

HACKING

COMPUTER HACKING BEGINNERS GUIDE HOW TO HACK

WIRELESS NETWORK, BASIC SECURITY AND PENETRATION

TESTING, KALI LINUX, YOUR FIRST HACK

ALAN T. NORMAN
Copyright © All Right Reserved.

No part of this publication may be reproduced, distributed, or transmitted in
any form or by any means, including photocopying, recording, or other
electronic or mechanical methods, or by any information storage and retrieval
system without the prior written permission of the publisher, except in the case
of very brief quotations embodied in critical reviews and certain other
noncommercial uses permitted by copyright law.

Disclaimer Notice:
Please not the information contained within this document is for educational
and entertainment purposes only. Every attempt has been made to provide
accurate, up to date and reliable complete information. No warranties of any
kind are expressed or implied.
By reading this document, the reader agrees that under no circumstances are is
the author responsible for any losses, direct or indirect, which are incurred as
a result of the issue of information contained within this document, including,
but not limited to errors, omissions, or inaccuracies.

TABLE OF CONTENTS

Why You Should Read This Book
Chapter 1. What is Hacking?
Chapter 2. Vulnerabilites and Exploits
Chapter 3. Getting Started
Chapter 4. The Hacker’s Toolkit
Chapter 5. Gaining Access
Chapter 6. Malicious Activity and Code
Chapter 7. Wireless Hacking
Chapter 8. Your First Hack
Chapter 9. Defensive Security & Hacker Ethics
Conclusion
About The Author

WHY YOU SHOULD READ THIS BOOK
Like any other technological advancement in human history, the benefits gained
by mankind from the computerization and digitization of our world come at a
price. The more information we can store and transmit, the more it becomes
vulnerable to theft or destruction. The more dependent our lives become on
technology and on rapid, instantaneous communication, the greater are the
consequences of losing access to those capabilities. It is not only possible, but
in fact routine for billions of dollars to be transferred overseas in the blink of
an eye. Entire libraries can be stored on devices no bigger than a human thumb.
It is common to see toddlers playing rather mundane games on smartphones or
tablets that have more computing power than machines which just 50 years ago
would have filled entire rooms.

This unprecedented concentration of data and digital wealth, coupled with
society’s increasing reliance on digital means of storage and communication,
has been a bonanza for savvy and malicious opportunists eager to take
advantage of every vulnerability. From individuals committing petty theft and
fraud, to political activists, large and highly organized criminal cabals,
terrorist groups, and nation-state actors, computer hacking has become a multi-
billion dollar global industry - not only in the commission of the crimes
themselves, but in the time, effort and capital dedicated to protecting
information and resources. It is impossible to exaggerate the implications of
computer security in our current time. The critical infrastructure of cities and
entire nations is inextricably tied to computer networks. Records of daily
financial transactions are digitally stored whose theft or deletion could wreak
havoc on entire economies. Sensitive email communications can sway political
elections or court cases when released to the public. Perhaps the most
concerning of all potential vulnerabilities is in the military realm, where
increasingly networked and computerized instruments of war must be kept out
of the wrong hands at all cost. These high-profile threats are accompanied by
the lesser, but cumulative effects of smaller scale transgressions like identity
theft and leaks of personal information that have devastating consequences to
the lives of everyday people.

Not all hackers have necessarily malicious intent. In nations with hampered

freedom of speech or oppressive laws, hackers serve to spread vital
information among the populace that might normally be suppressed or sanitized
by an authoritarian regime. Although their activity is still illegal by their own
country’s laws, many are considered to be serving a moral purpose. Ethical
lines are therefore often blurred when it comes to hacking for the purpose of
political activism or for the dissemination of information that could be of value
to the public or to oppressed populations. In order to limit the damage that can
be done by individuals and groups with less-than-honorable intentions, it is
necessary to keep up with the tools, procedures and mindsets of hackers.
Computer hackers are highly intelligent, resourceful, adaptive and extremely
persistent. The best among them have always been, and will likely continue to
be, a step ahead of efforts to thwart them. Thus, computer security specialists
endeavor to become just as adept and practiced at the art of hacking as their
criminal adversaries. In the process of gaining this knowledge, the “ethical
hacker” is expected to make a commitment not to use their acquired skills for
illegal or immoral purposes.

This book is intended to serve as an introduction to the language, landscape,
tools, and procedures of computer hacking. As a beginner’s guide, it assumes
that the reader has little prior knowledge of computer hacking per se, other
than what they have been exposed to in media or casual conversation. It does
assume a general layperson’s familiarity with modern computer terminology
and the internet. Detailed instructions and specific hacking procedures are out
of the scope of this book and are left for the reader to pursue further as they are
more comfortable with the material.

The book begins in Chapter 1: What is Hacking? with some basic definitions
so that the reader can become familiar with some of the language and jargon
used in the realms of hacking and computer security, as well as to clear up any
ambiguities in terminology. Chapter 1 also distinguishes the different types of
hackers with regard to their ethical and legal intentions and the ramifications of
their activities.

In Chapter 2: Vulnerabilities and Exploits, the central concept of target
vulnerability is introduced, describing the the main vulnerability categories
and some specific examples. This leads into a discussion of how hackers take
advantage of vulnerabilities through the practice of exploitation.

Chapter 3: Getting Started walks through the many subjects and skills with
which a beginning hacker needs to become familiar. From computer and
network hardware, to communication protocols, to computer programming
languages, the chief topical areas of a hacker’s knowledge base are outlined.

Chapter 4: The Hacker’s Toolkit delves into the common hardware, software,
operating systems, and programming languages generally preferred by hackers
to ply their trade.

The general procedures for some common computer attacks are surveyed in
Chapter 5: Gaining Access, providing some select examples of attacks that are
often of interest to hackers and computer security professionals.

Chapter 6: Malicious Activity and Code reveals some of the more nefarious
attacks and constructs of hackers who aim to cause harm. The differences
between the different categories of malicious code are explained.

Chapter 7: Wireless Hacking focuses specifically on the exploitation of
vulnerabilities in Wi-Fi network encryption protocals. The specific hardware
and software tools needed to execute simple Wi-Fi attacks are listed.

The reader is given some practical guidance on setting up and practicing some
beginner-level hacking in Chapter 8: Your First Hack. Two exercises are
selected to help the aspiring hacker get their feet wet with some simple tools
and inexpensive equipment.

Chapter 9: Defensive Security & Hacker Ethics wraps up this introduction to
hacking with some notes about protecting oneself from hackers, and discusses
some of the philosophical issues associated with the ethics of hacking.

CHAPTER 1. WHAT IS HACKING?
It is important to lay the groundwork for a proper introduction to computer
hacking by first discussing some commonly used terms and to clear up any
ambiguities with regard to their meanings. Computer professionals and serious
hobbyists tend to use a lot of jargon that has evolved over the years in what
had traditionally been a very closed and exclusive clique. It isn’t always clear
what certain terms mean without an understanding of the context in which they
developed. Although by no means a complete lexicon, this chapter introduces
some of the basic language used among hackers and computer security
professionals. Other terms will appear in later chapters within the appropriate
topics. None of these definitions are in any way “official”, but rather represent
an understanding of their common usage.

This chapter also attempts to clarify what hacking is as an activity, what it is
not, and who hackers are. Depictions and discussions of hacking in popular
culture can tend to paint an overly simplistic picture of hackers and of hacking
as a whole. Indeed, an accurate understanding is lost in the translation of
buzzwords and popular misconceptions.

HACKING & HACKERS
The word hacking normally conjures images of a lone cyber-criminal,
hunched over a computer and transferring money at will from an unsuspecting
bank, or downloading sensitive documents with ease from a government
database. In modern English, the term hacking can take on several different
meanings depending on the context. As a matter of general use, the word
typically refers to the act of exploiting computer security vulnerabilities to gain
unauthorized access to a system. However, with the emergence of
cybersecurity as a major industry, computer hacking is no longer exclusively a
criminal activity and is often performed by certified professionals who have
been specifically requested to assess a computer system’s vulnerabilities (see
the next section on “white hat”, “black hat”, and “gray hat” hacking) by testing
various methods of penetration. Furthermore, hacking for the purposes of
national security has also become a sanctioned (whether acknowledged or not)
activity by many nation-states. Therefore, a broader understanding of the term
should acknowledge that hacking is often authorized, even if the intruder in
question is subverting the normal process of accessing the system.

Even broader use of the word hacking involves the modification,
unconventional use, or subversive access of any object, process, or piece of
technology - not just computers or networks. For instance, in the early days of
hacker subculture it was a popular activity to “hack” payphones or vending
machines to gain access to them without the use of money - and to share the
instructions for doing so with the hacking community at large. The simple act
of putting normally discarded household objects to new and innovative uses
(using empty soda cans as pencil holders, etc.) is often referred to as hacking.
Even certain useful processes and shortcuts for everyday life, like using to-do
lists or finding creative ways to save money on products and services, are
often referred to as hacking (often called “life hacking”). It is also common to
encounter the term “hacker” in reference to anyone who is especially talented
or knowledgeable in the use of computers.

This book will concentrate on the concept of hacking that is specifically
concerned with the activity of gaining access to software, computer systems, or
networks through unintended means. This includes the simplest forms of social
engineering used to determine passwords up to the use of sophisticated

hardware and software for advanced penetration. The term hacker will thus be
used to refer to any individual, authorized or otherwise, who is attempting to
surreptitiously access a computer system or network, without regard to their
ethical intentions. The term cracker is also commonly used in place of hacker
– specifically in reference to those who are attempting to break passwords,
bypass software restrictions, or otherwise circumvent computer security.

THE “HATS” OF HACKING
Classic Hollywood scenes of the Old American West often featured cartoonish
depictions of gun slinging adversaries – usually a sheriff or marshal against a
dastardly bandit or a band of miscreants. It was common to distinguish the
“good guys” from the “bad guys” by the color of their cowboy hats. The brave
and pure protagonist usually wore a white hat, where the villain wore a dark
colored or black one. This imagery carried over into other aspects of culture
over the years and eventually made its way into the jargon of computer
security.

BLACK HAT
A black hat hacker (or cracker) is one who is unambiguously attempting to
subvert the security of a computer system (or closed-source software code) or
information network knowingly against the will of its owner. The goal of the
black hat hacker is to gain unauthorized access to the system, either to obtain or
destroy information, cause a disruption in operation, deny access to legitimate
users, or to seize control of the system for their own purposes. Some hackers
will seize, or threaten to seize, control of a system – or prevent access by
others - and blackmail the owner into paying a ransom before relinquishing
control. A hacker is considered a black hat even if they have what they
themselves would describe as noble intentions. In other words, even hackers
who are hacking for social or political purposes are black hats because they
intend to exploit any vulnerabilities they discover. Similarly, entities from
adversarial nation-states that are hacking for the purposes of warfare can be
considered black hats regardless of their justifications or the international
status of their nation.

WHITE HAT
Because there are so many creative and unanticipated ways to access
computers and networks, often the only way to discover exploitable
weaknesses is to attempt to hack one’s own system before someone with
malicious intentions does so first and causes irreparable damage. A white hat
hacker has been specifically authorized by the owner or custodian of a target
system to discover and test its vulnerabilities. This is known as penetration
testing. The white hat hacker uses the same tools and procedures as a black hat

hacker, and often has equal knowledge and skills. In fact, it is not uncommon
for a former black hat to find legitimate employment as a white hat because
black hats typically have a great deal of practical experience with system
penetration. Government agencies and corporations have been known to
employ formerly prosecuted computer criminals to test vital systems.

GRAY HAT
As the name implies, the term gray hat (often spelled as “grey”) is a bit less
concrete in its characterization of the hacker’s ethics. A gray hat hacker does
not necessarily have the permission of a system owner or custodian, and
therefore could be considered to be acting unethically when attempting to
detect security vulnerabilities. However, a gray hat is not performing these
actions with the intention of exploiting the vulnerabilities or helping others to
do so. Rather, they are essentially conducting unauthorized penetration testing
with the goal of alerting the owner to any potential flaws. Often, gray hats will
hack for the express purpose of strengthening a system that they use or enjoy to
prevent any future subversion by actors with more malicious intent.

CONSEQUENCES OF HACKING
The consequences of unauthorized computer access range from the minor costs
and inconveniences of everyday information security to severely dangerous
and even deadly situations. Although there can be serious criminal penalties
against hackers who are caught and prosecuted, society at large bears the brunt
of the financial and human costs of malicious hacking. Because of the
interconnected nature of the modern world, a single clever individual sitting in
a café with a laptop computer can cause enormous damage to life and property.
It is important to understand the ramifications of hacking in order to know
where to focus efforts for the prevention of certain computer related crimes.

CRIMINALITY
There are, of course, legal consequences for hackers caught intruding into a
computer system or network. Specific laws and penalties vary among nations
as well as among individual states and municipalities. Enforcement of laws
also varies among nations. Some governments simply do not prioritize the
prosecution of cybercrimes, especially when the victims are outside of their
own country. This allows many hackers to operate with impunity in certain
parts of the world. In fact, some advanced nations have elements within their
governments in which hacking is a prescribed function. Some military and
civilian security and law enforcement agencies feature divisions whose
mandate is to hack the sensitive systems of foreign adversaries. It is a point of
contention when some of these agencies intrude into the private files and
communications of their own citizens, often leading to political consequences.

Penalties for illegal hacking largely depend on the nature of the transgression
itself. Accessing someone’s private information without their authorization
would likely carry a lesser penalty than using the access to steal money,
sabotage equipment, or to commit treason. High-profile prosecutions have
resulted from hackers stealing and either selling or disseminating personal,
sensitive, or classified information.

VICTIMS
Victims of hacking range from being the recipients of relatively harmless
practical jokes on social media, to those publicly embarrassed by the release
of personal photos or emails, to victims of theft, destructive viruses, and

blackmail. In more serious cases of hacking where national security is
threatened by the release of sensitive information or the destruction of critical
infrastructure, society as a whole is the victim.

Identity theft is one of the most common computer crimes. Hackers target the
personal information of unsuspecting individuals and either use the data for
personal gain or sell it to others. Victims often don’t know that their
information has been compromised until they see unauthorized activity on their
credit card or banking accounts. Although personal data is often obtained by
hackers by targeting individual victims, some sophisticated criminals have in
recent years been able to gain access to large databases of personal and
financial information by hacking the servers of retailers and online service
providers with millions of customer accounts. These high-profile data
breaches have enormous cost in monetary terms, but also damage the
reputations of the targeted companies and shake the public's trust in
information security. Similar data breaches have resulted in the public
distribution of personal emails and photographs, often causing embarrassment,
damaging relationships, and resulting is loss of employment of the victims.

PREVENTION COSTS
There is a classic “Catch-22“ when it comes to the prevention of hacking. For
most individuals, it takes little more than some common sense, vigilance, good
security practices, and some freely available software to stay protected from
most attacks. However, with the rise in popularity of cloud computing, where
files are stored on an external server in addition to or instead of on personal
devices, individuals have less control over the security of their own data. This
puts a large financial burden on the custodians of cloud servers to protect an
increasingly high volume of centralized personal information.

Large corporations and government entities thus regularly find themselves
spending equal or more money per year on computer security than they might
lose in most common attacks. Nevertheless, these measures are necessary
because a successful, large-scale, sophisticated attack – however unlikely –
can have catastrophic consequences. Similarly, individuals wishing to protect
themselves from cyber criminals will purchase security software or identity
theft protection services. These costs, along with the time and effort spent
practicing good information security, can be an unwelcome burden.

NATIONAL AND GLOBAL SECURITY
The increasing reliance of industrial control systems on networked computers
and devices, along with the rapidly interconnected nature of critical
infrastructure, have left the vital services of industrial nations highly
vulnerable to cyber-attack. Municipal power, water, sewer, internet, and
television services can be disrupted by saboteurs, whether for the purpose of
political activism, blackmail, or terrorism. Even short-term interruption of
some of these services can result in loss of life or property. The safety of
nuclear power plants is of particular concern, as we have seen in recent years
that hackers can implant viruses in commonly used electronic components to
disrupt industrial machinery.

Banking systems and financial trading networks are high value targets for
hackers, whether they are seeking financial gain or to cause economic turmoil
in a rival nation. Some governments are already openly deploying their own
hackers for electronic warfare. Targets for government and military hacking
also include the increasingly networked vehicles and instruments of war.
Electronic components can be compromised by hackers on the production line
before they ever even make it into a tank, battleship, fighter jet, aerial drone, or
other military vehicle – so governments must be careful about who they
contract in the supply line. Sensitive email, telephone, or satellite
communications must also be protected from adversaries. It is not just nation-
states who are a threat to advanced military systems. Terrorist organizations
are becoming increasingly sophisticated and are shifting to more technological
methods.

CHAPTER 2. VULNERABILITIES AND EXPLOITS
The essence of hacking is the exploitation of flaws in the security of a
computer, device, software component, or network. These flaws are known as
vulnerabilities. The goal of the hacker is to discover the vulnerabilities in a
system that will give them the easiest access or control that serves their
purposes. Once the vulnerabilities are understood, exploitation of those
vulnerabilities can begin, whereby the hacker takes advantage of the system
flaws to gain access. Generally, black hat and white hat hackers intend to
exploit the vulnerabilities, albeit for different purposes, where gray hats will
attempt to notify the owner so that action can be taken to protect the system.

VULNERABILITIES
Vulnerabilities in computing and network systems always have and always
will exist. No system can be made 100% airtight because someone will always
need to be able to access the information or services being protected.
Moreover, the presence of human users represents a vulnerability in and of
itself because people are notoriously poor at practicing good security. As
vulnerabilities are discovered and corrected, new ones almost instantly take
their place. The back-and-forth between hacker exploitation and the
implementation of security measures represents a veritable arms race, with
each side becoming more sophisticated in tandem.

HUMAN VULNERABILITIES
One seldom-discussed vulnerability is that of the human user. Most users of
computers and information systems are not computer experts or cybersecurity
professionals. The majority of users know very little about what goes on
between their points of interface and the data or services they are accessing. It
is difficult to get people on a large scale to change their habits and to use
recommended practices for setting passwords, carefully vetting emails,
avoiding malicious websites, and keeping their software up to date. Businesses
and government agencies spend a great deal of time and resources training
employees to follow proper information security procedures, but it only takes
one weak link in the chain to give hackers the window they are looking for to
access an entire system or network.

The most sophisticated and expensive firewalls and network intrusion
prevention of systems are rendered useless when a single internal user clicks
on a malicious link, opens a virus in an email attachment, plugs in a
compromised flash drive, or simply gives away their access password over
the phone or email. Even when repeatedly reminded of best security practices,
common users are the easiest and most consistent vulnerability to discover and
exploit. Sometimes human vulnerabilities are as simple as practicing bad
password security by leaving passwords written on notes in plain site,
sometimes even attached to hardware being used. Using easily-guessed
passwords is another common user mistake. One particular corporate system
was compromised when a clever hacker intentionally left a USB flash drive in

a company’s parking lot. When an unsuspecting employee found it, they put the
drive into their work computer and subsequently unleashed a virus. Most
individuals don’t take computer security seriously until an incident occurs, and
even then, they often fall back into the same habits. Hackers know this and take
advantage of it as often as possible.

SOFTWARE VULNERABILITIES
All computers rely on software (or “firmware”, in some devices) to translate
input or user commands into action. Software manages user logins, performs
database queries, executes website form submissions, controls hardware and
peripherals, and manages other aspects of computer and network functionality
that could be exploited by a hacker. Aside from the fact that programmers make
mistakes and oversights, it is impossible for software developers to anticipate
every feasible vulnerability in their code. The most developers can hope for is
to patch and amend their software as vulnerabilities are discovered. This is
why it is so important to keep software up to date.

Some software vulnerabilities are due to errors in programming, but most are
simply due to unanticipated flaws in design. Software is often secure when
used as designed, but unforeseen and unintended combinations of inputs,
commands, and conditions often result in unanticipated consequences. Without
strict controls on how users interact with software, many software
vulnerabilities are discovered by mistake or at random. Hackers make it their
business to discover these anomalies as quickly as possible.

EXPLOITS
Finding and exploiting vulnerabilities to gain access to systems is both an art
and a science. Because of the dynamic nature of information security, there is a
constant game of “cat and mouse” going on between hackers and security
professionals, and even between nation-state adversaries. In order to stay
ahead (or to at least not get left too far behind), one must not only stay apprised
of the latest technology and vulnerabilities, but must also be able to anticipate
how both hackers and security personnel will react to changes in the overall
landscape.

ACCESS
The most common goal of exploitation is to gain access to, and some level of
control of, a target system. Since many systems have multiple levels of access
for the purposes of security, it is often the case that each level of access has its
own slate of vulnerabities and are typically more difficult to hack as more vital
functionalities are available. The ultimate access coup for a hacker is to reach
the superuser or root (a UNIX term) level - known as “getting root” in hacker
lingo. This highest level affords the user control of all systems, files,
databases, and settings in a given self-contained system.

It can be quite difficult to breach the root level of a secure computer system in
a single exploit. More often, hackers will exploit easier vulnerabilities or take
advantage of less experienced users to first gain low level access. From that
point, further methods can be employed to reach higher levels from
administrators up to root. With root access, a hacker can view, download, and
overwrite information at will, and in some cases remove any traces that they
were even in the system. For this reason, getting root in a target system is a
point of pride as the utmost achievement among both black hat and white hat
hackers.

DENYING ACCESS
In many cases, gaining access to a particular target system is impossible,
exceedingly difficult, or not even desired by a hacker. At times, the goal of a
hacker is simply to prevent legitimate users from accessing a website or
network. This type of activity is known as denial-of-service (DoS). The

purpose of conducting a DoS attack can vary. Since it is relatively simple to
execute, it is often a beginner exercise for an inexperienced hacker (“newbie”,
“n00b”, or “neophyte”) in the parlance) to earn some bragging rights. More
experienced hackers can execute sustained DoS attacks that disrupt
commercial or government servers for an extended period of time. Thus,
organized groups of hackers often hold a website “hostage” and demand a
ransom from the owners in exchange for halting the attack, all without ever
having to gain access.

CHAPTER 3. GETTING STARTED
Hackers have a reputation for being highly intelligent individuals and
prodigious in many ways. It can therefore seem to be an overwhelming and
uphill task to start from scratch and reach any level of practical proficiency.
One must remember that everyone must start somewhere when learning a
subject or skill. With dedication and perseverance, it is possible to go as far in
the world of hacking as your will can take you. One thing that will help in the
process of becoming a hacker is to set some goals. Ask yourself why you want
to learn hacking and what you intend to accomplish. Some just want to learn
the basics so they can understand how to protect themselves, their family, or
their business from malicious attacks. Others are looking to set themselves up
for a career in white-hat hacking or information security. Whatever your
reasons, you should prepare to learn quite a bit of new knowledge and skills.

LEARNING
The most important weapon in a hacker’s arsenal is knowledge. Not only is it
important for a hacker to learn as much as possible about computers, networks,
and software - but in order to stay competitive and effective they must stay up
to date on the constant and rapid changes in computers and computer security.
It is not necessary for a hacker to be an engineer, computer scientist, or to have
intimate knowledge of microprocessor or computer hardware design, but they
should understand how a computer works, the chief components and how they
interact, how computers are networked both locally and through the internet,
how users typically interact with their machines, and - most importantly - how
software dictates computer function. An excellent hacker is fluent and
practiced in several computer languages and understands the major operating
systems. In is also very useful for a hacker to be familiar with the history,
mathematics, and practice of cryptography.

It is possible, and increasingly common, for a layperson with little hacking
experience and only slight or intermediate knowledge about programming to
conduct an attack against a system. People often do this using scripts and
following procedures that were developed by more experienced operators.
This happens most commonly with simpler types of attacks, like denial of
service. These inexperienced hackers are known in the hacking community as
script kiddies. The problem with this type of activity is that the perpetrators
have little appreciation for what’s going on in the code they are running, and
may not be able to anticipate side effects or other unintended consequences. It
is best to fully understand what you are doing before attempting an attack.

COMPUTERS AND PROCESSORS
Computers vary in size, shape, and purpose, but most of them essentially have
the same design. A good hacker should study how computers evolved from the
earliest machines in the 20th century to the vastly more sophisticated machines
that we use today. In the process, it becomes evident that computers have the
same basic components. To be an effective hacker, you should know the
different types of processors that exist on the majority of modern computers.
For instance, the three largest microprocessor manufacturers are Intel,
American Micro Devices (AMD), and Motorola. These processors comprise

most of the personal computers that a hacker will encounter, but each has their
own unique instruction set. Although most hackers rarely have to deal with
programming languages on the machine level, more sophisticated attacks may
require an understanding of the differences between processor instruction sets.

Some processors are programmable by the end user. These are known as
Field-Programmable Gate Arrays (FPGA) and are being used more and more
often for embedded systems, particularly in industrial controls. Hackers have
been known to gain access to these chips while they are in production in order
to deploy malicious software at the final destination. An understanding of
FPGA architecture and programming is necessary for these types of
sophisticated attacks. These embedded attacks are particularly concerning to
military and industrial customers that purchase chips on a large scale for
critical systems.

NETWORKING AND PROTOCOLS
One of the most important subjects for the aspiring hacker to study is that of
network architecture and protocols. Computers can be networked in many
different configurations and sizes, and with different technologies that govern
their interconnection. From copper wire, to fiber optics, to wireless and
satellite connections, as well as combinations of all of these media, we have
built a vast network of computers across the globe. This network can be
understood in its entirety on a large scale as well as viewed as a connection of
smaller self-contained networks.

In terms of size, computer networks have been traditionally categorized as
Local Area Networks (LAN) and Wide Area Networks (WAN). WANs
typically connect multiple LANs. There are multiple other designations for
different sizes of networks, and the terminology is always changing as new
technologies and conductivities develop. Keeping up with these changes is one
of the ongoing tasks of a hacker.

Networks also have different architectures. The architecture is determined not
only by the configuration of the different nodes but also on the medium that
connects them. Originally, networked computers were always connected by
copper wire. Commonly used copper network cables, often known as ethernet
cables, consist of twisted pairs of copper wire. Although the most common of

these cables is the category five, or CAT-5, cable, it is beginning to give way
to a new standard, CAT-6, which has a greater capacity for transmission of
signals. For very high speed applications and longer distances, fiber-optic
cables are usually chosen. Fiber optics use light instead of electricity and have
a very high capacity for carrying information. They are used to carry most
modern cable television and high speed internet services. Fiber optics serve as
the backbone for the internet. Within smaller areas, wireless networks are very
common. Using a Wireless Fidelity (Wi-Fi) protocol, wireless networks exist
in a large number of personal, private, and commercial LANs. Hackers are
often particularly interested in hacking into Wi-Fi networks, resulting in the
evolution of Wi-Fi security standards.

Regardless of the architecture or medium of transmission, when two terminals
are communicating across a network they must do so using a common set of
rules known as a protocol. Networking protocols have evolved since the first
computer networks were created, but they have retained the same basic layered
approach. In general, a network is conceptualized in terms of different layers
that perform different functions. This is also known as a stack. The most
common communication protocols used today are the Internet Protocol (IP) and
Transmission Control Protocol (TCP). Taken together, these are commonly
known as TCP/IP. These protocols change and are standardized on occasion.
It is critical for the hacker to learn these protocols and how they relate to
communication between the different layers of the stack. This is how hackers
can gain higher and higher levels of access to a system.

PROGRAMMING LANGUAGES
It may seem daunting to learn a programming language from scratch having
never done it before, but many people find that once they become proficient at
one programming language, it is much easier and faster to learn others.
Hackers not only have to understand programming languages to be able to
exploit software vulnerabilities, but many hackers need to write their own
code to be able to execute a particular attack. Reading, understanding, and
writing code is fundamental to hacking.

Programming languages range from very obscure machine code, which is in
binary and hexadecimal format and is used to communicate directly with a
processor, to high-level object-oriented languages that are used for software

development. Common high-level object-oriented languages are C++ and
Java. The code written in high-level languages is compiled into the
appropriate machine code for a particular processor, which makes high-level
languages very portable between different types of machines. Another category
is a scripted language, where commands are executed line-by-line instead of
being compiled into machine code.

Learning programming languages takes time and practice - there is no other
way to become proficient. Long evenings and overnight marathons of writing,
debugging, and recompiling code are a common rite-of-passage among
beginning hackers.

CHAPTER 4. THE HACKER’S TOOLKIT
Even armed with knowledge, resourcefulness, and just the right amount of
stubborn perseverance, the hacker still needs a certain set of physical tools to
conduct an attack. However, hacking does not have to be an expensive
profession or hobby. Most of the software tools that a hacker needs can be
obtained freely because they are open-source products. Nor does a hacker
need thousands of dollars in high-powered computing equipment - for most
attacks, a simple laptop or desktop computer with a reasonable amount of
memory, storage, and processor speed will suffice. Over the decades, hackers
have become notorious for accomplishing a great deal on relatively low
budgets. Although each individual will need to decide for themselves what
combination of hardware and software they need for their particular goals, this
chapter will serve as a guide to help understand what different options are
available and preferred in the hacking community.

OPERATING SYSTEMS & DISTRIBUTIONS
An operating system (OS) is the intermediary between a computer’s hardware
and software. An OS typically manages the file system, peripheral
communication, and user accounts of a computer system, among other
responsibilities. There are several brands of operating systems, both
commercial and open source, that can be installed on any given computer
platform. Microsoft Windows is the most commonly known and installed
commercial OS for “PC”[1] style systems. Apple has its own OS that comes
installed on its computer and mobile systems. Google’s open source Android
OS is rapidly gaining popularity.

The Linux operating system, named for and developed by Linus Torvalds - a
legendary figure in hacker culture - is an open-source offshoot of the UNIX
(Apple’s OS is also based on UNIX) operating system. Linux gained
popularity among hackers and hard-core computer enthusiasts over the years
for its flexibility and portability. Various distributions of Linux have evolved
for different purposes through constant tinkering by its users. Distributions are
typically distinguished from each other by their size, user interface, hardware
drivers and the software tools that come pre-installed. Some popular Linux
distributions, like Red Hat and Ubuntu, are for general use. Others have been
developed for specific tasks and platforms. The operating system on a hacker’s
“attack” platform is the heart of his or her toolkit.

KALI LINUX
Formerly known as Backtrack, Kali is a popular open source Linux operating
system for hackers. Kali (the most recent distributions of Kali Linux can be
found at www.kali.org/downloads) can be installed on a dedicated machine, or
run from a virtual machine within another operating system. Over the years
Kali has evolved to contain a large array of the most useful vulnerability
assessment and exploitation programs. It is one of the first tools that a
beginning hacker should obtain. Kali not only provides practice using a Linux
platform, but also contains everything a hacker needs to perform some of the
most basic lower-level attacks in order to gain valuable experience.

http://www.kali.org/downloads

A Screenshot of Kali Linux With a Menu of Tools

FORENSIC DISTRIBUTIONS
the Linux OS is also available in several free distributions that are intended to
be used for forensic computer analysis. These distributions contain tools that
allow security professionals to look for traces of a computer attack on a victim
machine. Hackers also use these distributions when they are practicing attacks
so that they can learn how to keep from being detected.

VIRTUAL MACHINES
Virtual machines are programs that emulate the behavior of certain hardware
platforms within the confines of an existing operating system. This allows a
user to install several operating systems on one piece of hardware, treating
each one as if it were a separate machine. Maintaining virtual machines not
only gives the hacker the ability to run various different hacking tools, but also
provides the opportunity to practice hacking skills in a consequence-free
“sandbox”. A common technique for practicing attacks is to install an operating
system that is equivalent to a potential target within a virtual machine, and to
practice attacking that system’s known vulnerabilities, and even probing for
more. It is fairly easy to obtain free versions of old, defunct operating systems
- like some of the older Windows releases - along with a list of the
vulnerabilities of that particular version. Having an OS installed on a virtual
machine that has not been patched with its latest security updates gives the
hacker a perfect way to practice attacks without the worry of damaging a target
system or running afoul of the law.

PROGRAMMING LANGUAGES
Computers are the servants of mankind, but they don’t know what to do without
clear instructions. Since the binary language of machines is very difficult for
human programmers to efficiently conceptualize, we developed programming
languages that are closer to human language which can then be translated for
the machine to understand. Computer languages have evolved from simple
line-by-line scripts, to more modular structured languages, to the advanced
object-oriented languages that are used to develop software today. Scripted
languages, however, still play a major part in computer and network
operations. Since programs are written by people, they are of course subject to
error. These errors are not only unintended mistakes in the actual coding, but
oversights in the planning of the program itself. These errors are what hackers
look for when attempting to gain unauthorized access to their target systems. It
is therefore fundamental for hackers to obtain the compilers and interpreters
necessary to become fluent in a few important programming languages, and at
least minimally familiar with several others. Most of these programming tools
are open-source and freely available in one form or another.

OBJECT-ORIENTED LANGUAGES
Object-oriented languages are high-level computer programming languages that
are compiled upon completion into executable machine code. Programmers use
some sort of text editing program to develop their code. They also need a
compiler that is appropriate to the computer platform on which the executable
program will be run. Some software development tools also contain debugging
functions that allow the programmer to discover syntax and other errors before
the program is compiled. Object-oriented languages are centered around the
idea that different components in a computer program can be treated as objects
with certain properties. The properties can be manipulated by procedures
known as methods, and objects can be placed into various classes. Learning
object-oriented programming is a vital part of the learning process for an
aspiring hacker. A great deal of software, both online and off-line, is
developed using object-oriented languages like C++ and Java. Understanding
the vulnerabilities in programs that are written in these languages, and
subsequently exploiting them, becomes possible when a hacker is familiar with
the languages. In addition, hackers often find themselves needing to write their

own software to automate attacks or to help them gain control or transfer data
once they have access to a system.

INTERPRETED LANGUAGES
Object-oriented languages are highly structured and modularized. A single
statement in the code of an object-oriented language cannot be run on its own
without the context of the rest of the program. This is why object-oriented
languages must use a compiler to translate the program into machine code
before it can be understood by the computer. Although this is useful for larger,
more complex programs, it can be overkill and unnecessarily time-consuming
for shorter programming tasks. An interpreted language, conversely, is
executed (for the most part) on a line-by-line basis by the computer, allowing
for quick corrections and more intuitive debugging.

One of the most popular interpreted languages is Python. A free, open-source
project, Python has gained worldwide popularity for its simplicity, flexibility,
and portability. Hackers often use Python to help them automate certain tasks
that are often performed on the command line. Python, like most open-source
software, comes in multiple distributions depending on the intended
application. These different distributions contain various sets of prewritten
modules, or packages, that can be pieced together in a Python script.

Other interpreted languages that are important to the hacker include web
scripting languages such as HTML, JavaScript, Perl, PHP, and Ruby. These
languages are used to develop web applications. It is vulnerabilities within
web applications, in part, that allow hackers to gain access to target websites.

DATABASE QUERY LANGUAGES
A common goal of hackers is to gain access to private or confidential data.
Servers store high volumes of data in organized structures known as
databases. Databases have their own language that is used within the code of
other programming languages when accessing the data. If a web application,
for example, needs to access or change the profile information of one of its
users it will need to send a command to the database that is written in that
database’s appropriate language. These commands are known as queries. One
of the most common database languages used for online applications Is the
Structured Query Language, or SQL. Exploiting vulnerabilities in SQL has,

over the years, been one of the most common methods that hackers have used to
access websites and the data contained within them. As programmers have
become wise to the vulnerabilities in SQL, they have made great efforts to
correct those vulnerabilities, so some of the more simple attacks are less
common. Understanding SQL and other database query languages is another
essential tool for the hacker. An SQL server can be set up on a hacker’s test
machine in order to practice various methods of attack.

CHAPTER 5. GAINING ACCESS
In most cases, the goal of the hacker is to gain access to a system for which
they are not authorized. The best way to do this is to exploit vulnerabilities in
the system of authentication. These vulnerabilities, in most cases, lie either in
the habits of authorized users or in the coding of the software running on the
target server. Hackers are very adept at discovering and learning how to
exploit vulnerabilities very quickly, and new ones seem to emerge just as
quickly as old ones are mitigated. Any given piece of server software,
especially large and complex ones, likely even have multiple vulnerabilities
that have not even been discovered yet. A good security professional learns
how to think like a hacker so that they can anticipate problems with the systems
that they are protecting before black hat hackers can exploit them. This chapter
illustrates some exploits of a few of the more common in traditional
vulnerabilities in both human users and software.

SOCIAL ENGINEERING
Human users are often the weakest link in the “kill chain” of computer security.
Many users not only have little understanding of the systems they are using, but
they also tend to have little appreciation for the nature of cyber threats, and
have little desire to take the time and effort to protect themselves. Although
people are starting becoming more aware, there are still enough easy human
targets around for hackers to exploit. Social engineering is the activity of
using simple reconnaissance or deception to obtain passwords or access
directly from unsuspecting users. Social engineering requires little technical
expertise and is preferred by hackers to the more difficult and risky attacks that
entail intrusive methods.

PASSIVE PASSWORD ACQUISITION
Perhaps the simplest type of social engineering is that of guessing an
individual’s login password. Despite warnings, users continue to use
passwords that contain common or easily guessed sequences of characters. The
main reason that this practice is so common is that people tend to desire
passwords that they can easily recall. Most people have several email and user
accounts for both home and work, making it difficult to keep track of them all,
and thus may use the same - or a similar – password for multiple accounts.
This practice puts all of their accounts in danger when a hacker successfully
obtains the password. Common password mistakes are using one’s own name
or that of a family member or pet, using words commonly found in a dictionary,
using sequences of numbers corresponding to their birthday or that of a loved
one, including parts of their residential address, using names of favorite sport
teams, and other similar themes that are easily remembered. One of the biggest
reasons why this is an especially poor practice in the modern age is that there
is so much personal information that is readily and publicly available on the
internet. A simple glance at an individual’s social media page usually reveals a
treasure trove of information about them. When someone allows their social
media profile to be publicly viewed, it becomes a perfect source for hacker to
refine their password guesses. Personal data useful for guessing passwords
can also be obtained through the practice of dumpster diving, whereby a
hacker rummages through a target user’s trash for paperwork containing
sensitive information. Password security has become such a problem that more
and more websites, online accounts, email services, and other systems that
require passwords are beginning to enact strict restrictions on the format and
content of passwords.

More interactive types of social engineering involve a certain degree of
surveillance or reconnaissance on the part of the hacker. If a hacker has
physical access to the location of their target system, they might attempt to
view a user while they are actually typing their login information. This is
colloquially known as shoulder surfing because it simply involves covertly
peering over the shoulders of users.

PHISHING, SPEAR-PHISHHING, AND WHALING
The general anonymity of the internet can often lull people into a false sense of
security, allowing them to engage in behavior that they would never engage in
face-to-face. If a stranger knocked on and individual’s door claiming to be a
representative of their bank and asking for the key to their safety deposit box, it
is likely that the person will have a door quickly slammed in their face.
Nevertheless, thousands of people every day readily reveal their personal and
login information to fraudulent hackers through the Web, email, phone, and text
messaging.

A common method that hackers use to obtain user information is the process of
phishing. In the tradition of the quirky nomenclature of hacking jargon,
phishing is a homonym of “fishing”, and gets its name from the idea that the
practice is similar to dangling a hook in the water, waiting for a fish to bite. A
typical phishing email is written to resemble a legitimate communication from
a bank, from an online shopping or service account, or even from a department
within a victim’s own organization. Often, the email will present itself to the
user as a request to confirm or reset a password. Sophisticated phishing
messages will use forged email headers, convincing language, and nearly
identical formatting to legitimate emails. If a target user falls for the trap, they
will respond to the email with their username and password or click on a web
link that accepts the information in a legitimate-looking form. Normally,
thousands of emails will be deployed in a single phishing attack in the hopes
that at least a small percentage of recipients will respond.

In contrast to phishing, where a high volume of identical emails is sent to
multiple users like dangling bait among many fish, spear-phishing targets
specific users – just as a spear-fisherman is aiming at an individual fish.
Although spear-phishing does not produce a high volume of accounts like a
phishing attack, it can have a higher rate of success because more
individualized emails are generally more convincing. A well-executed spear-
phishing email will often address the target user by name, and contain other
personal details to make it appear more authentic. Thus, there is typically some
research or social engineering that precedes a spear-phishing attack. In most
cases, this type of attack is conducted because the hacker has identified the
individuals being targeted as possessing information, assets, or computer

access that is of particular interest. The ultimate spear-phishing attacks are
leveled against high-value targets in an organization – typically executives or
information officers with top access. Because these individuals are the “big
fish”, this type of attack has become known as harpooning or whaling.
Phishing, spear-phishing, and harpooning attacks are not only conducted for the
purpose of obtaining passwords. Sometimes they are used to gather other
information or to deliver malicious software to a target system.

WEB EXPLOITS
There are many kinds of web vulnerabilities and associated exploits - and new
ones arise just as quickly as old ones are closed. There are dozens of
languages that are pieced together in various combinations to create a website
or web application and vulnerabilities can exist anywhere within that structure.
Listed here are a few examples of common exploits that illustrate how hackers
use vulnerabilities to their advantage.

SQL INJECTION
The SQL database query language is widely ubiquitous on the World Wide
Web. It is used most often within other web code to manage user logins and
database access requests. Since a database query inevitably contains strings
which originate from user input, it is naturally vulnerable to manipulation. SQL
injection is a web exploitation that takes advantage of the syntax of the SQL
language itself. SQL uses Boolean logic operations like AND and OR to
connect statement segments, including strings that were input by the user. A
typical SQL statement for a user login might look similar to the following:

SELECT * FROM database WHERE user = ' '' + username + '' ';

The above statement will insert the user-inputted string corresponding to the
user field into the “username” variable in the statement. This statement is
expecting the user to input a simple, typical user name string. Like most
vulnerabilities that hackers seek to exploit, unintended usage of the user input
field can result is unanticipated behavior. Clever hackers learned to exploit
SQL syntax to gain access to user accounts by entering special strings into user
fields that cause certain desired SQL commands to be executed. For example,
the following string might appear to be gibberish or otherwise uninteresting
when entered as a username:

' OR '1'='1

However, if the SQL interpreter takes the resulting command literally, it will
read:

SELECT * FROM database WHERE user = ' ' OR 1=1;

When this command is executed, it will be read as (to paraphrase in plain

English):

“select all records from database where the user is ‘ ’ OR 1=1”

There will likely not be any usernames that are a blank string, but the presence
of the ‘OR’ keyword means that the command will execute if either clause on
each side of the OR (user = ' ' OR 1=1) is true. Since 1=1 is always true, the
command must execute. Any statement that is always true can be placed after
the OR, but 1=1 is an efficient option. The insertion of a command segment
through the user string is why this procedure is called “injection”. This is a
simple example, and most sites now have safeguards against such a basic
attack, but injection (other scripts besides SQL can be vulnerable to injection)
attacks continue to be a common threat and serve as an illustrative example of
exploiting a software vulnerability. There are multiple websites that allow
hackers to practice injection attacks against mock sites with known SQL
vulnerabilities.

URL MANIPULATION
The web address, or Universal Resource Locator (URL), of a website not only
contains information about the network location of a site’s resource files, but
often contains other information that is passed on to the web application after
some sort of user interaction. This information might be encoded, or might
follow some sort of semantic scheme. As a simple example, consider a
fictional search engine with the following home URL:

http://www.acmesearch.com/

When a user enters a search term into the form and clicks the submit button, the
site may automatically append the url with the search terms according to some
format. This is a way to pass information along to web scripts and database
queries in order to fulfill the request of the user. So if the user of this
hypothetical search engine is searching for “beginner hacking”, the site may
submit the following URL (or something similar):

http://www.acmesearch.com/search?=beginner+hacking

If a user notices the pattern, they can easily figure out that they can circumvent
the web form for user interface and simply type their search terms into the URL
scheme that they observed. This sort of URL manipulation is, of course, fairly

http://www.acmesearch.com/
http://www.acmesearch.com/search?=beginner+hacking

innocuous when used on services like search engines. However, in the early
days of web commerce, these sorts of simple URL semantics were actually
used to submit product orders. It wasn’t long before hackers figured out how to
manipulate the payment amount as well as the type and number of products that
they were ordering. Although most online merchants now have a more secure
process, there are still many types of websites and services that have
vulnerabilities which can be exploited through URL manipulation.

CROSS-SITE SCRIPTING AND REQUEST FORGERY
Some websites may allow users to interact with the site in such a way that the
user’s input becomes part of the website content. One of the best examples of
this are websites that feature comments (on photos, articles, etc.) from users.
Those comments are normally submitted by users through the use of a web
form or similar interface. If an attacker is able to enter something other than a
comment - either by URL manipulation or direct input into the form fields - it
could become part of the website code that is accessed by other users. Hackers
have learned how to inject malicious code into websites through these form
fields by exploiting servers that do not safeguard against this type of attack.
The injected code can be written in such a way that other users don’t even
know that their browser is running the injected code. This activity has become
known as cross-site scripting (XSS), and can be used by hackers to implant
malicious code onto user machines or to co-opt user identities in order to login
to a target machine.

When a user logs in to a secure website, that website grants access to
resources on its server. Typically, this access is only granted to that particular
user for that single login session. Once the user either logs out or closes the
website, they will have to login again and begin a new session for access.
Session information is stored on the user’s system through the use of cookies,
which are small files containing useful information about the state of a
particular session. Session cookies, or authentication cookies, let the server
know that a user is currently logged in. If a hacker is able to intercept an
insecure session cookie, they can duplicate it on their own machine and use it
to gain access to a target system while the user is in their current session. For
example, if a user is logged into their banking account, a session cookie placed
on their computer by the bank lets the bank server know that it is okay to

continue allowing the user access to the account. If a hacker is able to obtain
that particular session cookie on their own machine, then they can fool the bank
server into allowing them access to that account. Hackers achieve this by
setting up a fake website that they believe many users will want to visit. Since
users quite often use the web with multiple tabs or browser windows open
simultaneously, the hacker is hoping that users will be logged in to some secure
account while also logged in to be their malicious website. When users are
interacting with the hacker website, they are unknowingly executing scripts
through their own browser that send commands to the secure website. Since the
secure site (for instance, the bank) is allowing access during that session it has
no way of knowing that the request is not legitimate. This attack is known as
cross-site request forgery (CSRF). A common way to execute a CSRF attack
is to inject a false server request into something relatively innocent such as a
link to an image or some other website element. This keeps the code hidden
from the view of the user.

In the cases illustrated above, for SQL injection, URL manipulation, cross-site
scripting, and cross-site request forgery, the vulnerabilities which are being
exploited can be mitigated fairly easily by checking user input for suspicious
content before executing it. Website programmers have caught on to many of
these attack methods, and are trying to make their sites less vulnerable while at
the same time still providing access and services to users. This is why it is so
important to understand the nature of hacking and the different types of attacks.

CHAPTER 6. MALICIOUS ACTIVITY AND CODE
The Latin root word “mal” means, simply, “bad”. Malicious activity is thus
characterized by the intent to do harm. In hacking, that harm might take the form
of the theft of money, property, or reputation. It may also simply amount to
sabotage for its own sake or to serve some other cause. Because so many vital
systems are now digitized, interconnected, and online, hackers have the
potential to do damage on small and large scales.

DENIAL-OF-SERVICE ATTACKS
When we see somebody on the street, whether friend or stranger, that we wish
to speak to, we typically don’t just walk up to them and begin speaking about
whatever topic is on our mind. The general protocol for human communication
is to first execute some sort of greeting. One might say “hello” (or some
variant) and say the person’s name, and perhaps give a quick handshake - then
when the other party responds, the conversation begins. The same sort of
procedure is expected when initiating a telephone call, in which case it serves
more of a practical purpose because both participants in the conversation
generally want to be sure that they know with whom they are speaking. The
first few words in the conversation serve to acknowledge the identity of both
parties. This protocol is also used in computer network communications.
Rather than simply blasting out requests, commands, or data haphazardly, one
node in a network will attempt to first acknowledge the presence and readiness
of the node with which it is attempting to communicate.

In normal network conversation, typically through TCP protocol, a three way
handshake procedure is expected to occur. During this handshake, a
synchronization (SYN) packet is first sent from the initiator of the conversation
to the receiver. This packet contains the IP address of the sender and a flag
within the packet indicates to the receiver that it is indeed an SYN packet. If
the SYN packet is successfully delivered, and the recipient is ready for
communication, it will send an acknowledgment (ACK) packet back to the
sender containing its own IP address as well as a flag indicating that it is an
ACK packet. Finally, the original sender will send an ACK packet to the
recipient and then normal communication can commence. Sometimes, packets
are lost in delivery between network nodes for one reason or another. This can
occur because of high traffic, because of malfunctions in the network
hardware, electrical or electromagnetic interference, and other reasons.
Therefore if a sender does not receive an ACK packet from the intended
recipient within a prescribed period of time, it will send out another
synchronization request. Likewise, a recipient will continue to transmit an
ACK packet indefinitely until it receives an acknowledgment from the original
sender. A normal handshake, without the interruptions that result from loss
packets, is summarized as follows:

1) Sender: SYN → Recipient
2) Recipient: ACK → Sender
3) Sender: ACK → Recipient
4) Sender ⇄ Recipient

Any given network node only has the capacity to communicate with a finite
number of other nodes. When a hacker is able to disrupt the handshake process
by causing the repeated transmission of SYN and ACK packets, legitimate
communication can be significantly slowed down or even stopped entirely.
This type of attack is known as a denial-of-service (DoS) attack.

BASIC DOS
The essential idea behind a denial-of-service attack is to forge the flags within
an IP packet header in order to trick a server into transmitting repeated ACK
requests. The simplest way to do this is to disrupt the traditional handshake
process between steps two and three above. When the recipient sends an ACK
request back to the original sender it is expecting another ACK packet in return
so that communication can commence. However, if the sender responds with
another SYN request, the recipient is forced to respond with another ACK
packet. If this back-and-forth continues, it ties up network resources and ports
on the server machine. The situation is analogous to a “knock-knock” joke that
never ends… (“knock-knock”, “who’s there?”, “knock-knock”, “who’s there?”,
“knock-knock”, “who’s there?”, etc.). This type of simple DoS attack is known
as SYN flooding. There are multiple methods of executing a DoS attack, most
of which take advantage of vulnerabilities within the TCP/IP protocol itself.

DISTRIBUTED DOS
A distributed denial-of-service (DDoS) attack is one in which a hacker or a
group of hackers is able to execute a coordinated DoS attack from a large
number of machines. Working together, the machines transmitting the attack
packets can simply overwhelm a target system to the point where the server is
unreachable by legitimate users, or so slow in response to user requests that it
is virtually unusable. In most cases, the machines that are transmitting the
attack-related packets are not even in the possession of the hackers that are
executing the attack. When hackers are preparing for a large DDoS attack, they
implant malicious code on as many machines as possible that belong to users

who are not knowing participants in the attack. Often, these machines are
spread out over a large geographic area and multiple networks, sometimes
even worldwide, making it difficult for authorities or the security personnel of
a victimized system to cut off the attack.

MALWARE
The word malware is a portmanteau describing malicious software. The term
covers many different kinds of software that might be implanted on a target
machine by hackers to either cause damage or seize control of all or a part of
the target. Malware is a widespread and serious problem throughout the
internet. There are myriad ways in which malware can behave once activated
on a host machine. Some are designed to spread themselves to other machines
and others remain covertly on a host machine to either gather confidential
information for the hacker, tie up computer resources, or cause damage to the
system. Sometimes malware is placed on a machine in order to later control
that machine for use in attacks, such as DDoS, in coordination with other
machines that have been taken over en masse.

VIRUSES
Viruses are the oldest and most commonly known type of malware. Like their
biological namesakes, viruses are designed to spread from machine to
machine, infecting large number of users, and sometimes entire self-contained
networks in the process. These malicious devices are segments of code that
attach themselves (just like biological viruses) to other programs that have
otherwise legitimate purposes. When the legitimate program is activated by an
unsuspecting user, the virus code is executed and can run without ever being
noticed. When a virus is activated it makes a copy of itself and attempts to
attach itself to other legitimate programs within the system or domain to which
it has access. This allows the virus to spread throughout an individual node
and also to other nodes on the network. A virus is not usually written by a
hacker to simply spread itself around, however. Typically, the hacker has a
specific task in mind for the virus to complete when it reaches its destination.

Since it is designed to remain hidden, a virus can perform any number of
actions on its host machine. It can collect personal and financial information
and covertly use the computer’s own communications capabilities to relay the
information back to the hacker. Other viruses are designed to delete
information or cause disruptions in a computer’s operation or communication.
A virus can even be written to cause physical damage to a computer system.
For example, one particular virus that was widespread in the 1990’s was

designed to cause the motor-controlled armature on the host’s optical hard
drive to rapidly move back and forth until the motor failed. This sort of virus
can do a great deal of damage to computer-controlled machinery that has
network connectivity.

WORMS
Worms are similar to viruses in that they are designed to replicate and spread
throughout a system or network. However, since viruses are part of larger
programs, they must be downloaded by the user and their host program must be
launched before the malicious code can be executed. Conversely, a worm is its
own self-contained program. Worms also differ from viruses in that they do not
require a user to open another program in order for them to execute. Once a
worm infects a machine, it can replicate itself and then spread to another
system through the network.

Rather than causing damage or gaining access to systems, the purpose of a
worm is normally to consume system and network resources in order to slow
down or halt that system’s operation by occupying memory and network
bandwidth. Occasionally, a worm may be used to gather information as well.

BEWARE OF “GEEKS” BEARING GIFTS
Legend has it that the epic war between the Achaeans (ancient Greeks) and the
Trojans ended when the crafty hero Odysseus fashioned a giant wooden horse
and left it at the gates of Troy as an apparent offering to the city. Unbeknownst
to the grateful Trojans, who wheeled the large gift into their city and behind
their notoriously secure walls, there was a contingent of Greek soldiers hiding
inside the hollow belly of the horse. The soldiers emerged that night under
cover of darkness to open the gates for the rest of the Achaean army ,who
entered and subsequently sacked the city. For thousands of years, whether true
or not, this story has served as a cautionary tale - reminding us to be vigilant
and that sometimes things which might seem harmless or innocent can lead to
our downfall. In computer hacking, a Trojan horse is a piece of malware that
appears to be legitimate or desirable software. It may even function normally
in whatever purpose for which the user downloaded it. The typical purpose of
a Trojan horse, often just called a “Trojan” is to give a hacker remote access
and control of the target system. Any malware that is written to give a hacker

surreptitious control over the processes of a user’s machine is known as a
rootkit.

Viruses, worms, and Trojans, as well as the various payloads that they deliver
to target systems take a good bit of programming skill in their creation to be
successful. Computer security professionals as well as anti-malware products
focus a great deal of effort on thwarting these malicious programs. Hackers
that deal in malware are constantly honing their skills and their creations are
evolving in complexity.

CHAPTER 7. WIRELESS HACKING
The proliferation of readily available Wi-Fi networks has made Wi-Fi one of
the most common network mediums. Wi-Fi is in many ways superior to
traditional copper wire physically connected networks. Aside from the
convenience of connectivity and the flexibility of network configurations that
wireless networks afford the users, the lack of physical infrastructure needed
to complete the network makes it much cheaper and easier to implement than
Ethernet. With this convenience, however, comes certain security concerns that
are not associated with traditional hardwired networks. With a copper or
fiber-based network, a physical connection is needed for a new machine to
join the network. A hacker would normally have difficulty accessing the
physical space of a target network and would likely arouse suspicion
attempting to connect their own hardware to network cabling. Although the
range of Wi-Fi is limited, it is omnidirectional and the radiofrequency signals
admitted by the server and the various nodes on a wireless network traverse
walls and other barriers and can be intercepted by anyone in range. This gives
the hacker much more freedom to conduct a network intrusion without being
detected.

HACKING WI-FI
Most Wi-Fi networks consist of a wireless router, or a group of wireless
routers, that are connected to a modem which is delivering internet access to
some physical location. The routers broadcast and receive radio signals on
specific channels that carry the appropriate TCP/IP packets to and from other
machines and devices that have similar wireless connectivity. All nodes
communicating at any given time on the channels associated with the router or
routers that are connected to the modem at that location comprise a Wi-Fi
network. By nature, Wi-Fi networks are very dynamic and fluid. Especially in
commercial settings, like coffee shops or office buildings that provide
wireless access, the number and nature of the nodes on that particular network
are in constant flux. In these public settings, it is easy for a hacker to hide in
plain sight and attempt to intrude into any of the nodes on the network. Once the
hacker is successfully on the network itself, they can scan the network for all
connected machines and probe for vulnerabilities. Many networks have both
wireless and wired subnetworks that are interconnected. When a hacker gains
access to a wireless network they can conceivably use that to leverage access
to all of the nodes on the wired portion of the network. This makes Wi-Fi
hacking a very popular goal for modern hackers.

WI-FI ENCRYPTION PROTOCOLS
Since Wi-Fi signals are broadcast into the air as opposed to being confined
within wires, it is important for the information contained in the signals to be
encrypted. Otherwise, anyone could passively receive and view any
information being sent between the nodes on the network. The encryption
protocols used in Wi-Fi have necessarily evolved since wireless networks
began gaining popularity. Moreover, as technology has improved and resulted
in increased bandwidth and data rates, a great density of information can be
broadcast from a wireless network in a very short period of time, making it
especially important for it to be encrypted and kept out of the hands of
malicious hackers.

The oldest and most common Wi-Fi encryption protocol is Wired Equivalent
Privacy (WEP). The goal of the WEP standard, as the name implies, was to
give network users the same amount of security that they would have on a

physically connected network. Unfortunately, over time WEP has become the
least secure of all of the existing encryption protocols and it is quite easily
hacked by even the most inexperienced hackers. WEP is so insecure in fact,
that many Wi-Fi router manufacturers no longer provide that type of encryption
as an option on their hardware. Most security professionals recommend that
router owners do not use WEP when other options are available. Step-by-step
instructions and coding examples for attacking WEP protected Wi-Fi networks
are freely and readily available on the internet. Although the level of
encryption has increased from 64 bit to 128 bit to 256 bit, the underlying flaws
in WEP remain easily exploitable by even the most green of neophyte hackers.
The biggest problem with WEP is that a password can be quickly and easily
deciphered simply through the passive “sniffing” (receiving and viewing
network packets) of network traffic.

A significant step up from WEP Wi-Fi encryption is the Wi-Fi Protected
Access (WPA) standard of encryption. This new protocol fixed many of the
problems in WEP, but remained vulnerable to attack because it was still based
on some of the same underlying encryption algorithms. Furthermore, WPA-
protected routers were deployed with a feature that was designed to make it
more convenient for home users to connect new devices to their network. This
feature proved to be an additional vulnerability in systems that employed
WPA.

It wasn’t long before an update to WPA was needed to keep Wi-Fi networks
more secure. A new encryption standard being used in other secure
applications, the Advanced Encryption Standard (AES), became mandatory in
the new Wi-Fi encryption protocol which became known as WPA-2. WPA-2
with AES encryption has become the recommended setting for wireless routers
on which it is available because of its significant improvement in security over
its preceding standards. Cracking WPA and WPA-2 requires more intrusive
hacking techniques than the simple passive sniffing that can be used to attack
WEP-protected networks.

WI-FI ATTACKS
In order to conduct a Wi-Fi attack a hacker needs, at a minimum, a computer
(normally a laptop) that can run scripts which are used to decipher the Wi-Fi
password. They also must acquire a special Wi-Fi adapter that can be

purchased relatively cheaply. A list of suitable Wi-Fi adapters can be found on
hacker resource websites, but in general the adapter must have a feature known
as “monitor mode” in order to be able to execute a Wi-Fi attack. It is important
to note that not all Wi-Fi adapters that can be found at retail computer supply
stores have this feature, and most internal laptop adapters are not appropriate.
In general, hackers prefer to use some sort of Linux distribution, usually Kali,
to conduct a Wi-Fi attack because most of the readily available tools were
written for the Linux OS and come preinstalled on Kali. It is also possible with
some configuration to run Linux on a virtual machine within another OS to
mount a successful attack. Although attacks from other operating systems are
possible, it is much easier for the beginner to conduct them from either a native
Linux distribution or a virtual machine. A hacker-friendly distribution like Kali
is recommended.

The detailed procedures and recommended programs for conducting Wi-Fi
attacks against the various encryption protocols changes over time, although
the general principles are the same. For the simplest attack, which is against
WEP encryption, the general steps are as follows:

1) monitor and view all Wi-Fi traffic in the range of the adapter
while in “monitor mode” (set by a program called airmon-ng) using
a program called airodump-ng.

Live W-Fi Traffic on Several Routers (aircrack-ng.org)

2) choose a target Wi-Fi network that is using WEP encryption and
make a note of the name (ESSID) and network address (BSSID in the
form XX:XX:XX:XX:XX:XX)

http://aircrack-ng.org

3) restart airodump-ng to begin capturing network traffic from the
specific network that you are targeting
4) wait for a sufficient number of packets to be captured (this may
take longer on networks with less traffic)
5) use a program called aircrack-ng to piece together the captured
network packets into a coherent password

A Successfully Decrypted Wi-Fi Key (aircrack-ng.org)

If network traffic is too slow to capture a sufficient number of packets for
decrypting the password in a reasonable period of time, some hackers choose
to use a program called aireplay-ng to inject artificial packets into the network
and create the necessary traffic to crack it more quickly. However, this activity
requires the hacker’s machine to actually broadcast signals from its Wi-Fi
adapter, making it more conspicuous.

WPA encryption cannot be cracked passively and requires the additional step
of packet injection. Cracking WPA can take longer and is a more invasive
procedure, but it is not much more difficult than cracking WEP. A program
called reaver, normally available on the Kali distribution is typically used by
hackers to crack WPA. WPA-2 hacking is a much more advanced concept for
more experienced practitioners. (Note: the software tools above are pre-
installed on Kali Linux, or can be downloaded from www.aircrack-ng.org)

http://aircrack-ng.org
http://www.aircrack-ng.org

CHAPTER 8. YOUR FIRST HACK
The neophyte hacker shouldn’t even think about attempting an attack on a real
target as their first foray into hacking. Sufficient tools and technologies exist
which are easily obtained and with which various methods can be rehearsed in
a virtual environment. This type of practice is essential for the hacker and is
more valuable than all of the reading and study one could accomplish. To build
confidence and gain appreciation for the nuances and practical pitfalls, the
beginning hacker should aspire to accomplish the simple attacks suggested in
this chapter. The details of the attacks will vary and currently applicable
instructions should be researched by the reader, but the general principles of
the setup and execution should be fairly universal.

HACKING YOUR OWN WI-FI
The purpose of this practice attack is to successfully obtain the password of a
WEP-encrypted Wi-Fi network. To minimize risk, the network and any
connected devices should be owned or controlled by you, or by someone who
has given you explicit permission to perform penetration testing.

What you need:

1) A computer
2) A wireless network adapter that supports “monitor mode”
3) Access to a Wi-Fi router with WEP encryption (does not have to
have internet access)
4) The latest version of Kali Linux (installed as the primary OS or
in a virtual machine)

Setting up:

1) Ensure that the router is set to WEP and give it a password of
your choice
2) Turn off the internal Wi-Fi adapter on your laptop if you have
one
3) Connect the “monitor mode” adapter to your attack machine and
install any necessary drivers
4) Be sure the attack computer is in wireless range of the target

network

Procedure:

1) Follow the “Wi-Fi Hacking” steps from Chapter 7
2) Confirm that the cracked password matches the one you set for
the network
3) Repeat the hack using aireplay-ng for packet injection and
compare execution times
4) Change the length or complexity of the password and repeat the
hack, comparing execution times

A VIRTUAL WINDOWS VULNERABILITY ASSESSMENT
Operating systems contain multiple software vulnerabilities that hackers are
ready and willing to exploit. When a hacker discovers an un-patched version
of an OS, there are a number of commonly available exploits with which to
gain access. The first step in deploying those exploits is to analyze the OS for
the most glaring vulnerabilities. Kali Linux features natively installed tools that
will scan a system and provide a list of vulnerabilities. This exercise will
require two virtual machines running within the same system (regardless of the
host OS). It will also require an installation image for an older, unsupported,
and un-patched version of Microsoft Windows (Windows ’95 or ’98 are good
choices). These images can be obtained online (usgcb.nist.gov) or from an old
CD.

 What you need:

1) A computer with any OS
2) Virtualization software
3) The latest version of Kali Linux
4) An unsupported, un-patched version of Microsoft Windows

Setting up:

1) Install Kali Linux on a virtual machine
2) Install the target Windows distribution on a virtual machine (on
the same host system as Kali)

Procedure:

http://usgcb.nist.gov

1) Execute a network scan from the Kali virtual machine using a
program called nmap
2) Practice changing various settings in nmap so that OS
vulnerabilities will be detected and displayed
3) Make note of the listed Windows vulnerabilities and begin
researching exploits!

CHAPTER 9. DEFENSIVE SECURITY & HACKER

ETHICS
Looking at the world through the eyes of the hacker can be a scary thing. When
you realize how vulnerable your home network is, the first thing you want to do
is change your Wi-Fi encryption. You look at emails more closely and with an
edge of suspicion. Knowing what you know about scripting attacks, you start to
be mindful not to leave too many browser windows or tabs open
simultaneously. Understanding the tools and motives of malicious hackers
gives people a new appreciation for information and computer security. This
knowledge should also give the beginning hacker pause to reflect on the
reasons that they are choosing to learn hacking and an understanding that the
power they may eventually gain should come along with an equal degree of
responsibility. This chapter explores how individuals and organizations can
protect themselves from some of the most common types of attacks and
discusses some of the ethical issues associated with operating as a white hat or
gray hat hacker.

PROTECTING YOURSELF
From simple measures like ensuring a secure password, to more advanced
concepts like choosing the proper encryption protocols and installing
protective network software, computer security is an everyday process for
people who live in our connected world. Most aspects of day-to-day security
simply involve common sense and vigilance. It is helpful to get into a regular
routine for periodic tasks like updating or changing passwords, ensuring the
latest versions or patches for installed software and operating systems, and
downloading current virus and malware definitions. In order to avoid
becoming a victim of the attacks you are learning as a beginning hacker,
security should become a part of your daily life and your thought process.

PASSWORD AND EMAIL PRACTICES
The days of using your dog’s name and the last four digits of your Social
Security number as your email password are over. Using a properly configured
password is one of the easiest ways for people to prevent themselves from
some very simple “brute force” attacks on logins. The first thing that
password-guessing hackers and automated password cracking software do is
look for common proper names, words commonly found in a dictionary, and
simple sequences of numbers. A surprising number of people continue to use
these types of passwords because they are much easier to remember. It is
important to note that the practice of replacing certain letters in common words
with numbers or symbols that have similar appearance (for example:
p@55w0rd instead of password), although it is more secure than using a
common word in its original form, is no longer fooling hackers. Most hackers
have caught onto this trick and are using scripts which will cycle through the
replacement characters during a brute force attack.

It is not uncommon for a modern individual to have dozens of passwords for
various machines, email accounts, and websites. It is frustrating to have to
keep track of so many different passwords, and to have to reset them when they
are forgotten. However, the inconvenience of proper password practice is
ultimately preferable to being victimized by a malicious hacker. Longer
passwords with sufficient complexity and a mix of letters, numbers, and
special characters at the very least extend the amount of time hackers have to

spend attempting to crack a password. An extra layer of security, as frustrating
as it may be, is not to use the same password for all of your accounts. If a
hacker is somehow able to successfully crack one of your passwords, they will
then have access to all of your other accounts if you are constantly recycling
the same password.

It is sometimes considered acceptable password security to write down
passwords, as long as they are stored securely. However, individuals that
write down passwords on sticky notes that are attached to their computer
monitors are just asking for the next “shoulder surfing” hacker to make them
regret that decision. In addition, the longer a password stays around, the more
likely it is to be cracked, so it is recommended to change passwords on
occasion (no need to overdo it, in most cases every few months or even every
year is sufficient.)

Many viruses, Trojans, and other malware are frequently delivered to a target
machine through email - either as direct attachments or through links to infected
websites. It is important to thoroughly inspect the sender of an email to be
certain that they are who they say they are. Hackers will often use fake email
addresses that are very similar in appearance to legitimate senders. Users
should look out for subtle differences in the format of an email (for example
john@mybank.com vs. john@my-bank.com). Sometimes, advanced hackers are
able to forge their return email address to look identical to a legitimate
address, but there is information in the email headers that indicate ill intent.
Any links provided in an email should also be viewed with a certain amount of
suspicion. You should be sure that the links are from someone you trust, and
ask yourself if that person would’ve sent you that sort of link. A little bit of
common sense will go a long way. Before opening any email attachment,
especially one that is an executable file, a virus or malware scan should be run
on the email.

COMPUTER SOFTWARE SECURITY
Computer security professionals occasionally disagree on the efficacy of
antivirus software. Some argue that expensive software for virus and malware
protection can be a waste of money because advanced hackers are adept at
circumventing those protections. However, there are multiple free computer
security software suites available that will protect the computer systems of

most home users against the majority of the most basic and prevalent nefarious
programs, provided that the security software is kept up to date.

In any event, most software provides its own security through patches and
updates. This is why it is very important for users to either manually update
their software and operating system, or to allow those programs to update
themselves automatically. This is especially critical for patching
vulnerabilities in operating systems and web browsers. Microsoft Windows,
Java, and Adobe Flash are commonly targeted by hackers and should be
constantly kept up to date.

NETWORK SECURITY AND ENCRYPTION
A Wi-Fi router’s encryption protocol should be set to the highest level of
encryption available to its particular hardware. It is also good practice to set
your router to not publicly broadcast the name of the network (although most
hackers can easily get around this trick). Password security is especially
important on Wi-Fi networks because a sufficiently lengthy and complex
password can extend the amount of time it takes a hacker to crack your network
password by a significant amount of time. In many cases, using WPA-2
encryption with a password of maximum length and sufficient complexity will
make it so difficult and time-consuming for a hacker to crack into the network
that they will simply move on to another, less secure target.

WEB APPLICATION SECURITY
Vulnerabilities in website applications, especially with in SQL and other
scripted languages that are present within web code, are numerous.
Programmers of websites that provide user access to information and services
need to institute certain safeguards against some of the more common attacks.
Many SQL injection attacks are easily thwarted by sanitizing user input before
it is attached to any SQL commands. In other words, before the string that a
user has entered into a web interface is inserted as a variable into an SQL
statement, a subroutine should check the string for suspicious content. This
procedure can be used for other types of injection attacks as well, including
cross-site scripting and cross-site request forgery.

THE ETHICAL HACKER
It should be clear that hacking is not the exclusive realm of thieves, terrorists,
saboteurs, and mischievous teenagers. The study and practice of hacking is
essential for the understanding of how to best protect against hackers that
intend to do harm. Although hacking is not generally expensive, the knowledge
and skills required for hacking are not easily acquired and take discipline and
dedication to master. This makes the hacking community – at least in terms of
the successful ones – a fairly exclusive group. It also gives talented hackers an
advantage over the general population that those with ill intentions readily
exploit.

The personal ethics and moral compass of individuals tend to bleed over into
any activity they undertake. However, the ease with which some intelligent
individuals can execute hacking attacks against their less-informed peers may
present a tantalizing temptation to otherwise law-abiding citizens. The
potential anonymity with which some attacks can be launched only adds to that
temptation.

Additionally, it can be easy to convince oneself that the end goals of an attack
justify any subversive means. This is especially true in cases where hackers or
groups of hackers are serving a political or social purpose. It is up to each
individual to determine whether their activities warrant the risk of arrest and
punishment (including incarceration) and to think about whether the value they
place on their own security and privacy extend to the targets of their attacks.

MAKE YOUR OWN KEYLOGGER IN C++

Today, with the existence of a program called a Keylogger, gaining
unauthorized access to a computer user’s passwords, accounts and confidential
information has become as easy as falling off a log. You don’t necessarily need
to have physical access to the user’s computer before you are able to monitor
it, sometimes all it takes is a single click on a link to your program by the user.

Anyone with basic knowledge about computer can use a Keylogger. By the
time you are done with this chapter, hopefully you will be able to make your
own keylogger through simple, well explained and illustrated steps I have
made for you.

WHAT IS A KEYLOGGER?
A keylogger, sometimes called a “keystroke logger” or “system monitor” is a
computer program that monitors and records every keystroke made by a
computer user to gain unauthorized access to passwords and other confidential
information.

MAKING YOUR OWN KEYLOGGER VS DOWNLOADING ONE
Why it’s better to write your own Keylogger as opposed to just downloading it
from the internet is the reason of Anti-virus detection. If you write your own
custom codes for a keylogger and keep the source code to yourself, companies
that specialize in creating Anti-virus will have nothing about your Keylogger
and thus, the chances of cracking it will be considerably low.

Furthermore, downloading a Keylogger from the Internet is tremendously
dangerous, as you have no idea what might have been imbedded in the
program. In other words, you might have your own system “monitored”.

REQUIREMENTS FOR MAKING YOUR OWN KEYLOGGER
In other to make your own Keylogger, you will need to have some certain
packages ready to use. Some of these packages include:

1. A VIRTUAL MACHINE
When codes are written and needed to be tested, it is not always advisable to
run them directly on your computer. This is because the code might have a
destructive nature and running them could leave your system damaged. It is in
cases of testing written programs that the utilization of a Virtual Machine
comes handy.

A virtual machine is a program that has an environment similar to the one your
computer system has, where programs that might be destructive can be tested
without causing the slightest harm to it, should it be destructive.

You will be right if you say - whatever happens within a virtual machine stays
within a virtual machine. A virtual machine can be downloaded easily.

2. WINDOWS OPERATING SYSTEM
The Keylogger we will be making will be one that can only infect a windows
PC. We choose to make such a Keylogger because majority of the desktop
users utilize a windows platform. However, besides that, making a Keylogger
that can infect a windows system is far easier compared to making one that
will function on a Mac PC. For this reason, we begin with the easy works and
later we can advance to the more complex ones in my next books.

3. IDE – INTEGRATED DEVELOPMENT ENVIRONMENT
An IDE is a software suite that consolidates the basic tools that developers
need to write and test software.

Typically, an IDE contains a code editor, a debugger and a compiler that the
developer accesses through a single graphical interface (GUI). We will utilize
an IDE called “eclipse” for this project.

4. COMPILER
A compiler is a special program that processes statements written in a
particular computer language and converts them to machine language or “code”

that a computer processor can understand.

Before we start writing our Keylogger, we will need to set up our environment
and also learn some basic things about C++. C++ because most of the codes
for windows are written in it and our Keylogger is targeted for windows.

You definitely want your Keylogger to have the capability of running
universally across all systems that utilize the windows operating system.

Just so you know before hand, C++ is not the next easiest programming
language to learn because of the nature of its syntax. Notwithstanding, don’t
give up already, we will begin with the simple things and move on gradually to
the more advanced ones, taking a comprehensive step-by-step approach.

I also advise that you use external materials on C++ to expand your knowledge
on the areas we will touch during the cause of this project as this will enhance
your productivity.

Hopefully, by the end of this chapter you will be able to make your own
Keylogger and also modify it to suit your purposes.

SETTING UP THE ENVIRONMENT

Just like we need to set our computer systems up before we get working with
them, in the same light we also need to setup an environment which will enable
us code in C++ and in the final account of things, make a Keylogger.

The first thing we will need is an Integrated Development Environment (IDE)
and as stated earlier, we will be using Eclipse. The IDE of our choice
(Eclipse) is java based and so we need to visit the Java website
(www.eclipse.org) to download it.

When we get on the Java site, we will discover that there are numerous options
of eclipse programs that are available for download. However, since we
intend to use the C++ programing language we download “Eclipse for C/C++
developers" still having at the back of our minds that we are working on a
windows platform. Hence, while there are Eclipse versions for Linux, Solaris,
Mac systems and others we will download Eclipse for the Windows platform.

http://www.eclipse.org

We also need to choose between the 32 or 64-bit operating system option,
depending on the one your computer runs on. You can easily check which your
system runs on by right clicking on “PC” or “My computer” and then on
properties. This steps lead to the display of your system specifications. After
the determination of the bits your system runs on, go ahead and download the
Eclipse file that is compatible with it.

When the download is complete, the downloaded file will be in your
download folder by default unless you made changes locate it. We will be
required to unzip the file, as it will be zipped.

After the unzipping and installation of the Eclipse file, an attempt to run it will
result in the display of an error message stating that Eclipse cannot work
without a Java Run time Environment (JRE) or a Java Development Kit (JDK).
This is no problem at all, as all we need do is return to the Internet and
download a JDK. The latest versions of the JDK usually come with the JRE.

We can simply Google “Java development kit” and click on a link leading to
the Oracle website where we can make the required download.

On the site, we have got the JDK program for a lot of different operating
systems and for different system bits ranging from JDK for Linux system to
JDK for Mac OS Solaris and more. However, as we know, we are interested
in a JDK for the windows OS. So we go right ahead and download it making
sure it fits our system bits (32 or 64).

We will be required to accept the Oracle Binary Code License agreement by
clicking on the box provided before we can begin the download. We do this
and go ahead with the download and installation of the JDK.

Now, unlike most programs we download, we have to set environment
variables path. We do this for the JDK because it does not automatically set its
path like most other programs do. The implication of an unset variable path is
that: each time we want to run such a file (with unset variable path), we have
to specify the full path to the executable file such as:

 C:\Program Files\Java\jdk1.7.0\bin\javac”Myclass.java. This could be

really tedious and also lead to lots of errors.

For instance Eclipse requires JDK to run, but if the JDK path is not set,
Eclipse will be unable to locate it and thus will not be able to run unless the
path manually inputted. Setting path simply means setting an address to make
the location of the program possible.

SETTING THE JDK PATH
1. Navigate to file explorer (shortcut: windows + E), right-click on “PC”
or “My computer,” from the drop down menu that is displayed, click on

“Properties.”
2. Click on advanced settings and then from the pop-up menu that
appears, click on “environment variables” then navigate down to system
variables and select one at random.

3. Press “P” on your keyboard and you will be redirected to “Path.” Now
let’s go ahead and edit it. The default path will begin like so:
%systemRoot%... As it is shown in a more complete form in the figure
below. (The address was only shown in notepad for enlargement purposes,

you need not place the path in notepad too.) We are going to make an addition

to the default path.
4. Add C:\mingw\binbin; to the already existing address, so it looks just
the way it is in the figure below. Avoid making any other change in the path,
else an error message will be encountered on attempt to run Eclipse.

5. Click on “OK” as many times as you are prompted to and finally, click
on apply and the JDK path is set.

True, we have made a couple of downloads and we should jump right into the
meat of the matter: making our Keylogger but wait just a minute, are we not
forgetting something? Of course we are!

We have a Virtual Machine where all operations regarding our Keylogger will
be carried out. We have Eclipse where all our code writing will be done, we
also have the JDK which will enable us run Eclipse on our system. What we
lack is a compiler which will translate our C++ written codes to machine
language which is understandable to our computer systems.

Without wasting time, we can download our compiler from www.mingw.org
even though there are still other sites we can make downloads from. However,
MinGW is straightforward.

http://www.mingw.org

Hit the download button at the top right hand corner to start downloading the
compiler. Again, the compiler is going to be in a zipped format and like we did
for the JDK we downloaded previously, unzip it by extracting its content to any
location of your choice. Finally, install the compiler.

Now, with the variable path set, the JDK and a compiler installed, we can
comfortably lunch the eclipse environment without getting any error messages
and write our codes with certainty that they will be interpreted to our computer
and will be executed too.

SETTING THE ECLIPSE ENVIRONMENT:
On lunching Eclipse, greetings with a welcome screen that will offer a tour
around the eclipse environment will be displayed. If you happen to be one that
loves practical guides, you could go on with it, else close it. Immediately after
the greeting note, Eclipse displays a small default program, which will print
“hello world” when, compiled. Do not worry about how complex these codes
might seem at first glance, as we progress things will unwrap and you will see
that coding is just piece of cake waiting to be eaten.

*The lines in purple, blue and green texts are called “Codes.” We will be
playing around with them in no time.

STEPS TO SETUP THE ENVIRONMENT FOR CODING:
1. Close the default program. We can achieve this by clicking on the
projects ‘x’ button at the left hand side of the screen.
2. Click on “File” in the upper left corner, select “New” and then C++
project because we want to create a C++ environment.
3. Give the project you want to create a befitting name e.g. Keylogger,
Calculator, Mary Jane, anything.
4. Under “Project type” select “Empty project.” Select “MinGW GCC”
(which is the compiler we downloaded) under “Toolchains.” Click on “Next”
to proceed with author and copyright settings or click “Finish” to go to Eclipse
code editor directly.

…and we are done with things in that category. Now, just like we did for the
JDK, we need to go ahead and set some paths right here.

LISTED BELOW ARE THE STEPS:
1. Go to your project name, right-click on it and from the drop-down
menu that appears scroll down and click “Properties”.
2. Expand the C/C++ build and from the drop down menu, click on
“Environment.”

3. Under “Environment path to select,” click on “Path” and click on
“Edit.” The default path displayed is long, cumbersome and tedious however,

we only need to add a small path variable to its beginning.

4. Remember the path we copied out when we were setting our JDK path
variable?
C:\mingw\binbin; paste it at the beginning of the eclipse path variable so it
looks like it does in the figure below:

5. Click on “Apply”

We have just one more thing to do and we are done with setting up eclipse.
This is setting the binary parser.

1. Click on “File” and from the drop down menu that appears, click on
“Properties,” “C++ Build” and then go into settings.
2. Under “Settings“ Click on “Binary Parser.” Make sure that the PE

Windows parser is ticked.
3. Click on “Ok” and that’s all about the settings.

HOW TO RUN WRITTEN CODES
Now that your environment is set your coding can begin. However it does not
all end at just writing many and many lines of codes, running them is important.
Running written codes at intervals is important as it enables the coder know if
what he is writing is coming out the way he wants it. You run your codes as
you write so you know the outcome of what you have written and if there any
changes you will like to make. Here are simple steps to running your written
codes:

1. At the upper left corner of the eclipse environment, there is a hammer
symbol. The hammer signifies “Build.” Without building the written code, it
will not run. Click on it (Shortcut: Ctrl B) to build your code.
2. There is a big green “Play” button at the top middle portion of your
screen, click on it to run your written program. The button signifies “Run,”
click on it and your program will run. That’s it, simple as ABC.

PROGRAMMING BASICS (CRASH COURSE ON C++)

True, we are concerned with making a Keylogger and you must be wondering
why we are still beating around the bush. Thing is, it is really necessary that
we equip ourselves with basic knowledge of the environments we will work in
and the tools we will use.

C++ is the programming language we have decided to use and so we will go
through basic areas of this language which will give us a sense of direction of
where we are headed (making a Keylogger.) later on, as we progress we will
learn more and more and more of this language.

TERMS

Variable. A variable is a location in memory where a value can be stored
for use by a program. An analogy is the post office boxes where each box has
an address (post office box number). When the box is opened, the content will
be retrieved. Similarly, each memory location has an address and when that is
invoked, the content can be retrieved.

Identifier. An identifier is a sequence of characters taken from the C++
character set.

 Each variable needs an identifier that distinguishes it from another. For
instance, given a variable a, ‘a’ is the identifier and the value is the content. An
identifier can consist of alphabets, digits and / or underscores.

 It must not start with a digit
 C++ is case sensitive; that is upper case and lower case letters are

considered different from each other. For example boy != BOY (where !=
means not equal to)

 It must not be a reserved word

Reserved words. A reserved word or keyword is a word that has
special meaning to the C++ compiler. Some C++ keywords are: double, asm,
break, operator, static, void, etc.

To declare a variable, it must be first given a name and type of data to hold.
For example:

Int a; where ‘a’ is an identifier and is of type integer.

There are several C++ data types and each of these data types have their
functions. Listed below are the various data types:

 Int: These are small whole numbers e.g.
 Long int: Large whole numbers
 Float: small real numbers
 Double: Theses are numbers with decimal points, e.g. 20.3, 0.45
 Long double: Very large real numbers
 Char: A single character

 Bool: Boolean value. It can take one of two values: true or false

UNDERSTANDING CODE STATEMENTS
When we first launched Eclipse and were welcomed with a greeting note, we
saw a default program shortly after which if we ran using the steps we learnt
earlier would have displayed “Hello World.” Let us go through the functions of
those codes that were written in green, purple and red in that default program

and how they operate.

 #include: The statement #include is a call for statements from a library
to be included in the program being written. A library can be said to be a room
which houses a lot of pre-written codes that we can utilize at any time. It saves
us the stress of having to write every single thing we might need while coding.

 <iostream> : This is a library file which contains some certain
functions which will enable us utilize some certain commands. Some of these
commands include: Cout and Cin.

 Cout: This is a command that displays the outcome of written codes to
the computer user. For example, if you write codes for a program that will ask
a user questions, the Cout statement is what will make the questions visible to
the user.

 Cin: This statement is a command which is used to receive input from
a user. For instance if you write a program that collects the biometrics of
different people, the Cin command is what will enable your program take in
the information the computer user will key in.
A good example explaining both the Cin and Cout statement is a calculator. CIn
allows the calculator to take in your inputs and Cout lets it display an answer
to you.

 //: The double slash is a comment line. This means that the particular
line it precedes will not be taking into consideration. It is used by the code

writer to explain what a particular line of code does either for his
remembrance or for other programmers that might work with his code. We also
have a multi-line comment. A multi-line comment has a single slash and an
asterisk sign together (/*). It functions just like a single line comment except
that the statement being written can exceed a single line.

EXAMPLES OF:
A single line comment: //Life is not a bed of roses.

Multi-line comment: /*Roses are red violets are blue,

most poems rhyme but this one doesn’t.*\

A TYPICAL PROGRAM
The diagram below shows a simple program which is designed to ask the
computer user to input two separate values which it prints out. Let’s go through
the lines of this code step-by-step understanding what each means.

Line 1: This line contains #include <iostream>. It is what begins this program.
The #include statement calls the Cin and Cout commands out of the library
<iostream>. Without this line, the program will neither take in nor display any
input.

Line 2: “Using namespace” is a command, and “std” which stands for
‘standard’ is a library.

When you write “Using namespace std” you are bringing everything from that
library into your class, but it is not quite like using the #include command.
Namespace in C++ is a way to put word in a scope, and any word that is
outside of that scope cannot see the code inside the namespace. In order for the
code that is outside of a namespace to see code that is INSIDE of a namespace,
you must use the “Using namespace” command.

Line 4: On this line, the main() is a function and “int” specifies the type of
values that the function will be dealing with (integers.) A function in C++ is a
group of statements that together forms a task. This is the first function always
in C++ and it must always be written.

Lines 5 & 14: The curly braces on line 5 and 14 indicate the start and end of a
compound statement.

Line 6: Here, two variables are allocated, variable ‘a’ and variable ‘b’. As
stated earlier, a variable is a location assigned to the RAM used to store data.
Therefore, two memory allocations are made to store integers. Variable ‘a’
was assigned a value of 10 and variable ‘b’ a value 20. This process is called
initialization, i.e. setting an initial value so even without input by a user there
is a starting value.

Line 7: On this line initialization was made. The variable of type double was
initialized just as the variable of type integer was initialized.

Line 9: On this line the print out statement Cout is utilized. It prints the
statement “Enter the values for “a and b” though without the quotation marks.
Only statements within the quotation marks get printed. Note that the a and b
written in the statement “Enter the values for a and b” will not display the
value contained in the variable ‘a’ it will only display it as the letter of an
alphabet because it lies within the quotation marks.

At the end of this line, we have a reserved word endL. The endL word causes
every statement that comes after it to begin on a new line.

Line 10: This line contains the Cin >> statement. The Cin statement prompts
the user to input a value for both a and b. Without the computer user making
such input, the program will not progress.

Line 11: When observed, in the statement Cout << “ Value of a: ” it can be
seen that after the column (ushering in the expected input of the user) there is a
space before the quotation mark which ends the statement. These spaces will
make the output look as shown below when the program is set to run.

 Value of a: 50

However, without this space, the output will take this form:

 Value of a:50

Meanwhile, the stand alone ‘a’ is what will display the value inputted by the
user. The endL at the center of both statements takes “Value of b: ” to the next
line on display when the program is set to run.

Line 13: The return 0; statement enables the main function to return an integer
data type. Technically, in C or C++, main function has to return a value because
it is declared as “int main”. If main is declared like “void main”, then there’s
no need of return 0.

Next up, we have a couple of operators, which enable us carry out some
operations. Some of these operators include – the math operator, comparison
operator,

The math operator: Like the name implies, it enables us carry out mathematical
operations. The math operators we have in the real world are the very same
ones we have here. They are:

Addition
Subtraction
Multiplication
Division &
Modulus

The modulus is the number that remains when you divide two numbers.
Example, when you divide 5 by 2, the result will be 2 with a remainder of 1.
The remainder 1 is the modulus.

We also have Comparison operators and they are:

 The equal – equal operator == : It is worthy of note that the double
equal sign operator (==) doesn’t function like the single equal sign operator (
=). While the single equal sign operator is used for assigning values to a
variable, the double sign operator compares the values between two variables
especially when used with a conditional statement (*conditional statements
will be treated later).

For instance, writing a = b will assign whatever values in b to a
 While
Writing something like if a == b … (where “if” is a conditional statement)
will confirm if the value contained in b is same as that in a. And if it is, a
particular operation specified by the code writer will be executed.

Not-equal-to operator != : This operator as the name implies that the two or

more variables in comparison are not equal. For instance, a != b implies that
the values in the variables a and b are different.

The and-and operator &&: This represents the word and. So, if you have for
example:

 a != c && b == a

It can be read as a condition which reads as “ a is not equal to c AND b equals
a.”

The OR operator || Just like the regular OR word we use everyday, the one
here in C++ means the same.

 a != c || b == a

The statement above simply reads: “a is not equal to c OR b equals a”

Now, let us walk through actual lines of code where the comparison statements
are used together with some conditional statement.

Do you see the logic of the code above already?

Basically, Line 9 is stating that if the value contained in the variable a is same
as that contained in b and the value in c is not equal to that in b then the
statement “I will not sleep” written on Line 11 will be displayed. However, if
any of these conditions happen to be false (for instance a does not equal b or c
equals d) then the statement on line 15 which reads “I will fight against sleep”
will be printed.

The else written on Line 15 is a conditional statement, which just like it does
in the real world means that if the condition on Line 9 evaluates to false then
the statement on Line 11 be skipped and another condition down the line be
considered.

If the OR statement was used in place of the else statement, it will imply that
only one of the conditions on Line 9 will have to be true (either the value in a
== b or c != d) for the statement on Line 11 to be considered and that on Line
15 to be ignored.

Going through series and series of codes for different programs will enhance
understanding and on the long run get you used to the operators, their various
functions and how they can be used.

By adding some new statements to our previously analyzed program and
explaining them step by step our understanding of coding in C++ will improve
greatly. When this is achieved, walking through the process of making a
Keylogger will cause you no sweat.

Let us analyze the following programs below:

The code from Line 1 to 7 is familiar codes and hence, they have been omitted.

In Line 9 and 11, the Cout function is used and the statement “Enter value for a:
” and “Enter value for b: ” will be printed out (note the space at the end of both
sentences, between colon and the quotation mark that ends the statements.

Remember its purpose). On Line 10 and 12, the Cin functions which will
require the computer user to input a value, is utilized. Once both values
requested of the user by the program are entered, the program does evaluation
based on the conditional statements on Line 14 and if the result is true, the
program prints as directed by Line16 “A is greater than B”.

On Line 18, the conditional statement else if is a type of conditional statement
used in between the if and else statements. It is used to add several other
conditions which if all evaluated to false, will result to the printing of line
under the else statement. As utilized in this program, if the condition a > b is
false, the line under the else statement –A is less than B- will be printed except
the else if condition is true then “A is equal to B” will be printed.

As observed from the codes written above, the user inputted the value 1 for the
variable a and 3 for the variable b. These values do not meet the condition on
Line 14, neither do they meet that on Line 18 and so the else statement is
considered. The statement on Line 24 “A is less than B is printed.”

LOOPS:
A loop in C++ can be said to be a circular path through which conditional
statements being evaluated continue on in circles never to stop until the
required condition is met or an escape route is provided. Let us analyze a
program which loops are used. There are several loops such as the While
loop, the For loop, the .Let us begin with the While loop.

It can be seen that the while statement is placed just before the lines of code in
which repetitive evaluation is required, the user input inclusive (Cin and Cout
statements). After the while, there is always a parenthesis which holds things
such as true, false, 1 or 0. The number 1 can be replaced with true like 0 with
false. The loop can be set to run continuously without stopping or set to a
number of times to run before stopping.

Like you know, Line 12 and 14 are just statements that will be printed out and
Line 13 and 14 will ask the user to input values repetitively (Loop) . From
Line 17 down to 23 lies the conditional statement to be evaluated. On Line 25
both variable a and b are assigned a value -1. Now supposing all other
conditions evaluate to false the program will continue to run until the condition
on Line 25 evaluates to true (a == -1 || b == -1) i.e. the user inputs a value of -1
then the instruction on Line 26 will be carried out i.e. the loop will break and
the statement on Line 29 will be printed.

However, the way we went about our conditional statement for the loop to be

terminated is not so efficient. This is so because if the user inputs a value of -1
for a as Line 13 requires, the loop will not break but the user will be asked
again for an input for the variable b. Only when both a and b are assigned a
value of -1 will the loop be broken.

Let us look at a more efficient way of utilizing our conditional statements and
break statement so that when the user inputs a -1 value for either of both
variables, the loop will terminate.

As seen in the figure above, the if statement (that leads to the break out of the
loop) and the break statement are brought directly under Line 13 that asks for
user input so that upon the input of a value -1 by the user, the loop will be
broken and the else statement printed. In a situation where a value aside from
-1 is inputted, the statement on Line 12 will be printed out after which Line 13
will request an input from the user for variable b. Again if a value other than -1
is inputted for variable b, the rest of the conditional statements below will be
evaluated and a corresponding result will be printed out:

Furthermore, it is important you know that knowing how to arrange your lines
of code so they produce a particular output is not woven around C++. It
requires just basic logic. All you need know is the different statements, what
they are used for and how they can be used. The way they are to be arranged to
carry out a specific function can be wholly your idea.

Next we will be doing the For loop. However, before we go into that, let us
see how increments work.

Everything from our previous program so far stays the same, however on Line
9, there is a variable i that is initialized i.e. set to 0. This variable i is created
so it could be used within the while loop to set the number of times the
program within the loop will run before terminating.

 While(i <= 3) on line 10 is a condition which instructs the
program to keep on running while the value of i is less than 3 but stop once i
has becomes 3 i.e. the program will run three times.

On Line 35, the i++ is an increment statement, which simply implies that the
value 1 should be added to i each time a loop is completed. It can also be
written as: i = i + 1 however, i++ is short and is what most people use.

<< i has been added at the end of every conditional statement so the number of
completed cycles will be displayed after each loop.

FOR LOOP:
The For carries out basically the same function as the While loop. They are
alike in the sense that both make a program run in iterations. However, a
difference between them both is in the way they are utilized in the program.

It can be seen from the figure above, how the for loop is written. For(int i =

0; i < 3; i++) simply means that the variable i is assigned to hold data of type
variable and is initialized to zero. i < 3; i++ instructs the program to run
continuously (keeping count of the number of completed loops) until i is 1
value less than 3 i.e. The program will run only two times. Also, it is worthy
of note that since the increment is made within the parenthesis after the for
loop, the increment will only function for the program within that block (Line
10 to 25).

UTILIZING THE MATH OPERATORS
As stated earlier, the math operators here in the world of C++ are no different
than those in the real world. Let us see how these operators can be used,
especially with other data types such as float and double as we have been so
far been playing with integers only. We will also see why certain data types

cannot hold some values,
decimal or integers.

On Line 6, 7 and 8 of the program above, values are assigned to the variables
of type: int, double, and float alike. These values assigned fit the variable
types.

A simple division operation is carried out on Line 10, which is a/b. when the
program is run, the value 2 is printed out as the answer. You might begin to
wonder if the entire math in the world is wrong because Mr. Computer never
makes mistakes. However, you got it right and Mr. Computer was wrong this
once! The answer evaluated to 2 because the variables a and b are of the type
integer and integers cannot hold decimal values so it prints put only the whole
part.

If variables a and b were of type float or double, the result would have been
printed in full, i.e. both the whole and decimal part as shown in the figure
below,

In the program above on Line 10, a division operation similar to the previous
one is carried out. However in this particular operation the values were
assigned variable of type double (c = 10.3, d = 60.234). It can be seen that
upon running the program, the answer printed out is 0.171. The answer comes
with its decimal part because of the variable type assigned (double).

So far we have been treating the basics of C++ and it is expected that by now,
you are able to write a simple program, perhaps a “Hello world” program.
However if there are certain things you still do not understand or don’t really
get a hold of, do not panic for as we progress with the coding, you will
definitely get along.

FUNCTIONS: Functions are groups of codes brought together as a single
body to carry out a specific function. The functions we speak of here are
similar to the normal main function we usually write at the beginning of our
code however, they come under the main function. We can also create functions
outside of the main and later call them within the main.

We need functions because we need to group certain blocks or family designed
to carry out specific functions. For instance suppose we need a function to add,
subtract and divide a set of numbers, writing codes to carry out this arithmetic
operation severally will be really difficult. However, a function capable of
carrying out the required arithmetic operation can be written and called within
the main function each time it is required.

Let us go through practical
examples to make the creation and use of functions a lot clearer.
Generally, in the program above, a function sum is created to cause the
addition of two variables a and b. This function will on the long run make our
work easier. For instance, anywhere within the program where a similar math
operation is required, all that needs to be done is to call the function.

On line 5,a function sum is created to accept and process input of type

variable. Within the parenthesis, the function sum, has two variables a and b
declared. On line 8, the main variable is declared also and within it, the
specific jobs for the function to carry out is defined.

“The sum of 3 and 5 is: ” written on Line 10 like you know, is just a statement
that will be printed out. However, at the end of this Line, the function sum is
called and the variables a and b are set to 3 and 5 respectively. On Line 14, the
function, which was created outside the main function, is brought into it.
Finally, on Line 16 a math operation meant to cause the sum of a and b is
written. On running the program, the sum of the variables a and b (3,5)
displays the result 8.

That done, let us analyze a similar program with some new things in it.

There are several new things here, basically the getline statement on Line 13.
For now let us just take the syntax for how we see it as it has got a whole
background to its own and will lead us off our tracks if we run after it. We will
learn more and more about it as we progress.

There is also the string variable type as seen on Line 22. The String variable
type is used to contain spaces and lots and lots of letters. In fact, most all the
statements we have printed to the display window so far in this course can be

held by string.

Just so we know, the little figure above was just written to introduce a new
variable type, which we will definitely use later on. The variable type is char.
This variable type holds characters such as a dollar sign, a single letter like the
one on Line 13 above etc. It is usually utilized with single quotation marks.

Finally, let us go into pointers and files, after which we will start writing our
codes for a Keylogger.

POINTERS AND FILES

POINTERS:

 Basically, a pointer in not just C++ but in other programming languages is
used in showing the memory locations of variables. Let us analyze the little
program above to help us understand how pointers are used.

Codes from Line 1 to 6 serve the same purpose they have always served in
previous codes we have written. A variable num of type int is declared on
Line 9. Since a pointer discloses the memory location of a variable, there has
to be a variable whose location declared. On Line 10, the pointer is declared.
This is done by using a variable type, same as that of the variable, whose
location is to be established, followed by an asterisk and finally the name of
the pointer. The pointer can have any name, ptr was used in above program.

Now, one Line 9, the pointer is told to point to the variable num. This is done
by typing the name of the pointer (ptr) and equating it to an ampersand sign (&)
and the variable name (num) with no space in-between. On line 13, a COut
statement is written to output num (which we set earlier to a value of 10) and
ptr, which will display the memory location of num. As seen in the figure

above, on running the code, it displays the value contained in num (10)
together with the memory location of the variable (0x28ff18).

Note that on Line 13, if we wanted the pointer to print to console the value
contained in the variable, we could simply have put an asterisk before ptr as
shown in the figure below.

FILES:
We might be asking ourselves why on earth we need Files. Well, if we are
going to need a Keylogger, we are going to need to know how to use files
because if you have a Keylogger on somebody’s system, we will be storing the
keystrokes of the user in the files. If the user types ABC, it should be written to
a file somewhere.

We need to know how to write to a file using nothing else but C++. It is a very
simple process that is not complicated in any way. In fact it is very similar to
Cout and Cin. All we need do is:

 Type in #include <fstream> just under the #include<iostream> so that
we will be able to write to a file.

 Create an output stream just like on Line 8 and give it a name. The
output stream is created by just writing ofstream and adding any name of your
choice to it. On Line 8, the output stream’s name is write. Note that paths will
have to be specified else, it will be in your project folder.

To locate the default path, click on “PC” or “My Computer” depending on how
it is on your system, on “Local Disk” and then on “Users.” Click on the user
name of the User you are using at the moment.

 Locate “Work space” and click on it

Within “Workspace,” look for your C++ project name and click on it. If you
named your project - Keylogger, you should be looking for Keylogger.

 The saved Keystrokes will be within Keylogger by default.

Let’s go ahead and specify file paths for the exact location we will like
obtained keystrokes to be sent to.

Within the parenthesis in front of the file creator statement on Line 8, include
your desired path. In the program above, C:\\Users\\Creator\\OUR_FILE is
the chosen path where the stored keystrokes would follow to OUR_FILE (the

file name) where they will be stored. Having done this, your file name is
formed and a path to it is specified.

WRITING TO YOUR FILE:
In other to write to your file or in other words send inputs to your created file,
on a line number put down your file name (in the program above: write) the
same way you print out statements with Cout i.e.

 Write << “……”

Now, from the part of the program displayed in the figure above, take a look at
the statement:

 “Windows is awesome I like working in it, I like all the freedom I have
in it as” “opposed to Linux”

Notice how the quotation mark is used; it makes no difference to the computer
however as it will all be displayed on a single line unless an escape sequence
such as: \n or endL is used.

In the above figure, the program has been compiled and set to run, however the
statement in quotes is not printed to the display window. This is normal, as we
did not instruct the program to display inputs but to send them to OUR_FILE.

Let’s go ahead and confirm if our statement was written to the file we created.

Ureka!!! There lies our statement within the file we created via the path we set.
Well done.

Now, it is good practice to always close a file at the end of its codes. Its easy
work and we have a built in function for that, it involves just re-writing our
output filestream name (on line 8: write) dot close and then parenthesis with
a semi-colon as shown in the figure below I.e. write

 This will effectively close
the file even though we can’t see it.

READING FROM A FILE:
We will go through the basic process of reading input from a file however later
on we will have to combine this with loops to enable us achieve more
functionality. For the time being, we will go through how to read individual
characters from a file.

Below is a figure which displays a program with this done, let us evaluate it.

First of all, because we need a variable to store it, a variable x, of type string
is created on Line 11. Down on Line 13, the statement read >> x; will read
the first word into x i.e. it will reach only until the first space comes along.
And on Line 15, Cout x, instructs the program to print to console the statement
the variable x.

On running the program, “Windows” is displayed which is the first word of
the statement that was sent to our file (OUR_FILE.txt).

Find more explanation in the figure displayed above.

As we advance, we will see how we can read the whole statement or input
regardless of its length, regardless of the spaces between each word and so on
and so forth. It is not complicated, as we only need to create a loop and know
how to handle it. We will do this definitely as we need to master how to write
to a file and also read from it.

We have finally come through the basics of C++ and so we can now start with
building our Keylogger. We will begin from the most simple, primitive
Keylogger we can lay hands so we can set our feet right and from there move
on to the more sophisticated ones.

BASIC KEYLOGGER
The first things we are going to need for the Keylogger are the #include
<windows.h> and #include <Winuser.h> header files because we are going to
be needing some functions for which these are the requirement.

Building loops within loops (nested loops) is important, as the Keylogger will
have lots and lots of this within it. The program below shows how a loop is
built within another loop and made to run infinitely.

On line 11, a variable of type char is created and on Line 13, the first loop
(for loop begins). Within the parenthesis of this loop, conditions are set to
govern the operation of the program block. A variable i of type int is created
and initialized to 0. The loop is set to continue running as long as i is less than
3 i.e. i will run two times. The i++ counts and records the number of cycles the
program has completed and stops it once it satisfies the condition of i < 3. The
beginning and end or start and finish of this loop is defined by the braces
which spans from Line 14 to Line 21.

Note: Curly braces are used to mark the beginning and end of functions.

In other words, the for loop on line 13 will begin and once it begins, it will
start evaluating the conditions laid out within it. If it evaluates to true, i.e. if i

is less than 3, it will run whatever codes are within the curly brackets of the
for loop.

Within Line 15 and 18, we have another for loop nested under the first. The
program evaluates the codes on Line 15 and as long as it evaluates to true, it
will keep on printing the statement on Line 17 until it becomes false -when j
becomes greater or equal to 3- it will stop, exit the second loop and enter the
first loop again then it will print out the statement on Line 20 again also. If the
first condition evaluates to be true again, the second loop will run again and
so on 3 times (0 – 2 = 0, 1, 2 times). Study the program below taking
cognizance of it’s output.

Now that you have an understanding of how nested structures work, let’s get
right into its application on the Keylogger.

From the figure directly above, Line 12 contains a for loop. The two semi-
colons within its parenthesis specifies that the loop is an infinite one i.e. it is

set to run continuously without ceasing. On Line 14 lies a nested loop whose
conditions specify the range of characters the program will be able to read.
This range of character is obtained from the ASCII codes. It is not necessary to
carry the ASCII table in your head, reference can simply be made to it from the
internet. Below is an example of an ASCII code table:

Each number represents a number of characters. In our Keylogger program,
Line 14 contains characters within 8 and 222 from the ASCII table. The
statement on Line 16 is a statement new to us, however it’s nothing complex. It
is called a system interrupt function. What it simply does is observe if a
computer user types anything on his keyboard. Considering the fact that it is
used with an if statement it says: has the user pressed any key yet? If yes, store
the keys in our variable c and then based on Line 18 and 19, send it to our file.

On the same Line (18), within the parenthesis, the ios :: app specifies that we
don’t want our file to be re-written every time somebody presses a key. If we
don’t specify this, each time a user presses a Key, the file will open again and
whatever was written previously will be over written by the new content.

It seems like we are done with our primitive Keylogger and are ready to run it.
However, if we try to run the program the way it is we will get an error
message. At a glance, what do you think might result in an error?

The header file! We failed to attach the header file that will enable the program
run/perform a function that was specified within our code i.e. function to send

received input to a file. The header file for this (which lets us utilize the
ofstream function) is #include <fstream>. Now with the following file
headers at the top of our codes our program will run successfully:

On running the Keylogger program in our eclipse environment we will think
that the program is not functioning because nothing will be printed to the
window console. This is normal however as we didn’t specify anywhere
within our code that inputs be printed but instead be sent to our file.

Our little Keylogger functions, storing Keystrokes we make anywhere on our
system presently and sending them to Record.txt. For proof that the Keylogger
works, let us visit our browser, make inputs and return to our file to see if our
inputs are stored.

In the figure above, it can be seen that a browser was opened and the Yahoo
website was visited. Now we signed in, inputting our username as
USERNAME, and password as PASSWORD. After doing this, to ascertain if
our Keylogger was functioning, we went to our default file location for our
Keylogger project and as can be seen displayed on the white screen covering
the browser partly, the input we made for the website Yahoo.com was
recorded (however the dot in yahoo.com isn’t present, we will make sure we
take all characters into consideration as we proceed with the addition of more
features to the Keylogger). Username and Password was also recorded as

seen.

We have succeeded in writing a very simple Keylogger however, it lacks some
features such as filters, which will filter out some unwanted characters such as
the Tab-like spaces that appeared when we made inputs. Also, we will work
on adding other features to it.

The Keylogger we built isn’t too awesome majorly because of the way it
records information. When we test ran it, we discovered that it couldn’t handle
spaces and tabs alike but just saved the input anyway. Let us build more
functions into our Keylogger so it will become better at handling inputs. We
can achieve this by utilizing Switch statements. Let’s get into it right away!

Mention was made earlier that in order for us to equip our Keylogger with the
capability of handling spaces, tabs and other characters we will have to utilize
the switch statement. However before we bring in our switch statement, we
will need to group our previously written

codes under one function: void log(),
to make things easier for us. Our grouping will be done as shown in the figure
below:

So on Line 8 the function void with name log is created to house our previous
codes. This function will return no value. Furthermore, as required void is
called within the main function on Line 8 so it can be used at any time by
simply calling it and not having to re-write it all over again. On re-testing the
program, it will run just like it did previously.

INCORPORATING THE SWITCH STATEMENT:
With reference to the figure above:

Delete write << c; on Line 27. We will put this back later as a
default case so incase our conditional statements all evaluate to
false, it will be executed. For the main time let’s take it out so we
could put our cases in place.
As on Line 28, write the switch statement and pass whatever happens
in the variable c (which we created earlier) to switch by
parenthesizing it so whatever comes into the variable is handled by
switch.
Let’s create a case (one of different conditions), say case 8. So, if
the variable c has a numerical value of 8 (as in case 8) in ASCII it

means it is a back space.
We keep on adding cases utilizing different numbers from the ASCII
code depending on what the numbers represent, so our Keylogger can
relate to almost any character a user inputs.

So; said in other words, what the statements from Line 22 to 35 does is this:

Line 22 covers values from the ASCII code within 8 and 222. Line 24 has a
conditional if statement which checks to see if there has been any key
interruptions i.e. if any key on the users keyboard has been pressed and if this
evaluates to true, the function on Line 26 should take note of it, store it in a file
defined on the same line as Record.text and also make sure that later inputs do
not overwrite earlier ones. The switch statement on Line 28 lets the cases

which are evaluated within Line 30 and 34 be passed into the variable c,
describing every step of the way, what key, be it a backspace, the enter key,
escape key etc. a user presses on his keyboard instead of giving us those tab
spaces it gave earlier. Line 35 will save the keystrokes of the user -supposing
he doesn’t press any of the keys within number 8 to 222 of the ASCII codes or
any of those our cases cover- the way it did in our primitive Keylogger.

Time has to be taken to include cases that will cover a lot of possible
characters that can be utilized for a username or password, as this will make
the Keylogger save user inputs in a way that will be understood. Let’s take a
look at upper and lower case letters.

UPPER AND LOWER CASE LETTERS
Just as important as the upper and lower case letters are to the English
language, they are important too to general programming especially when it
comes to utilizing them for the purpose of the Keylogger. We have to learn how
to differentiate between the two letter cases. We will also be doing a little bit
of filtering with the tab, caps lock, shift, alt, arrow and mouse keys too.

Well, we can differentiate between the upper and lower case letters by using
the state of the shift key; we can also use the state of the arrow key too. So if
either of these two keys is pressed then please write capital letters otherwise
write lower case letters. This is what we want to tell our program. By default,
the program above will write in capital letters so we have to define the state
for lower case letters.

It’s true that slight changes has been made to the program for our Keylogger
shown in the figure above, nevertheless do not gather butterflies in your
stomach as we will analyze the whole program. We made mention that the first
Keylogger we made was a primitive one, gradually we are going into the more
sophisticated ones.

One of the things we have changed is the variable in which our keystrokes are
placed. We changed its name from c to key. Giving names that fit the
information to be placed in variables is good practice as it helps in the
location of any information very easily or should in case you are working with
a team of other code writers, they will be able to locate whatever function they

seek very easily.

On line 23, we have incorporated the sleep function though it has be
commented out for the time being it will be used later on. The sleep function
helps prevent the CPU from maxing (causing it to slow down) out as a result of
running repetitively. However the sleep function is not the best solution for
preventing the CPU from maxing out but for now we will use it to avoid getting
into any complex matters.

While the Sleep() function will pause the program for any number of
milliseconds put within the parenthesis (e.g. sleep(1), sleep(2), sleep(5)…
etc.), the sleep() function with zero within its parenthesis (i.e. sleep(0)) does
something different. It tells the program to stop using the CPU whenever
another program wants to use it.

Let us go ahead and analyze the code from Line 31 down to 43 as it is a block,
which works together.

*Note that Key += 32 is equivalent to Key = Key + 32.

The block of codes displayed in figure above is one created for the purpose of
distinguishing between the upper and lower case letters.

Line 30 contains an if statement which basically say: if the value of key is
greater than 64 (all values from ASCII code) but lesser than 91 and the shift
key is not pressed (written as !(GetAsyncKey (0x10))) -where 0x10 is the
hexadecimal notation for the Shift key- please add 32 to the previous key
values. It is worthy of note that the range 64 to 91 within the if conditional
statements was not just chosen at random but on intent owing to the fact that
letters of the alphabet fall between this range on the ASCII table.

From the cutout of the ASCII code displayed in the figure below, doing some
little math, we will see why we chose the number 32 to be added to the values
in key within our conditional if statement on Line 31.

Our if conditional statement on Line 31 stated: if key is greater than 64… this
means during evaluation, Key will be read from the number 65. Now take a
look at the number 65 on the ASCII table under the character column. 65
represents the upper case letter A.

Now, if 32 is added to 65 the result is 97. Take a look at the char column of
number 97 on the ASCII table, does the number 97 represent the lower case
letter a? Yes it does!

Remember that by default our Keylogger program will use upper case letters
and like the codes within Line 31 and 33 states, if the shift key is not pressed
(to make the letter uppercase) then the value 32 (which will convert the letter
to its lowercase as defined by the ASCII table) should be added. Now we
know why 32 is the number chosen to be added.

You can go ahead and pick a number from the ASCII table, which represents
any uppercase letter, add 32 to that number and see if it leads you to the
lowercase of the very same letter.

While the statement on Line 34 closes the file: that on Line 35 is utilized for
just the test run so we don’t check for anything else. We might remove it later,
but let’s just see how it works in our program for the main time.

Analyzed together, Line 31 to 42 says: if the range of values in the program
falls within that which contains letters of the alphabet in ASCII code and the
shift key is not pressed (for capitalization) add the number 32 to the previous
values to convert to lowercase and this lower case be written to file unless
however, the shift key is not pressed then the input should be sent to file in
uppercase.

The figure below shows the output of the program during a test-run session:

Here command prompt was used (the Keylogger can be tested anywhere as
long as inputs are made) to test the program and like you see, it did work.

Note also that the program we just analyzed was one for differentiating

between the upper and lowercase letters. During the test above, spaces were
not given between each of the words we wrote, this is because we used a
multi-line comment to shutout the aspect of our code that contains the required
cases to handle spacing and similar function and so if we used spacing the
form of the input would be in some sort of disarray. Our basic intention here
was to treat uppercase and lowercase letters.

Furthermore, this is just one way to implement the differentiation between the
uppercase and lower case letters there are several ways to do this. Some of
them are probably better than this one, feel free to experiment for it will help
further your knowledge.

FILTERING CHARACTERS:
Here, we are going to see how we can filter out all types of characters. This is
important as in in most cases, people tend to type in certain characters such as:
asterisk signs, exclamation mark, symbol for a British pound etc. as passwords
and these symbols in most cases are obtained by the combination of two or
more keys. Filtering will enable our Keylogger recognize when such keys are
pressed by a user.

We need to deal with these things however, the big question is HOW? Well
think of it these ways, what will you press on your keyboard to get the
exclamation mark? Depending on the keyboard you use, however for the
exclamation mark it is quite universal; Shift 1 will give you that. We need to
make a statement, which will recognize the state of the shift key and if the shift
key is pressed and the value, which follows after, is the ASCII value of the
number 1 on the keyboard, please don’t record 1, record “exclamation mark”
instead.

Let’s go about solving this problem. Utilizing the if statement solely is not the
best way to tackle this, however using it together with the switch statement Is
awesome as it will help with better efficiency.

Bringing in the rest of the codes we have written previously, adding the recent
codes displayed in the figure below from Line 43 to Line 50 gives our
Keylogger the feature of being able to detect such inputs as the exclamation
mark and other symbols which a user may use within his password.

Having described the functions of the codes from Line 35 down to 45 earlier
and being that we are used to the codes and how they operate (Basics of C++)
we might already have made a good guess of how the part of the program
above will function. Well that’s good as it tells greatly that we are better than
we started and that’s great!

Well, from the ASCII code, the value 49 on Line (47) represents the number 1.
Line 49 says: if the shift key (described by 0x10 in Hexadecimal form) is
interrupted tell us this. Also, since the program has case 49 added to its list, if
the user types the number 1 on his keyboard immediately after the shift key it
will send the exclamation symbol (!) to RECORD.txt as directed by Line 50.

As shown in the figure above, the Keylogger is being run and tested by utilizing
the quotation mark in addition to a short note, which says “Heythere” through
the command prompt window to see if it will recognize the exclamation
symbol and send it to our project file as we defined it (!) or just give us some

other result.

Nice! As seen above in the figure, our Keylogger now writes the exclamation
mark for what it truly is and not just some funny figure *the statement
highlighted is previously tested work, it isn’t part and parcel of the result of the
recent test.

From this point on, we just have to continue building on the switch statement,
adding more and more cases to represent all the characters we will want our
Keylogger to be able to interpret. This will allow us to customize our
Keylogger to a keyboard that we will like generally, so even if a person has his
or her keys configured differently it affects you but not very much.

So far we have written our codes in blocks, from the case-checking block, the
character incorporation block to the filing block etc. and have put these blocks
with different functions together to fulfil a single the single purpose of a good
Keylogger. Now let’s go ahead with the case incorporation (filtering) and
better general code arrangement.

ENCOMPASSING OTHER CHARACTERS

We have incorporated more break statements at the end of each check, so if the
conditional statement evaluates to true, the program should jump the loop and
move on to the next task. Also in the else part where we have the switch
statement with cases under it; for all the characters we see ranging from the
parenthesis, backslash, forward slash, exclamation mark etc. in the figure
below, they are written in a way in which the program can tell that just a value
was pressed without a shift key and therefore it should print that value and not
a symbol.

For instance, on Line 48 we have case 48 written. 48 on the ASCII table
represent the number 0.

So, when a user presses the key that carries the number 0 and at the same time
a close parenthesis, depending on whether shift is pressed or not (based on the
statement of Line 50), either a close parenthesis “)” or a 0 will be recorded

(examine the code within Line 48 and 52). With the (GetAsyncKey(0x10))
function on Line 50, the program verifies whether the shift key is being
pressed or not and if it is and 0 is being pressed along with it then the close
parenthesis will be considered and if it is not, 0 will be written.

With the break statement on Line 55, if the condition, which lies within Line
48 and 54, evaluates to true, the program does not go checking other cases out
just yet, it exits the loop immediately.

Basically, for the rest of the cases in the program from Line 48 down
concerned with determining whether or not it is a number typed by the user or a
symbol sharing the same key as the individual numbers on the keyboard, we
follow the same logic as we have for the 0 or close parenthesis case which
falls within Line 48 and 53.

The figures below shows what the cases will look like put together:

Now we have incorporated cases to cover both the keyboard numbers and
symbols, let us go ahead and test if they function properly.

Having gathered the cases to cover numbers and symbols of the Keyboard, it is
good that we test to see if the Keylogger actually recognizes them. So as seen
above, we have built the code and set it to run. Using the command prompt
window we type in the digits on the keyboard and also the symbols by holding
down the shift key combing the digits 1 – 9 one after the other.

From the figure above it is clear that the Keylogger recognizes our number and
symbol inputs and so, if a user happens to use numbers and symbols for
password or username or anything else, our Keylogger at its present state will
still do good magic.

Earlier, we added a function which enables our Keylogger tell the difference
between upper and lower case letters so it will still do fine if a user uses a
mixture of numbers, symbols, upper and lower case letters as password.

Having come this far, we can decide to utilize the Keylogger the way it is but
adding more functionality wouldn’t be bad at all as the more keys we get to
add to the Keylogger, the better we can trust its overall performance. Lets go
ahead and add more cases that will make our Keylogger generally more
relevant.

VIRTUAL KEYS:
So far we have been adding series of cases revolving around numbers, letters
and symbols however an area we haven’t really done much work in is the area
of virtual keys. The virtual keys cover the tab key, capslock, backspace,
escape, delete key and many more keys such as the f-keys, the arrow keys etc.
which serve a purpose of making the logged information obtained by the
Keylogger look presentable and readable.

Imagine what your log will look like if your Keylogger sent you a week’s work
of gathered inputs without including backspace, delete key or tab. The log will
be so lengthy and it will be hard to sieve out the actual info from the lot.

We try to narrow down our Keylogger to contain most of the keys that users are
likely to use for passwords, instead of just adding everything. For instance the
arrow keys, num lock and f-keys don’t necessarily need to be added to the
Keylogger.

This is important as most Keyloggers gather info for a week or more before
sending it over. Besides, the more the not-too relevant keys we have present,
the more the load of input we have to sieve through to obtain just maybe a
single password and username we require.

Virtual Keys can be searched for on the Internet and depending on your quest,
you can add those that will better fulfill your purpose.

Within Line 127 down to 145, we have incorporated a good number of really
important codes, such as the backspace, delete, escape and other keys as seen
above.

As observed, the virtual Keys can be written without using neither the if
statement nor the curly brackets and they still function fine.

Let’s go ahead and carry out a real life test of our Keylogger to see how fine it
performs and how more readable the logged file will be.

As seen above our Keylogger is first tested one more time using the command
window to gauge its functionality and like you might have noticed already, it
showed that the user utilized a backspace once in the process of writing
username. So you see already that our logged file is more readable.

Now let’s go ahead and test our Keylogger within a browser to ascertain if it

will work just fine there too.

We visited a couple of sites before finally stopping by the Ubuntu forum where
we have inputted a username and a password. If our Keylogger is a good one,
it should have recorded our Keystrokes from the first time we opened the
browser. Let’s see if it did.

Perfect! Our Keylogger works really fine as it tells that I visited Udemy and
Gmail before finally attempting to login to the Ubuntu forum.

HIDE KEYLOGGER CONSOLE WINDOW
Basically, we have incorporated a lot in our Keylogger and we can say that we
are done however, there are still two important things left for us to do before
we say we have completed our Keylogger. The first is: creating a release
version of the Keylogger so it can be installed on a CD or sent as a file and the
second: hiding the file. We will also see one problem the Keylogger has
which we cannot see while running it from within the eclipse environment.

Here are the steps to creating a release version of our Keylogger:

Being that the program is well written within the editor, go to the
“Hammer” in the upper left corner of eclipse environment. From the
drop down menu that appears, select “debug” and then “release.”

Ensure that the Keylogger is not running to avoid getting an error
message. Then, Select “build” or use ctrl + s to achieve the same
purpose.

 Open up the file manager and go into our workspace. Click on
“Keylogger” which is the name of our project, open it up. Within “keylogger”
we have a debug version, a release and some other files. Now, the release
version of our Keylogger is ready for execution.

HIDING THE KEYLOGGER:
On clicking on the Keylogger.exe (the executional file), a black window, which
saves the Keystrokes of the user, appears on the home screen and it looks like
it does in the figure below:

The black window records whatever keys we press to the RECORD.txt file but
this isn’t good at all as whoever sees such a display on his or her screen will
smell a rat. And what do you think a typical computer user will do? Probably
press the X (close button) and that’s it; your Keylogger stops running and all
your effort down the drain for no good reason.

However, there is a way we can hide this window. We can do this by creating
a function -that will hide the entire program- within our code. Let us begin by
giving this function a name that will help us identify it from within the code so
we can make reference to it whenever need be, say: hide.

In creating the function that will hide the Keylogger we will need to first create
a function outside the main function and then call it within it (the main
function) we will also need to create another function at the end of the
program.

On line 9, a function that will hide the Keylogger is created with the name
hide. It is created outside the main function. Following this, the function is
called within the main function on Line 13 and an extension of this function is
also added to the end of the program as seen in the figure below:

On Line 182, a handler called stealth is created to handle the input (the
Keylogger window being displayed on the home screen) generated by the
FindwindowA() function. On Line 185, details of the Keylogger window
which has been obtained and stored in stealth, is set to 0. Zero implying that it
shouldn’t display it on the home screen.

That done, on building and releasing our Keylogger afresh as an executable
file, we obtain a wonderful result. The Keylogger no longer displays a
window on the home screen so not even you the creator can see that it is
running. Confirming whether your code is running might be a problem
however. A way you can check it is by writing something anywhere on your
system perhaps your notepad. After this, open your workspace as well as the

Record.txt file and if your keystrokes are saved then your Keylogger works.

If you have gotten to this point, big congrats to you!

Finally, we have come to the end of this course which illustrates how to build
a Keylogger. Hopefully at this point, Making your own Keylogger wouldn’t
seem like an impossible task to you anymore but one that can easily be
accomplished without much stress.

Though the Keylogger we have built here might not be the most advanced one
that there is out there or one with the super features that you expected a
keylogger to have, however with the knowledge you have gathered on building
what we have here, making others with more advanced features such as
webcam activation, screen capturing and other cool features wouldn’t be a
problem to you with little research.

Furthermore, if you followed this course it is expected that you understand
pretty much about the C++ programing language, its syntax, how it functions
and you are able to write other programs beside the Keylogger which you have
just learnt to build.

Continue practicing, researching and finding solutions to problems you will
encounter along the way and you will record great improvements.

ABOUT THE AUTHOR
Alan T. Norman is a proud, savvy, and ethical hacker from San Francisco City.
After receiving a Bachelors of Science at Stanford University. Alan now
works for a mid-size Informational Technology Firm in the heart of SFC. He
aspires to work for the United States government as a security hacker, but also
loves teaching others about the future of technology. Alan firmly believes that
the future will heavily rely computer "geeks" for both security and the
successes of companies and future jobs alike. In his spare time, he loves to
analyze and scrutinize everything about the game of basketball.

CONCLUSION
While this book was being written, it is likely that dozens, if not hundreds, of
new computer and network vulnerabilities and their corresponding exploits
developed. Such is the dynamic nature of the world of hacking and information
security. In the spirit with which this guide began - with an emphasis on the
constant honing and acquisition of skills and knowledge – the aspiring hacker
should take the basic outline of this book and use it as a basis to methodically
expand on each individual theme, delving into both the history and current
state-of-the art of the areas in which they are most interested. Most importantly,
they should construct a consequence-free space – either with virtual or
physical hardware - to practice both exploits and security. Finally, before
setting out on the journey of hacking, you would come to terms with the ethical,
moral, and legal implications of your activities with a full understanding of
both your goals and responsibilities.

ONE LAST THING...
DID YOU ENJOY THE BOOK?
 IF SO, THEN LET ME KNOW BY LEAVING A REVIEW ON AMAZON!
Reviews are the lifeblood of independent authors. I would appreciate even a
few words and rating if that’s all you have time for

IF YOU DID NOT LIKE THIS BOOK, THEN PLEASE TELL ME! Email me
at alannormanit@gmail.com and let me know what you didn’t like! Perhaps I
can change it. In today’s world a book doesn’t have to be stagnant, it can
improve with time and feedback from readers like you. You can impact this
book, and I welcome your feedback. Help make this book better for everyone!

[1] Although PC stands for personal computer, and technically can refer to any such system,
in practice it is often used to distinguish computers that use an IBM-style x86 processor
architecture as opposed to an Apple Macintosh platform.

	Chapter 2. Vulnerabilites and Exploits
	Chapter 3. Getting Started
	Chapter 6. Malicious Activity and Code
	About The Author

