting and Identifying Duplicates
	18.5. Eliminating Duplicates from a Table

	19. Working with JSON
	19.0. Introduction
	19.1. Choosing the Right Data Type
	19.2. Inserting JSON Values
	19.3. Validating JSON
	19.4. Formatting JSON Values
	19.5. Extracting Values from JSON
	19.6. Searching Inside JSON
	19.7. Inserting New Elements into a JSON Document
	19.8. Updating JSON
	19.9. Removing Elements from JSON
	19.10. Merging Two or More JSON Documents into One
	19.11. Creating JSON from Relational Data
	19.12. Converting JSON into Relational Format
	19.13. Investigating JSON
	19.14. Working with JSON in MySQL as a Document Store

	20. Performing Transactions
	20.0. Introduction
	20.1. Choosing a Transactional Storage Engine
	20.2. Performing Transactions Using SQL
	20.3. Performing Transactions from Within Programs
	20.4. Performing Transactions in Perl Programs
	20.5. Performing Transactions in Ruby Programs
	20.6. Performing Transactions in PHP Programs
	20.7. Performing Transactions in Python Programs
	20.8. Performing Transactions in Go Programs
	20.9. Using Context-Aware Functions to Handle Transactions in Go
	20.10. Performing Transactions in Java Programs

	21. Query Performance
	21.0. Introduction
	21.1. Creating Indexes
	21.2. Creating a Surrogate Primary Key
	21.3. Maintaining Indexes
	21.4. Deciding When a Query Can Use an Index
	21.5. Deciding the Order for Multiple Column Indexes
	21.6. Using Ascending and Descending Indexes
	21.7. Using Function-Based Indexes
	21.8. Using Indexes on Generated Columns with JSON Data
	21.9. Using Full Text Indexes
	21.10. Utilizing Spatial Indexes and Geographical Data
	21.11. Creating and Using Histograms
	21.12. Writing Performant Queries

	22. Server Administration
	22.0. Introduction
	22.1. Configuring the Server
	22.2. Managing the Plug-In Interface
	22.3. Controlling Server Logging
	22.4. Rotating or Expiring Logfiles
	22.5. Rotating Log Tables or Expiring Log Table Rows
	22.6. Configuring Storage Engines

	23. Monitoring the MySQL Server
	23.0. Introduction
	23.1. Why Monitor the MySQL Server?
	23.2. Discovering Sources of MySQL Monitoring Information
	23.3. Checking Server Uptime and Progress
	23.4. Troubleshooting Server Start Problems
	23.5. Determining the IO Utilization of the MySQL Server
	23.6. Determining MySQL Thread’s CPU Utilization
	23.7. Determining if MySQL Has Reached Its Connection Limits
	23.8. Verifying That the Buffer Pool Is Sized Properly
	23.9. Finding Information About the Storage Engine
	23.10. Using the Error Log File to Troubleshoot MySQL Server Crashes
	23.11. Slow Query Log File
	23.12. Monitoring with the General Query Log
	23.13. Using the Binary Log to Identify Changes

	24. Security
	24.0. Introduction
	24.1. Understanding the mysql.user Table
	24.2. Managing User Accounts
	24.3. Implementing a Password Policy
	24.4. Checking Password Strength
	24.5. Expiring Passwords
	24.6. Assigning Yourself a New Password
	24.7. Resetting an Expired Password
	24.8. Finding and Removing Anonymous Accounts
	24.9. Modifying “Any Host” and “Many Host” Accounts
	24.10. Using TLS (SSL)
	24.11. Using Roles
	24.12. Using Views to Secure Data Access
	24.13. Using Stored Routines to Secure Data Modifications

	Index
	About the Authors

